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Connecting Electronic Entropy to Empirically Accessible Electronic Properties 

in High Temperature Systems 

 

A quantitative theoretical model connecting the thermopower and electronic entropy of 

molten systems is proposed, the validity of which is tested for semiconductors and metallic 

materials. The model accurately provides the entropy of mixing for molten semiconductors, 

as shown for the representative system Te-Tl.  Predictions of the electronic entropy of 

fusion for compounds are in agreement with available data and offer a novel means to 

identify the correct electrical conductivity model when Hall measurements are not 

available.  Electronic entropy for molten semiconductor and metallic systems is shown to 

reflect order in the molten and solid state.  The model proves accurate at predicting the 

electronic state entropy contribution to the electronic entropy of mixing. 

 

Keywords: entropy; electronic entropy; thermopower; molten semiconductor  

 

PACS:  64, 71, 81 

 

1. Introduction 

Electronic entropy is a manifestation of the accessible state-space of electrons and consequently 

reflects the structure of condensed matter systems.  Empirical access to electronic entropy 

therefore offers a means of probing the electronic ordering of matter. To date, in materials 

thermodynamics, the contribution of electronic entropy to the total entropy or, more importantly, 

to the entropy variation across phases, is often ignored or neglected  [1]. As claimed in Fultz  [2], 

the study of electronic entropy remains a frontier for high-temperature thermodynamics. A 

quantitative connection of electronic entropy to an experimentally accessible quantity would then 

allow rapid investigation and improved prediction of ordering in high temperature systems.  We 

therefore herein propose a model connecting the thermopower and electronic entropy of systems 
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at high temperature. The model is first used to successfully predict the thermopower and entropy 

of mixing of the molten Te-Tl system with accuracy comparable to other empirical methods.  The 

robustness of the model is then tested for the electronic entropies of fusion of selected compounds 

and for the entropy of mixing of a molten metallic system. The proposed approach proves to offer 

novel access to ordering and mixing properties in molten metallic and semiconductor systems. We 

show that in certain cases, here at high temperatures, electronic entropy contributes significantly 

to the total entropy of a system.   

2. Electronic Entropy and Thermopower 

We propose to measure the total electronic entropy of high temperature systems through the 

measurement of macroscopic electronic properties.  The microscopic basis for the connection 

between thermopower and entropy has previously been discussed by Peterson and Chaikin [3,4], 

and the statistical mechanical basis for the electronic entropy has been presented in Wallace [5].  

Prior work by Rockwood has proposed the following connection between the partial molar 

electronic entropy of a system (𝑆�̅�, a macroscopic thermodynamic property of the system, in J 

mole--1 K-1) and the thermopower  [6–8]: 

 𝑆�̅� = −𝐹𝛼, (1) 

where we understand 𝑆�̅� as defined as: 

 𝑆�̅� = (
𝑑𝑆

𝑑𝑛𝑒
)

𝑇,𝑃,𝑁

 (2) 
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where 𝑆 is the total entropy (J mol-1 K-1), 𝑛𝑒 refers to the number of moles of mobile electrons per 

mole of system, 𝐹 is Faraday’s Constant, and the thermopower (𝛼, V K-1) is classically defined in 

terms of a measured difference in electrical potential (𝜙) as a function of temperature  [9]: 

 
∆𝜙

∆𝑇
= −𝛼. (3) 

  The reader is invited to consider Rockwood, Kjelstrup, and Tykodi for a historical 

perspective on the connection between thermopower and electronic entropy  [8,10–12].  It should 

be noted that there has been much discussion in the literature, starting with Thompson, about the 

possibility of a quantitative connection between irreversible thermodynamic properties, such as 

the thermopower or Peltier coefficient, and reversible thermodynamic properties, such as the 

entropy or heat capacity.   

