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Abstract Phytoplankton exhibit pronounced morphological diversity, impacting a1

range of processes. Because these impacts are challenging to quantify, however, phy-2

toplankton are often approximated as spheres, and when effects of non-sphericity are3

studied it is usually experimentally or via geometrical approximations. New meth-4

ods for quantifying phytoplankton size and shape generally, so all phytoplankton are5

analyzable by the same procedure, can complement advances in microscopic im-6

agery and automated classi�cation to study the in�uence of shape in phytoplank-7

ton. Here we apply to phytoplankton a technique for de�ning the size of arbitrary8

shapes based on the Laplacian � the operator that governs processes, such as nutrient9

uptake and �uid �ow, where phytoplankton shape is expected to have the greatest10

effect. Deviations from values given by spherical approximation are a measure of11

phytoplankton shape and indicate the �tness increases for phytoplankton conferred12

by their non-spherical shapes. Comparison with surface-to-volume quotients sug-13

gests the Laplacian-based metric is insensitive to small-scale features which can in-14

crease surface area without affecting key processes, but is otherwise closely related15

to surface-area-to-volume, demonstrating this metric is a meaningful measure. While16

our analysis herein is limited to axisymmetric phytoplankton due to relative sparsity17

of 3D information about other phytoplankton shapes, the de�nition and method are18
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directly generalizable to 3D shape data, which will in the near future be more readily19

available.20

Keywords Phytoplankton � Shape � Size � Laplace's equation21

Mathematics Subject Classi�cation (2000) 92B05 � 35J05 � 00A6922

1 Introduction23

Phytoplankton are a key component of the biosphere (Field et al. 1998). As a group,24

phytoplankton comprise over 5000 known species, displaying a breadth of morpho-25

logical diversity in both size and shape (Tett and Barton 1995). Shape has a large26

impact on a range of crucial processes for phytoplankton (Naselli-Flores et al. 2007).27

Thus, altering shape can increase organism �tness, whether the alteration is increas-28

ing aspect ratio, developing appendages, or otherwise.29

However, this diversity is challenging to address in full generality, as many phy-30

toplankton shapes are intricate and resist any simple description (Sardet 2015). Ef-31

fects of phytoplankton shape are typically approached using laboratory experiments32

(Padisák 2003) or geometrical approximations (Hillebrand et al. 1999). Laboratory33

experiments directly measure the effect in question but are shape-speci�c and costly,34

while geometrical approximations are simple to compute but approximate and limited35

to a subset of phytoplankton shapes, and require a choice of reference shape. These36

techniques work well for some applications, but are dif�cult to generalize to the full37

range of phytoplankton shapes and processes affected by phytoplankton shape.38

In many problems it is common for simplicity to further approximate phytoplank-39

ton as spheres, via Equivalent Spherical Diameter (Jennings and Parslow 1988), for40

which we use the symbol `. The Equivalent Spherical Diameter of an object is most41

commonly de�ned as the diameter of the sphere of equivalent volume to the ob-42

ject; thus it assigns a lengthscale ` to a plankter by reshaping it. Such approxima-43

tion removes the capacity to study potential advantages of morphological diversity44

or drivers of their evolution. It also implicitly assumes volume is the key measure45

of phytoplankton size, which may not be the case for many aspects of phytoplank-46

ton ecology, such as for processes occurring at the interface between the organism47

and its environment. However, it is occasionally necessary given limited informa-48

tion about many organisms being studied and can be highly convenient. For instance,49

this lengthscale can be straightforwardly plugged into formulae such as that for the50

diffusional �ux of nutrients to a spherical cell at steady state, Q = 2pk`c
¥
, where51

the �ux Q is a function of far-�eld concentration c
¥
, diffusivity k and diameter `52

(Karp-Boss et al. 1996). Taking ` for an irregular object and using such a formula53

will in general incorrectly compute nutrient �ux, often substantially (Karp-Boss and54

Boss 2015), necessitating the speci�cation of a correcting shape factor. The use of55

Equivalent Spherical Diameter and a shape factor partitions the in�uence of size and56

shape between the two in a coarse sense, though the shape factor may vary not only57

with phytoplankton shape, but also with the process under consideration and with58

