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ABSTRACT 

“Mice are not little people” – a refrain becoming louder as the gaps between animal models and human disease become 

more apparent.  At the same time, three emerging approaches are headed toward integration:  powerful systems biology 

analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of 

human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems 

to be sustained, perturbed and analyzed for weeks in culture.  Integration of these rapidly moving fields has the potential 

to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases 

and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases 

with “organs on chips” approaches include the need for relatively large tissue masses and organ-organ cross talk to 

capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for 

interconnected systems.  These constraints drive development of new strategies for designing in vitro models, including 

perfusing organ models, as well as “mesofluidic” pumping and circulation in platforms connecting several organ 

systems, to achieve the appropriate physiological relevance. 

Keywords: organs-on-chips, 3D liver culture, perfusion, drug development, inflammation, organ crosstalk, tissue chip, 

intestine 

 

1. INTRODUCTION 

1.1 Complex diseases require new approaches 

Drug development for cancer, and particularly for chronic inflammatory diseases (e.g. diabetes, arthritis, 

endometriosis, and Alzheimer’s), which typically have weak genetic linkages and poorly-understood, systemic 

mechanisms where damage accrues over many years, is notoriously difficult.  While drug safety failures are typically 

highlighted in the organs-on-chips literature 1, 2, lack of efficacy is currently the major cause of drug failure overall, and 

failure rates are higher for complex diseases that have no clear single genetic basis 3. Such diseases are highly prevalent. 

For example, the most common cause of abnormal liver function tests in western countries is non-alcoholic fatty liver 

disease (NAFLD), which has a prevalence of 20-50% 4, 5; is often co-morbid with Type 2 diabetes; affects tens of 

millions of individuals worldwide; and is now the second leading cause for liver transplants in the US 4, 5. With many 

different possible targets in the disease mechanism, and clinical heterogeneity in patient disease characteristics, over a 
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dozen new drugs are in the pipeline or clinical trials, joining several established accepted and off-label treatments that 

have yet to “cure” the symptoms most patients experience 6-8.  Further, at least 10% of reproductive-age women 

worldwide experience debilitating pain and infertility due to non-malignant growth of endometrium outside the uterus 

(endometriosis) or displaced into the uterine muscle (adenomyosis) 9, 10. Current FDA-approved medical therapies 

attempt to put brakes on estrogen, but a substantial fraction of patients either fail to respond to drugs or suffer severe side 

effects; surgical removal of lesions helps only a fraction of patients 9-11. Optimism that new classes of anti-inflammatory 

drugs developed for other chronic inflammatory diseases such as arthritis has been tempered by the unsuccessful 

outcomes of recent clinical trials 12, despite the positive outcomes in pre-clinical animal models  of disease 13-15.  

 These highly prevalent diseases are examples of how highly heterogeneous patient population and poorly-

representative animal models work together to stymie both development and clinical translation of effective new 

therapies 4, 5, 16.  One part of the problem in developing effective drugs for such diseases – defining common mechanistic 

themes among subgroups of patients -  is being tackled by innovative integration of multiple –omics measurements 

across the scales of information flow in cells, from DNA to RNA to protein, protein activity states, and metabolites 17, as 

well as similar types of analysis of patient-derived immune cell function 18. Such approaches led to the first molecular 

classification of endometriosis patients and insight into the lack of efficacy in JNK inhibitor trials 11, 19 and are yielding 

insights into type 2 diabetes 17, 18. 

