
MIT Open Access Articles

Learning for multi-robot cooperation in partially
observable stochastic environments with macro-actions

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Liu, Miao, Kavinayan Sivakumar, Shayegan Omidshafiei, Christopher Amato, and
Jonathan P. How. “Learning for Multi-Robot Cooperation in Partially Observable Stochastic
Environments with Macro-Actions.” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), September 2017, Vancouver, BC, Canada, 2017.

As Published: http://dx.doi.org/10.1109/IROS.2017.8206001

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/114739

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/114739
http://creativecommons.org/licenses/by-nc-sa/4.0/

Learning for Multi-robot Cooperation in Partially Observable
Stochastic Environments with Macro-actions

Miao Liu1, Kavinayan Sivakumar2, Shayegan Omidshafiei3, Christopher Amato4 and Jonathan P. How3

Abstract— This paper presents a data-driven approach for
multi-robot coordination in partially-observable domains based
on Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs
provide a general framework for cooperative sequential decision
making under uncertainty and MAs allow temporally extended
and asynchronous action execution. To date, most methods
assume the underlying Dec-POMDP model is known a priori
or a full simulator is available during planning time. Previous
methods which aim to address these issues suffer from local
optimality and sensitivity to initial conditions. Additionally, few
hardware demonstrations involving a large team of heteroge-
neous robots and with long planning horizons exist. This work
addresses these gaps by proposing an iterative sampling based
Expectation-Maximization algorithm (iSEM) to learn polices
using only trajectory data containing observations, MAs, and
rewards. Our experiments show the algorithm is able to achieve
better solution quality than the state-of-the-art learning-based
methods. We implement two variants of multi-robot Search
and Rescue (SAR) domains (with and without obstacles) on
hardware to demonstrate the learned policies can effectively
control a team of distributed robots to cooperate in a partially
observable stochastic environment.

I. INTRODUCTION

There has been significant progress in recent years on
developing cooperative multi-robot systems that can operate
in real-world environments with uncertainty. Example ap-
plications of social and economical interest include search
and rescue (SAR) [1], traffic management for smart cities
[2], planetary navigation [3], robot soccer [4], e-commerce
and transport logistic processes [5]. Planning in such en-
vironments must address numerous challenges, including
imperfect models and knowledge of the environment, re-
stricted communications between robots, noisy and limited
sensors, different viewpoints by each robot, asynchronous
calculations, and computational limitations.

These planning problems, in the most general form, can be
formulated as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) [6], a general framework
for cooperative sequential decision making under uncertainty.
In Dec-POMDPs, robots make decisions based on local
streams of information (i.e., observations), such that the
expected value of the team (e.g., number of victims rescued,

1Miao Liu is with IBM T. J. Watson Research Center, Yorktown Heights,
NY, USA miao.liu1@ibm.com

2Kavinayan Sivakumar is with the Department of Electrical Engineering,
Princeton University, Princeton, NJ, USA ks16@princeton.edu

3 Shayegan Omidshafiei and Jonathan P. How are with Laboratory of
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, USA {shayegan, jhow}@mit.edu

4Christopher Amato is with the College of Computer and
Information Science, Northeastern University, Boston, MA, USA
camato@ccs.neu.edu

average customer satisfaction) is maximized. However, rep-
resenting and solving Dec-POMDPs is often intractable for
large domains, because finding the optimal (even epsilon-
approximate) solution of a Dec-POMDP (even for finite
horizon) is NEXP-complete [6]. To combat this issue, re-
cent research has addressed the more scalable macro-action
based Dec-POMDP (MacDec-POMDP), where each agent
has temporally-extended actions, which may require different
amounts of time to complete [7]. Moreover, significant
progress has been made on demonstrating the usefulness
of MacDec-POMDPs via a range of challenging robotics
problems, such as a warehouse domain [8], bartending and
beverage service [9], and package delivery [10], [11]. How-
ever, current MacDec-POMDP methods require knowing
domain models a priori. Unfortunately, for many real-world
problems, such as SAR, the domain model may not be
completely available. Recently, researchers started to address
this issue via reinforcement learning and proposed a policy-
based EM algorithm (PoEM) [12], which can learn valid
controllers via only trajectory data containing observations,
macro-actions (MAs), and rewards.

Although PoEM has convergence guarantees for the batch
learning setting and can recover optimal policies for bench-
mark problems with sufficient data, it suffers from local
optimality and sensitivity to initial conditions for compli-
cated real-word problems. Inevitably, as an EM type algo-
rithm, the results of PoEM can be arbitrarily poor given
bad initialization. Additionally, few hardware demonstrations
based on challenging tasks such as SAR, which involves a
large team of heterogeneous robots (both ground vehicles
and aerial vehicles) and with MacDec-POMDP formulation
exists. This paper addresses these gaps by proposing an it-
erative sampling-based Expectation-Maximization algorithm
(iSEM) to learn polices. Specifically, this paper extends
previous approaches by using concurrent (multi-threaded)
EM iterations providing feedback to one another to enable
re-sampling of parameters and reallocation of computational
resources for threads which are clearly converging to poor
values.

The algorithm is tested in batch learning settings, which
is commonly used in learning from demonstration. Through
theoretical analysis and numerical comparisons on a large
multi-robot SAR domain, we demonstrate the new algorithm
can better explore the policy space. As a result, iSEM
is able to achieve better expected values compared to the
state-of-the-art learning-based method, PoEM. Finally, we
present an implementation of two variants of multi-robot
SAR domains (with and without obstacles) on hardware
to demonstrate the learned policies can effectively control

ar
X

iv
:1

70
7.

07
39

9v
2

 [
cs

.M
A

]
 1

8
A

ug
 2

01
7

a team of distributed robots to cooperate in a partially
observable stochastic environment.

II. BACKGROUND

We first discuss the background on Dec-POMDPs and
MacDec-POMDPs and then describe the PoEM algorithm.

