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Condensed phase electron transfer beyond the Condon approximation

Condensed phase electron transfer problems are often simplified by making the Condon approx-
imation: the approximation that the coupling connecting two charge-transfer diabatic states is
a constant. Unfortunately, the Condon approximation does not predict the existence of conical
intersections, which are ubiquitous in both gas-phase and condensed-phase photochemical dynam-
ics. In this paper, we develop a formalism to treat condensed-phase dynamiés beyond the Condon
approximation. We show that even for an extremely simple test system, diexaaquairon(II) / hex-
aaquairon(III) self-exchange in water, the electronic coupling is expected to fluctuate rapidly and
non-Condon effects must be considered to obtain quantitatively accurdte ultrafast nenequilibrium
dynamics. As diabatic couplings are expected to fluctuate substantiallyin many condensed-phase
electron transfer systems, non-Condon effects may be essential to quantitatiyely capture accurate

short-time dynamics.

I. INTRODUCTION

Electron transfer is a fundamental process in chem-
istry and biology. An exact dynamical description of
this process from first principles is difficult if not impos-
sible due to the multitude of degrees of freedom involved
in solvent reorganization. These solvent degrees of frees
dom are critical for properly describing electron transfer
rates and dynamics, as observed originally by Marcus
[1-3] and subsequently reinforced by many others, [4=
12]. Because exact quantum methods cannoty describe
systems with thousands of degrees of freedom‘without
running into exponential scaling, approximate models
are often invoked to describe electron tramsfer dynam-
ics.

One important model for describing cendensed-phase
electron transfer is the spin-boson model, a‘system-bath
model that describes a two-level gystem coupled linearly
to a large number of harmonicépath mogdes [13]. While
simpler than an atomistic m@del, $he spin-boson model
still cannot be solved analytically for a general bath:
the exact density matrix/andsglie propagator must each
be expanded in the bagiswof a many-dimensional collec-
tion of harmonic oscillatorsjagain leading to exponen-
tial scaling.

For certain classeswf baths, it is possible to converge
the dynamics oh to the'uumerically-exact result before
reaching the peintdwhere exponential scaling becomes
prohibitives Lo enumerate a few: the QUAPI method
[14-19] will converge se long as the bath autocorrelation
function deeays quigkly as t — oo; the MCTDH method
[20, 24| will conwerge so long as the majority of the bath
is slow with réspect to population transfer and can thus
be treated classically or semi-classically; and the HEOM
methed [22,723] will converge if the bath can be accu-
rately represented with a Debye spectral density. The
treatment of a general bath is largely limited to more
approximate methods, a few of which are detailed in
Refs. [24-26].

* tvan@mit.edu

The Spin-bosen model is useful; however, it is not
without its limitations. One limitation is that the spin-
boson medel makes the Condon approximation—which
states that eleetronic transitions occur instantaneously
onghe timescale of nuclear motion, or alternatively that
the electronic coupling operator V' is a constant that
does not depend on nuclear coordinates [27]. This ap-
proximation is often successful, but in certain cases—
specifically, in cases with ultrafast electronic relaxation
through conical intersections—it is demonstrably bad.

Optically-excited molecules can relax back to the
ground state either through radiative processes or non-
radiative processes. When relaxation is fast, it is nearly
always the case that molecules relax from excited state
to ground state through conical intersections—regions
where the excited state adiabatic potential energy sur-
face cross the ground state adiabatic potential energy
surface [28, 29]. Conical intersections have been studied
extensively in the gas phase both theoretically [30-35]
and experimentally [36-38]. Condensed-phase photo-
chemistry is often much more complicated, as a con-
tinuum of bath modes must now be considered. Espe-
cially challenging to incorporate are low-frequency sol-
vent modes, which can play a role in the dynamics even
though passage through conical intersections is rapid.

Condensed-phase conical intersections are less stud-
ied, though there have been several important experi-
mental and theoretical achievements in their description
over the last two decades. While some early experiments
observed conical intersections in small molecules such as
pyridine [39], interest in understanding condensed-phase
conical intersections has grown due to an increasing de-
sire to understand the isomerization of biomolecules, in-
cluding biofluorophores [40], DNA/RNA [36, 41], and
retinal [42-44]. Computational and theoretical models
have been of utmost importance in interpreting experi-
mental data. For example, Martinez et al have described
conical intersections in biofluorophores using high-level
electronic structure calculations in QM/MM dynamics
[45, 46]. Additionally, Burghardt, Hynes et al have
successfully described the conical intersection in reti-
nal (and other Schiff bases) by parameterizing a model
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which are paramount to the accurate description of
photochemical processes. The qualitative difference is

(b)

Figure 1. Conical intersections in N dimensions manifest
themselves as surfaces intersecting along N-2 dimensions;
thus, the smallest dimension along which two adiabats Can
intersect is two, and in 2D that intersection is a point. (a)
Under the Condon approximation, the coupling can ‘mever
be zero for any value of the two nuclear coordinates, and
the two adiabats will never intersect; the closest theyget to
each other is an avoided crossing, with magnitude 2V&_(b) If
the coupling is allowed a linear dependence on each cogrdi-
nate, the adiabats can intersect at a single point.—ayconical
intersection.

diabatic Hamiltonian (which cad thenbe diagonalized)
along a choice of two relevant solyent degrees of freedom
[47-50].

Despite these advancements, fhere is certainly room
for the investigation of gther modelsfwhich incorporate
non-Condon effects inf order to develop a more com-
plete picture of pagSage through conical intersections.
In addition to some of the applications above, conical
intersections in gondénged phases are thought to be im-
portant for suth processes as internal conversion and
intersystem crossigg [51]¢ the understanding of which is
essential for the prediction of quantum yields in devices
such as photovoltdics and light-emitting diodes [52]—
applications“shich/may benefit greatly from a general
modél. Any _progress towards the creation of such a
model\is thus ‘of great scientific importance.

In orderdor a conical intersection to exist, two condi-
tions 1ausg be upheld: (1) the excited state and ground
statéhave the same energy; and (2) the electronic cou-
pling Detween the two states must be zero [28]. Under
the Condon approximation, the electronic coupling is
not a function of the nuclear coordinates and can never
be zero; thus, any model utilizing the Condon approx-
imation, including the canonical spin-boson Hamilto-
nian, cannot describe conical intersections—phenomena

shown in Figure 1.

In this paper, we examine approximate solutions to
the linear vibronic coupling Hamiltonian, which is an
extension of the spin-boson Hamiltonian that includes
these non-Condon effects. Using a generalized master
equation formalism [53], we derive memory kernels for
the linear vibronic coupling Hamiltonian to fourth or-
der in perturbation theery in the electronic coupling,
amounting to augmenting the well-studied second- and
fourth-order kerngls [20y 26, 54} with several extra non-
Condon terms., Insorder to demonstrate the impact
of these non-Condon terms, we examine the dynamics
of the electpongranster self-exchange reaction Fe(IT) +
Fe(ITT) —F&(TIT) - Fe(IT) in water. We choose this sys-
tem because(l) the“partitioning between system and
bath i§ straightferward; (2) the system is very well-
studied [55-64]3and (3) there is no intrinsic bias driving
the reaction one way or the other, meaning we are not
in a regime where second-order methods are known to
givesqualitatively incorrect answers [20, 26].

