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Unsteady Adjoint of Pressure
Loss for a Fundamental
Transonic Turbine Vane
High-fidelity simulations, e.g., large eddy simulation (LES), are often needed for
accurately predicting pressure losses due to wake mixing and boundary layer devel-
opment in turbomachinery applications. An unsteady adjoint of high-fidelity simula-
tions is useful for design optimization in such aerodynamic applications. In this
paper, we present unsteady adjoint solutions using a large eddy simulation model
for an inlet guide vane from von Karman Institute (VKI) using aerothermal objec-
tives. The unsteady adjoint method is effective in capturing the gradient for a short
time interval aerothermal objective, whereas the method provides diverging gra-
dients for long time-averaged thermal objectives. As the boundary layer on the suc-
tion side near the trailing edge of the vane is turbulent, it poses a challenge for
the adjoint solver. The chaotic dynamics cause the adjoint solution to diverge expo-
nentially from the trailing edge region when solved backward in time. This results
in the corruption of the sensitivities obtained from the adjoint solutions. An energy
analysis of the unsteady compressible Navier–Stokes adjoint equations indicates that
adding artificial viscosity to the adjoint equations can dissipate the adjoint energy
while potentially maintaining the accuracy of the adjoint sensitivities. Analyzing the
growth term of the adjoint energy provides a metric for identifying the regions in
the flow where the adjoint term is diverging. Results for the vane obtained from
simulations performed on the Titan supercomputer are demonstrated. [DOI: 10.1115/
1.4034800]

Introduction

High-fidelity simulations, like large eddy simulations
(LESs), are essential for accurately simulating turbulent fluid
flows. This is especially true for turbomachinery applications,
which exhibit complex flow phenomena like a transitioning
boundary layer and flow separation. Gourdain et al. [1] com-
pared LES to low fidelity methods like Reynolds-averaged
Navier–Stokes (RANS) simulations and found that LES pre-
dicts heat transfer with a much higher accuracy, matching
with experimental data. Moreover, LES is becoming feasible
with the rapid growth in the power of supercomputers. In just
over a decade, compute capacity has increased by a factor of
100. This has enabled high-fidelity simulations for fluid prob-
lems where the Reynolds number is on the order of a
million.

For accomplishing design of turbomachinery components
using LES in a reasonable amount of time, it is necessary to
obtain gradients of design objectives with respect to design
parameters. A straightforward method to obtain gradients is to
use finite difference, but the number of simulations required
scales linearly with the number of input parameters. An alter-
native is to use the adjoint method, which provides the gradi-
ent with respect to a large number of parameters using just
one additional simulation. This method has been used exten-
sively for performing design optimization using steady-state
Euler [2] and RANS [3] simulations. The adjoint method
involves solving a set of equations known as the adjoint equa-
tions. For a time-dependent simulation like LES, an unsteady
adjoint method is required, in which the adjoint equations are
simulated backward in time to obtain the desired derivatives.

Recently, Economon et al. [4] performed unsteady adjoint sim-
ulations for a rotating airfoil, but these were restricted to
unsteady laminar fluid flows.

It has been observed in numerous studies [5,6] and through
simulations conducted for this paper, that for turbulent fluid
flows, the unsteady adjoint solution grows exponentially when
simulated backward in time. This is due to the chaotic nature
of the turbulent flow field. From chaos theory [7], it is known
that the solution of certain nonlinear partial differential equa-
tions is sensitive to perturbations to initial conditions or
parameters. The solutions of the Navier–Stokes equations are
believed to exhibit this property and the behavior has been
demonstrated numerically and experimentally [8]. The diver-
gence to infinity of the adjoint field makes it unusable for
computing sensitivities of the objective with respect to pertur-
bations in input parameters.

This paper presents a possible solution to this problem by
controlling the growth of the adjoint field. An energy analysis
of the unsteady compressible Navier–Stokes adjoint equations
reflects that a single term contributes to the growth of the
energy of the adjoint field, while another viscouslike term dis-
sipates the adjoint energy. This suggests the idea that adding
artificial viscosity to the adjoint equations can dampen the
adjoint fields. The maximum singular value of the growth term
matrix gives an indication of the regions in the flow where the
adjoint term is diverging at an exponential rate. By the addi-
tion of minimal artificial viscosity in these regions, the growth
of the adjoint energy can be curbed, and at the same time, the
accuracy of the derivatives obtained from the adjoint solutions
can potentially be maintained.

Problem Setup

The turbomachinery problem of interest is transonic flow over a
highly loaded turbine inlet guide vane, designed by researchers at
von Karman Institute (VKI) [9], shown in Fig. 1.
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Subsonic flow enters from the inlet upstream of the vane, accel-
erates as it goes around the suction side, and reaches close to the
speed of sound near the trailing edge of the vane. The boundary
layer transitions from laminar to turbulent at the suction side, near
the trailing edge, as shown in Fig. 2. The point of transition is
highly dependent on the turbulent intensity of the flow at the inlet.
The flow then separates at the trailing edge, producing a turbulent
wake. Due to boundary layer development on the suction and
pressure sides and mixing in the wake, there is a significant loss in
stagnation pressure of the fluid.