A. Dec-POMDPs and MacDec-POMDPs

Decentralized POMDPs (Dec-POMDPs) generalize
POMDPs to the multiagent, decentralized setting [6], [13].
Multiple agents operate under uncertainty based on partial
views of the world, with execution unfolding over a bounded
or unbounded number of steps. At each step, every agent
chooses an action (in parallel) based on locally observable
information and then receives a new observation. The agents
share a joint reward based on their joint concurrent actions,
making the problem cooperative. However, agents’ local
views mean that execution is decentralized.

Formally, a Dec-POMDP is represented as an octuple
〈N,A, S, Z, T,Ω, R, γ〉, where N is a finite set of agent
indices; A = ⊗nAn and Z = ⊗nZn respectively are sets of
joint actions and observations, with An and Zn available to
agent n. At each step, a joint action ~a = (a1, · · · , a|N |) ∈ A
is selected and a joint observation ~z = (z1, · · · , z|N |) is
received; S is a set of finite world states; T : S ×A× S →
[0, 1] is the state transition function with T (s′|s,~a) denoting
the probability of transitioning to s′ after taking joint action ~a
in s; Ω : S×A×Z → [0, 1] is the observation function with
Ω(~z|s′,~a) the probability of observing ~o after taking joint
action ~a and arriving in state s′; R : S×A→ R is the reward
function with r(s,~a) the immediate reward received after
taking joint action ~a in s; γ ∈ [0, 1) is a discount factor. Be-
cause each agent lacks access to other agents’ observations,
each agent maintains a local policy πn, defined as a mapping
from local observation histories to actions. A joint policy
consists of the local policies of all agents. For an infinite-
horizon Dec-POMDP with initial state s0, the objective is
to find a joint policy π = ⊗nπn, such that the value of π
starting from s0, V π(s0) = E

[∑∞
t=0 γ

tr(st,~at)|s0, π
]
, is

maximized. Specifically, given ht = {a0:t−1, z0:t} ∈ Hn,
the history of actions and observations up to t, the policy πn
probabilistically maps ht to at: Hn ×An → [0, 1].

A MacDec-POMDP with (local) macro-actions extends
the MDP-based options [14] framework to Dec-POMDPs.
Formally, a MacDec-POMDP is defined as a tuple
〈N,A,M, S, Z,O, T,Ω, R, γ〉, where N,A, S, Z, T,Ω, R
and γ are the same as defined in the Dec-POMDP; O =
⊗On are sets of joint macro-action observations which are
functions of the state; M = ⊗Mn are sets of joint macro-
actions, with Mn = 〈Imn , βmn , πmn 〉, where Imn ⊂ HM

n is
the initiation set that depends on macro-action observation
histories, defined as hMn,t = {o0

n,m
1
n, · · · , ot−1

n ,mt
n} ∈ HM

n ,
βmn : S → [0, 1] is a stochastic termination condition that
depends on the underlying states, and πmn :Hn×Mn → [0, 1]
is an option policy for macro-action m (Hn is the space of
history of primitive-action and observation). Macro-actions
are natural representations for robot or human operation for
completing a task (e.g., navigating to a way point or placing

an object on a robot). MacDec-POMDPs can be thought of
as decentralized partially observable semi-Markov decision
processes (Dec-POSMDPs) [9], [10], because it is important
to consider the amount of time that may pass before a macro-
action is completed. The high level policy for each agent
Ψn, can be defined for choosing macro-actions that depends
on macro-action observation histories. Given a joint policy,
the primitive action at each step is determined by the high-
level policy that chooses the MA, and the MA policy that
chooses the primitive action. The joint high level policies
and macro-action policies can be evaluated as: V Ψ(s0) =
E
[∑∞

t=0 γ
tr(st,~at)|s0, π,Ψ

]
1.

B. Solution Representation

A Finite State Controller (FSC) is a compact way to
represent a policy as a mapping from histories to actions.
Formally, a stochastic FSC for agent n is defined as a tuple
Θn = 〈Qn,Mn, On, δn, λn, µn〉, where, Qn is the set of
nodes2; Mn and On are the output and input alphabets
(i.e., the macro-action chosen and the observation seen);
δn : Qn × On × Qn → [0, 1] is the node transition
probability, i.e., δn(q, o, q′) = Pr(q′|q, o); λ0

n : Qn ×Mn →
[0, 1] is the output probability for node qn,0, such that
mn,0 ∼ λ0

n(qn,0,mn,0) = Pr(mn,0|qn,0); λn : Qn × On ×
Mn → [0, 1] is the output probability for nodes 6= qn,0
that associates output symbols with transitions, i.e. mn,τ ∼
λn(qn,τ , on,τ ,mn,τ) = Pr(mn,τ |qn,τ , on,τ); µ : Qn →
[0, 1] is the initial node distribution qn,0 ∼ µn = Pr(qn,0).
This type of FSC is called a Mealy machine [16], where an
agent’s local policy for action selection λn(q, o,m) depends
on both current controller node (an abstraction of history)
and immediate observation. By conditioning action selections
on immediate observations, a Mealy machine can use this
observable information to help ensure a valid macro-action
controller is constructed [12].

C. Policy Learning Through EM

A Dec-POMDP problem can be transformed into an
inference problem and then efficiently solved by an EM
algorithm. Previous EM methods [17], [18] have achieved
success in scaling to larger problems, but these methods
require a Dec-POMDP model both to construct a Bayes net
and to evaluate policies. When the exact model parameters
T , Ω and R are unknown, a Reinforcement Learning (RL)
problem must be solved instead. To this end, EM has been
adapted to model-free RL settings to optimize FSCs for Dec-
POMDPs [19], [20] and MacDec-POMDPs [12].

For both purposes of self-containment and ease of an-
alyzing new algorithm, we first review the policy based
EM algorithm (PoEM) developed for the MacDec-POMDP
case [12].