Equivalent Spherical Diameter itself.59
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Extensive research has been conducted into the imaging and classi�cation of phy-60

toplankton. Estep and MacIntyre (1989) developed a system for phytoplankton anal-61

ysis allowing for counting, sizing, and identifying algae. Culverhouse et al (2001)62

developed a neural network system for the automated classi�cation of dino�agel-63

lates. Horiuchi et al (2004) developed a continuous imaging system to count and64

size algae. Rodenacker et al (2006) developed a system to archive digital images of65

organisms automatically, used for analysis and recognition. Sosik and Olson (2007;66

Olson and Sosik, 2007) developed a submersible imaging-in-�ow instrument and au-67

tomated classi�cation system for in situ imaging and identi�cation of phytoplankton.68

Auto�uorescence (Hense et al 2008) and image transforms (Kang et al 2009) have69

been shown to improve organism classi�cation.70

These recent developments in two-dimensional imaging technologies provide a71

wealth of readily available information about phytoplankton shapes for many taxa72

(Sosik et al. 2015). Confocal microscopy can provide three-dimensional phytoplank-73

ton shape information; while these data are presently dif�cult to acquire, recent devel-74

opments and cost reductions mean such information is expected to be available in the75

near future (Roselli et al 2015; Culverhouse 2006); methods have also been proposed76

to estimate three-dimensional shape information from two-dimensional images (e.g.77

Moberg and Sosik 2012).78

The development of more general metrics of shape, which can be applied to any79

phytoplankton either simple or complex, can complement these advances in imaging80

and classi�cation in studying the in�uence of shape. No one metric will be applica-81

ble for all research questions. However, developing metrics of shape related to key82

processes in phytoplankton dynamics can help assess the increased �tness conferred83

by phytoplankton shape. Such metrics can complement and aid in the analysis of the84

data made available by the above-mentioned advances in imaging and classi�cation.85

In general, key biological and physical processes in phytoplankton life cycles86

typically are thought to involve light harvesting, nutrient uptake, and �ow - the latter87

in�uencing sinking speed, certain predator strategies, and responses to turbulence,88

among other factors (Naselli-Flores et al. 2007; Vogel 1996; Visser and Jonsson 2000;89

Padisák et al. 2003). Diffusion has been hypothesized as a driver of phytoplankton90

morphology (e.g. Young 2006, Sommer 1998). For organisms living at low Sherwood91

or Peclet number (Cussler 2009), nutrient uptake is governed by diffusive processes,92

i.e. the balance between time derivatives and the Laplacian of the concentration �eld93

y . At steady state, this balance reduces to94

Dy = 0; (1)

which is known as Laplace's equation. Additionally, for �ow of an incompressible95

Newtonian �uid in the limit of small Reynolds number Re! 0, as is often applicable96

to local �ows near phytoplankton, the Navier-Stokes equations reduce to the Stokes97

equations (Roland, 2005)98

mDu= Ñp+ f ; (2)

where m is the dynamic viscosity of seawater, u is the local velocity �eld, p is the local99

pressure �eld, and f represents additional forces. Again the Laplacian of the �ow �eld100

is a key term, and determines the �ow in the absence of strong pressure gradients or101
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external forces, which are often small in planktonic environments. Sinking, which102

has long been recognized as playing an important ecological role for phytoplankton103

(Gran, 1912), is widely modeled using the Stokes equation; just as with diffusive104

nutrient uptake, cell shape affects sinking rate, necessitating the inclusion of a shape105

factor when considering non-spherical cells (McKown and Malaika 1950, Walsby106

and Holland 2006, Lavoie et al 2015). In both cases, improving the estimation and107

interpretation of shape factors can lead to improvements in the modeling of these key108

processes.109

Here we modify a mathematical technique from other applications (Jones et al,110

2000; Strong, 2012) to de�ne a metric for phytoplankton size, which can be used to111

study the important question of shape in phytoplankton in a new way. This metric112

may be useful in re�ning the development and interpretation of shape factors for113

Laplacian-governed processes. Thus our results are methodological and biological114

rather than mathematical or physical. We also aim to highlight the need for other115

such general, process-based metrics of shape for phytoplankton.116

2 Methods117

To quantify the length of an arbitrary shape P, one can �rst solve Laplace's equation118

within the shape, i.e. using that shape as a domain, specifying Dirichlet boundary119

conditions of a point source at the centroid c of the shape and zero at the boundary of120

the shape (Evans, 2010)121 8<
:
Dy = 0 x 2 Pnc
y = 0 x 2 ¶P
y = 1 x= c:

(3)

One should consider an arbitrarily small circle e at the centroid of the shape where122

instead y
��
e
= 1, as well as a smooth approximation of the boundary of the shape,123

for analytic well-posedness considerations. Furthermore, the point source y
��
c
= 1124

should be replaced with a large constant for numerical considerations. We close the125

Results section with a sensitivity analysis of the placement of the point source at c,126

and a generalization for shapes whose centroids lie outside of P.127

Solutions to Laplace's equations are called harmonics. Contours of the harmonic128

y will be almost spherical near the centroid of the shape and will deform to take on129

the shape of P; see white curves of Fig. 1c. Then, for each point p on the boundary130

¶P there will exist a unique curve g(p) with arc length jg(p)j that follows Ñy , i.e. is131

orthogonal to level sets of y , connecting that point to the centroid of the shape. The132

g are called �eld lines through Ñy; see black curves of Fig. 1c. Averaging over all133

�eld lines gives a Laplacian-derived lengthscale134

L :=
2

j¶Pj

Z
¶P
jg(p)j dp; (4)

where the factor of 2 is to convert a radius to a diameter and j¶Pj is the area of ¶P.135

This calculation can be performed by numerical integration, as we have done for all136

results below (scripts available at http://cael.space; all analyses were performed in137
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MATLAB, as was the generation of all �gures herein). The above de�nition ofL is138

a modi�cation of techniques described in Jones et al. (2000) and in Strong (2012); the139

methods therein was de�ned for annular regions. Here, replacing the region enclosed140

by the annulus with a point source, and averaging over the boundary of P allows for141

a mechanism-motivated computation ofL , as phytoplankton are not annular and the142

processes which motivate the use of the Laplacian (nutrient uptake, interactions with143

�ow) occur at ¶P.144

This provides a straightforward, objective technique for de�ning the size of an145

arbitrary three-dimensional object, without neglecting its nonspherical character, by146

the Laplacian operator. If we take the body of a plankter as our shape, regions of147

the plankter's surface with longer associated g �eld lines will tend to increase the148

harmonic diameter L , and will also correspond to protrusions or elongations that149

are known to absorb more nutrients and interact with local �ow more strongly (e.g.150

Nguyen et al., 2011).151

If we restrict ourselves to axisymmetric phytoplankton, we can employ the above152

technique by de�ning the domain P from a two-dimensional image via rotation, thus153

taking advantage of a wealth of readily available two-dimensional imagery. In what154

follows we have used images taken with an Imaging Flow CytoBot (IFCB) (Sosik and155

Olson 2007; Olson and Sosik 2007) from a manually veri�ed and cataloged database156

(Sosik et al. 2015), though this procedure should be applicable to any image of a phy-157

toplankton provided that it is axisymmetric and that the lengthscale associated with158

each pixel is known. Domains were derived from IFCB images using the MATLAB159

Image Processing Toolbox and the assumption of rotational symmetry; volumes and160

surface areas for shapes were calculated from these domains by approximating the161

shapes with conical frustra. Images of all phytoplankton shapes analyzed herein can162

be found in Fig. 1 and Fig. 2, and URLs from which to retrieve all these images can163

be found in the Supporting Information.164

Plankton are of course three-dimensional, but it is a contemporary challenge to165

measure accurately their 3D shape. Confocal microscopy (Culverhouse et al. 2006)166

can provide 3D information to use for P, and such information is expected to be wide-167

ly available soon (Roselli et al. 2015); while the data are dif�cult to acquire, such168

information presents an opportunity to extend this work, as do other methods of esti-169

mating three-dimensional phytoplankton shape from two-dimensional data (Moberg170

and Sosik 2012). We emphasize that harmonic diameter is equally computable and171

tenable for any phytoplankton shape; we focus on axisymmetric shapes here only172

due to the present dif�culty in acquiring 3D information about phytoplankton shape,173

and because axisymmetric shapes provide an intuitive and defensible example from174

which to map readily available 2D information into a 3D domain. While axisymme-175

try is itself a geometric approximation, it is a comparatively general one, and made176

here in order to illustrate the application and computation ofL .177

To computeL from a 2D image of an axisymmetric plankter, we reformulate (4)178

and introduce a weighted integral along the image perimeter ¶P0, as each perimeter179

point p0 on the image corresponds to a half circle with radius equal to the distance180

r(p0) between the point and the axis of rotation for the phytoplankton.We then instead181
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get182