  Another part of the problem – relative inability to carry out mechanistic studies of new therapies in patients, 

and lack of animal or in vitro models – is still a major bottleneck. This gap underscores the need for bold new approaches 

to model these diseases in vitro.  Unfortunately, cell culture models, including those derived from human pluripotent 

stem cells (PSCs), are inadequate: not only do they fail to capture crucial heterogeneous cell interactions within a single 

organ, development of chronic inflammatory diseases is often the convolution of genetics with lifestyle and 

environmental exposures, including infection, that are integrated into epigenetic modification of cells throughout the 

body 17, 20. Clearly, one step is to develop more complex individual organs-on-chips that capture the local features of 

disease, especially inflammation.  But for systemic diseases affecting multiple organs, organ-on-chips platforms 

designed to capture physiological interaction phenomena between critical organs systems may yield improvements in 

understanding both efficacy and off-target effects.  Here, we describe examples of how organs-on-chips are being 

deployed to model complex disease states, and highlight technical challenges in merging disparate fields to design, 

implement and interpret experiments.  

1.2 Dormancy and growth of metastatic cancer: a challenge beyond the scope of traditional 

microfluidics? 

  The overwhelming majority of breast cancer patients present with no evidence of distant metastatic disease; yet, 

following removal of the primary tumor and prophylactic chemotherapy to kill disseminated tumor cells throughout the 

body, a significant fraction will develop tumors years later in the bones, liver, lungs, and brain and succumb to metastatic 

disease 21. Triple negative breast cancer (i.e., lacking expression of estrogen, progesterone, and Her2 receptors) is 
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particularly deadly: about 25% of patients die from metastatic disease within 5 years of diagnosis despite aggressive 

prophylactic chemotherapy 22. What makes disseminated tumor cells resistant to chemotherapy? What makes these 

dormant tiny metastatic clusters wake up and grow?  These questions cannot be studied in patients – the metastases are 

not visible  -- and animal models fail to capture the key features of human responses, including the increasingly-

appreciated role of the human immune system in progression 22, 23.  

  Numerous 3D models of tumor cells in isolation have been developed in the past few decades 24, with a notable 

recent emphasis on how the mechanical microenvironment and geometry of multicellular tumor aggregates influence 

malignant properties 25. Similarly, models have emerged to capture tumor-stroma interactions 26. Microfluidic systems 

have been deployed to control oxygen and growth factor microenvironments 27, 28, tumor-endothelial interactions 29-31  

and events in passage of tumor cells from micro-vessels into surrounding tissue32, 33. While each of these systems 

captures subsets of tumor behaviors, a significant gap exists in addressing how metastatic nodules of up to several 

hundred microns interact with human host tissue.  

  Can microfluidic devices, which typically support culture of tens of thousands of cells, capture the complexity 

of metastatic resistance to chemotherapy drugs, and the signals that wake up dormant tumors?  A single adult human 

liver lobule comprises about 107 cells 34  and initial metastases are estimated to range from single cells up to a few tens of 

cells 35. Thus the ratio of host to metastatic cells in a traditional microfluidic device is substantially skewed, and are more 

representative of primary tumors or end stage metastases 29, 36.  This scaling mismatch may skew tumor cell behaviors, 

which in vivo are regulated by the overwhelming host signaling milieu and innate inflammatory response 37-39.  

  Disease modeling problems such as micrometases that require “meso-scale” tissues, comprising hundreds of 

thousands to many millions of cells, present interesting challenges in terms of integrating tissue engineering with 

appropriate pumping and fluidics to provide adequate perfusion rates to such structures, particularly in a user-friendly 

platform format. Based on the oxygen consumption rate of liver, for example, flow rates of 6-10 µL per million cells per 

second are needed just to deliver oxygen if cell culture medium is the circulating fluid 40-42. Another often under-

appreciated facet of disease modeling with implications for device design is that inflammation – which is a crucial part 

of a vast number of diseases lacking adequate therapies – is strongly regulated by steroid hormones 43, 44, which partition 

strongly into elastomers such as polydimethylsiloxane (PDMS), making their concentrations difficult to control 45.   