We seek to provide empirical evidence that quantitatively connects thermopower to 

electronic entropy.  To leverage available experimental entropy data, it is useful to work in the 

context of integral instead of partial molar entropy.  From Eq. (2) we can define: 

 𝑆𝑒
𝑝 = 𝑛𝑒𝑆�̅� .  (4) 

Leveraging Eq. (1) we can reframe Eq. (4) in terms of the thermopower: 

 𝑆𝑒
𝑝 = −𝑛𝑒𝐹𝛼,  (5) 

in units of J mol-1 K-1 or, equivalently: 

 𝑆𝑒
𝑝 = −𝑛𝑒𝛼,  (6) 
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in units of J m-3 K-1 where 𝑛 is density of electrons (m-3) that contribute to nonlocal transport 

phenomena and 𝑒 is the fundamental charge.  For materials where the conducting particle has 

positive effective charge (e.g. holes) Eq. (6) reads: 

 𝑆𝑒
𝑝 = 𝑛𝑒𝛼,  (7) 

where 𝑛 is now the density of positive charge carriers that contribute to nonlocal transport 

phenomenai.  

Thus, it is in principle possible to macroscopically probe the electronic properties of a 

system (thermopower and number of carriers) and relate them to an essential thermodynamic 

quantity:  entropy.   As can be demonstrated starting from thermodynamics of solutions (see 

Appendix), electronic entropy is the critical driving factor for the thermodynamic behavior of 

certain systems, including molten semiconductors. In such systems, evaluating the electronic 

entropy of mixing, Δ𝑆𝑒, provides an approximation of the total entropy of mixing Δ𝑆𝑚𝑖𝑥. 

3. Application to Molten Semiconductors 

To verify the proposed connection both electronic and thermodynamic data of high temperature 

systems are required.  There is a dearth of available electronic data at high temperatures.  

However, one class of material system, molten semiconductors, has been studied in detail 

precisely because of the comprising members’ unique electronic properties.  Consequently, we 

will leverage the available datasets for these systems to evaluate the predicting performances of 

the proposed model.   

Molten semiconductors exhibit electronic properties characteristic of solid semiconductors 

in their liquid phase (the molten state).  Herein the term semiconductor refers to systems that 
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have an optical band gap and an increase in electronic conductivity with temperature.  Sulfides, 

oxides, selenides, tellurides, and other systems of commercial relevance exhibit these 

features  [13]. A strong body of work describes the physical basis of the electronic behavior of 

molten semiconductors  [14] and indicates that for many systems the Drude model holds for 

electronic conductivity  [15].  

Applying the Drude model of conductivity to mobile electrons allows connecting the 

density of mobile electrons, 𝑛, to two empirically accessible quantities, the conductivity (𝜎, ohm-1 

m-1) and mobility (𝜇, m2 V-1 s-1): 

 𝜎 = 𝑛𝑒𝜇. (8) 

For materials for which the Drude model holds, the connection between 𝑆𝑒
𝑝 and the 

electronic properties therefore follows for negatively charged carriers: 

 𝑆𝑒
𝑝 = −

𝜎

𝜇
𝛼, (9) 

and for positively charged carriers: 

 𝑆𝑒
𝑝 =

𝜎

𝜇
𝛼. (10) 

4. Method to Predict Thermodynamic and Electronic Properties 

We therefore propose a method to quantitatively connect the theoretically and experimentally 

well-established electronic properties of molten semiconductor systems and the entropy of 

mixing. The following assumptions underlie the method, informed by the above discussions on the 

physics of semiconductors and thermodynamics of solutions: 
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(1) The entropy of mixing is accounted for by the electronic entropy of mixing 

(2) The Drude model of conductivity describes the conductivity of the system 

(3) The Hall mobility is used for the carrier mobility 

(4) The thermopower is dominated by the electronic contribution 

(5) The total electronic entropy is approximated by 𝑆𝑒
𝑝 

Assumption (5) is read: 

 𝑆𝑒 = 𝑆𝑒
𝑝 (11) 

where 𝑆𝑒 is the total electronic entropyii  [1].   

By means of example the method is tested to predict the thermopower of the tellurium 

(Te)-thallium (Tl) system at 800°K. As one of the most studied molten semiconductor systems, 

both thermodynamic and electronic data are available for the tellurium-rich side of the phase 

diagram and for pure tellurium and thallium. The Hall mobility, thermopower, and electronic 

conductivity at 800°K are provided by Cutler as a function of composition  [16–18].  

The thermopower is connected to the total electronic entropy, according to Eqs. (9-11).  