1Note that MacDec-POMDPs allows asynchronous decision making, so
synchronization issues must be dealt with by the solver as part of the
optimization. Some temporal constraints (e.g., timeouts) can be encoded
into the termination condition of a macro-action.

2A controller node can be understood as a decision state (summary of
history). They are commonly used for policy representation when solving
infinite horizon POMDPs [15] and Dec-POMDPs [6].

Definition 1: (Global empirical value function) Let
D(K) = {(~ok0 , ~mk

0 , r
k
0 , · · ·~okTk

, ~mk
Tk
, rkTk

)}Kk=1 be a set of
episodes resulting from |N | agents who choose macro-
actions according to Ψ=⊗nΨn, a set of arbitrary stochastic
policies with pΨn(m|h) > 0, ∀ action m, ∀ history h. The
global empirical value function is defined as

V̂
(
D(K); Θ

)def.
=

1

K

K∑
k=1

Tk∑
t=0

γtrkt

N∏
n=1

p(mk
n,0:t|hkn,t,Θn)

pΨn(mk
n,0:t|hkn,t)

(1)

where hkn,t=(mk
n,0:t−1, o

k
n,1:t), 0≤γ < 1 is the discount.

Definition 1 provides an off-policy learning objective:
given data D(K) generated from a set of behavior policies Ψ,
find a set of parameters Θ={Θi}|N |i=1 such that V̂

(
D(K);Θ

)
is maximized. Here, we assume a factorized policy rep-
resentation p(~mk

0:τ |~h1:τ ,Θ) =
∏|N |
n=1 p(m

k
n,τ |hkn,τ ,Θn) to

accommodate decentralized policy execution.

D. PoEM
Direct maximization of V̂

(
D(K); Θ

)
is difficult; instead,

V̂
(
D(K); Θ

)
can be augmented with controller node se-

quences {~q k0:t : k = 1 . . . ,K, t = 1 : Tk} and maximize
the lower bound of the logarithm of V̂

(
D(K); Θ

)
(obtained

by Jensen’s inequality):

ln V̂
(
D(K); Θ

)
= ln

∑
k,t,~q k

0:t

fk
t (~q k

0:t|Θ̃)r̃kt p(~m
k
0:t,~q

k
0:t|~o

k
1:t,Θ)

fk
t (~q k

0:t|Θ̃)

≥
∑

k,t,~q k
0:t

fkt (~q k0:t|Θ̃) ln
r̃ k
t p(~m

k
0:t,~q

k
0:t|~o

k
1:t,Θ)

fk
t (~q k

0:t|Θ̃)

def.
= lb(Θ|Θ̃), (2)

where fkt (~q k0:t|Θ̃)
def.
= r̃kt p(~m

k
0:t, ~q

k
0:t|~o k1:t, Θ̃)/V̂ (D(K); Θ̃),

and {f(~q k0:t|Θ̃) ≥ 0} satisfy the normalization con-
straint

∑K
k=1

∑Tk

t=0

∑
~q k
0:t
fkt (~q k0:t|Θ̃) = K with Θ̃ the

most recent estimate of Θ, and r̃kt
def.
= γt(rkt −

rmin)/
∏t
τ=0 p

Ψ(~mk
τ |hkτ),∀t, k are reweighted rewards with

rmin denoting the minimum reward, leading to the following
constrained optimization problem

max{
fk
t

(
~q k
0:t;Θ̃

)}
,Θ

lb(Θ|Θ̃)

subject to:
∑K
k=1

∑Tk

t=0

∑|Q1:|N||
q k
n,0:t=1

fkt (~q k0:t; Θ̃) = K,

p(~m k
0:t~q

k
0:t; Θ̃) =

∏|N |
n=1 p(m

k
n,0:t, q

k
n,0:t|o kn,0:t, Θ̃n). (3)

Based on the problem formulation (3), an EM algorithm
can be derived to learn the macro-action FSCs. Algorithmi-
cally, the main steps involve alternating between computing
the lower bound of the log empirical value function (2) (E-
step) and parameter estimation (M-step). This optimization
algorithm is called policy based expectation maximization
(PoEM), the details of which is referred to [12].

III. RELATED WORK

The use of multi-robot teams has recently become viable
for large-scale operations due to ever-decreasing cost and
increasing accessibility of robotics platforms, allowing robots
to replace humans in team-based decision-making settings
including, but not limited to, search and rescue [1]. Use
of multiple robots allows dissemination of heterogeneous
capabilities across the team, increasing fault-tolerance and

decreasing risk associated with losing or damaging a single
all-encompassing vehicle [21].

The large body of work on multi-robot task alloca-
tion (MRTA) comes in decentralized, centralized, and dis-
tributed/hybrid flavors. Centralized architectures [22], [23]
rely on full information sharing between all robots. However,
in settings such as SAR, communication infrastructure may
be unavailable, requiring the use of alternative frameworks.
Distributed frameworks, such as those used in auction-
based algorithms [24], use local communication for con-
sensus on robot policies. This enables robustness against
communication failures in hazardous, real-world settings.
However, in settings such as SAR, it can be unreasonable
or impossible for robots to communicate with one another
during task execution. Decentralized frameworks, such as
Dec-POMDPs [13] and the approach proposed in this paper,
target this setting, allowing a spectrum of policies rang-
ing from communication-free to explicitly communication-
enabled. The flexibility offered by decentralized planners
makes them suitable candidates for multi-robot operation in
hazardous or uncertain domains, such as SAR.

Finally, note that unlike the majority of the existing MRTA
literature, the work presented here exploits the strengths of
the MacDec-POMDP framework [8] to develop a unifying
framework which considers sources of uncertainty, task-
level learning and planning, temporal constraints, and non-
deterministic action durations.