The Reynolds number for this setup is 106. The isentropic
Mach number is 0.9. The vane has a chord length of 67.647 mm
and is at an angle of c¼ 55 deg to the axial direction, which is the
same as the inlet flow direction. The vanes are in a linear cascade
and the pitch is 0.85 times the chord length. In the simulation, per-
iodic boundary conditions are imposed on the top and bottom.
The spanwise extent of the numerical setup is restricted to 10 mm.
Numerical studies have shown that this is sufficient to capture the
dynamics of turbulence for this problem [1]. The vane surface is
assumed to be isothermal.

The design objective for this problem is an infinite time-
averaged and mass flow-averaged stagnation pressure loss coeffi-
cient (�pl ), 16 mm downstream of the vane on a surface parallel to
the inlet plane. As mentioned before, due to boundary layer devel-
opment and mixing in the wake downstream of the vane, there is a
large drop in the stagnation pressure, which leads to loss in per-
formance, as shown in Fig. 3. Hence, there is an interest in mini-
mizing the pressure loss. In practice, the time average for the
objective is performed for an interval, which is sufficient to

provide a reasonably accurate estimate of the infinite time aver-
age. In this problem, it is equal to the time it takes for the flow to
pass from the inlet to the outlet, which comes to be approximately
2 ms. Though the interval length might seem small, it encom-
passes several time scales of the turbulence in the wake. The for-
mula for �pl is

�pl ¼
�pt;l

pt;in
(1)

�pt;l ¼ lim
T!1

1

T

ðT

0

ð
S

qpun pt;in � pt;pð ÞdSð
S

qpundS
dt (2)

pt;p ¼ pp 1þ c� 1

2
M2

p

� � c
c�1

(3)

Time-Averaged Objectives. Observations of turbulent flows
indicate that statistics of turbulence like time-averaged mean of
pressure loss coefficient are well-defined, stable quantities
[10,11]. Other than relatively rare cases that exhibit flow hystere-
sis, these statistics are insensitive to initial conditions. In dynami-
cal systems theory, an autonomous system is called ergodic if
infinite time averages are independent of initial condition. An infi-
nite time average of such ergodic systems is proven to be differen-
tiable to parameters of the system, under additional assumptions
[12,13]. This theory is consistent with observations in turbulent
flows, in which the statistics are found to depend continuously on
parameters when the flow is away from bifurcations [14]. Hence,
we assume that the pressure loss coefficient is smooth as a func-
tion of inputs, like source term perturbations to the compressible
Navier–Stokes equations and shape parameters, or in other words
at least the first derivative exists. In this particular problem, the
averaging is started after simulating the system to a statistically
stationary state, which took about five flow throughs starting from
a uniform zero velocity initial condition. Figure 4 shows the con-
vergence of the pressure loss coefficient objective as the averaging
interval is increased.

Physics. The problem can be physically modeled using the
compressible Navier–Stokes equations, with the ideal gas law as

Fig. 1 Turbine vane geometry

Fig. 2 Contour plot of shear stress on the surface of the vane.
Nondimensionalized with respect to flow velocity Mach 0.9.
Reynolds number 1 3 106, turbulent intensity 1%.

Fig. 3 Stagnation pressure on a vertical spanwise cross sec-
tion 10 mm downstream of the trailing edge of the vane. Nondi-
mensionalized with respect to inlet stagnation pressure.
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an approximation for the state equation, and appropriate inlet, out-
let, and wall boundary conditions

In x 2 D; t 2 0;T½ �
@q
@t
þr � quð Þ ¼ 0

@ quð Þ
@t
þr � quuð Þ þ rp ¼ r � r

@ qEð Þ
@t
þr � qEuþ puð Þ ¼ r � u � rþ areð Þ

r ¼ l ruþruTð Þ � 2l
3
r � uð ÞI

p ¼ c� 1ð Þqe

e ¼ E� u � u
2

(4)

For simulating turbulence, LES provides a way for resolving
the large-scale features of the flow and modeling the small-scale
structures. Traditionally, when performing an LES, a subgrid scale
(SGS) model like Smagorinsky or Vreman [15] is used, but as this
problem is simulated using a second-order finite volume method,
no SGS model is used. This approach in literature is known as
implicit LES (ILES). It has been shown that when using a lower
order method, the numerical viscosity from the grid might be of
the same order as the subgrid scale viscosity [16].

Numerical Methods. The flow solver is written in Python,
with the help of numpy, scipy, cython, and petsc4py libraries. It
discretizes the Navier–Stokes equations over general unstructured
meshes using the second-order finite volume method. A total vari-
ation diminishing face reconstruction scheme is used for shock
capturing. For time marching, a strong stability preserving third-
order Runge–Kutta (RK) method [17] is used. An approximate
Roe [18] solver is employed for propagating shocks and disconti-
nuities. Nonreflecting boundary conditions are used for the inlet
and outlet. Parallelization is accomplished using the message
passing interface (MPI) library for Python, mpi4py.