  In order to address these constraints, we developed a 3D micro-perfused liver model aimed at supporting long-

term culture of 3D liver-like tissue at scales over a million cells, in a user-friendly format. The heart of the system is a 

thin (~0.25 mm) scaffold perforated with an array of ~0.3mm diameter channels situated on a membrane support and 

maintained in a re-circulating flow multi-well plate bioreactor40-42, 46.  Liver cells seeded into the scaffold form 3D tissue-

like structures, which are perfused at flow rates sufficient to create a physiological oxygen tension drop across the 

scaffold without excessive shear 40, 47 and which can be maintained in a functional state for weeks in serum-free culture 

medium.  The reactor system is micro-machined from polysulfone and recirculation is driven by on-board microfluidic 

pneumatic pumps that are programmed with a user-friendly interface, innovations that are crucial for carrying out 
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quantitative pharmaco-kinetic (PK) studies, ease of use in diverse laboratory settings, and adaptation to multi-organ 

formats. The performance of this system in the context of other liver reactors has been recently reviewed 42, 48, 49.  

 Although we and others have extensively characterized the PK of common small molecule drugs by primary 

human liver cells in this reactor system 50-52, standard culture systems are reasonably effective for most small molecule 

drug PK assays 42, thus, the kinds of pre-clinical assays driving potential use of this system in the later stages of drug 

development generally involve the immune system.  For example, we recapitulated a complex immunologically-based 

drug-drug interaction between the anti-IL6 receptor antibody tocilizumab and the metabolism of simvastatin - a 

phenomenon that could not be reproduced in standard cultures 46. Inflammation drove dose-dependent suppression of 

CYP450 activity and metabolism of simvastatin, along with increased production of C-reactive protein (CRP) and cell-

produced cytokines and cytokine receptors 46.  Importantly, these responses depend on using physiological levels of 

cortisol, a steroid hormone, rather than the excessively high concentrations used to boost CYP450 activity in typical 

hepatocyte cultures 43, 44. This multi-well plate reactor system has also been applied to model NAFLD, including fat 

accumulation, increased production of adipokines, and suppression of CYP450 activity – which were all modulated by 

treatment with known drugs 53.   

 A potential advantage of the scale of this 3D perfused liver microreactor system is to first establish micro-

metastases in the context of a relatively large (≥ 1 million cells) mass of liver cells, and then to analyze complex cell-cell 

communication network signatures using both measurements that can be routinely made in patients (on the circulating 

medium) as well as measurements that cannot also be made on patients – the kinetics of tumor cell growth and death.  

An outstanding challenge in targeted chemotherapeutics is the emergence of resistance to chemotherapy, particularly to 

inhibitors of specific kinase or growth factor pathways – the tumor initially responds, but surges back after time 23.  

Mechanistic systems biology analysis of how intracellular and extracellular signaling networks are connected, probed 

using in vitro models, have recently been linked to patient outcomes via measurements of proteins shed by tumor cells 

that appear in the plasma of patients 23.  These models allow some prediction of how patients will respond (or not) to 

therapies based on a compendium of measurements before and soon after treatment with the drug 23.  

 As a first important step to model triple negative breast cancer (TNBC) micrometastases in liver, we established 

the 3D liver model using primary human hepatocytes and non-parenchymal cells, and seeded the cultures with 100-500 

fluorescently-labelled MDA-MB-231 cells as a model TNBC cell line 36, 54-56.  Micrometases were established even with 

the lower limit of cell seeding.  Although these cells are typically highly proliferative in standard culture, MDA-MB-231 

cells were quiescent in the context of the 3D liver tissue in the microreactor format – in other words, they exhibited 

hallmarks of dormancy 36, 54-56 .  A comprehensive analysis of cytokine and growth factor networks using this model 

showed that a few tumor cells re-wire the entire culture, and that shifting to a hydrogel scaffold for supporting liver cells 

provides a more quiescent background liver state than the standard scaffold 54-56. Interestingly, under standard medium 

conditions, tumor cells in contact with stiff polystyrene scaffolds are proliferative and responsive to the standard 

chemotherapy drug doxorubicin, while tumor cells in the 3D tissue are quiescent and relatively resistant 36, 54-56.  
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 One potential mechanism for waking dormant tumor cells is inflammation in the liver, which may arise due to 

increased permeability of the gut from infection, drugs, alcohol, or other causes 44.  As tumor cells and the 

microenvironment can respond to inflammatory cues 36, leaky gut may lead to stimulation of dormant micrometastases.  

