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We investigate flow pattern formation and viscosity reduction mechanisms in active
fluids by studying a generalized Navier-Stokes model that captures the experimentally
observed bulk vortex dynamics in microbial suspensions. We present exact analytical
solutions including stress-free vortex lattices and introduce a computational framework
that allows the efficient treatment of higher-order shear boundary conditions. Large-scale
parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-
dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting
in confined suspensions. The theory uses only generic assumptions about the symmetries
and long-wavelength structure of active stress tensors, suggesting that inviscid phases may
be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry
and pattern scale selection.
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I. INTRODUCTION

Self-driven vortical flows in microbial [1,2] and synthesized [3–8] active liquids often exhibit
an emergent dominant length scale [9–12], distinctly different from the scale-free spectra of
conventional turbulence [13]. Experimentally observed vortices in dense bacterial suspensions
typically have diameters � ∼ 50–100 μm [9,12,14] and decay within a few seconds in a bulk fluid
[14]. However, when the suspension is enclosed by a small container of dimensions comparable
to �, individual vortices become stabilized for several minutes [15,16] and can be coupled
together to form magnetically ordered vortex lattices [17]. Another form of confinement-induced
symmetry breaking was observed recently in a microfluidic realization of bacterial “racetracks”
[18]. For sufficiently narrow tracks of diameter much less than �, bacteria spontaneously aligned
their swimming directions to form persistent unidirectional currents. These examples illustrate
the importance of confinement geometry for flow-pattern formation in nonequilibrium liquids.
Conversely, biologically or chemically powered fluids may profoundly affect the dynamics of
moving boundaries as active components can significantly alter the effective viscosity of the
surrounding solvent fluid [19–21]. In particular, recent shear experiments suggest that Escherichia
coli bacteria can create effectively inviscid flow if their concentration and activity are sufficiently
large to support coherent collective swimming [22]. From a theoretical perspective, it is desirable
to identify minimal hydrodynamic models that are analytically tractable and can account for the
aforementioned experimental observations.

Previous theoretical work [23–30] identified viscosity reduction mechanisms [19,22] in dilute
active suspensions, corresponding to the limit case when steric and near-field interactions between
active components and collective dynamical effects become negligible. Important analytical and
numerical insights into the dynamics and rheology of dilute suspensions were obtained by
considering how individual microswimmers and their force dipoles align with an externally
imposed shear flow [23] and by studying kinetic models [26,31] that couple effective one-particle
Fokker-Planck equations for the particle dynamics with Stokes flows [32]. Considerably less is
known about the viscous properties of concentrated active suspensions, since perturbative approaches
become inaccurate when the bulk dynamics is dominated by the vortical flow patterns that are
collectively generated by interacting bacteria or sperm cells [2,9–12]. To understand better the
rheology of dense pattern-forming active fluids, we investigate here a generalization of the classical
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FIG. 1. Exact periodic solutions of Eqs. (3) include inviscid vortex lattices. (a) Linear stability analysis of
Eqs. (3), for a square domain with periodic boundary conditions, identifies three types of Fourier modes:
dissipative (blue), active (red), and neutral (black circles). Neutral modes can be combined through the
superposition (4) to form exact stationary stress-free solutions of the nonlinear equations (3). (b) Square
lattice solution ψ = cos( kx√

2
) cos( ky√

2
), corresponding to the green squares in panel (a). (c) Hexagonal kagome

lattice solution ψ = 2 cos( ky

2 ) cos(
√

3kx

2 ) − cos(ky), corresponding to the orange hexagons in (a). This flow
topology is very similar to Abrikosov lattices found in quantum superfluids (cf. figures in Refs. [38,39]).

(d) Triangular lattice solution ψ = − cos(ky) − cos(k
√

3x−y

2 ) − sin(k
√

3x+y

2 ), also corresponding to the orange
hexagons in (a), but with different mode amplitudes. In all three cases, k can be chosen as the radius of the
inner or the outer inviscid circle (black) in (a).