II. THEORY
A. Spin-Boson Hamiltonian

Mathematically, the spin-boson model can be de-
scribed with the Hamiltonian

I:ISBM = Ffs + Hb + ﬁsfb

where I;TSA is the Hamiltonian describing the two-level
system, Hjp the harmonic bath, and Hs;_; the system-
bath coupling. The two system states intrinsically differ
in energy by a bias of € and are coupled with a constant
coupling Vy. The bath is comprised of a collection of
harmonic oscillators with frequency w; that couple to
the system with coupling ¢;. The mass-scaled normal
mode coordinates and momenta of the bath are repre-
sented by Z; and p;, respectively.

B. Linear Vibronic Coupling Hamiltonian

The most straightforward way to generalize the spin-
boson Hamiltonian to include non-Condon effects is to
add to the Hamiltonian a linear off-diagonal coupling to
the bath. This new Hamiltonian is known as the linear
vibronic coupling Hamiltonian, and has been studied in
some detail [35, 65-70]
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where H, sBMm 1s the Hamiltonian defined in equation 1.
This Hamiltonian has the advantage over Hgp s in that
for some set of bath coordinates {Z;}, it is possible for

Hive to become proportional to the identity, allowing
for the existence of conical intersections.

The linear vibronic coupling model can be understood
by considering a two-level system interaction with a col-
lection of harmonic oscillators. The two states have an
energy difference, €, and a coupling, V', which each fluc-
tuate in time. The fluctuations in € and V are driven
by the action of the harmonic bath: some bath modes
couple to the energy gap €(t), driving its fluctuations;
other bath modes couple to the coupling, V(¢), driv-
ing its fluctuations. In general, some bath modes could
drive fluctuations in both € and V, introducing cross-
terms into the dynamics correlating the energy gap and
coupling trajectories; as discussed in more detail in the
next section, we have theoretical reasons to believe that,
the latter effects will be small in general, and we will be
testing this hypothesis for a sample system.

C. Mode Continua in Condensed Phéases

_In the gas phase, the number of bath nigdes defining

Hgpy or Hrye is denumerable: a nonlinear mgolecule
with N atoms has 3N — 6 vibrationdl medels. Inthe
condensed phase, where thousands of atems must of-
ten be considered to get even a rudimentary degcription
of charge-transfer dynamics, the'number of bath modes
quickly becomes innumerable. “This facilitates the in-
troduction of the spectral density, which coarse-grains
an uncountably large number of/bath nodes in the con-
densed phase into a continuousdunction describing how
strongly the bath couplesigo the“diagonal elements of
the system Hamiltodian at various frequencies w[27]

c?
Tog =53 o —w) 3)

In the case of theflinear vibronic coupling model, the
bath alsq couples Ao the off-diagonal elements of the
system Hamiltonian. We thus must introduce two more
spectral densifies: one describing the explicit coupling
of the bathuo off-diagonal elements of the Hamiltonian,

0 V2
W)= - @

J
and one describing the cross-correlation between time-

domain energy gap fluctuations and coupling fluctua-
tions,

0 c;V;

Jeross (LU) = 5 zj: Z}ijjé(w - wj) (5)
where wj, ¢;, and V; are Hamiltonian parameters intro-
duced in equations 1 and 2. The details of how these
spectral densities may be obtained from molecular sim-
ulation will be discussedsin the following section.

For many physical s§¥stems, it is appropriate to make
the approximation

Jcross (W) ~ 0

i.e., there ig' noscorrelation between bath modes which
drive fluctuations.in the energy gap and those which
drive fluctuations in the coupling. While such a cross-
couplifig may exist, in principle, in the vast majority of
physical situatipns, very different bath motions are re-
quired to dwiye'charge transfer in molecular systems like
transitiongnetal complexes and organic semiconductors.
We call this approximation the “zero cross-correlation”
(Z€C) approximation. We will later justify this approx-
imatign for the system which we have chosen to bench-
mark the dynamics method outlined in this paper, both
through rigorous theoretical arguments and numerical
results.

D. Generalized Master Equations and Memory
Kernels

In order to study the dynamics generated by the lin-
ear vibronic coupling Hamiltonian, we have adopted a
generalized master equation formalism [71-73], follow-
ing the approach of Sparpaglione and Mukamel [53].
Generalized master equations are convenient ways of ex-
pressing the population dynamics of a system coupled
to a bath when one is not interested in the detailed dy-
namics of the bath. For the correct choice of memory
kernels, they are formally exact.

We will examine two particular choices of initial con-
dition in this manuscript. The electron transfer system
is comprised of two states, |1) and |2), corresponding
to the reactant diabat and product diabat of a redox
reaction, respectively. The first, dubbed the ’thermal’
initial condition, refers to dynamics that begin on state
|1) when the bath is in thermal equilibrium with state
|1), which corresponds to non-driven electron transfer
in solution.

The second, dubbed the 'nonequilibrium’ initial con-
dition, refers to dynamics that begin on state |2) when
the bath is in thermal equilibrium with state |1), which
corresponds to an instantaneous vertical transition from
the equilibrium geometry of the reactant diabat to a
high-energy point on the product diabat. This initial
condition is similar to the initial condition in an optical
experiment, as discussed in detail in Ref. [49]. While
the non-equilibrium configuration draws its inspiration
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mg] -on(II)-iron(I11) system we will study below, it
IdPhe very difficult (if not impossible) to prepare
this initial state experimentally. Thus, the connection
to an optical experiment should be thought of as no
more than an analogy below. By design, the nonequi-
librium initial condition will differ from the thermal one
primarily at short times, ultimately allowing us to exam-
ine the influence of conical intersections on short-time
versus long-time dynamics.

Both initial conditions are discussed in further de-
tail in Appendix A. We note that we are probing the
forward electron transfer reaction and the backward
electron transfer reaction, respectively, when studying
dynamics using the thermal initial condition and the
nonequilibrium initial condition.

We now assume a set of generalized master equations
of the form

TATM11

t t

—/Kl(t,tl)pl(tl)dtl —l-/KQ(t,tl)pg(tl)dtl
0 0

p1 =

pe = | Ki(t,t1)p1(t1)dts — [ Kao(t,t1)p2(t1)dt1 (6)
/ /

Here, pi(t) and po(t) are the populations of{gtate |1)
and state |2) respectively, and Ki(t,t1) and Ky ({4
are memory kernels describing the 1 — 2 and 24—~ 1
population transfer process, respectively. These equa-
tions are similar to the equations in thesSparpaglione-
Mukamel formalism [53], except that the'kgrnels.are no
longer time-translationally invariant. This breken sym-
metry allows us to describe in ggneralhoth thermal and
nonequilibrium dynamics, as time translational symme-
try is lost upon invoking the/nonequilibrium initial con-
dition. We emphasize that thése generalized master
equations are formally efact: ome only has to determine
the memory kernels inforder to uniquely determine the
populations of a twé-leyel system. If the memory ker-
nels are known exégctly, solving these master equations
will uniquely determine the populations exactly, as well.
Other authors{havesrecently applied this formalism to
study chemical dygamics [74].