IV. ITERATIVE SAMPLING BASED EXPECTATION
MAXIMIZATION ALGORITHM

The PoEM algorithm [12] is the first attempt to address
policy learning for MacDec-POMDPs with batch data. How-
ever, one of the biggest challenge for PoEM is that it
only grantees convergence to a local solution, a problem
often encountered when optimizing mixture models, such
as the empirical value function (1) 3. Moreover, PoEM
is a deterministic algorithm for approximate optimization,
meaning that it converges to the same stationary point if
initialized repeatedly from the same starting value. Hence,
PoEM can be prone to poor local solution for more com-
plicated real-world problems (as it will be shown in a later
numerical experiment). To address these issues, we propose
a concurrently (multi-threaded) randomized method called
iterative sampling based Expectation Maximization (iSEM).
The iSEM algorithm is designed to run multiple instances of
PoEM with randomly initialized FSC parameters in parallel
to minimize the probability of converging to a sub-optimal
solution due to poor initialization. Furthermore, to exploit
information and computational efforts on runs of PoEM
which are clearly converging to poor values, iSEM allows
re-sampling of parameters once convergence of V (Dtest) is
detected, increasing the chance of overcoming poor local
optima. Because of the re-sampling step, which involves
random reinitialization for threads converging to poor local
value, iSEM can be deemed as a randomized version of

3Note that the empirical value function (1) can be interpreted as a
likelihood function for FSCs with the number of mixture components equal
to the total number of subepisodes

∑K
k=1 Tk [25].

Algorithm 1 ISEM

Require: Episodes D(K)
train,D(K)

eval, number of MC samples
M , maximum iteration number Tmax, threshold ε, J =
∅, Iter = 0

1: while I 6= ∅ or Iter ≤ Tmax do
2: I = {1, · · · ,M} \ J , Iter = Iter + 1
3: for i ∈ I do
4: Sample {Θi} ∼ Dirichlet(1)
5: Θ∞i = PoEM(Θi, Dtrain)
6: Compute V (Deval,Θ

∞
i) using (1)

7: end for
8: Compute Θ∗ = arg maxi∈{1,··· ,M} V (Deval,Θ

∞
i)

9: J = ∅
10: for i = 1 to M do
11: if V (Deval,Θ

∗)− V (Deval,Θ
∞
i) < ε then

12: J = J ∪ {i}
13: end if
14: end for
15: end while
16: return Controller parameters Θ∗.

the PoEM algorithm. This is essential for convergence to
well-performing policies, since it widely known that global
optimization paradigms are often based on the principal of
stochasticity [26].

iSEM is outlined in Algorithm 1. Domain experience data
is first partitioned into training and evaluation sets, D(K)

train

and D(K)
eval. iSEM takes the partitioned data, the number of

Monte Carlo samples (threads) M and parameters controlling
convergence as input, and maintains two sets, I and J : I
records the indices of threads whose evaluation values are
ε lower than the best value, and J records the remaining
thread indices (and is initialized as empty). iSEM iteratively
applies four steps: 1) update I (line 2); 2) for the threads in I ,
randomly initialize FSC parameters by drawing samples from
Dirichlet distributions with concentration parameter 1, run
the PoEM algorithm [12] and evaluate the resulting policy
{Θ∞i }i∈I4 (line 4-6); 3) update the best policy and its evalu-
ation value obtained in current iteration (line 8); 4) update J
by recording the indices of threads whose converged policy
values are ε close to the best policy (line 9-13). Critically,
the final step (update of J) enables distinguishing threads
that clearly converge to poor local solutions and ”good”
local solutions. In the subsequent iteration, threads with poor
local solutions are reinitialized and re-executed until the
policy values from all the threads are ε close to the best
solution learned so far. The iSEM algorithm is guaranteed
to monotonically increase the lower bound of empirical
value function over successive iterations and the convergence
property is summarized by the following theorem.

Theorem 2: Algorithm 1 monotonically increases
V̂
(
D(K); Θ

)
, until convergence to a maximum.

Proof: Assume that Θ∗(t) is a policy with the highest
evaluation value among the policies learned by all the threads
at iteration t, and the set Jt records the thread indices with

4∞ sign indicates run the PoEM algorithm until convergence.

corresponding policy value ε close to V (Deval,Θ
∗(t)). In

the iteration t + 1, the set It+1 contains the thread indices
with corresponding policy values satisfy V (Deval,Θ

∗(t))−
V (Deval,Θi(t)) > ε, ∀i ∈ It+1 = {1, · · · ,M} \ Jt.
Starting from t = 0, we have V (Deval,Θ

∗(0)) ≥
V (Deval,Θ

∞
i (0)),∀i ∈ I0 = {1, · · · ,M}. In the next

iteration (i.e., t = 1), we have |I1| = |{1, · · · ,M} \
J0| ≤ |I0|. The steps 4-6 allow the threads in I1 to
rerun with randomly reinitialized parameters. According to
step 8 (Algorithm 1), we can obtain V (Deval,Θ

∗(1)) ≥
V (Deval,Θ

∗(0)). Following the same analysis for t > 1, we
can obtain V (Deval,Θ

∗(t)) ≥ V (Deval,Θ
∗(t − 1)). Since

{V (Deval,Θ
∗(t))}∞t=0 is a monotone sequence and it is up-

per bounded by Rmax

1−γ , according to Monotone convergence
theorem, V (Deval,Θ

∗(t)) has a finite limit, which completes
the proof.

Note that the convergence of iSEM is different from that
of PoEM in the sense that iSEM updates a global pa-
rameter estimate based on feedbacks from several local
optima (obtained from random initialization). It is also
worth mentioning that with finite number of threads, iSEM
might still converge to a local maximum. However, we
can show that on average, iSEM has higher probability
of convergence to better solutions than PoEM. Moreover,
the iSEM algorithm can be considered a special case of
evolutionary programming (EP) [27], which maintains a
population of solutions (i.e., the set of policy parameters in
J). Yet, there are obvious differences between iSEM and PE.
Notably, instead of mutating from existing solutions, iSEM
resamples completely new initializations for parameters and
optimizes them using PoEM. In additional, iSEM is highly
parallelizable due to its use of concurrent threads.