Navier-Stokes (NS) equations [33], based on a phenomenological description of non-Newtonian
fluids through higher-order stress tensors [34–36]. As verified recently [37], a three-dimensional
(3D) version of this model captures essential aspects of the experimentally measured bulk fluid
velocity statistics in bacterial and ATP-driven microtubule suspensions [5,14]. Here we focus on 2D
shear geometries relevant to thin-film experiments [10].

After a brief summary of the main physical assumptions underlying the phenomenological
model, we will derive exact 2D bulk solutions for the generalized hydrodynamic equations. These
marginally stable solutions include stress-free Abrikosov [38,39] lattices (Fig. 1), suggesting the
possibility of quasisuperfluid flow states in generic pattern-forming fluids. We then complement
the analytical considerations with large-scale simulations, introducing a numerical framework that
allows the efficient treatment of higher-order shear boundary conditions. Our results show that a
two-parameter extension of the classical Navier-Stokes theory can describe the recently reported
spontaneous symmetry-breaking phenomena [18] and inviscid phases of bacterial suspensions [22].
Furthermore, this phenomenological theory yields testable predictions for viscosity resonances
mediated by topological defects in the stress field and may provide guidance for the optimal
design of Taylor-Couette motors [40] powered by active mesoscale turbulence [10,11,14,41–43].
Generally, our analysis suggests that hydrodynamic low-viscosity modes can be induced by generic
scale-selection and pattern-formation mechanisms and that such modes can be selected and exploited
by an optimal tuning of active vortex scales and boundary geometry.

II. THEORY

A. Generalized Navier-Stokes model

In contrast to earlier work that studied the velocity field of the active subcomponents [11,14], the
discussion below focuses exclusively on the solvent flow dynamics relevant to shear experiments.
We describe the incompressible solvent flow field v(t,x) in the presence of micro-organisms or other
active components by the NS equations

∇ · v = 0, (1a)

∂tv + v · ∇v = −∇p + ∇ · σ , (1b)
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where p(t,x) denotes the local pressure. The effective stress tensor σ (t,x) comprises passive
contributions from the intrinsic fluid viscosity and active contributions representing the forces exerted
by the microswimmers on the fluid [44–46]. Active stresses can give rise to instabilities and rich
flow dynamics in the solvent fluid [32,45,47–50]. In particular, when the concentration of the active
component becomes sufficiently high, the resulting flow patters can exhibit a dominant finite length
scale. For example, bacteria swimming collectively through an ambient fluid create 3D bulk vortices
of typical diameter � ∼ 50–100 μm independent of container size L � � [12,14,15], if the bacterial
volume filling fraction exceeds a few percent. Similarly, dense quasi-2D suspensions of swimming
sperm cells [2] and motility assays of protein filaments driven by molecular motors [4] form rotating
structures with a narrow vortex-size distribution. Phenomenologically, the experimentally observed
scale selection [11,15,18] and the vortical flow patterns [5,12,14] can be efficiently described through
the stress tensor [33,37]

σ = (�0 − �2∇2 + �4∇4)[∇v + (∇v)�], (2)

where the higher-order derivatives ∇2n ≡ (∇2)n, n � 2, account for non-Newtonian effects [51].
The one-dimensional version of Eqs. (1) and (2) is also known as the generalized Nikolaevskiy
model [34] and has been studied in the context of soft-mode turbulence and nonlinear seismic waves
[35,36]. Below we will extend these studies by investigating Eqs. (1) and (2) in 2D shear geometries.

Intuitively, Eq. (2) is obtained by truncating a long-wavelength expansion of the (unknown) full
stress tensor [51]. For �2 = �4 = 0, Eqs. (1) and (2) reduce to the standard NS equations of a
passive fluid with kinematic viscosity �0 > 0. For �0 > 0, �4 > 0, and �2 < 0, the ansatz (2) is the
simplest choice of an active stress tensor that is isotropic, selects vortices of a characteristic scale,
and yields a stable theory at small and large wave numbers [33]. The transition from an active to a
passive fluid, which can be realized experimentally through ATP or nutrient depletion, corresponds
to a sign change from �2 < 0 to �2 � 0, whereas the non-negativity of �0 and �4 follows from
general stability considerations.