While détermining K (¢,t1) is tantamount to solving
the time-dependeng Schrodinger equation and is thus
exponentiallyhards one can expand K (¢,t1) in a formal
power series in the electronic coupling operator V,

Kldy) = VKD (t,t) + VKD (4, t) + ... (7)

and use time-dependent perturbation theory in order
to derive analytic expressions for K, K® and in
principle all higher order terms. The exact kernel can
then be reconstructed via a resummation technique, e.g.
a Padé resummation [54, 75-77]. Note that truncating
this perturbation series to second order for the spin-
boson model results in the famous non-interacting blip
approximation (NIBA) [24, 78], which is the Fermi’s
Golden Rule result for this problem—in many senses, it
is a dynamical generalization of Marcus theory.

Using time-dependent pesturbation theory and the
master equations{defined in equation 6, we have de-
rived the non-Conden version of the memory kernel
K@(t,t1), givingas a version of NIBA which includes
linear vibrodic'egupling and allowing us to compute gen-
eralized Magcus/tates (and short-time dynamics!) be-
yond the Condon approximation. As we are ultimately
interested in describing photochemistry, we present here
memory, kernels derived using the nonequilibrium initial
cohdition®py(0) = 1 but the bath is initially in equi-
libriwad with state |1). A full derivation of both the
nonequilibrium kernels described in this paragraph as
well as“the memory kernels used for the thermal initial
condition are presented in Appendix A. In summary, to
second order in perturbation theory in V,

K@ (t,t)) = K@ (t,t1) + K& (t, 1) (8)

where KC(AZ)(t7 t1) is the Condon kernel,

KO (t,t1) = 2(V?) exp [~ Q' (t — t1)] cos (d(t, 1) = et — t1))

(9)
defining

o(t,t1) = Q"(t — t1) — 2Q"(t) +2Q"(t1) (10)

Q'(1)

é/ JEG ) (1 — cos (wt)) coth <B2w>

/ JEG

and K2 (t,t1) is the non-Condon kernel,

Q"(t)

bln (wt) (11)
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+2(R(t) + R(t) -
+2Vo (R'(t) + R (t1) —

defining

[ st

/ Jeross (@) (52 )sin (wt)(13)

RII

ERRSEEREN

and

Sty =L /0 " dwdy (w) sin (wt) (14

™

If we approximately neglect cross-correlation, R/ (t) =
R’ (t) =0, and Equation 12 simplifies:

K2 (t,t1) = 2exp [-Q'(t)] x (15)
[S"(t — t1) cos (¢(t, 1) £6(t —Fu))
—S"(t —t1)sin (@(t, 1) £ e(t t1))]

Other authors have arrived at Siilar expressions [79-
82]. In this manuscript, we will Hlustrate the utility
of our formalism as well, as_assess the validity of the
7ZCC approximation for' a releyant/chemical problem.
We would like to notefin particular that in this regime
and at short times en-Conden effects only affect the
pre-exponential piége of the Condon kernel—effectively
modulating theouplimg. This can be seen explicitly in
Equations A1§ and A 16 1 Appendix A.

Whether these,non-Gondon terms are expected to
speed up or slow dowu electron transfer depends criti-
cally on hgw one @efines the Condon rate in a system
wheresthe coupling fluctuates. If we take the average
coupling in Equation 9 to be a root-mean-square av-
erage ‘coupling, the effective coupling created by non-
Coudon effects at short times is strictly smaller than
the, Condon coupling. This observation implies that in
this wegime, non-Condon effects are expected to strictly
slow down population transfer from [1) to |2). Other au-
thors [80, 83, 84] have observed that averaging over the
bath in a different manner (which amounts to rewriting
Equation 9 in terms of (V)?) amounts to a strict non-
Condon speedup in initial population transfer. Because
the phase of the coupling is arbitrary, determining (V')

(t,11) = 2exp [—Q (1)) [S(t — t1) cos (d(t, t1) £ e(t — 1)) —
(R'(t —t1) = 2R'(8)) (R'(t — t1) — 2R'(t2)) —
R(t— 1)) R'(t — 1)) sin
R'(t —t1)) cos (¢(t,t1) =
VR (t — ty) sin (6(t, 1) + e(t — t1))]

S"(t— ) sin (¢(t,t1) £ e(t —t1))
R" t—t1)2) cos (p(t,t1) £ e(t —t1))

(
(ot ) £ et — 1))
e(t —t1))

(

from simulation is“actulally quite difficult. As such, we
have chosen to define the Condon rate in terms of (V?2),
a quantity mtch moze readily obtainable.

We alsqf notel that “diabatic population transfer is
slowed down'lgy' non=€ondon effects. In the Marcus nor-
mal regime, adiafatic population transfer is thus sped
up, which makes sense: non-Condon effects facilitate
traversalthrough conical intersections, a fast nonradia-
tive decay pathway. To summarize, at short times,
wesfind that non-Condon effects are expected to (1)
slow dewnl diabatic population transfer, but (2) speed
up adiabatic population transfer if the experimentally-
measurable coupling is taken to be the root-mean-square
average coupling.

III. COMPUTATIONAL DETAILS

A. Extracting spectral densities from molecular
simulation

Following our discussion in Section IID, it is appar-
ent that in order to map chemical dynamics on to the
spin-boson model, we require a way to extract the bath
spectral density (or densities) from molecular simula-
tion. Many authors [27, 59, 85, 86] have observed that
the energy gap spectral density Jgg defined in equation
3 is related to the Fourier transform of the energy gap
fluctuation autocorrelation function:

Tpa(w) = %“’ /O T SAE)SAB(0)) cos (wh) dt (16)

where £ is the inverse temperature, SAE(t) = AE(t) —
(AE), and AE(t) is the energy gap, AE(t) = Es(t) —
E,(t). We recognize that the coupling and cross spectral
densities defined in equations 4 and 5 can be written in
terms of the coupling autocorrelation function and the
energy gap - coupling cross correlation function, respec-
tively:

Jy (w) = pw /000<6V(t)5V(0)> cos (wt) dt (17)

pw

Jcross (W) - 9

/Oo<6AE(t)5V(O)> cos (wt)dt  (18)
0
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Iation—hinctions, quantities which we can readily extract
from molecular simulation, on to the linear vibronic cou-
pling Hamiltonian—a Hamiltonian with an in-principle
numerically exact dynamical solution. In the remainder
of this section, we discuss in detail how we extract the
relevant information from simulation for a simple molec-
ular system. In the following sections, we discuss the
short-time and long-time dynamics which result from
this mapping.

B. Simulation details
1. Molecular dynamics simulations

In order to examine the non-Condon effects on
electron transfer dynamics predicted by equation 12,
we have examined the aqueous electron transfer self-
exchange reaction

Fe'l+Fe''l 5Fel+Fell

All molecular dynamics simulations were performed uss
ing the GROMACS 4.6.5 software package [87].4 Two
iron atoms (van der Waals parameters o; = 2.2 ). =
= 0.0323 kcal/mol employing combination rdle o;; =
\/@i0; for both o and e [60]) were placed af theit

touching-sphere distance of 5.5 A inside a feriodic Simu-
lation box of dimensions 4 nm x 4.55 nm x 4.1 8am and
then solvated with 2466 molecules of TIPSR water{88|.
Iron atoms were allowed to interact with_solvent via
nonbonding interactions only. For NVT runsy the sim-
ulation box was coupled to a Nose-H@over thermostat
at 300 K with a time constant of 200 fs Electrostatics
were treated with the Partigle Mesh\Ewald method [89]
with a cutoff of 1.5 nm; vainider Waals interactions were
cut off after 1.4 nm. Asharmonic reStraining potential
(ro = 0.35 nm, k = 100.0%J mol ™~ nm~2) was used in
order to keep the t@o<irons in close proximity to each
other.