V. EXPERIMENTS

This section presents simulation and hardware experiments
for evaluating the proposed policy learning algorithm. First
a simulator for a large problem motivated by SAR is
introduced. Then, the performance of iSEM is compared
to previous work based on the simulated SAR problem.
Finally, a multi-robot hardware implementation is presented
to demonstrate a working real-world system.

A. Search and Rescue Problem

The SAR problem involves a heterogeneous set of robots
searching for victims and rescuing survivors after a disaster
(e.g., bringing them to a location where medical atten-
tion can be provided). Each robot has to make decisions
using information gathered from observations and limited
communications with teammates. Robots must decide how
to explore the environment and how to prioritize rescue
operations for the various victims discovered.

The scenario begins after a natural disaster strikes the
simulated world. The search and rescue domain considered is
a 20 × 10 unit grid with s = 6 designated sites: 1 muster site
and 5 victim sites. All robots are initialized at the muster site.
Victim sites are randomly populated with victims (6 victims
total). Each victim has a randomly-initialized health state.

While the locations of the sites are known, the number of
victims and their health at each site is unknown to the robots.
The maximum victim capacity of each site also varies based
on the site size. Each victim’s health degrades with time.

An unmanned aerial vehicle (UAV) surveys the disaster
from above. A set of 3 unmanned ground vehicles (UGVs)
can search the space or retrieve victims and deliver them
to the muster site, where medical attention is provided.
The objective of the team is to maximize the number of
victims returned to the muster site while they are still alive.
This is a challenging domain due to its sequential decision-
making nature, large size (4 agents), and both transition and
observation process uncertainty, including stochasticity in
communication. Moreover, as communication only happens
within a limited radius, synchronization and sharing of global
information are prohibited, making this a highly-realistic and
challenging domain.

B. Simulator Description
All simulation is conducted within the Robot Operating

System (ROS) [28]. The simulator executes a time-stepped
model of the scenario, where scenario parameters define the
map of the world, number of each type of robot, and locations
and initial states of victims.

Each robot’s macro-controller policy is executed by a
lower-level controller which checks the initiation and ter-
mination conditions for the macro-action and generates se-
quences of primitive actions.

1) Primitive Actions: The simulator models primitive
actions, each of which take one time-step to execute. The
primitive actions for the robots include: (a) move vehicle,
(b) pick-up victim (UGVs only), (c) drop-off victim (UGVs
only) and (d) do nothing. Observations and communication
occur automatically whenever possible and do not take any
additional time to execute.

Macro-action policies, built from these primitive actions,
may take any arbitrary amount of time in multiples of the
time-steps of the simulator. Macro-action durations are also
non-deterministic, as they are a function of the scenario
parameters, world state, and inter-robot interactions (e.g.,
collision avoidance).

2) The World: While the underlying robotics simulators
utilized are three-dimensional, the world representation is
in two dimensions. This allows increased computational
efficiency while not detracting from policy fidelity, as the
sites for ground vehicles are ultimately located on a 2D
plane. The world is modeled as a 2D plane divided into an
evenly-spaced grid within a rectangular boundary of arbitrary
size. Each rescue site is a discrete rectangle of grid spaces
of arbitrary size within the world.

Some number of victims are initially located in each
rescue site. Victim health is represented as a value from 0
to 1, with 1 being perfectly healthy and 0 being deceased.
Each victim may start at any level of health, and its health
degrades linearly with time. If a victim is brought to the
muster location, its health goes to 1 and no longer degrades.
One victim at a time may be transported by a UGV to the
muster, although this can be generalized to larger settings by
allowing the vehicle to carry multiple victims simultaneously.

3) Movement: Simulated dynamical models are used to
represent the motion of the air and ground vehicles within
ROS. The vehicles can move within the rectangular bound-
aries of the world defined in the scenario.

UGV motion is modeled using a Dubins car model. Real-
time multi-robot collision avoidance is conducted using the
reciprocal velocity obstacles (RVO) formulation [29]. State
estimates are obtained using a motion capture system, and
processed within RVO to compute safe velocity trajectories
for the vehicles.

UAV dynamics are modeled using a linearization of a
quadrotor around hover state, as detailed in [30]. Since the
UAV operates at a higher altitude than UGVs and obstacles,
there are no restrictions to the air vehicle’s movement.These
dynamics correspond to the transition model T specified
in the (Mac)Dec-POMDP frameworks discussed in the sec-
tion II-A.

4) Communication: Communication is range-limited.
When robots are within range (which is larger for UAV-
UGV communication than for UGV-UGV communication),
they will automatically share their observations with two-
way communication. Communication is imperfect, and has
a .05 probability of failing to occur even when robots are
in range. For the scenarios used to generate the results in
this study, a UGV can communicate its observation with any
other UGV within 3 grid spaces in any direction; the UAV
can communicate with any UGV within 6 grid spaces in any
direction.

C. MacDec-POMDP Representation

We now describe the MacDec-POMDP represention that
is used for learning. Note that the reprentation in Section
V-B is not observable to the robots and is only used for
constructing the simulator.

1) Rewards: The joint reward is +1 for each victim
brought back to muster alive and −1 for each victim who
dies.

2) Observations: In the SAR domain, a UAV can observe
victim locations when over a rescue site. However, victim
health status is not observable by air. A UGV that is in a
rescue site can observe all victims (location and health status)
within that site. Robots are always able to observe their own
location and whether they are holding a victim at a given
moment.

The observation vector O on which the macro-controller
makes decisions is a subset of the raw observations each
robot may have accumulated through the execution of the
prior macro-action. The robots report the state of their current
location and one other location (which could be directly
observed or received via communication while completing
the macro action). The second location reported is the most
urgent state with the most recent new observation. If there are
no new observations other than the robot’s own location, the
second location observation is equivalent to the self location.