For scale-free passive Newtonian fluids, �0 encodes collective molecular interactions and thermal
effects, while higher-order effects can typically be neglected. For pattern-forming active fluids, the
effective parameters �0, �2, and �4 contain contributions from microscopic interactions, thermal and
athermal fluctuations, and other nonequilibrium processes. In this case, �0 describes the damping
of long-wavelength perturbations on scales much larger than the typical correlation length of the
coherent flow structures, whereas �2 and �4 account for the growth and damping of modes at
intermediate and small scales. For suitably chosen values of �0, �2, and �4, Eqs. (1) and (2)
reproduce the experimentally observed bulk vortex dynamics of bacterial suspensions [10,12,14]
(Fig. 2). These nonequilibrium flow structures can be characterized in terms of the typical vortex
size � = π

√
2�4/(−�2), growth time scale τ = τ (�0,�2,�4) (Appendix C) and circulation speed

U = 2π�/τ . For example, the parameter choice �0 = 103 μm2/s, �2/�0 = −1.24 × 102 μm2,
�4/�0 = 3.53 × 104 μm4 yields values � = 75 μm, τ = 6.6 s, and U = 72 μm/s that are in the
range of those expected for bacterial suspensions [10,12,14]; see the Supporting Information of
Ref. [37] for a detailed comparison with 3D experimental systems. More generally, however,
truncated polynomial stress tensors of the form (2) can be expected to provide useful long-wavelength
approximations for a broad class of pattern-forming liquids, including magnetically [52], electrically
[53], thermally [54–56], or chemically [57,58] driven flows.

B. Importance of inertial nonlinearities

Below we will see that pattern-forming active suspensions described by Eqs. (1) and (2)
can exhibit frictionless and negative-viscosity dynamics, in qualitative agreement with recent
experimental observations [22]. Whenever active and viscous stresses can effectively cancel to
realize low-viscosity flow states, the nonlinear advective terms in the hydrodynamic equations must
not be neglected. The widely adopted Stokes flow approximation, which is based on computing the
Reynolds number using the viscosity of water and the typical length scale and propulsion speed
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FIG. 2. Active shear flows exhibit qualitatively different dynamics, velocity statistics, and symmetry-
breaking behavior depending on confinement geometry (Lx,Ly) and applied shear speed V (see also Fig. 3).
(a), For wide channels of width Ly = 5� and weak shear V = 0.57U , typical flow configurations realize
advectively mixed vortex lattices (see movie 1 in Ref. [67]). The characteristic circulation speed U and
growth-time scale τ of the bulk vortices are defined in Appendix C. The scale bar shows bulk vortex size � and
the color map encodes vorticity. (b) and (c) For narrow channels with Ly = 2.2� and strong shear V = 1.65U ,
the active fluid exhibits spontaneous symmetry breaking resulting in unidirectional transport of the fluid’s
center of mass (see movies 2 and 3 in Ref. [67] and Fig. 4). Depending on initial conditions, qualitatively
different (b) low-energy (see movie 2 in Ref. [67]) and (c) high-energy (see movie 3 in Ref. [67]) flow states
can arise for identical system parameters. (d) and (e) The kinetic energy time series E(t) for the simulations
in (a)–(c) illustrate relaxation to statistically stationary states. The center-of-mass velocity Vc.m.(t) indicates
persistent macroscopic average flows through the channel (see movies 2 and 3 in Ref. [67] and Fig. 4). (f) and
(g) The spatially averaged mean shear stresses 	±(t), rescaled by kinematic viscosity �0 and shear rate γ̇ ,
reveal top-bottom symmetry breaking in narrow channels (b), (c), and (g) and exhibit large temporal variability,
resulting in a substantial variance of the effective shear viscosity (see also Fig. 5). Vertical dotted lines indicate
the start time T of the temporal averaging periods for the results depicted in Figs. 3(a) and 3(b). (h) and (i)
Shear stress histograms constructed from the time series in (f) and (g) for t > T reflect the top-bottom flow
asymmetry in narrow channels.