The computational domain of the problem is shown in Fig. 5.
The simulations are performed on a 2D and 3D version of the
problem. The 3D mesh is just the 2D mesh extended to 3D and
discretized uniformly in the spanwise direction. The mesh is a
hybrid structured/unstructured mesh. It is structured in the inlet,
outlet regions and around the surface of the vane, and is unstruc-
tured in the remaining areas. The smallest cell size is maintained
below 0.5 mm in regions away from the wall. This corresponds to
a ratio of 4 between the Kolmogorov length scale and cell size at
the inlet of the flow. To capture all the significant eddies of the

flow near the wall (such an LES is called a wall-resolved LES),
the wall normal cell width has to be below 1 in terms of wall units
[19]. This puts a constraint on the time step to be of the order of a
few nanoseconds, tremendously increasing the simulation cost. To
be able to run the simulation in a reasonable time frame, the maxi-
mum yþ is kept at 10, zþ at 25, and xþ at 150. This results in an
under-resolved LES. In the future, a wall model might help allevi-
ate this problem by allowing the mesh to have a higher yþ. For
now, the simulations are run without any wall model to get pre-
liminary unsteady adjoint results.

Unsteady Adjoint

The unsteady adjoint method provides a way for computing
derivatives of an objective dependent on the state of a system,
with respect to input parameters, where the state is constrained by
a time-dependent partial differential equation. Rewriting Eq. (4)
in vector form

@w

@t
þr � F ¼ r � Fv

w ¼
q

qu

qE

0
BB@

1
CCA

F ¼
qu

quu

qEþ pð Þu

0
BB@

1
CCA

Fv ¼
0

r

u � rþ are

0
BB@

1
CCA

(5)

Using the Einstein summation notation in the Euclidean space,
Eq. (5) can be simplified to, with the addition of a source term

@wi

@t
þ @Fij

@xj
¼
@Fv

ij

@xj
þ si; i ¼ 1…5 (6)

Consider a time-averaged objective (�J) on the boundary surface
(S). T is a large enough time to estimate the infinite time average
with required accuracy. J includes the factor 1=T

�J ¼
ðT

0

ð
S

JðwiÞdSdt (7)

The first step in deriving the adjoint equations is to linearize the
governing equation and form the Lagrangian

Fig. 4 Instantaneous and time-averaged stagnation pressure
loss coefficient for the vane. X-axis denotes the time normal-
ized by the time it takes for the flow to pass from the inlet to
outlet.

Fig. 5 Turbine vane computational domain
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d�J ¼
ðT

0

ð
S

@J

@wi
dwi

� �
dSdt

þ
ðT

0

ð
V

ŵi
@dwi

@t
þ
@dFij � dFv

ij

@xj
� dsi

 !
dVdt (8)

Integrating the second term by parts in time and space

d�J ¼
ðT

0

ð
S

@J

@wi
dwi

� �
dSdtþ

ð
V

ŵijTdwijT � ŵij0dwij0
� �

dV

�
ðT

0

ð
V

@ŵi

@t
dwidVdtþ

ðT

0

ð
S

ŵi dFij � dFv
ij

� �
njdSdt

�
ðT

0

ð
V

@ŵi

@xj
dFij � dFv

ij

� �
dVdt

�
ðT

0

ð
V

ŵidsidVdt (9)

Differentiating Fij and Fv
ij with respect to wk, Fv

ij with respect to
@wk=@xl

Aijk ¼
@Fij

@wk
; Av

ijk ¼
@Fv

ij

@wk
; Dijkl ¼

@Fv
ij

@
@wk

@xl

(10)

The terms can be rearranged to form

d�J ¼
ðT

0

ð
S

@J

@wi
þ ŵk Akji � Av

kji

� �
nj

� �
dwi � ŵi Dijkld

@wk

@xl
nj

� �
dSdt

þ
ð

V

ŵijTdwijT � ŵij0dwij0
� �

dV

�
ðT

0

ð
V

@ŵi

@t
þ @ŵk

@xj
Akji � Av

kji

� �� �
dwidVdt

þ
ðT

0

ð
V

@ŵi

@xj
Dijkl

@dwk

@xl
dVdt

�
ðT

0

ð
V

ŵidsidVdt ð11Þ

The last term in Eq. (11) can again be integrated by parts to form

ðT

0

ð
V

@ŵi

@xj
Dijkl

@dwk

@xl
dVdt ¼

ðT

0

ð
S

@ŵi

@xj
DijkldwknldSdt

�
ðT

0

ð
V

@

@xl

@ŵi

@xj
Dijkl

� �
dwkdVdt

(12)

Using no perturbation in the initial condition, dwij0 ¼ 0, the
adjoint equation comes out to be

� @ŵi

@t
� Akji � Av

kji

� � @ŵk

@xj
¼ @

@xl
Dkjil

@ŵk

@xj

� �
(13)

with boundary condition on the surface

@J

@wi
þ ŵk Akji � Av

kji

� �
nj þ

@ŵk

@xj
Dkjilnl

� �
dwi � ŵi Dijkld

@wk

@xl
nj ¼ 0

(14)