A 1 ns NVT eduilibration run was performed followed
by a 1 ns NVT productiongun, each with a timestep of
1 fs. 300 configurationgf were sampled randomly from
the produgtion run ag intervals of 100 fs; from each of
these starting configurations, a 50 ps NVE run with a
timespep.of 0:8 fs was performed in order to ensure that
correlation functions were sampled in the correct en-
semble, For the NVE runs, Coulomb interactions were
treated with.the Reaction Field Zero method [90] with
a cutoff of 1.3 nm, for better energy conservation; van
der Waals interactions were treated as before.

For 'each snapshot in each NVE simulation, the en-
ergy was computed twice: once with the original force
field and again with the charges on the two iron atoms
swapped. The difference between these two energies is
the energy gap, AFE. The mean energy gap was sub-
tracted from each data point to give fluctuations in the

ing average over the data from each NVE run to give
(0AE(t)0AE(0)) nvE; these correlation functions were
then averaged over the 300 different NVE runs to give a
the final energy gap - energy gap time correlation func-
tion at 300 K, <5AE(t>§AE(O)>N\/E

For these same snapshots, we also computed the cou-
pling V using the ansatz outlined in the subsequent sec-
tion. The mean coupling (V) was subtracted out from
each value of V(t) to give fluctuations in the coupling,
0V. A 5 ps coupling -Scoupling time correlation func-
tion was computed i the same manner as for the energy
gap correlation function (including the same averaging
over many WVE trajectories) to give (0V (¢)0V(0))nv k-
Finally, we_also constructed the energy gap - coupling
cross-correlation furesion, (JAE(t)dV (0)) vv g, using a
simila¥ procedure, Plots for one NVE trajectory and
the resulting cerrelation functions are shown in Figure
2,

2. Ansatz for the coupling

Frém our NVE production runs, we extracted the co-
ordinates of the two iron atoms and those of the twelve
waters forming the first solvation shell (six in an oc-
tahedral configuration around each iron). In princi-
ple, one can compute the coupling using an ab initio
method such as constrained density functional theory
with configuration interaction [91-94]; in practice, we
found these computations to be quite challenging for
this system [95]. As such, we treated the coupling semi-
empirically.

Physically, in our test system, electron transfer oc-
curs from the d-orbital manifold of one metal center to
the d-orbital manifold of the other metal center; thus,
the coupling should physically arise from the interaction
between the d-orbitals on the two metals. Additionally,
the coupling should decay exponentially with distance
[4, 9, 94], and, in order to allow for the existence of
conical intersections, should be zero for some nuclear
configuration [28]. The overlap of d-orbitals on the two
metal centers is an observable with both of these proper-
ties that also serves as a direct probe for the interaction
between d-orbitals on the metals.

Figure 3 shows four snapshots from a single NVE
molecular dynamics trajectory described in the previ-
ous section. In each case, we have computed the two
d-orbitals that are expected to contribute most signifi-
cantly to electron transfer between the two atoms using
the simple heuristic defined in Appendix C. The fig-
ure shows that two things occur over the course of the
simulation: (1) the crystal field around each iron ion ro-
tates, causing the d-orbitals on the irons to rotate with
respect to each other; and (2) degenerate orbitals mix,
causing the orbitals to change shape qualitatively. The
latter effect occurs because the distorted octahedral en-
vironment causes electron transfer to occur from (and
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as well as energy gap -i?z)ling oss—pérrelation functions.
For illustration only, theé correlationifunctions are normal-
ized (by C(0) for the ;:Nzelation functions and by
v/CEec(0)Cyv (0) for th%ss—corr lation function); unnor-

tions were used in all calculations.

st energy tog-like orbital on each iron atom,

of ﬁat orbital fluctuates with the envi-
edure we used to compute overlaps,
ing for both factors, is detailed in Appendix C.
at’the sensitivity of the electronic coupling
element to the orientations of the metal atoms
monstrated before using more sophisticated
ction techniques [61, 96]. Our calculations are
intended to capture the same qualitative dynamics at
greatly reduced cost.

The overlap of the d-orbitals on the two irons involved
in our electron transfer process makes an excellent proxy
for a coupling. Like couplings, overlaps decay exponen-

P
IR0

k t=0.128 ps ‘;&L =18.239 ps L@

» 4 3
Evuin 473
i t = 34.585 ps | @< o d

e —

Figure 3. Over the course an NVE trajectory, the orbitals of

~\-.the two irons change significantly. Due to both rotation of

the crystal field around each iron and mixing of degenerate
tog orbitals, both the orientation and qualitative character
of the orbitals with respect to one another fluctuate. This
causes large fluctuations in the overlap, meaning that even
for this simple system, we cannot expect the coupling be-
tween the two orbital manifolds to remain constant—it, too,
must fluctuate.

tially with distance, and since the orbitals are rotating
with respect to one another throughout the course of the
simulation, there is some rotation of the two molecules
that will make the orbitals on one iron orthogonal to the
orbitals on the other iron, giving an overlap of zero. We
thus make an ansatz that the coupling is directly pro-
portional to the overlap of the two d-orbitals involved
in electron transfer, overlap, S:

V=aS (19)

We first compute the overlap for the face-to-face con-
figuration described in Ref. [61] at 7.3 A and fix the
undetermined constant a using the reported literature
value for the coupling at this distance and this configu-
ration, Vi = 25.4cm ™!

o Vit
S7.3

(20)

We then apply Equation 19 to compute couplings. It
stands to reason that the coupling cannot be constant,
even in this simple system: the orbital overlap changes
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AIIEpldly with time, causing large fluctuations in the cou-
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8. Computing memory kernels and populations

In order to compute population dynamics and rates,
equations 9 and 12 were implemented in FORTRAN 95.
Since the spectral density J(w) is sampled at a finite
number of frequencies from molecular dynamics simula-
tions, we chose to linearly interpolate between the sam-
pled frequencies, as the integrals Q" (t), R (t), and S” ()
are piecewise analytic for a piecewise hnear spectral den-
sity. The three remaining integrals (Q'(t), R (t), and
s (t)) are not analytic; we computed these numerically
using Simpson’s Rule for each piecewise-linear segment,
recursively subdividing the intervals until an absolute
accuracy of 1071'° was reached. In order to avoid nu-
merical divergences, we treated frequencies lower than
10~* a.u. by taking the first 20 terms in the Taylor ex-
pansion about w = 0 of each integrand and evaluating
the integral analytically.

Once the kernels were computed, the populationg
were computed using a standard algorithm for solving
Volterra integrodifferential equations of the second kind
[97] to solve equation 6 for P(t) = pi(t) — pa2(t), the
difference in population between states 1 and 2 as.a
function of time.