The electronic entropy mechanical mixingiii term 𝑆𝑒
𝑚 is obtained from the electronic entropy of the 

end-members: 

 𝑆𝑒
𝑚 = 𝑥𝑇𝑙𝑆𝑒

𝑇𝑙 + 𝑥𝑇𝑒𝑆𝑒
𝑇𝑒 . (12) 

𝑆𝑒
𝑇𝑙 and 𝑆𝑒

𝑇𝑒 are absolute electronic entropies obtained via Eqs. (6), (7), and (11) from the 

reported electronic properties of the end members in the molten state.  We note that other 

methods are available to obtain the total electronic entropy of pure substances such as metals (i.e. 
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ab initio atomistic modeling) [2].  The total electronic entropy is then obtained from the electronic 

entropy of mixing and mechanical mixing terms: 

  𝑆𝑒 = ∆𝑆𝑒 + 𝑆𝑒
𝑚. (13) 

Substituting 𝑆𝑒 in Eq. (13) with Eqs. (9-11) and using the assumption that ∆𝑆𝑒 ≈ ∆𝑆𝑚𝑖𝑥 (as 

discussed in the Appendix), the thermopower is obtained: 

 𝛼 =
𝜇

𝜎
(∆𝑆𝑚𝑖𝑥 + 𝑥𝑇𝑒𝑛𝑇𝑒𝑒𝛼𝑇𝑒 + 𝑥𝑇𝑙𝑛𝑇𝑙𝑒𝛼𝑇𝑙). (14) 

5. Results for Tl-Te System 

We restrict our calculation to the tellurium-rich portion of the phase diagram, the only 

compositions for which Hall mobility measurements are available for the melt.  The entropy of 

mixing (∆𝑆𝑚𝑖𝑥) is provided by Nakamura and Terpilowski from electromotive force (e.m.f.) 

measurements  [19,20].  Figure 1a shows the predicted thermopower of Te-Tl from 0 to 67% 

atomic fraction of thallium (the congruent melting composition) by Eq. (14), compared to 

empirical data provided by Cutler. 

Reversing the connection, we can demonstrate the utility of electronic property 

measurements of the molten state as a means to quantify entropy in the molten phase.  We use 

reported empirical measurements of the mobility, electronic conductivity, and thermopower to 

calculate the entropy of mixing by Eq. (14).  The results are shown in Fig. 1b against empirical data 

from Nakamura and Terpilowski and a model of the entropy of mixing developed by Oh based on 

Hillert’s two-sublattice model and optimized with the data from Nakamura and Terpilowski.   
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Figure 1b shows that experimental uncertainty for e.m.f. measurements of the entropy of 

mixing for this system is on the order of 1 J mol-1 K-1.  The modeled entropy of mixing by Oh is fit to 

this experimental dataset. The predicted entropy of mixing by Eq. (14) (the solid line in Fig. 1b) 

shows maximum deviation from the modeled data of less than 0.3 J mol-1 K-1, well within the range 

of experimental uncertainty of the e.m.f. method and without the use of any fitting procedure.  

Errors in the measurement of the electronic properties propagate through the model to errors in 

the predicted entropy of mixing.  Specifically, a sensitivity analysis of error propagation for 

measurement of the thermopower shows that a 10% error in the thermopower propagates to 

roughly a 10% error in the entropy of mixing.   

Measurements of thermopower in high temperature molten systems are typically reported 

with errors of less than 10%  [21].  The conductivity is typically reported with measurement error 

of less than 1.5%  [22].  Consequently, for systems such as Te-Tl, with entropies of mixing on the 

scale of < 5 J mol-1 K-1 that are primarily comprised of electronic entropy, the use of the present 

model using traditional experimental methods is expected to result in errors of < 0.5 J mol-1 K-1. 

6. Discussion on the Validity of the Model 

We made the assumption that the total electronic entropy is approximated by 𝑆𝑒
𝑝 (Eq. (11)).  

This, as shown by Rockwood for the case of a free electron system, is not always an appropriate 

assumption [7].  However, as shown in Figures 1a and 1b, our assumption led to the accurate 

prediction of macroscopic properties of a molten semiconductor system.  We interpret the results 

to indicate the validity of assumption (5) for molten semiconductor systems. 