of a single microswimmer [59], is only valid for sufficiently dilute suspensions. Experimental data
for bacterial fluids [10,12,14] imply that at higher concentrations, when collective effects dominate
the suspension dynamics, the low-Reynolds-number assumption may be violated for the following
reasons. First, collective locomotion speeds of bacteria at moderate to high concentrations (equal to or
greater than 5% volume fraction) can be an order of magnitude larger than the self-propulsion speed
of an individual bacterium [10]. Second, the typical scale of a vortex is one or two order of magnitudes
larger than the length of an individual cell [9,12,14]. Third, two experimental studies show that the
collective dynamics can reduce the effective viscosity of a bacterial suspension by an order of
magnitude [19,22]. The combination of these three effects means that, in the collective swimming
regime, the effective Reynolds number is no longer small and hence nonlinear inertial terms remain
important. This is especially true for effectively inviscid (superfluid [22,60]) active suspensions.

C. Analytical solutions and zero-viscosity modes

The generalized NS equations (1) and (2) are valid in arbitrary dimensions. Here we focus on
the 2D case relevant to free-standing1 thin-film experiments [10]. In a planar 2D geometry D with

1To describe thin-film experiments performed on a substrate, one could add a linear damping term −γ0v in
the NS equations to account phenomenologically for the substrate friction. However, such a modification would
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FIG. 3. Numerical simulations of Eq. (3) identify the conditions for spontaneous left-right symmetry
breaking and low-viscosity states. (a) The relative mean kinetic energy of the fluid’s center of mass signals
spontaneous symmetry breaking. Averages over ten simulation runs for each of the 208 simulated parameter
pairs (markers) were connected using spline interpolations. Black dots show simulations settled into a single
class of statistically stationary kinetic energy ground states. Red circles indicate that, addition to the ground state,
long-lived excited states are observed for randomly sampled initial conditions (Appendix A). Gray triangles
indicate the occurrence of dynamical symmetry breaking characterized by unidirectional fluid transport with
mean speed greater than 0.25U persisting over time scales greater than 100τ . Here � and τ are, respectively,
the characteristic bulk vortex size and the characteristic time scale in an equivalent system with periodic
boundary conditions. The black diagonal line marks the corresponding characteristic flow speed U , separating
the low-shear from the high-shear regime. (b) The dark blue domains in the effective viscosity phase diagram
correspond to quasi-inviscid parameter regimes. (c) Vertical cut through (b) at constant shear rate γ̇ = 2.7τ−1

showing oscillatory behavior of the shear viscosity with boundary separation Ly . Viscosity fluctuations are
maximal when an integer number n of vortices fits between the boundaries, Ly ≈ n�. (d) Horizontal cut
through (b) at constant separation Ly = 3�, illustrating the suppression of viscosity fluctuations at high shear
(see also Fig. 5). (e) and (f) Representative flow fields, with local speed (top) and vorticity (middle) shown as
background, and corresponding stress fields (bottom) in (e) the low-viscosity regime (see movie 4 in Ref. [67])
and (f) the high-viscosity regime (see movie 5 in Ref. [67]). These simulations were performed at the same shear
rate but different boundary separations, as indicated in (b) and (c). The spectral norm ‖σ‖2, corresponding to
the largest eigenvalue of the stress tensor σ , and the associated director field reveal the presence of zero-stress
defects in the bulk as well as half loops in the stress-field lines along the edges for the low-viscosity states
[bottom of (e); see also movie 4 in Ref. [67]].

merely lead to a trivial shift of the dispersion relation. Therefore, if the damping is not supercritical and active
vortical flows are not completely suppressed, then one can expect that the main results of this study remain
valid qualitatively for films on substrates.

043102-5



JONASZ SŁOMKA AND JÖRN DUNKEL

P
D
F

P
D
F

P
D
F

P
D
F

c.
m
.

c.
m
.

c.
m
.

c.
m
.