And terminal condition ŵi;T ¼ 0. Notice that there is a terminal
condition, which implies that the adjoint equations have to be
integrated backward in time. The procedure to compute sensitivity
of an objective for a set of perturbations involves solving the

compressible Navier–Stokes (primal) equations from time t¼ 0 to
T. After this, the adjoint equation is solved backward in time from
t¼ T to 0. The adjoint equation requires the solution of the primal
equation at every time t. The sensitivity due to a perturbation in
the source term can be obtained using

d�J ¼ �
ðT

0

ð
V

ŵidsidVdt (15)

Implementation. In practice, the adjoint equation is imple-
mented as a discrete unsteady adjoint, instead of the continuous
unsteady adjoint derived in this section. The discrete adjoint has
the advantage that it provides a derivative or adjoint sensitivities
that are precise to machine precision when compared with finite
difference sensitivities. The discrete adjoint is derived with the
help of automatic differentiation, provided by the Python package
Theano [20,21]. Additionally, the checkpointing method is used
to provide the adjoint equation with the necessary primal solutions
at each point in time. This method overcomes the need for storing
all the primal solutions (at every time step) in memory by saving
snapshots of the primal solution in periodic intervals on disk.
When the adjoint is simulated, the primal solutions in an interval
are obtained by repeating the primal simulation for that specific
interval.

Results. The unsteady adjoint method is tested on the turbine
vane problem using an aerothermal objective. A total of 4 simula-
tions are performed, a short time interval and a long time interval
simulation on each of the 2D and 3D turbine vane problems. Fig-
ure 6 shows a contour plot of the density adjoint field for a cross
section of the 3D turbine vane. The adjoint magnitude is large in
the trailing edge region and the leading edge. The flow is sensitive
to perturbations in this area, leading to the high values of the
adjoint flow fields.

The 2D and 3D long time interval unsteady adjoints for the tur-
bine vane diverge exponentially when simulated backward in
time, as shown in Fig. 7 for the 3D adjoint. The long time interval
3D unsteady adjoint shows exponential growth throughout the
length of the simulation, and its L2 norm reaches very high magni-
tudes of around 1060. While conducting these simulations, it was
observed that the 2D adjoint diverges at a faster rate than the 3D
adjoint. This is because the third dimension provides a way to dis-
sipate the growth in the adjoint flow field.

The high values of the adjoint fields make the adjoint sensitiv-
ities worthless in the case of the long time interval 2D unsteady
adjoint (T¼ 0.1) and 3D unsteady adjoint (T¼ 1) simulations,
where T is the simulation time normalized with respect to a single
flow through time. Table 1 gives the actual values of the sensitiv-
ities of the aerothermal objective with respect to Gaussian shaped
source term perturbations, in the conservative flow fields upstream

Fig. 6 A visualization of the density adjoint field from halfway
through a short time 3D unsteady adjoint simulation
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of the vane. The short time interval 2D and 3D unsteady adjoint
simulations provide the correct sensitivities. This is because the
L2 norm of the adjoint fields is relatively small for most of the
simulation time. This result shows that for an objective which
only requires a short time average, the unsteady adjoint method
can provide the correct gradient.

Stabilizing Adjoint Equations

Due to the chaotic nature of a turbulent fluid flow, the L2 norm
of an unsteady adjoint solution diverges exponentially when the
adjoint equations are solved backward in time. This is primarily
due to the sensitivity of the solution field with respect to small
perturbations in the initial flow field or parameters of the fluid
system

kŵkL2 Dð Þ ¼
ð

V

ŵiŵidV

� �1
2

(16)

Wang and Gao [5] performed an energy norm analysis of the
adjoint equations for a fluid flow governed by the incompressible
Navier–Stokes equations, and found out that there are two terms
which govern the change in adjoint energy of the system. The first
is a growth term, which is large in regions where the matrix norm
of ru is large, meaning that regions having large gradients in
velocity contribute to the divergence of adjoint energy. The sec-
ond is a dissipation term, which tries to reduce the adjoint energy
and is scaled by the viscosity of the fluid. The adjoint energy
diverges to infinity when the growth term dominates the dissipa-
tion term. This analysis shows that if additional viscosity is added
to the adjoint equations, the dissipation term can limit the growth
of the adjoint field.

Blonigan et al. [6] performed numerical experiments of adding
uniform artificial viscosity to the adjoint equations and was suc-
cessful in inhibiting the exponential growth of the adjoint field.
But, this also resulted in the corruption of the sensitivities
obtained from the adjoint solution. A potential fix to the latter

problem is to add viscosity to the adjoint equations only in certain
regions of the fluid flow where the adjoint field has a high rate of
growth. This idea is explored by applying the energy analysis
method on the unsteady adjoint of the compressible
Navier–Stokes equations.

Symmetrization. Performing the energy analysis on the adjoint
of the conservative Navier–Stokes equations is cumbersome. It is
more useful to perform it on the adjoint of the symmetrized Nav-
ier Stokes equations. It can be shown that if the adjoint energy
norm of the symmetrized equations is bounded, then the adjoint
energy of the conservative equations is also bounded. Hence,
from here on, the focus will be on the adjoint of the symmetrized
equations.