Further, as shown in Figures 1a and 1b, the predicted total electronic entropy of mixing 

approximates the total entropy of mixing for the Te-Tl system.  This validates assumption (1), in 
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accordance with our expectations based on macroscopic thermodynamic considerations 

(Appendix): the electronic entropy is critical to the thermodynamics of mixing for molten 

semiconductors. 

The total electronic entropy is related to the accessible density of states (DOS) of electrons; 

only states vicinal to the chemical potential of electrons (or the Fermi level) are accessible and 

substantially contribute to the electronic entropy of the system.  

Measuring the thermopower of a system therefore consists of measuring the response of 

the electronic component of the entropy to a perturbation in temperature. This measurement is 

not without analogy to electromotive force (e.m.f.) measurement, one of the few experimental 

methods to determine the (total) entropy of a system by monitoring a relative chemical potential 

difference as a function of temperature  [23].   

If the thermopower of a system is quantifiably related to the electronic entropy and gives 

access to the absolute electronic entropy of a system then the thermopower can be considered a 

material property with physical meaning for a material at equilibrium  [23,24].  

If Eq. (6) is valid for semiconductor systems, then we may draw an interesting analogy 

between the entropy of transport used in the irreversible thermodynamics derivation of the 

thermopower and the electronic entropy, a reversible thermodynamic quantity.  In irreversible 

thermodynamics, the thermopower reflects the entropy transported during the thermally driven 

motion of charged particles. The thermopower is then defined as the entropy per unit charge 

associated with mobile electrons in the system  [25].   
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Therefore, the thermopower of a material and the number of charged particles that 

contribute to nonlocal transport phenomena (i.e. mobile electron density 𝑛 of charge 𝑒) provide a 

quantification of the total transported entropy of a system (𝑆𝑡): 

 𝑆𝑡 = −𝑛𝑒𝛼 (15) 

in units of J m-3 K-1 which is identical to Eq. (6).  From the equivalence, we can conclude that, for 

molten semiconductor systems, the irreversibly defined transport entropy is equal to the 

reversibly defined total electronic entropy: 

 𝑆𝑡 = 𝑆𝑒 . (16) 

Rockwood discusses the implications of the connection between irreversible and reversible 

thermodynamic quantities in  [10]. 

7. Extension to Solids and Other Semiconductor Systems 

It is foreseen that the connection of the electronic properties to electronic entropy will provide 

novel insights even if some of the assumptions of the method do not hold, such as the total entropy 

of mixing being approximated by the electronic entropy of mixing, the Drude model 

approximating the conductivity of the system, or the validity of Eq. (11).  To illustrate the value of 

the connection, it is applied to predict the entropy of fusion, and in particular the electronic 

entropy of fusion ∆𝑆𝑓 of solid semiconductor compounds - a property for which there exist more 

data at present. To apply the proposed model, we use available data on the electronic properties of 

the solid and molten compound at melting and apply Eqs. (9) and (10).  We focus on binary 

systems for which these data, as well as electronic entropy of fusion data, are available in the 

literature.   
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Figure 2 plots the predicted electronic entropy of fusion via Eqs. (9) and (10) vs. the 

electronic entropy of fusion as provided by Belotskii  [26]. 

Figure 2 shows that for certain systems Eqs. (9) and (10) provide a reasonable prediction 

of the reported value of the electronic entropy of fusion (solid symbols).  However, the prediction 

can overestimate and underestimate the reported value of the entropy of fusion (hollow circles).  

Addressing these errors in turn helps to illustrate the value of the correlation. 

The two compounds for which Eqs. (9) and (10) substantially overestimate the electronic 

entropy of fusion are AlSb and GaSb. Hall measurements of AlSb and GaSb report electron 

densities of 7.0 x 1021 cm-3 and 4.1 x 1022 cm-3 respectively, as opposed to 2.0 x 1023 cm-3 and 2.2 x 

1023 cm-3 predicted by the Drude model of conductivity (Eq. (8))  [27]. Adopting the measured 

electron density of GaSb and applying Eqs. (6) and (7) predicts an electronic entropy of fusion of 

14.5 J mol-1 K-1 vs. the literature provided value of 16.7 J mol-1 K-1 – a prediction within the 

anticipated error of the reported values  [26].  The corrected value is shown in Fig. 2 (solid blue 

symbol). Not only does this demonstrate the validity of the proposed connection for systems 

whereby the Drude model is inapplicable, it demonstrates the utility of the connection to 

determine which electronic model is best suited for systems where thermodynamic data are 

available.  This is particularly valuable since Hall measurements for molten systems are not as 

common as for their solid counterparts.  We have compiled these data and provided corrected 

predictions via Eqs. (6) and (7) in Fig. 2 as available (blue symbols).   