The observation vector is as follows,

O = [self state, self location, location state,
second location, second location state]

(4)

where, self state ∈ {1/0= is/not holding victim}, self location
∈ {site 1, site 2, ..., site s}, location state ∈ {0 = no
victims needing help, 1 = victims needing help (not critical),
2 = victims needing help (critical)}, second location ∈ {site
1, site 2, ..., site s}, and second location state ∈ {0 =
no victims needing help, 1 = victims needing help (not
critical), 2 = victims needing help (critical)}. There are
18s2 possible observation vectors, making the observation
space substantially larger than previous macro-action based
domains [10], [8].

3) Macro-Actions: The macro-actions utilized in this
problem are as follows:
• Go to Muster (available to both UAV and UGV): Robot

attempts to go to the muster point from anywhere else,
but only if it is holding a live victim. If a victim is
on-board, victim will always disembark at the muster.

• Pick up Victim (available only to UGV): Robot (UGV
only) attempts to go to a victim’s location from a
starting point within the site. Terminates when the robot
reaches the victim; also may terminate if there is no
longer a victim needing help at the site (i.e., another
robot picked the victim up first or the victim died). If
victim and robot are located in the same grid cell, the
victim can be “picked up”.

• Go to Site i ∈ {1, . . . , s} (available to both UAV
and UGV): Robot goes to a specified disaster site i.
Terminates when the robot is in the site. Robot can
receive observations of the victims at the site.

D. Simulations and Numerical Results
The SAR domain extends previous benchmarks for

MacDec-POMDPs both in terms of the number of robots
and the number of states/actions/observations. Notably, due
to the very large observation space cardinality of the SAR
domain, it is difficult to generate an optimal solution with
existing solvers such as [10], [8] in a reasonable amount
of time. Hence, due to the lack of a known global optima,
the RL algorithms (iSEM and PoEM) are compared over the
same datasets. The dataset is collected through the simulator
by using a behavior policy combining a hand-coded expert
policy (the same used in [12]) and a random policy, with ρ
denoting the percentage of expert policy.

To compare iSEM and PoEM on the SAR domain,
experiments are conducted with ρ = [50, 75, 85] and
|Qn| = [1, 3, 10] (varying controller sizes)5. Corresponding
test (holdout) set results are plotted in Figure 1. Several
conclusions can be drawn from the results. First, as the
amount of training data (K) increases, the cumulative reward
increases for both PoEM and iSEM (under the same η,
as shown in Fig.1b). Second, with the same K, iSEM
achieves better performance than PoEM, which validates that
iSEM is better at overcoming the local optimality limitation
suffered by PoEM. In addition, as the number of threads
M increases, iSEM converges to higher average values and
smaller variance (as indicated by the error-bar, compared to
PoEM), according to Figure 1c, which empirically justifies

5|Qn| = 1 corresponds to reactive policies (based only on current
observations).

the discussion under Theorem 2. Moreover, as shown in
Fig.1d, under three settings of |Qn|, the FSCs learned by
iSEM render higher value than the PoEM policy. As |Qn|
increases, the difference between PoEM and iSEM (with
fixed M) tends to decrease, which indicates we should in-
crease M as iSEM is exploring higher dimensional parameter
spaces. Finally, even in cases where the mean of iSEM is
only slightly higher than PoEM, the variance of iSEM is
is consistently lower than PoEM – a critical performance
difference given the uncertainty involved in the underlying
domain tested.

RVIZ [31] was used in conjunction with ROS to visualize
the simulations. Fig.1a shows the start of one trial with
the different colored circles being sites, the stacked cubes
positioned at sites as victims with colors indicating their
health values, and the 4 green cylinders indicating the 3
UGVs and the UAV. The sites are as follows (from furthest
to closest): site 1 (red circle), site 2 (green), site 3 (sky blue),
site 4 (pink), site 5 (turquoise), site 6 (orange). Note that the
normal gridworld model used in the POMDP formulation
usually assumes discrete state and discrete primitive actions,
whereas the simulation models are based on macro-actions
which comprised low-level controllers that can deal with both
discrete and continuous primitive action and states.

E. Hardware Implementation
While simulation results validate that the proposed

MacDec-POMDP search algorithm achieves better perfor-
mance than state-of-the-art solvers, we also verify the ap-
proach on a SAR mission with real robots. This allows
further learning from realworld experiences. A video demo
is made available online6. Learning from simulation allows
robots operate in a reasonable (safe) way, whereas real robots
experiments can potentially provide ”realworld” experiences
that are not fully captured by the simulators, hence allowing
the robots to improve their baseline policy (learned from sim-
ulators). The video essentially demonstrates this potential,
assuming the training data is collected from the “realworld”.

A DJI F330 quadrotor is used as the UAV for hardware
experiments, with a custom autopilot for low-level control
and an NVIDIA Jetson TX1 for high-level planning and task
allocation (Fig. 2a). The UGVs are Duckiebots [32], which
are custom-made ground robots with an onboard Raspberry
Pi 2 for computation (Fig. 2b). Experiments were conducted
in a 40 ft. × 20 ft. flight space with a ceiling-mounted pro-
jection system [33] used to visualize site locations, obstacles,
and victims. As discussed earlier, limited communication
occurs between robots, with a motion capture system used
to ensure adherence to maximal inter-robot communication
distances.