Symmetrization of the Navier–Stokes equations means making
the tensors Aijk and Dijkl symmetric in i and k. The analysis is per-
formed on the Euler equations, but the symmetrization procedure
also works out for the compressible Navier–Stokes equations, as
demonstrated in Ref. [22]. Using the quasi-linear form of the
Euler equation

@wi

@t
þ Aijk

@wk

@xj
¼ 0 (17)

Symmetrizing by a transformation of the conservative variables to
symmetrized variables, dvi¼ Tikdwk

T�1
ik

@vk

@t
þ AijkT�1

km

@vm

@xj
¼ 0 (18)

Premultiplying by Tli

@vl

@t
þ TliAijkT�1

km

@vm

@xj
¼ 0 (19)

T can be chosen such that Âljm ¼ TliAijkT�1
km is symmetric, giving

the symmetrized Euler equations

@vl

@t
þ Âljm

@vm

@xj
¼ 0 (20)

The symmetrizer from primitive to symmetric variables,
dvi¼ Sikdqi is

S ¼

cffiffiffi
c
p

q
0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

� c

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c c� 1ð Þ

p 0 0 0

ffiffiffiffiffiffiffiffiffiffiffi
c

c� 1

r
1

qc

0
BBBBBBBB@

1
CCCCCCCCA

(21)

The transformation from conservative to primitive variables is
dqi¼Vikdwi

V¼

1 0 0 0 0
u1

q
1

q
0 0 0

u2

q
0

1

q
0 0

u3

q
0 0

1

q
0

c�1ð Þuiui

2
� c�1ð Þu1 � c�1ð Þu2 � c�1ð Þu3 c�1ð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(22)

with Tik¼ SijVjk.

Fig. 7 Growth of energy norm of adjoint fields for different
simulations. Y-axis shows energy norm of a dimensional con-
servative adjoint field.

Table 1 Comparison between adjoint and finite difference sen-
sitivities for a heat transfer objective

Simulation T Finite diff. Adjoint

2D 0.01 4.340� 10�5 4.341� 10�5

2D 0.1 0.00695 640041
3D 0.1 0.005904 0.005923
3D 1 0.00710 �1034
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Âijk is given by

Â:1: ¼

u1

cffiffiffi
c
p 0 0 0

cffiffiffi
c
p u1 0 0

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c

0 0 u1 0 0

0 0 0 u1 0

0

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c 0 0 u1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(23)

Â:2: ¼

u2 0
cffiffiffi
c
p 0 0

0 u2 0 0 0
cffiffiffi
c
p 0 u2 0

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c

0 0 0 u2 0

0 0

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c 0 u2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(24)

Â:3: ¼

u3 0 0
cffiffiffi
c
p 0

0 u3 0 0 0

0 0 u3 0 0
cffiffiffi
c
p 0 0 u3

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c

0 0 0

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

r
c u3

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(25)

The adjoint equation for the symmetrized equation comes out to
be slightly different, as Âljm is not a Jacobian of the flux term of
the symmetric variables

d�J ¼
ðT

0

ð
S

@J

@vi
dvi

� �
dSdt

þ
ðT

0

ð
V

v̂i
@dvi

@t
þ Âijk

@dvk

@xj
þ dÂijk

@vk

@xj

� �
dVdt (26)

Linearizing Âijk using Bijkl ¼ @Âijk=@vl and integrating by parts in
time and space

d�J ¼
ðT

0

ð
S

@J

@vi
dvi

� �
dSdt

þ
ð

V

v̂ijTdvijT � v̂ij0dvij0
� �

dV �
ðT

0

ð
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dvidVdt

þ
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ð
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v̂i ÂijkdvknjdS�
ðT

0

ð
V

@ v̂i Âijk

	 

@xj

dvkdVdt

þ
ðT

0

ð
V

v̂i Bijkldvl
@vk

@xj
dVdt (27)

giving rise to the adjoint equation

� @v̂i

@t
� Âkji

@v̂k

@xj
� Bkjil � Bkjlið Þ

@vl

@xj
v̂k ¼ 0 (28)

The viscous term follows the same derivation process as done
for the conservative adjoint with one important difference, the Fv

term is considered to be purely a function of r v on the assump-
tion that l=q and a=q are constant for linearization purposes.
This is also known as the frozen viscosity assumption and
implies that the Av

kji term can be ignored. The D̂ijkl tensor comes
out to be

D̂ :1:1 ¼

0 0 0 0 0

0
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l
q

0 0 0

0 0
l
q

0 0

0 0 0
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0 0 0 0
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(29)

D̂:2:2 ¼

0 0 0 0 0

0
l
q
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0 0
4

3

l
q
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0
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ca
q

0
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(30)

D̂:3:3 ¼
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l
q
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(31)
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D̂ :1:3 ¼ D̂ :3:1 ¼
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D̂ :2:3 ¼ D̂ :3:2 ¼
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0 0
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1
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(34)