The model does not accurately account for the entirety of the electronic entropy of fusion 

for some compounds.  We put forth three explanations for this.  The first, described above, is the 

lack of an accurate model for the conductivity of those systems in the molten state. As shown in 
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Fig. 2, where a correction to the Drude model is applied, a systemic under-prediction of electronic 

entropy remains. A second explanation is the lack of validity of our assumption reflected in Eq. 

(11) (i.e. there are contributions to the total electronic entropy that are not accounted for by 𝑆𝑒
𝑝).  

A third explanation for the remaining discrepancy lies in the existence of a second contribution to 

the electronic entropy, not accounted for by the connection put forth. As indicated in Section 2, the 

electronic entropy described in the correlation stems from the size of the available state space of 

the electrons near the Fermi level. It does not take into account the configurational electronic 

entropy, since it does not manifest in the thermoelectric power. Configurational electronic entropy 

describes the configurational entropy of localized electrons and holes.   

In analogy to the configurational entropy of a solid solution on a lattice, the configurational 

electronic entropy is described by Zhou et. al.  [28].  The configurational electronic entropy has 

been shown to substantially contribute to the electronic entropy and the total entropy of mixing 

for certain classes of systems, such as mixed valence oxides [20] or certain semiconductor systems 

at melting  [29].  Germanium is for example modeled to have a configurational electronic entropy 

of fusion of approximately 22.1 J mol-1 K-1, an amount that bridges the electronic entropy of fusion 

predicted by our model and the reported value.  The combined predicted electronic entropy of 

fusion is shown in Fig. 2 (red symbol). 

Whereas the configurational contribution to total electronic entropy stems from electrons 

that are localized, the electronic entropy described by Eqs. (6) and (7) describes the entropy of 

delocalized electrons.  We shall henceforth call this quantity the electronic state entropy.  This 

terminology arises from the number of available states, or density of states (DOS), of a system 

near the Fermi level (as accessible according to the Fermi-Dirac distribution).  Thus, the 
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configurational electronic entropy reflects statistics of distinguishable particles whereas the 

electronic state entropy reflects the statistics of indistinguishable particles.  For systems such as 

alkali metals, where the DOS is often small near the Fermi level, or for ionic systems, where the 

DOS is often zero near the Fermi level, the contribution of the electronic state entropy to the total 

electronic entropy is small.  However, for systems such as semiconductors (or the subclass of 

thermoelectrics that are designed to have maximal density of states near the Fermi level), there 

can be a substantial contribution of the electronic state entropy due to the large DOS near the 

Fermi level.  Thus, it is for molten semiconductors that Eq. (14) produces the best approximation 

for the total entropy of mixing. 

Hence, the provided model reflects the electronic state entropy as it manifests in the DOS 

near the Fermi level, and to date does not include a configurational component arising from 

localization of electrons or holes.  

8. Extension to Metallic Systems 

The DOS directly reflects the chemical ordering (bonding) of a system  [30].  Consequently, it 

would be surprising if an empirically accessible quantity that reflects the DOS near the Fermi level 

(i.e. the thermopower) did not give at least qualitative access to the ordering tendencies of a 

system.  We have demonstrated above that, in the case of molten semiconductors, the electronic 

entropy dominates the entropy of mixing and hence substantially reflects the ordering of a system.  

However, even for cases where the electronic entropy of mixing is not a dominant component of 

the total entropy of mixing, the electronic entropy will still reflect an evolution in the chemical 

ordering of a system.   
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Figure 3 shows the predicted electronic contribution to the entropy of mixing  (black 

circles) in the molten state according to Eq. (14) of the Mg-Bi system at 1100°K and the 

empirically validated total entropy of mixing (black line)  [31].  The electronic property data is 

provided by Ratti and Enderby  [13,32].  The Mg-Bi system is metallic across the entire range of 

composition in the molten phase. 