The hardware experiments conducted demonstrated that
the policy generated from iSEM (with ρ > 75, K >
100, Qn > 3) was able to save all victims consistently
well, despite robots having to adhere to collision avoidance
constraints. In some instances, the robots were not able to
save all 6 victims. However, in these scenarios, only 1 victim
was lost, with the cause of loss due to an extremely low

6Video URL: https://youtu.be/B3b60VqWMIE

https://youtu.be/B3b60VqWMIE

(a) (b)

; (percentage of hand-coded policy)
50 75 85

C
um

ul
at

iv
e

re
w

ar
d

-2

0

2

4 data collection policy
PoEM
iSEM M=4
iSEM M=8

(c)

|Q
n
| (controller size)

1 3 10

C
um

ul
at

iv
e

re
w

ar
d

0

1

2

3

4
PoEM
iSEM

(d)
Fig. 1: (a) RVIZ simulation of the experiment; Testing performance using (b) different number of training samples (with
Qn=10), (c) threads (with Qn=10, K=500), and (d) controller sizes (with M = 8,K = 100, ρ = 85).

(a) UAV is a DJI F330
quadrotor with onboard Jet-
son TX1 flight controller.

(b) UGVs are custom-build
ground robots with onboard
Raspberry Pi 2.

Fig. 2: Robots in used Hardware Implementation.

starting health for multiple victims. In such cases, an early
victim death would occur before any robot could respond.

Fig. 4 shows the progression of one hardware trial. Sites
are randomly populated with 6 victims total. All robots
initiate at the muster site (Fig. 4a). As the UGVs navigate
towards sites (dictated by their policy), they simultaneously
begin observing their surroundings. When they do, the outer
ring surrounding them turns into the color of the latest victim
observed (Fig. 4b). A UGV can only pick up a new victim
if it is not currently carrying a victim. Its inner circle then
indicates the health of the victim it is carrying, while its outer
ring indicates the health of a randomly-selected victim still
present at the site (if any). Fig. 4c illustrates a situation where
no more victims are present at site 6, thereby causing the
UGV’s outer ring to turn black (no victims to save at latest
encountered site). Note that an observed deceased victim also
falls under this category. After a UGV picks up a victim, it
drops it off at the muster (Fig. 4d). The victim returns to full
health, indicating a successful rescue. When a UAV visits a
site, its outer ring also turns into the color of the victim
observed at the site (Fig. 4e). The UAV has no inner circle
because it cannot pick up victims. Fig. 4f and 4g show
two more instances of a UGV picking up a victim from
site 5. As mentioned before, a deceased victim results in a
observation color of black in Fig. 4g. Fig. 4h shows the end
of the hardware trial, where all healthy victims have been
rescued.

VI. CONCLUSION

This paper presents iSEM, an efficient algorithm which
improves the state-of-the-art learning-based methods for co-
ordinating multiple robots operating in partially observed
environments. iSEM enables cooperative sequential decision
making under uncertainty by modeling the problem as a
MacDec-POMDP and using iterative sampling based Ex-
pectation Maximization trials to automatically learn macro-

action FSCs. The proposed algorithm is demonstrated to ad-
dress local convergence issues of the state-of-the-art macro-
action based reinforcement learning approach, PoEM. More-
over, simulation results showed that iSEM is able to gener-
ate higher-quality solutions with fewer demonstrations than
PoEM. The iSEM policy is then applied to a hardware-
based multi-robot search and rescue domain, where we
demonstrate effective control of a team of distributed robots
to cooperate in this partially observable stochastic environ-
ment. In the future, we will make our demonstration even
closer to real world scenarios by modeling observations and
communications as actions and assigning costs. We will also
experiment with other methods other than random sampling,
such as active sampling for the resampling step in iSEM, to
accommodate restrictions of computational resources (i.e.,
number of threads).

REFERENCES

[1] S. Grayson, “Search & Rescue using Multi-Robot Systems,” http:
//www.maths.tcd.ie/∼graysons/documents/COMP47130 SurveyPaper.
pdf, 2014.

[2] K. Dresner and P. Stone, “Multiagent traffic management: Opportuni-
ties for multiagent learning,” in Learning and Adaption in Multi-Agent
Systems. Springer, 2006, pp. 129–138.

[3] D. Bernstein, S. Zilberstein, R. Washington, and J. Bresina, “Planetary
rover control as a markov decision process,” in Sixth Int’l Symposium
on Artificial Intelligence, Robotics, and Automation in Space, 2001.

[4] K. Jolly, K. Ravindran, R. Vijayakumar, and R. S. Kumar, “Intel-
ligent decision making in multi-agent robot soccer system through
compounded artificial neural networks,” Robotics and Autonomous
Systems, vol. 55, no. 7, pp. 589–596, 2007.

[5] M. Gath, Optimizing transport logistics processes with multiagent
planning and control. Springer, 2016.

[6] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs. Springer, 2016.

[7] C. Amato, G. D. Konidaris, and L. P. Kaelbling, “Planning with macro-
actions in decentralized POMDPs,” in Proc. of the int’l Conf. on
Autonomous agents and multi-agent systems (AAMAS-14), 2014.

[8] C. Amato, G. Konidaris, G. Cruz, C. Maynor, J. How, and L. Kael-
bling, “Planning for decentralized control of multiple robots under
uncertainty,” in 2015 IEEE Int’l Conf. on Robotics and Automation
(IRCA), 2015.

[9] C. Amato, G. Konidaris, A. Anders, G. Cruz, J. P. How, and L. P.
Kaelbling, “Policy Search for Multi-Robot Coordination under Uncer-
tainty,” in Proc. of the 2015 Robotics: Science and Systems Conference
(RSS-15), 2015.

[10] S. Omidshafiei, A. akbar Agha-mohammadi, C. Amato, and J. P. How,
“Decentralized control of partially observable Markov decision pro-
cesses using belief space macro-actions.” in 2015 IEEE International
Conference on Robotics and Automation (ICRA).

[11] S. Omidshafiei, A.-a. Agha-mohammadi, C. Amato, S.-Y. Liu, J. P.
How, and J. Vian, “Graph-based cross entropy method for solving
multi-robot decentralized pomdps,” in 2016 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 5395–5402.

http://www.maths.tcd.ie/~graysons/documents/COMP47130_SurveyPaper.pdf
http://www.maths.tcd.ie/~graysons/documents/COMP47130_SurveyPaper.pdf
http://www.maths.tcd.ie/~graysons/documents/COMP47130_SurveyPaper.pdf

(a) Zoomed in view of 3 vic-
tims (indicated as squares) at
a particular site.