As mentioned before, if the conservative adjoint field at any point
of time is bounded, then the symmetrized adjoint field is bounded
and the vice versa is also true. This can be shown in the following
way; the sensitivity due to a perturbation can be computed from
either the conservative adjoint solution or symmetrized adjoint
solution

d�J ¼ �
ðT

0

ð
V

ŵidsidVdt

¼ �
ðT

0

ð
V

v̂kdsv
kdVdt ¼ �

ðT

0

ð
V

v̂kTkidsidVdt

(35)

So

ŵi ¼ Tkiv̂i (36)
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kŵkL2ðDÞ � kT
TkL2ðDÞkv̂kL2ðDÞ (37)

The transformation matrix consists of bounded component fields
and hence its matrix L2 norm is bounded. This implies that if the
symmetrized adjoint is bounded, then the conservative adjoint is
also bounded.

Energy Analysis. To study how the adjoint diverges, the time
derivative of the adjoint energy Ev̂ ¼ kv̂kL2ðDÞ is analyzed. The
adjoint energy is basically the sum of the squares of the compo-
nentwise L2 norms. The norms can be summed without dimen-
sional scaling as the components of the symmetrized adjoint field
have the same dimensions because of the fact that all the symme-
trized Navier–Stokes variables have the same dimensions

� 1

2

dEv̂

dt
¼ � 1

2

@

@t

ð
V

v̂i v̂i

� �
dV ¼ �

ð
V

v̂i
@v̂i

@t
dV (38)

premultiplying the adjoint equation by v̂i and integrating over the
entire domain

dEv̂

dt
¼
ð

V

v̂i Âkji
@v̂k

@xj
þ Bkjil � Bkjlið Þ

@vl

@xj
v̂kþ

@

@xl
D̂kjil

@v̂k

@xj

� �� �
dV

(39)

using Bkjil ¼ @Âkji=@vl the first term can be rewritten asð
V

v̂i Âkji
@v̂k

@xj
dV ¼

ð
S

v̂i Âkjiv̂k njdS

�
ð

V

@v̂i

@xj
Âkjiv̂k dV �

ð
V

v̂i Bkjil
@vl

@xj
v̂k dV (40)

Using symmetry of Âkji in i and kð
V

v̂i Âkji
@v̂k

@xj
dV ¼ 1

2

ð
S

v̂i Âkjiv̂k njdS�
ð

V

v̂i Bkjil
@vl

@xj
v̂k dV

� �
(41)

The second term in the energy equations isð
V

@

@xl
D̂kjil

@v̂k

@xj

� �
dV ¼

ð
S

v̂i D̂kjil
@v̂k

@xj
nldS�

ð
V

@v̂i

@xl
D̂kjil

@v̂k

@xj
dV

(42)

So, the adjoint energy equation becomes

dEv̂
dt
¼
ð

V

v̂i
Bkjil

2
� Bkjli

� �
@vl

@xj

" #
v̂k dV

�
ð

V

@v̂i

@xl
D̂kjil

@v̂k

@xj
dVþ

ð
S

v̂i D̂kjil

	 
 @v̂k

@xj
nldS

þ 1

2

ð
S

v̂i Âkjiv̂k njdS (43)

Let

M1 ¼
Bkjil

2

@vl

@xj
¼ @Âkji

@ql

@ql

@xj

M2 ¼ Bkjli
@vl

@xj
¼ @Âkjl

@qm

@qm

@vi

@vl

@xj
¼ @Âkjl

@qm
S�1

mi

@vl

@xj
(44)

The first volumetric term in 43 is a quadratic term in v̂, scaled by
the matrix M¼M1�M2. This is the term that primarily contrib-
utes to the diverging growth of the adjoint energy.

The second volumetric term in Eq. (43) is the dissipation term.

Simplification shows that it is proportional to krv̂ik2
scaled by

the viscous coefficient. As the sign in front of the term is negative,
this term reduces the growth of the adjoint energy.

The boundary terms are quadratic and can potentially contribute
to the growth of the adjoint energy. On the inlet and outlet of the
domain, Euler’s equation-based characteristic boundary condi-
tions are applied, as the fluid is practically inviscid on these boun-
daries. Using these boundary conditions, the first boundary term
in Eq. (43) can be ignored. Denoting the characteristic
Navier–Stokes variables by zi, and the characteristic adjoint varia-
bles by ẑi, the boundary condition on the inlet and outlet can be
written as

v̂kÂkjinjdvi ¼ ẑkKlidzi ¼ 0 (45)

using the eigendecomposition of Âkjinj ¼ QklKlmQim and the iden-
tities dvi ¼ Qkidzi; ẑi ¼ Qkiv̂k. On the inlet, the characteristic vari-
ables coming into the domain are set. This corresponds to dzi¼ 0,
for i, where ith characteristic (or eigenvalues in the eigendecom-
position) is negative. This in turn implies that ẑj ¼ 0, for j, where
the jth characteristic is positive, ensuring that the product is 0.
This means that v̂ belongs to the negative eigenspace of the matrix,
and so, the second boundary term is always negative. Similarly, for
the outlet, the outgoing characteristics are set, which corresponds
to dzi¼ 0, for i, where ith characteristic is negative. Hence, for
characteristic boundaries, the second boundary term is always neg-
ative and it does not contribute to the growth of the adjoint. Wall
boundaries require more analysis, as in this case the viscous terms
are important due to the presence of large gradients near the wall.
For this paper, the walls are assumed to not contribute significantly
to the growth of the adjoint term. This does not mean that the near
wall regions adjoint fields do not contribute to the sensitivity, in
fact, as we shall see in the Results section, they do.