L =

R
¶P0 2g(p0) pr(p0) dp0R

¶P0 pr(p0) dp0
: (5)

Fig. 1 shows an example of this method for Pleurosigma sp. Our analysis shows183

a predicted increase in measured size from Equivalent Spherical Diameter, withL =184

201mm = 1:42`. This increase in size measurement is consistent with the predicted185

increase in nutrient uptake given by this plankter's aspect ratio (Karp-Boss and Boss186

2015) if we assume the plankter is approximately spheroidal, suggesting harmonic187

diameter as a measure of size can incorporate the in�uence of shape.188

3 Results189

We take a set of manually veri�ed and cataloged IFCB images and compute the190

harmonic diameter and equivalent spherical diameter for each (see Fig. 2, and Sup-191

plementary Materials for a URL from which to access each image). Phytoplankton192

species were selected to be nearly axisymmetric. As expected, the harmonic diame-193

ter was greater than the ` for each shape, ranging from 1.06 to 3.84 times as large.194

More elongated phytoplankton having larger L =` ratios is consistent with recen-195

t work hypothesizing that the interaction between cell shape and diffusive nutrient196

uptake drives cells towards elongation (Karp-Boss and Boss, 2015).197

The surface-to-volume quotient S=V is also thought to be relevant for how phy-198

toplankton interact with their environment (Lewis, 1976). In general, this quotient is199

an incomplete descriptor of phytoplankton shapes. For instance, shapes which fold200

to increase surface area dramatically are common in nature, but the rate at which any201

object can take up nutrients is bounded above by the rate of any sphere that encloses202

it (Cussler, 2009), even though that sphere may have a much lower S=V . However, for203

phytoplankton without large average curvature such as those considered herein, the204

S=V appears to be directly related to harmonic diameter. For an arbitrary shape, let s205

represent the ratio of S=V for the shape and S=V for a sphere of equivalent volume.206

s in general can be calculated as207

s :=
(S=V )shape
(S=V )sphere

=
`Sshape
6Vshape

: (6)

Both ratios L =` and s are measures of deviation from sphericity, and for a sphere,208

s =L =`= 1.209

Fig. 3 shows a strong linear correlation (Pearson correlation r > 0:98) for the210

phytoplankton investigated in Fig.1 and Fig. 2 betweenL =` and s . This relationship211

evinces a plausible link between harmonic diameter and surface-to-volume quotient,212

and points to a simple way to approximate harmonic diameter in the absence of a nu-213

merical Laplacian solver. Furthermore, because surface-to-volume quotients are im-214

portant for both �ow and nutrient uptake processes, this tight relationship grounds the215

nature of the harmonic diameter as a lengthscale for phytoplankton, and demonstrates216

it is a meaningful measure. This linear correlation between s andL =` is necessarily217

empirical; we expect additional scatter from investigating additional phytoplankton218
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shapes, especially those that are not axisymmetric. Nevertheless, it demonstrates s219

andL =` are related over a range of axiysmmetric shapes.220

Karp-Boss and Boss (2015) also discussed the relative abundance of prolate-221

spheroidal as compared to oblate-spheroidal phytoplankton shapes, due to greater222

nutrient �ux for the same surface area and volume. We observe that the phytoplank-223

ton shapes investigated herein are all closer to prolate spheroids based on the relative224

elongation of their axis of symmetry, and that their s -L =` relationship conforms225

much more to a prolate-spheroidal one; see Figure 3. We performed the same analy-226

sis described above on ellipses, to compare analyzed phytoplankton shapes to prolate227

and oblate spheroids. While all regular shapes are restricted to s =L =`= 1 as they228

approach sphericity, oblate spheroids' s increases much faster as compared to L =`229

than either the phytoplankton analyzed here or prolate spheroids. Prolate spheroids230

follow a logarithmic relationship over the relevant parameter space, with the rela-231

tionship s = 0:96ln(L =`) + (1� 0:96ln1) accounting for 99.7% of the variance,232

and passing through the point (1,1). Plankton with larger L =` values follow this233

curve closely, while those with lower L =` values reside above the curve, suggest-234

ing that small folds and other shape deviations (e.g. Pyramimonas longicauda and235