4. Neglecting the cross-correlation

In Section ITC, we hypothesized that,theé“cross-
correlation between energy gap-and coupling could
be neglected in practice. Foyfthe hexaaquairon self-
exchange simulation discussed ingthis section, we can
justify this approximation @s follows®The simulation is
symmetric: state |1), wheteSton(II) igon the left side of
the simulation box andéiron (I is 6n the right side, is
indistinguishable from state|2) when each is at equilib-
rium. Because of this symmetryy <V> should be identical
regardless of whether the sampling is done in state |1)
or state |2). HoWwever, one can show that

Jcross (W)

= (21)

. 2 [
(V)12 2 VOF */ dw
T Jo

where Vj is the Hamiltonian parameter defined in Equa-
tion 13%he subscripts on the angle bracket refer to which
state the“ensemble average is taken in, and the minus
sigu corresponds to sampling in state |1) / the plus sign
in state |2).

It follows that the integral involving Jeress(w) must
be zero. One can show that this directly implies
(0AE(0)V(0)) = 0. For the problem studied, we
computed this correlation function; in our simulation,
(SAE(0)6V(0)) = —2.9x 1077 | and at all later times it
has a magnitude smaller than this, as shown in Figure

2(b). We anticipate that the cross-correlation will have
a negligible impact on the dynamics. We will exam-
ine the actual effects of the computed cross-correlation
function in detail in the resulting section.

5. Computing free energy surfaces

To analyze the positién of the conical intersection for
our system, we compguted diabatic and adiabatic free
energy surfaces. Forfeach smapshot in a single NVE tra-
jectory, we formed two}lists of* coordinates, {+57~ AE vy
and {-2Z V'}, @rresponding to the location on the left-
hand and righthamd potential energy surface of each
snapshot aléng the eneggy gap and coupling coordinates.
We then pegformed a 2D kernel density estimation us-
ing thesSeott heuristic along these coordinates to com-
pute R (AE,V) and P2(AE,V), the observed proba-
bility density functions for the left diabat and the right
diabat, respectively. Next, we computed diabatic free
energy surfaces as

F,(AE,V) = —kpTlnP,(AE,V)
©Lhesé are plotted in the subsequent section. We also
found it useful to analyze the adiabatic free energy
surfaces, which we computed as the eigenvalues of the
Hamiltonian

h(AE, V) = (Fl(AE,V) 1% >

1% Fy(AE,V)

We note that along these coordinates, the conical in-
teresection occurs when the energy gap and coupling
both vanish simulataneously: At {AFE =0,V = 0}, the
origin of our coordinate system.

IV. RESULTS AND ANALYSIS
A. Spectral densities

The spectral densities computed for iron self-
exchange in water are showcased in Figure 4. The en-
ergy gap spectral density showcases the strength with
which certain bath frequencies drive energy gap fluc-
tuations; similarly, the coupling spectral density show-
cases the strength with which certain bath frequencies
drive coupling fluctuations. The small magnitude of the
cross spectral density confirms that the cross-correlation
should have a small effect on the dynamics, as expected
from theory.

The energy gap spectral density has four features of
note: a weak, broad, low-frequency band and three
strong, sharp, high-frequency bands. Following the
work in Refs. [57] and [59], we interpret these features as
bath modes driving outer-sphere and inner-sphere elec-
tron transfer, respectively. The three high-frequency
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Figure 4. Energy-gap, coupling, and cross spectral densi-
ties are computed from the correlation functions shown in
Figure 2 via equations 16, 17, and 18, respectively. The
energy-gap spectral density has high-frequency structure due
to iron-oxygen vibrations—inner-sphere bath modes. While
the coupling spectral density shows less structure, there is
still substantial off-diagonal system-bath coupling at low and
higher frequencies. For illustration purposes, the spectral
densities shown are computed from the normalized correlaz
tion functions; unnormalized spectral densities were used in
dynamics calculations.

bands can be assigned to typical vibratignal frequen-
cies observed in hexaaquairon complexes [98]winclud-
ing Fe-O stretching around ~500 cm @ and Hy O“sock-
ing around ~750 cm~!. The role of outeg-sphete bath
modes and inner-sphere bath modes in driving iron self-
exchange electron transfer has lofig'been a subject of de-
bate [55-61, 99-101], with a consensus that both types
of modes can play a role but#hat coupling-driven outer-
sphere electron transfer offen plays thewbigger role. We
observe here both modes of electrondtransfer driven by
energy gap fluctuationg oceur: slow bath librations drive
outer-sphere electron transfer,and fast Fe-O and HoO
vibrations drive infier-sphere transfer.

Energy gap fldctuations are not the only force driving
electron transfér; theugh smaller in magnitude, coupling
fluctuations_alsodrive electron transfer, shown by the
substantial magnitude of the coupling spectral density.
Bath modag that deive fluctuations in the coupling tend
to beglower-ftequency in nature; in the present case,
coupling fluctuations are coupled to iron-iron separa-
tion distance and the relative orientation of the irons’
ligands with.respect to one another. In principle, these
couplingfluctuations may be correlated to energy gap
fluctuations, as, according to our ansatz for the cou-
pling, oth result from a shifting charge distribution
caused by fluctuating solvent motions. However, due to
the use of the diabatic representation for our dynamics
simulations, changes in the charge density along the re-
action coordinates are unlikely: diabatic states do not
change appreciably along a reaction coordinate [94].

B. Thermal dynamics

We begin our analysis by examining the dynamics
that arise when starting from the thermal initial condi-
tion. Using the spectral densities presented above with
the memory kernels presented in Equations A26 and
A27 in Appendix A, we solved the generalized master
equation (Equation 6) to generate electron transfer dy-
namics for the ground#tate electron transfer process.
Though we have deriveéd expressions for the non-Condon
kernels through fowrth-orderin perturbation theory, we
limit our dynamiéal treatment for this sample problem
to second ordery as the‘average coupling for this system
is known to be small [61} The results are shown in Fig-
ure 5. ThefCondon“and non-Condon kernels produce
essentially“identical short-time dynamics: Both show
a very gshort ‘egcillation for approximately 5 fs before
plateauiing. The“timescale of these oscillations corre-
sponds'with the timescale of the fastest bath mode ob-
sefved in the spectral density, indicating that this fast
inner-sphere bath motion drives a small amount of ini-
tial €lectron transfer.

Additienally, once the populations plateau around ~5
fs, the Condon and non-Condon curves run parallel to
one danother, indicating that both decay towards equi-
librium at the same rate. Non-Condon effects thus con-
clusively do not affect short-time or long-time electron
transfer dynamics for the ground state iron(IT) /iron(IIT)
self-exchange reaction—an observation consistent with
decades of literature on this reaction [55-64]. We note
that whether or not we neglect the cross-correlation,
the non-Condon terms have an almost negligible effect
on the dynamics.

The unimportance of non-Condon effects for dynam-
ics resulting from the thermal initial condition suggests
that the conical intersection is far from the minimum en-
ergy path connecting the two wells of the ground-state
adiabatic potential energy surface. In order to test this
hypothesis, we construct the two diabatic free energy
surfaces, as well as the ground- and excited-state adia-
batic free energy surfaces that result from diagonalizing
the 2x2 diabatic Hamiltonian. While ideally potential
energy surfaces would be used to study the relative im-
portance of a conical intersection, potential energy sur-
faces are very high-dimensional. Additionally, the Con-
don reaction path exists on the free energy surfaces and
not the potential energy surfaces. We thus examine free
energy surfaces purely for illustrative purposes.