To model this, we adapted the Liverchip platform to link a transwell gut module with the liver module, using the same 

on-board pumping technology to drive fluidic communication between the two modules as well as circulation within 

each module. A gut MPS with features of innate immunity was created by seeding a 9:1 mix of absorptive enterocytes 

(CC2BB/e1 line) and mucin-secreting goblet cells  (HT29-MTX line) (adapted from 57) on  the apical surface and 

dendritic cells, obtained from in vitro differentiation of human PBMCs-derived monocytes, on the lower side of the 

membrane.  After 21 days, the epithelial layer exhibited trans-epithelial electrical resistance (TEER) values > 250 

Ω•cm2, produced mucus (as assessed by Alcian blue 58), and was penetrated by extensions of dendritic cells.  These 

interconnected organ systems show synergistic responses to inflammation 59 and establish a model for future studies of 

gut-derived inflammation on cancer micrometases in liver. 

1.3 Frontiers in multi-organ systems: integrating minimal physiological models with hardware 

 Multi-organ platforms are just beginning to emerge as potential tools for disease modeling and drug 

development, and many challenges remain: first, in defining where the information from such systems justifies the added 

cost, as each organ system comprises a mix of expensive primary human cells, and second, in defining the appropriate 

“minimal set” of interacting organ systems to represent a disease state.  Existing multi-organ platforms that might be 

used for disease models often fail to meet requirements for quantitative PK due to use of polydimethylsiloxane (PDMS) 

and highly constrained pumping or fluid transport schemes 60, 61, large circulation volumes that preclude detection of 

metabolites and cell-produced proteins 62, 63, or are geared more toward pre-clinical tests of metabolism and toxicity and 

thus lack organ complexity 1, 2. Hence, there is tremendous room for innovation in integration of the hardware, biology, 

and modeling. 

 A crucial link in this regard is the emerging field of Quantitative Systems Pharmacology (QSP). QSP combines 

experimental and computational approaches to pharmacological concepts 64, 65 and is being extended to design and 

interpretation of MPS technologies 50, 66-68. While a variety of pharmacokinetic and pharmacodynamic (PKPD) models 

are used to define relationships between drug kinetics and biological effects in vivo, PKPD models for MPS analysis 

must capture the interrelated physical dynamics (e.g., flow rates in the MPS) and biological dynamics (e.g., 

cytokine/growth factor/hormone production and release) in order to select the appropriate experimental conditions, 

analyze results, and predict human outcomes. I.e., they must use physiologically-based PK (PBPK) models. In vitro to in 

vivo translation (IVIVT) is an interpretive step that compares and validates MPS results to clinically-relevant outcomes. 

While in vivo to in vitro correlation (IVIVC) and in vivo to in vitro extrapolation (IVIVE) methods have been widely 

used to predict PK, IVIVT goes a step further to include analysis of endogenous growth factor, inflammatory and 

hormone signals that affect function. Thus, IVIVT approaches can additionally predict PD, clinical toxicology, 

biomarkers, and patient stratification using information from MPS technologies. PBPK models for IVIVT can 
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quantitatively forecast human responses, accounting for missing organs, organ and media size mismatches, and drug 

exposure.    

2. CONCLUSION 

2.1 Application-based approaches  

There are no ‘one size fits all’ solutions for modeling complex human disease “on a chip”, and each model will 

need to be tailored to its intended application, capturing the minimum biological complexity in order produce 

translatable biological outputs.  Tackling the challenges of integrating multi-organ systems in a way that yields 

meaningful advances will therefore require bringing together groups with diverse expertise in biology, engineering, and 

systems pharmacology.  
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