The contribution from the objective source terms to the adjoint
energy is linear and hence they do not directly contribute to the
divergence of the adjoint fields.

Setting

b ¼ cffiffiffi
c
p ; a ¼

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

c

s
c
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1

2
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r3b 0 0 r � u r3a

0 r1a r2a r3a r � u

0
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1
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(46)
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0
BBBBBBBBBBBBB@

1
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(47)

Analyzing the matrix M, which is the growth matrix, provides a
way to find regions in the fluid flow where the adjoint is diverging.
Using Cauchy–Schwartz inequality for matrix/vector norms

jv̂TMv̂j � kvkkMvk (48)

Using the matrix induced two-norm and the identity
kMvk2 � r1kvk2, with r1 being the maximum singular value of M
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jv̂T
Mv̂j � r1kv̂k2

2 (49)

The magnitude of r1 gives an indication of the regions where the
adjoint energy growth is high. It has the dimensions 1=T and has
the physical meaning of a rate of growth term.

Additional viscosity is added to the adjoint equations, curbing
the divergence of the adjoint field, in the following form:

� @ŵi

@t
� Akji � Av

kji

� � @ŵk

@xj
¼ @

@xl
Dkjil þ kr1dkidjl

� � @ŵk

@xj

� �
(50)

where k is a scaling factor that is problem specific, and in this
work, is manually tuned. It has the dimensions of L2, where L
denotes length. As an initial estimate, the k can be set to the length
scale of the chaotic flow that contributes to the divergence of the
adjoint. For example, for the turbine case, it is equal to the turbu-
lent length scale in the wake. For 2D chaotic flow over a cylinder,
it can be the length scale of the vortex shedding.

As the adjoint implementation is a discrete adjoint, which is
obtained using automatic differentiation, there is no explicit func-
tion or equation which can be modified to add the artificial viscos-
ity. So, viscosity is added by performing an extra implicit time
integration step with a weighted Laplacian operator, after the
explicit Runge–Kutta (RK) adjoint iteration. The boundary condi-
tions for the implicit step are Dirichlet, using the values obtained
from the explicit step. The overall time integration method can be
described as an implicit–explicit (IMEX) Euler–RK scheme.

Results. The stabilized adjoint algorithm is tested on the 2D
turbine vane problem. The objective is the time-averaged and
mass flow-averaged pressure loss coefficient given by Eq. (1).
Time-averaging is performed over 1/10th of a fluid flow through
time.

Figure 8 shows the regions where the maximum singular value
r1 of the matrix M is large. As expected, the region in the bound-
ary layer near the trailing edge is primarily responsible for the
diverging adjoint, and by adding additional dissipation in this
region, we can restrict the growth of the adjoint field.

Various values of k are tried from k¼ 10�4 to 10�2. Figure 9
demonstrates the growth of energy norm of adjoint fields back-
ward in time, for different values of k. When the scaling factor is
too low, the additional viscosity does not change the adjoint solu-
tion by a significant amount, and the L2 norm of the adjoint fields
stays high. On increasing the scaling factor, the magnitude of the
L2 norm of the adjoint fields reduces, but still shows exponential
growth. This brings the order of the adjoint sensitivity to match
the order of the finite difference sensitivity. Further increase in the
scaling factor halts the exponential growth of the energy norm of
the adjoint fields, reaching an approximately steady level. The
adjoint sensitivity in this regime agrees with the finite difference
sensitivity by an error of less than 20%.

Table 2 and Fig. 10 show the relative error in adjoint sensitivity
with respect to the finite difference sensitivity, for a Gaussian-
shaped source term perturbation, upstream of the leading edge of
the vane, to the conservative compressible Navier–Stokes equa-
tions. The length scale of the perturbation is 10 mm, and its rela-
tive magnitude to the convective term of the Navier–Stokes
equation is around 1%. From Table 2, it can be seen that there
seems to be an optimal value of k¼ 0.005, and raising it beyond
this point leads to a slowly increasing error in the sensitivities.
This is due to the fact that too much viscosity is being added to
the adjoint equations, making the adjoint sensitivities inaccurate.
There is a sizable range of scaling factors where the adjoint flow

Fig. 8 Contour plot of divergence indicator r1 for the turbine
vane, normalized by inverse of a single flow through time

Fig. 9 Growth of energy norm of adjoint for various scaling
factors. X-axis is time normalized by a single flow through time.