The computed free energy surfaces are shown in Fig-
ure 6. We observe from the diabatic surfaces in Fig-
ure 6(a) that the major axes of the paraboloid diabats
do not align with the chosen reaction coordinates, sug-
gesting that a finite—albeit small—cross-correlation be-
tween energy gap and coupling is present in our data.
The adiabatic surfaces reveal even more. The conical
intersection in this problem, marked on each plot with
a bold black "X, is relatively far from the minimum free
energy path connecting the minima of the ground-state
adiabat. This confirms our earlier hypothesis: the coni-
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Figure 5. Ground-state iron(II)/Iron(III) electron transfer
dynamics using the thermal initial condition. Non-Condon
(ZCC) dynamics are computed as described in Section IIC.
The population of the product diabat is plotted as a func-
tion of time. The system is initially entirely in electronic
state |1), and the bath is initial in thermal equilibrium with
this same state (|1)). This choice of initial conditions corre,

sponds to the ground-state electron transfer reaction. Afte .
a high-frequency bath mode causes a small amount of ini:
tial electron transfer, both Condon and non-Condon kernels

plateau at a population near 0 and relax towards equili
(p2 = 0.5) at the same rate, indicating that non-Con

effects have negligible impact on the ground-stat ?laggon
gy

transfer process—regardless of whether or net the'en
gap - coupling cross-correlation is neglected. \

cal intersection is not expected to plamnt role

in the thermal electron transfer preblem.

The excited-state adiabat, ever, tells a different
story. The conical intersectigh heretig located extremely
close to the minimum of the excited state adiabat, sug-
gesting that including ?‘\—C on (ﬁects is essential to
adequately describe ulirafast electeon transfer dynamics
originating on the ex€i ec?stsxla state very similar to

ibrium initial condition proposed in
ased on this result, we now turn

nonequili ial condition.
Wegwish te_stress that the 'nonequilibrium’ initial
condition is ip no way an initial condition that can be

entally prepared via optical excitation for the
~“ixon(IIT) system under study. In this sys-
thiere are many low-lying excited states that would
re with the preparation of the described state.
ally, the oscillator strength of the intervalence
transition described to reach the nonequilibrium state
in our prepared 'nonequilibrium’ initial condition is very
small, if not zero. For these reasons, the preparation of
this initial condition for this system is artificial: no-
body has ever observed this kind of transition exper-
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Figure 6. Free energy surfaces along the energy gap and
coupling coordinates for iron(II) / iron(III) electron trans-
fer. The location of the conical intersection in each plot is
marked with a solid black X. (a) Diabatic free energy sur-
faces show a small cross-correlation between energy gap and
coupling. (b) The lower adiabatic free energy surface. The
location of the conical intersection is far from the minimum
free energy path between minima, so the conical intersection
does not play a role in thermal dynamics. (c¢) The upper adi-
abatic free energy surface. The conical intersection is near
the minimum of the upper adiabat, so ultrafast passage from
the upper adiabat to the lower should be observed for any
initial nonequilibrium state originating close to this point.
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AIiEental y. Nevertheless, we expect that the dynamics

< with this initial state could be representative

Pu b“%ﬁ fﬁg illy-induced dynamics in other condensed-phase

systems, and thus present these results as a proof-of-
principle for the method underlying the dynamics. For
the time being, these effects should be thought of strictly
as an analogy.

C. Ultrafast nonequilibrium dynamics

Figure 7(a) showcases the short-time dynamics gener-
ated by the spectral densities in Figure 4. Plotted here
are the populations of the product diabats as a func-
tion of time computed using the kernels in Equation 15.
The dynamics show several features, including a dip at
approximately 15 fs and another dip at approximately
40 fs before a long, slow relaxation to equilibrium. We
suspect the first dip is due to a small amount of inner-
sphere transfer from the Fe-O stretching mode, and the
second dip is due to the onset of slow outer-sphere popu-
lation transfer. Though the curves appear flat after ap-
proximately 60 fs, their slopes are extraordinarily small
but non-zero, indicating the transition of the electron
transfer from a dynamical process to a rate process.

One can see quite clearly the role of the conigal in-
tersection in this problem: non-Condon effects appue-
ciably increase the amount of initial electrof, txansfer
from reactant diabat to product diabat. Additionally,
non-Condon effects strictly slow down diabatic popula-
tion transfer (and thus, since this reactjon oegirs in‘the
Marcus normal regime, speed up adidbatic_transfer)—
in line with the observation made in Section THD. We
note that non-Condon effects do not seem to'play a role
until after the dip at 40 fs. This result is consistent
with our computed spectral densigies in Kigure 4, which
indicate that only slow lowArequeney bath modes con-
tribute to fluctuations in thecoupling. The fact that the
non-Condon effects “turs on” after this time is simply a
reflection of the result thator thissproblem, there are no
high-frequency peak§in _the ceupling spectral density.

Unfortunately, Because outer-sphere electron transfer
dominates and (7)., sds very small for this system, the
magnitude of population teansfer over the first 100 fem-
toseconds is small, Nevertheless, examining this system
provides af importang ‘benchmark: if (V),.,,s were big-
ger, non-Cendon éffects would play a vital role in pop-
ulation tzansfer. This can be seen by scaling (V),;ms by
a factor of 10 so that it has a value of approximately 0.1
eV (a'reasonable size for a coupling in, say, an organic
dharge-tramsfer system), and scaling the fluctuations in
the, coupling appropriately. The resulting dynamics are
shown in Figure 7(b)—showcasing appreciable diabatic
population transfer over the first 100 femtoseconds. In
the case where the coupling is larger (though still small
enough that we can neglect fourth-order effects), non-
Condon effects prevent 0.5% of the population from
switching diabats by the time a slow relaxation towards
equilibrium is reached at approximately 55 fs—a non-
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Figure 7. (a) Nonequilibrium Condon and non-Condon
dynamics for hexaaquairon(II/III) self-exchange, with
(VYrms = 34.5 cm™'. Non-Condon (ZCC) dynamics are
computed as described in Section IIC. Non-Condon effects
are appreciable, even though charge-transfer is slow due to
the small value of (V)rms for this system. (b) If the cou-
pling used is instead (V)rms = 345 cm™'—a reasonable size
for many condensed-phase charge-transfer systems—it be-
comes readily apparent that non-Condon effects are required
to recover quantitative population transfer, and that cross-
correlation plays only a small role. (c) The instantaneous
rate of change of the population difference between the two
states as a function of time, P(t), for the case depicted in

(b).
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A I 1|;g igible amount.