(b) UGV observes the victim
at the site with high health.

(c) UGV outer ring color is
black, as there are no other
victims at this site.

(d) UAV can only observe,
but not carry, victims. Thus, it
only has an outer ring indicat-
ing observations.

Fig. 3: Overview of hardware domain with 1 UAV and 3 UGVs. Projection system used to visualize sites and victim
locations/health state. Victims shown as squares with colors representing health (green: high health, yellow: low health, red:
critical health, black: deceased). For all robots, outer ring color indicates its noisy observation of the health of one of the
victims present. For UGVs, inner circle color indicates health of the victim it is carrying.

(a) Start of experiment (b) UGV observes victim at
site 6

(c) UGV picks up a victim,
observes no others at site 6

(d) UGV drops off victim at
muster

(e) UAV observes victim at
site

(f) UGV picks up victim
from site 5, observes another
healthy victim at site

(g) UGV picks up a victim
from site 5, observes no more
healthy victims at site 5

(h) All healthy victims have
been saved. End of experiment

Fig. 4: Overview of hardware domain, with 1 UAV and 3 UGVs. Ceiling-mounted projection system used to visualize sites
and victim locations/health state.
[12] M. Liu, C. Amato, E. Anesta, J. Griffith, and J. How, “Learning

for decentralized control of multiagent systems in large, partially-
observable stochastic environments,” in AAAI Conf. on Artificial
Intelligence, 2016.

[13] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of Markov decision processes,”
Mathematics of Operations Research, vol. 27, no. 4, pp. 819–840,
2002.

[14] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learn-
ing,” Artificial intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[15] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1, pp. 99–134, 1998.

[16] C. Amato, B. Bonet, and S. Zilberstein, “Finite-state controllers based
on Mealy machines for centralized and decentralized POMDPs.” 2010.

[17] A. Kumar, S. Zilberstein, and M. Toussaint, “Probabilistic inference
techniques for scalable multiagent decision making,” Journal of Arti-
ficial Intelligence Research, vol. 53, no. 1, pp. 223–270, 2015.

[18] Z. Song, X. Liao, and L. Carin, “Solving DEC-POMDPs by expecta-
tion maximization of value functions,” 2016.

[19] F. Wu, S. Zilberstein, and N. R. Jennings, “Monte-Carlo expectation
maximization for decentralized POMDPs.” in Proc. of the 23rd Int’l
Joint Conf. on Artificial Intelligence (IJCAI-13), 2013.

[20] M. Liu, C. Amato, X. Liao, J. P. How, and L. Carin, “Stick-Breaking
Policy Learning in DEC-POMDPs,” in Proc. of the 24th Intĺ Joint
Conf. on Artificial Intelligence (IJCAI-15), 2015.

[21] C. Y. Wong, G. Seet, and S. K. Sim, “Multiple-robot systems for
USAR: key design attributes and deployment issues,” International
Journal of Advanced Robotic Systems, vol. 8, no. 1, pp. 85–101, 2011.

[22] Y. Jin, A. A. Minai, and M. M. Polycarpou, “Cooperative real-time
search and task allocation in UAV teams,” in Decision and Control,
2003. Proceedings. 42nd IEEE Conference on, vol. 1, 2003, pp. 7–12.

[23] D. Turra, L. Pollini, and M. Innocenti, “Fast unmanned vehicles task

allocation with moving targets,” in Decision and Control, 2004. CDC.
43rd IEEE Conference on, vol. 4, 2004, pp. 4280–4285.

[24] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE transactions on robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[25] A. Kumar and S. Zilberstein, “Anytime planning for decentralized
POMDPs using expectation maximization,” in Proc. of the 26th Conf.
on Uncertainty in Artificial Intelligence (UAI-10), 2010.

[26] R. Horst and P. M. Pardalos, Handbook of global optimization.
Springer Science & Business Media, 2013, vol. 2.

[27] D. Simon, “Evolutionary optimization algorithms: biologically-
inspired and population-based approaches to computer intelligence.
hoboken,” 2013.

[28] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[29] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE Int’l
Conf. on Robotics and Automation (ICRA), pp. 1928–1935.

[30] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The
International Journal of Robotics Research, vol. 32, no. 5, pp. 664–
674, 2012.

[31] D. Gossow and W. Woodall. (2016, nov) RVIZ. http://wiki.ros.org/rviz.
[32] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap,

Y. F. Chen, C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an
open, inexpensive and flexible platform for autonomy education and
research,” in 2017 IEEE Int’l Conf. on Robotics and Automation
(ICRA).

[33] S. Omidshafiei, A.-A. Agha-Mohammadi, Y. F. Chen, N. K. Ure, S.-
Y. Liu, B. T. Lopez, R. Surati, J. P. How, and J. Vian, “Measurable
augmented reality for prototyping cyberphysical systems: A robotics
platform to aid the hardware prototyping and performance testing of
algorithms,” IEEE Control Systems, vol. 36, no. 6, pp. 65–87, 2016.

http://wiki.ros.org/rviz

	I Introduction
	II Background
	II-A Dec-POMDPs and MacDec-POMDPs
	II-B Solution Representation
	II-C Policy Learning Through EM
	II-D PoEM

	III Related work
	IV Iterative Sampling Based Expectation Maximization Algorithm
	V Experiments
	V-A Search and Rescue Problem
	V-B Simulator Description
	V-B.1 Primitive Actions
	V-B.2 The World
	V-B.3 Movement
	V-B.4 Communication

	V-C MacDec-POMDP Representation
	V-C.1 Rewards
	V-C.2 Observations
	V-C.3 Macro-Actions

	V-D Simulations and Numerical Results
	V-E Hardware Implementation

	VI Conclusion
	References