The total entropy of mixing for this system is on the scale of 6 J mol-1 K-1, confirming that 

the electronic entropy does not describe the entire thermodynamics of mixing of the Mg-Bi 

system.  However, the electronic state entropy of mixing suggests ordering at a composition of 

40% Bi.  The phase diagram of the Mg-Bi system indeed exhibits a congruent melting compound at 

Mg3Bi2  [33]. 

Thus, the electronic entropy, as analyzed through the proposed correlation and empirically 

probed by measurement of the electronic properties of the melt, also reflects the chemical 

ordering of metallic systems. When measured near the liquidus, these properties are a proxy for 

ordering of the corresponding solid phases.  It is therefore put forth that measurement of 

electronic properties of melts can provide fast and simple access to high-temperature solid phase 

ordering.  

9. Extension to Ionic Systems 

The above connection between the measured thermopower and the electronic entropy of a system 

assumes that the electronic contribution to the thermopower dominates.  However, in some 

systems (especially ionic systems), the Soret effect substantially contributes to the measured 

thermopower. The Soret effect reflects the chemical response of the system to a perturbation of 

temperature. For such a situation, Carl Wagner has provided a comprehensive method and 
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analysis to isolate the electronic and ionic contribution to the thermopower  [23].  We note that as 

electronic thermopower reflects a change in the contribution of (delocalized) electron entropy to 

the free energy as a function of temperature, the Soret effect reflects the contribution of chemical 

species entropy to the free energy as a function of temperature.  We propose that, by analogy, the 

partial entropy of species of systems exhibiting the Soret effect should be accessible via 

measurement of the thermopower.  Rockwood and Tykodi discuss further implications of the 

ability to measure electronic entropy on the ability to quantify reversible thermodynamic 

quantities of ionic melts that were previously inaccessible [7,11]. 

 

 

 

 

10. Conclusion 

We have proposed a quantitative connection between thermodynamic properties (entropy) and 

electronic properties (thermopower) of systems.  The model quantitatively predicts the entropy of 

mixing of molten semiconductor systems.  Electronic entropy is shown to reflect ordering in 

molten systems and the solid phase, even for systems in which the electronic entropy of mixing 

does not substantially contribute to the total entropy of mixing.  The model has been shown to 

have consequences in the interpretation of the connection between quantities from irreversible 

and reversible thermodynamics.  It is proposed that an analogous method using the Soret effect 

can quantify partial entropies of chemical species in high temperature systems. 
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Table 1 summarizes the importance of electronic entropy for different classes of systems, 

and the materials information that can be derived from its experimental measurement by the 

method put forth in this work.  
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Endnotes

 

i For systems that exhibit ambipolar conductivity a similar equation with contributions from both 

electrons and holes is used.  We simplify for purpose of demonstration to systems that exhibit 
monopolar conductivity. 

 

ii For a discussion on the validity of decomposing the free energy function into components see 

Smith  [34] 

 

iii Mechanical mixing entropy is the concentration-weighted entropies of the end-members of a 

system in absence of any chemical interactions.  Thermodynamic mixing functions are referenced 
to mechanical mixing: ∆𝑋𝑚𝑖𝑥 = 𝑋 − 𝑋𝑚. 

 

iv See Wagner for a discussion on isolating the electronic contribution to thermopower  [23]
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Appendix 

For simplicity, a binary solution of A and B that defines a molten semiconductor system is 

considered, though the formalism is not restricted to binary systems.  For a solution in the A-B 

system, the Gibbs free energy of mixing (∆𝐺𝑚𝑖𝑥) is the difference between the Gibbs free energy 

(𝐺) of the actual solution and the mechanical Gibbs free energy (𝐺𝑚) of the end-members A and B, 

defined as: 

 𝐺𝑚 = 𝑥𝐴𝐺𝐴 + 𝑥𝐵𝐺𝐵. (A1) 

∆𝐺𝑚𝑖𝑥 is conventionally expressed in terms of the enthalpy and entropy of mixing, 

respectively ∆𝐻𝑚𝑖𝑥 and  ∆𝑆𝑚𝑖𝑥, as: 

 ∆𝐺𝑚𝑖𝑥 = 𝐺 − 𝐺𝑚 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥. (A2) 

The entropy of mixing can be delineated into contributions from configurational (∆𝑆𝑐), 

vibrational (∆𝑆𝑣), electronic (∆𝑆𝑒), and other terms (∆𝑆𝑟): 

 ∆𝑆𝑚𝑖𝑥 = ∆𝑆𝑐 + ∆𝑆𝑣 + ∆𝑆𝑒 + ∆𝑆𝑟. (A3) 

∆𝑆𝑒 is typically of substantial magnitude for molten semiconductor systems (see Table A1).  