Table 2 Comparison of adjoint and finite difference sensitivity
for various scaling factors

Sensitivities

Scaling factor (k) Finite difference Adjoint

0.0001 1.71� 10�4 3.44� 10�3

0.0004 1.71� 10�4 5.42� 10�4

0.0006 1.71� 10�4 �1.7� 10�4

0.001 1.71� 10�4 �4.5� 10�4

0.003 1.71� 10�4 1.30� 10�4

0.005 1.71� 10�4 1.71� 10�4

0.007 1.71� 10�4 1.59� 10�4

0.01 1.71� 10�4 1.42� 10�4

Fig. 10 Error in adjoint sensitivity for various scaling factors
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field is sufficiently damped and the sensitivities are reasonably
correct.

Figure 11 shows a visualization of the density adjoint field at
t¼ 0 (terminal time for the adjoint simulation). The magnitude of
the adjoint field is large in the trailing edge regions, in the begin-
ning of the wake and near the region where the averaging of the
design objective is performed.

As the results show, selection of the scaling factor k greatly
influences the adjoint sensitivities obtained. After using an initial
estimate for k, obtained from the process described in the previous
section, Energy Analysis, multiple values of k need to be tried to
get a set of stabilized adjoint flow simulations. Using this set,
Richardson extrapolation, a technique used in many numerical
algorithms [23,24], can be used to improve the accuracy of adjoint
sensitivities and obtain an error estimate.

Let g(k) be the computed sensitivity, g* be the true sensitivity,
representing g using a polynomial expression

gðkÞ ¼ g� þ akþ bk2 þ � � � þ OðknÞ (51)

Let giþ1ðkÞ ¼ higiðk=hÞ � giðkÞ=hi � 1 with g0¼ g. Then

giþ1ðkÞ ¼ g� þ Oðkiþ1Þ (52)

So, by utilizing multiple adjoint sensitivities from simulations
with different scaling factors, a more accurate gradient can be
estimated. Though running multiple adjoint simulations is expen-
sive, it is still much cheaper than all of the other sensitivity analy-
sis methods for chaotic systems. This technique has the potential
to make the viscous-stabilized adjoint method more useful for
generic chaotic or turbulent fluid flow problems.

Conclusion

The unsteady adjoint method is useful for computing sensitiv-
ities of objectives to a large number of parameters. The unsteady
adjoint solution diverges to infinity due to chaotic dynamics of
turbulence in fluid flows. An energy analysis provides valuable
information about the mechanism of growth of the adjoint field.
Local artificial viscosity can limit the divergence adjoint field and
maintain accuracy of adjoint sensitivities. The viscous stabilized
unsteady adjoint method provides a promising method for com-
puting adjoint sensitivities of long time-averaged objectives, with
respect to arbitrary perturbations, for a turbulent fluid flow. The
effectiveness of the method has been demonstrated on 2D chaotic
flow problems and will be extended to 3D flow problems. The
estimation of the optimal scaling factor for a particular fluid prob-
lem requires more work, and will be investigated in the future
with the help of Richardson extrapolation.
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Nomenclature

a, b ¼ scaled speeds of sound
A ¼ Jacobian of convective flux three-dimensional

tensor
Â ¼ primitive flux three-dimensional tensor for symme-

trized variables
Av ¼ Jacobian of viscous flux three-dimensional tensor
B ¼ Jacobian of Â with respect to symmetrized

variables
c ¼ speed of sound

D ¼ domain for the fluid problem
D ¼ Jacobian of viscous flux with respect to gradient

terms four-dimensional tensor
D̂ ¼ viscous four-dimensional tensor
e ¼ internal energy
E ¼ total energy

Ev̂ ¼ L2 norm of adjoint of symmetrized variables
F ¼ Navier–Stokes convective flux vector

Fv ¼ Navier–Stokes viscous flux vector
J ¼ instantaneous objective
�J ¼ time-averaged objective
L ¼ length scale of fluid problem

M, M1, M2 ¼ growth matrix of adjoint energy
Mp ¼ Mach number on downstream plane
pp ¼ pressure on downstream plane

pt,p ¼ stagnation pressure on downstream plane
�pl ¼ pressure loss objective

�pt;l ¼ mass-averaged stagnation pressure loss on down-
stream plane

�pt;in ¼ stagnation pressure at the inlet
q ¼ primitive variables vector
s ¼ Navier–Stokes equations source term vector
S ¼ surface area of boundary
S ¼ transformation matrix from primitive to symme-

trized variables
T ¼ time-averaging interval
T ¼ transformation matrix from conservative to symme-

trized variables
u ¼ velocity vector
v ¼ symmetrized variables vector
V ¼ volume of domain
V ¼ transformation matrix from conservative to primi-

tive variables
v̂ ¼ adjoint for symmetrized variables
w ¼ conservative variables vector
ŵ ¼ adjoint of conservative variables
x ¼ position vector
a ¼ thermal coefficient
c ¼ isentropic expansion factor
k ¼ scaling factor for additional adjoint viscosity
l ¼ viscosity coefficient
q ¼ density at a point in the domain

qp ¼ density on downstream plane
r ¼ viscous stress tensor

r1 ¼ maximum singular value of growth matrix
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