PUbllSh]?ﬁg’f te the very small magnitude of the cross-

cCOYTo

lon function in Figure 2 and the resulting cross
spectral density in Figure 4, and despite our argument
that the cross-correlation should be rigorously zero for
this problem, we observe that the cross-correlation pro-
vides a modest effect on population dynamics. We
can think of two possible explanations for this incon-
sistency. The first is that we may be inconsistent in
assigning the phase of V, leading to a spurious cross-
correlation. This effect may be magnified when we com-
pute 6V (t) = V(t) — (V), as (V) is difficult to compute
correctly. Because the phase of V is arbitrary, if we
were to include all second order effects (including cross-
correlation), it shouldn’t matter how we choose the sign
of V. We believe that the result that includes cross-
correlation is likely indicative of the ’true’ curve, as it
would appear if we assigned the ’right’ sign to V at ev-
ery time point and neglected the cross correlation. In
that scenario, the cross-correlation would be zero, but
the coupling-coupling autocorrelation function would be
summarily different, capturing all of the effects that we
see when we include the cross-correlation.

The second possibility is that some of the inner-sphere
reorganization is correlated to the coupling: some mode
that changes the energy gap also changes the shape of
the orbital involved, leading to correlation between, V
and AE. Regardless of which is responsible fgr the ob=
served cross-correlation phenomenon, we note that“the
observed correlation (i.e., the cross-correlation spectral
density) is small, so it seems reasonable to neglect these
terms, as least in higher-order (i.e. dourth-order and
beyond) contributions to the dynamics.

We conclude our discussion by observing that for the
system studied, non-Condon efféets«do not appear to
change the owerall long-time fage of electron transfer
(despite affecting the instanganeousate significantly at
short times). Figure 7(c) dontaifis a plot of the rate of
change of the diabatic populagions aith time for both
the Condon case and thewnon-Condon case. While the
two curves do not align at shogt and intermediate times,
they are identicaldat lomg timés—consistent with the
Nonequilibrium Fermi/s’ Golden Rule result detailed in
Refs. [79] and/[68]., Wesdo not know if this is a gen-
eral phenomenon, _dr onegthat is system-specific; never-
theless, thé observatiod that for at least some systems
non-Cond@n effect§ appear to have negligible impact on
rates is-impertant and should be noted.

V. CONCLUSIONS

In\this paper, we have asserted that even in simple
electron transfer systems, the Condon approximation
will often result in short-time dynamics that are not
quantitatively accurate. We have shown that for hex-
aaquairon self-exchange in water, the coupling is ex-
pected to fluctuate significantly on short (~10-100 fs)
timescales. In more complex systems, this fluctuation

in the coupling is necessary in order to predict ultra-
fast nonequilibrium dynamics accurately, including such
phenomena as conical intersections. By developing a
formalism based on the linear vibronic coupling Hamil-
tonian, we show that in iron self-exchange, for reason-
able values of (V),.s, non-Condon effects are expected
to substantially alter the amount of initial nonequilib-
rium charge transfer that occurs before the system be-
gins its slow relaxation fowards equilibrium.

We hope to extend gusgvork to provide more accurate
dynamics by going te highersorders in perturbation the-
ory, so that we cah safaly tackle the intermediate- and
strong-coupling, regimes with conviction. We also wish
to examine the effect “of using polarizable force fields
on the resulfing spéetral densities, as polarizable force
fields are fiecessary for“quantitatively-accurate solvent
reorganization,and thus photochemical dynamics [102].

Ultimately, weshope to use our formalism to study
chemical systems with conical intersections. Many
chémical ‘systems contain conical intersections that can
be directly modeled [103-107]. Direct observation of
molecular relaxation through conical intersections via a
mapping.on to the linear vibronic coupling Hamiltonian
could, potentially allow us to make predictions about
nonradiative decay rates in photochemistry—an essen-
tial component to first-principles prediction of quantum
yields. Even an approximate description of such photo-
chemical dynamics will be invaluable towards predicting
the photochemical properties of small molecules in the
condensed phase.
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Appendix A: Derivation of the Nonequilibrium
Kernels to Fourth-order K® and K®

We present here an explicit derivation of the nonequi-
librium memory kernels for the linear vibronic cou-
pling Hamiltonian to fourth-order in perturbation the-
ory. The lack of explicit time dependence in Hpy ¢ im-
plies that the overall density matrix of the system p(t)
evolves as

p(t) = e~ Hrve p(g)eitfizve (A1)
Since we are only interested in the populations in states
|1) and |2), we can trace out the bath modes and write:

p1(t) = Trpan [p(t)[1)(1]]
p2(t) = Trpaen [p(1)[2)(2]] = 1 — p1(t)
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Pub“éoﬁtilﬁﬁ allows us to expand p;(t) as a power series in
termdhi the off-diagonal elements. If we start purely at

state |1), we have:
_(rB 0
p(0) = ( 0 0)

where pp is the initial bath density matrix. We discuss
two initial conditions:

(A4)

1. The nonequilibrium initial condition, pp =
—pha
e
——— —, where the system has been electroni-
Tr [6*5}”}

cally excited from |2) to |1), but the bath modes

have not yet had an opportunity to relax from

their initial thermal equilibrium with |2).

e—Bh1

2. The thermal initial condition, pp = ————,
Tr |:€_Bh1}
where the system starts in State 1 (p1(0) = 1) in
equilibrium with the bath.

) =

initial condition. This initial condition implies p; (
and so we have

m(t) =1+p7 () + 27 (0) . 5)
™

where p{*™ (¢) is the 2nt1! order term in theJeies fodd
order terms are zero with these initial {I::iit<s), hich

are all zero at t = 0 and can be determ M time-

dependent perturbation theory.
5% to) such that
G2

We then define hy, hg, O(t)
(A6)

In

Hiyve =

(O(t2i-1)0'(t2:)) p5(0)
(A8)

he pepuldtions p*™(t) can be obtained by inte-
tingtraces Fo,(t1,ta ... 12,), which can be evaluated
using ‘a Gaussian coherent state basis as described in
our preyious work [54]. Consequently, we find that for
nonequilibrium pp we have:

Fy(t1,t2) = (Vo + alts, t2)) (Vo + B(t1, t2))

+v(t1 — t2)) fa(t1,t2) (A9)

\L.

We focus most of our discussion on the nonequilibrid\
1

fa(t1,t2) = exp [—ie(ty — t2) — Q'(t1 — t2) — ip(t1, t2)]
(A10)
and we define

P(t1,t2) = Q" (t1 — ré{ 2Q" (t1) +2Q" (t2)

) (A11)
a(ty,ta) = 2R (L )=R (t1stz) +iR"(t1 — t2) (A12)
B(t1,t2) = 2R/( S’(tl —to) +iR"(t1 — t2) (A13)

) ' (A14)

amiltonian, when the coupling is a
(Vo), @ = 8 =~ =0. In the case where we can
s-correlation, R'(t) = R”(t) = 0 and the
abhove eqﬂ.itions simplify:

Fg(tl,tg) S Tg(tl,tg)fg(tl,tg) (A15)

< iere fa(t1,t2) is defined in Equation A10 and we define

Tg(thtg) = (‘/02 + ’Y(tl - tQ))

= (V) +9(t1 —t2) —7(0))  (A16)

When we can neglect cross-correlation, we can analo-
gously write the fourth-order bath correlation function
Fy as

F4(t1, to, t3,t4) = T4(t17t27t37t4)f4(t17t27t37t4) (A17)

where

_ fa(t1, t2) fa(ta, t3) fo(ts, ta) fo(t1, ta)
falbns s, fa) = fa(t1,t3) fa(ta, ta)