The configurational entropy of mixing (∆𝑆𝑐) is determined by the degree of chemical ordering 

present in a system.  The less ordered a system, the larger the configurational entropy of mixing.  

Molten semiconductors, as presented above, are ordered systems and consequently have minimal 

configurational entropy of mixing.  Such a statement can be substantiated by consideration of the 

phase diagram.  Molten semiconductor systems typically exhibit a compound melting congruently 

and liquid-phase miscibility gaps.  Directly above the congruent melting point the system exhibits 



 

 23 

short-range order nearly identical to the solid compound (AB).  The atoms of A and atoms of B are 

fully associated with each other at the AB composition, thus minimizing configurational entropy of 

mixing.  Between the congruent melting point and the end members are typically miscibility gaps. 

For compositions within these miscibility gaps the system segregates into two non-mixing phases, 

which further reduces the configurational entropy of mixing.  Consequently, ∆𝑆𝑐 is typically of 

minor magnitude and the result is that configurational entropy plays a small role in the entropy of 

mixing for molten semiconductor systems: 

 |∆𝑆𝑐|  ≪  |∆𝑆𝑒|. (A4) 

The lack of long-range order in molten systems leads to a drastic reduction of the 

magnitude of the vibrational contribution to the entropy in comparison with solids  [1].  ∆𝑆𝑣 for 

molten systems reflects the difference between vibrational entropy of the molten system and the 

mechanical mixture of the two end members (referenced to the liquid state) – the absolute 

magnitude of which is not significant for the majority of molten semiconductor systems: 

 |∆𝑆𝑣|  ≪  |∆𝑆𝑒|. (A5) 

∆𝑆𝑟 may comprise magnetic entropy and other system-specific entropic effects, which are 

ignored at the present stage.  

 

TABLE A1. Typical entropies of mixing for molten semiconductor systems  [26,27,35] 

 Value for Molten 

Semiconductors 

∆𝑺𝒆(J mol-1 K-1) ~ 3 
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∆𝑺𝒄(J mol-1 K-1) < 1 

∆𝑺𝒗(J mol-1 K-1) << 1 

∆𝑺𝒓(J mol-1 K-1) << 1 
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Tables 

Table 1. Role of electronic entropy for various molten material systems 

   Metallic       

Semiconducting 

     Ionic 

Reflects ordering Yes Yes Yes 

Approximates 

(∆𝑺𝒎𝒊𝒙) 
No Yes No 

Empirically 

accessible in melt 
Yes Yes Yesiv 
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Figure Captions  

 

Figure 1.  (a) thermopower vs. atomic fraction thallium at 800°K as predicted by Eq. (14) (solid 

line) and as measured by Cutler (blue circles)  [17].  (b) entropy of mixing vs. atomic fraction 

thallium at 800°K as predicted by Eq. (14) (solid line), as measured by Terpilowski (red circles), as 

measured by Nakamura (blue circles), and as calculated by Oh using the two-sublattice Hillert 

model optimized with data from Terpilowski and Nakamura (dashed line)  [19,20] 

 

Figure 2. The predicted vs. reported electronic entropy of fusion  [26].  Solid symbols show 

predictions that agree with reported values.  Hollow symbols show predictions that substantially 

deviate from reported values.  Black symbols show predictions using Eqs. (9) and (10). Blue 

symbols show predictions using Eqs. (6) and (7) and measured values for the number of carriers.  

The red symbol shows the predicted entropy of fusion for Ge including the configurational 

electronic entropy of fusion.   

 

Figure 3.  The predicted electronic entropy of mixing of the Mg-Bi system at 1100°K by Eq. (14) 

(black circles) and literature reported values of the total entropy of mixing (solid line)  [31] 
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