Laboea strobila, respectively, Fig. 2) can have a strong impact on surface-to-volume236

quotients without changing L =` substantially. As such deviations also do not affect237

nutrient uptake substantially, this distinction favorsL =` as a shape factor for nutrient238

uptake over s for a given `.239

We close the Results section with a sensitivity analysis of the position of the240

point source within P. While plausible, setting the centroid as the location for y = 1241

is somewhat arbitrary, andL may vary with location of point source. Fig. 4 demon-242

strates this dependence: ifLx is the harmonic diameter for a point source positioned243

at x 2 P, and Lc is the harmonic diameter with a point source positioned at the244

centroid of P, thenLx=Lc can exceed 1.3 for a sphere, and exceeds 2.3 for the Pleu-245

rosigma sp. shown in Fig. 1. However, in both cases the centroid serves as the global246

minimum for Lx, and perturbations of the point source off the centroid deviate s-247

lowly from Lc. Hence the choice of point source location for axisymmetric shapes248

is not arbitrary. In order to generalize the method to arbitrary 3D shapes, both simple249

and complex, whose centroid may not lie within P, and remove the dependence ofL250

on the choice of placement of x, we de�ne L := minx2PLx, i.e. the minimum Lx251

across all placements of the point source x 2 P.252

4 Discussion253

The method presented herein is a generally applicable method for assigning a length-254

scale to an arbitrary phytoplankton shape, or equivalently a shape factor (via divid-255

ing by `). We have performed this method on several axisymmetric phytoplankton256

shapes and described how it can be readily generalized to arbitrary phytoplankton257

shapes. The lengthscale has a qualitative relationship with key processes for phyto-258

plankton, being governed by the same operator. Further investigation is required to259

make this qualitative relationship precise, and in general the quantitative relationship260

will vary for different processes. Three-dimensional shape information (Roselli et al261
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2015), or another mapping from 2D images to 3D shapes (Moberg and Sosik 2012),262

is necessary for general phytoplankton shapes that are not rotationally symmetric.263

Given 3D shape information for many phytoplankton, generating a database of264

harmonic diameters or L =` ratios could help implement this technique easily into265

existing parameterizations that involve phytoplankton size. Solving Laplace's equa-266

tion in a 3D domain adds no substantial dif�culty as compared to 2D solutions, and267

the weighting factor from the axisymmetric forms we have investigated herein can268

be dropped. 3D information on phytoplankton shape is preferable for axisymmetric269

phytoplankton as well; axisymmetry is an approximation we have made herein in or-270

der to compute harmonic diameter from 2D data, to illustrate the conceptual utility271

of the harmonic diameter. While we have only performed calculations on shapes for272

which this approximation appears reasonable, 3D information does not require such273

an approximation.274

While harmonic diameter formally is computable for any shape, its processed-275

based motivation is weakened at large enough scales, when the diffusion equation276

and Stokes �ow cease to be the governing equations of the individual in question's277

environment, i.e. Reynolds, Sherwood, or Peclet numbers cease to be small. Never-278

theless, a large number of oceanic organisms of interest live well within this scaling279

range (Reynolds, 2006). Beyond those discussed herein the method may not be able280

to address the other factors involved in optimizing shape, e.g. biochemical or buckling281

constraints; Laplacian-related processes are key drivers in phytoplankton communi-282

ties, but many factors determine phytoplankton shape (Young, 2006).283

Another consideration is that additional information is encoded in the distribution284

of �eld line lengths g for a given phytoplankton shape. Herein we only consider the285

�rst moment of the distribution to obtainL , but for arbitrary shapes some �eld lines286

will be longer than others. A sphere is again a limiting case with zero variance; �eld287

lines are of equal length. Higher moments of the distribution may constitute other288

measures of shape, and in particular may be related to the extent of elongation and289

appendages.290

Even in cases where the harmonic diameter does not signi�cantly deviate from291

an equivalent spherical estimate, this technique still generalizes a size approximation292

of phytoplankton to arbitrary shapes in a process-oriented manner. Without adding293

substantial complexity, harmonic diameter moves beyond the oversimplifying con-294

ceptualization of phytoplankton as spheres, or other simple shapes.295

Here we have proposed and discussed one metric of phytoplankton shape; we296

hope to inspire the mathematical investigation into other, complementary or perhaps297

superior metrics.298
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