(A18)
and

Ty(t1,ta,ts, ta) = To(t1, ta)To(ts, ta) + To(ts, t3)To(t2, ta)
+ To(t1, ta)To(ta, t3) — 2V5 (A19)

All that remains is to connect the bath correlation
functions F» and Fj to the memory kernels K and
K® . From perturbation theory, these bath correlation
functions are related to the populations by
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t ty
ng) (t) = —2/ dty /dtQRe [Fa(t1,t2)] 20
0
. " " ' t t1 t t3
D (1) :2/dt1/dtz/dt3/dt4Re [F2(t1,ta, t3, )] +/dtl/d”/dt?’/dt4F2(t27t17t37t4) o
J s 5 0 0 0 0 0

The memory kernels K (2”)(7571?1) cannot be uniquely determined; however, kernéls eensistent with Equations A20

and A21 can be obtained by expanding the rate equations (Equation 6) in theeoupling W and matching orders in
perturbation theory by analogy. This results in the kernels

K{P(t,t1) = 2Re [Fy(t, 1)) (A22)
which is consistent with A20, and
t1 to
KW (¢, 1) = —2Re /dtQ/ W(t, by, by, b dt3+/dt2/F4 t, by, ts)dly | + K2 (t,1, /dt / (ta, ts)dts
0 0
(A23)

which is consistent with A21. This analysis also holds for theshackward kernel K5 under the substitution ¢ — —e.

We briefly consider the thermal initial conditiods dis-
cussed at the start of this section. Under this setwof
initial conditions, only the form of fs change$ on mov-
ing from nonequilibrium initial conditions to thermal
conditions; thus, all of the equations deséribed in, this
section can be used to compute memory kernels under
thermal initial conditions, making thefgubstitugion:

falti,ta) — fil(t1 —t2)
5" (t) = exp [—iet — QYY)

(A24)

— ()] (A25)

Importantly, the non-Condbn piece“ef the kernels, 75,
remains the same so longs asicrdss-correlations between
energy gap fluctuationg’ and coupling fluctuations can

|

where $he top!sign is for the forward kernel, K;, and
thesbottomesign is for the reverse kernel, Ko.

Appendix B: Time-domain Padé resummation

Previously, we have explored several different resum-
mation schemes [54] in Fourier space for second and
fourth-order dynamical memory kernels. We concluded

thaekl) = 2exp [—Q'(1)] [S'(t) cos(Q" (t) £ et) —

(t
F2Vy (R (¢) cos (Q(t) % et)

[

be neglected. The fourth-order kernels can be derived
making the same substitution for f, and using equations
A18 and A19.

For reference, the full second-order thermal kernel is

EP(t) = K3 () + K, (1)

where Kt(,%)c(t) is the Condon piece,

K{(t) = 2V exp [-Q (D] cos [Q"(t) = ef]  (A26)
and Kt(h)nc( t) is the non-Condon piece,
S"(t)sin(Q" (t) + et)
)’ = (R'(t) ) cos(Q"(t) £ et) — 2R" () R' () sin(Q" (t) & et)
— R'(t)sin (Q"(t) % €t))] (A27)

(

that while Padé resummation gives the most accurate
resummed kernel in certain regions of parameter space;
in other regions, in fails entirely, giving divergent dy-
namics at long times. A detailed analysis of Padé resum-
mations for this problem [77] has made explicit certain
conditions on the second-order and fourth-order kernels
that predict whether or not Padé resummation will blow
up or not; using these conditions, Reichman et al have
shown that Padé resummation is expected to behave
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Publishif
ub §h3mg' our and their primary arguments about why

the Padé resummation fails are that the Padé resumma-
tion is a rational resummation, and certain sets of bath
parameters cause singularities in the resummed kernel
in Fourier (or Laplace) space, leading to long-time di-
vergences. A Padé resummed kernel can be written in
Laplace space as

[K®)(s)] 2
KC)(s) - KO (s)

Besides the methods that have been investigated previ-
ously, there is one additional method that can be used
to potentially smooth the divergences inherent to a ra-
tional approximation: Get rid of the denominator. We
do so by first rearranging equation B1:

Kpaae(s) = K (s) 4+ ¢(s) K paae(s) (B2)

where we have defined

o(s) = =z (83)

We then analytically inverse Laplace transform, eqtia
tions B2 and B3, recognizing that a multiplication in
the Laplace domain is a convolution in the time demain:

KO(t) = / a6t AIED ()N (BY)

0

Krpp(t) = K®(t / Mt — F)Kpage(t) (B5)

where the acronym FDR, stands for “time-domain Padé.”
We can thus carrysout Padé resummation in the time
domain by solvidg equagion B4 numerically for ¢(¢), and
then using thdt soldtion @ solve equation B5 numeri-
cally for Kzpp ().

Appendix C: Computing the overlap between
d-orbitals

Agcording.to crystal field theory, the electron trans-
ferNin this,problem is from the ¢, manifold of one iron
to the 72, manifold of another iron; thus, the d-orbitals
overlaps relevant to our problem are the overlaps of d,,
dy-, and d,, on one iron atom with those of dgy, dy-,

and dy. on the other iron atom. Since there are man-
ifolds of orbitals and thus 9 relevant overlaps involves
in this electron transfer process, we choose to use as S
in equation 19 the magnitude of the largest eigenvalue
of the 3x3 overlap matrix in the subspace of the ty,
manifolds.

Evaluation of these overlaps not simple: it is con-
founded by the rotation of one iron with respect to the
other. The process by which we arrive at the eigenvalue
of the ta, — ta, subspéaee of the overlap matrix can be
enumerated as follows:

1. Using a STO:16g basis set which we parameter-
ized to fit,a Slater orbital with an exponent of
6.25 (as.determined'by Slater’s Rules [108]), com-
puteghe 36 overlaps of the unrotated Cartesian d-
orbitals, df . dwysdyy,de-,dy-, and d.. on one iron
afomuwithsghe other, and build the untransformed
cartesianfoverlap matrix S;; = <dFe(H) |de(IH)>.

2. Build the two rotation matrices R; and Rg that
transform the Cartesian basis vectors into the
printiple axes of molecule 1 and the principle axes
of molecule 2, respectively. The principle axes can
be determined from diagonalization of the inertia
tensors for each hexaaquairon molecule. Special
care must be taken to reorder the principle axes
at each simulation step to ensure, e.g., that the
rotated x axis remains in the x position and do
not flip to the y or z position.

3. Build the matrices T:ﬂ and ng that transform
the Cartesian d-orbitals in the lab frame to the
rotated frame for each molecule. These are 6x6
matrices for quadratic and bilinear coordinates
which can be constructed using appropriate com-
binations of elements from the linear rotation ma-
trices Ry and R.

4. Build the matrix Y that transforms the Cartesian
d-orbitals into the spherical d-orbitals

5. The rotated overlaps in the spherical harmonic ba-
sis can then be computed as

T
Sror = Y [Ty | STayY (C1)

Once the 6x6 S,,; is computed, the 3x3 block cor-
responding to the 2, subspace, Smt, can be excised.
The numerical value S to be used in equation 19 can be
computed as

S = max (abs (e1g<Smf))> (C2)
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