FIG. 4. Additional flow examples for various channel widths Ly and shear rates γ̇ . The shear stress
histograms represent averages over ten or more runs.
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FIG. 5. (a) Validation that the flow symmetry breaking is observed with equal probability for both directions.
The parameters are the same as in Figs. 2(b) and 2(c) (Ly = 2.2� and V = 1.65U ). For 300 runs, we obtained
46.3:53.7 for the relative proportions of left-right symmetry breaking. (b) Standard deviation of the effective
viscosity shown in Fig. 3(b). We distinguish between two regimes whose boundary (black line) is defined by the
shear speed V being equal to the characteristic vortex speed U . At small shear V < U , the standard deviation
is inversely proportional to the shear rate. That is, in the weak-shear regime, the fluctuations of the shear stress
	 depend only on the channel width Ly . At large shear V > U , the flow becomes more stable and the standard
deviation quickly becomes orders of magnitude smaller than �0. Blue lines indicate horizontal and vertical cuts
shown in Figs. 3(c) and 3(d).
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boundary ∂D, we may rewrite Eqs. (1) and (2) in vorticity–stream-function form (Appendix B)

∂tω + ∇ω ∧ ∇ψ = −H · ∇ω + �0∇2ω − �2∇4ω + �4∇6ω, (3a)

∇2ψ = −ω, (3b)

where the vorticity ω = ∇ ∧ v = εij ∂ivj is defined in terms of the 2D Levi-Cività tensor εij , ψ is
the stream function, and H is a harmonic field related to the fluid’s center-of-mass (c.m.) motion.
The components of the flow field v = (v1,v2) are recovered from the Hodge decomposition [61] as
vi = εij ∂jψ + Hi (Appendix B).

We construct a family of exact nontrivial stationary solutions of the nonlinear partial differential
equations (PDEs) (3) in free space. To this end, we focus on the center-of-mass frame with H = 0
and consider the stream-function ansatz

ψ(r,θ ) =
∫ 2π

0
dφ ψ̂(φ)e−ikr cos(φ−θ), (4)

where k =
√
k2
x + k2

y is a fixed wave-number radius and (r,θ ) are polar position coordinates. The
superposition (4) yields the vorticity

ω = −∇2ψ = k2ψ (5)

and hence eliminates the nonlinear advection term in Eq. (3a) because

∇ω ∧ ∇ψ = k2∇ψ ∧ ∇ψ = 0. (6)

Thus, to obtain a stationary solution of Eqs. (3), we need to fix k such that the right-hand side of
Eq. (3a) vanishes. This criterion can be fulfilled if k satisfies the polynomial equation

k2(�0 + �2k
2 + �4k

4) = 0, (7)

which has real roots if �2 < 0 and �2
2 > 4�0�4.

One can further show that the stress tensor defined in Eq. (2) vanishes identically, σ ≡ 0, for
stationary solutions of this type. Thus, these solutions are stress-free modes, describing effectively
frictionless flow states [Fig. 1(a)]. An interesting subclass of exact stationary solutions included
in Eq. (4) is vortex lattices. By superimposing a small number of k modes that lie on one of
the two stress-free rings, with ψ̂ being a sum of suitably weighted Dirac δ functions, one can
construct rectangular, hexagonal, and triangular lattices [Figs. 1(b)–1(d)], whereas oblique lattices
are forbidden by rotational symmetry. The stress-free solutions lie at the interface of the stable
and unstable modes [Fig. 1(a)]. We next demonstrate through simulations that effectively inviscid
behavior remains observable in shear experiments for optimized geometries.

III. SIMULATIONS

A. Numerical shear experiments

To study the rheology of Eqs. (3), we simulate a typical shear experiment [22] in which two
parallel boundaries are moved in opposite directions, both at a constant speed V [Figs. 2(a)–2(c)].
Specifically, we consider a rectangular domain (x,y) ∈ D = [−Lx/2,Lx/2] × [−Ly/2,Ly/2] with
periodic boundary conditions in the x direction and nonperiodic shear boundary conditions in
the y direction [Fig. 2(a)]. In this case, the harmonic field H(t,x) = Vc.m.(t)x̂ coincides with the
center-of-mass velocity and hence is governed by Newton’s force-balance law, where the force acting
on the fluid is obtained by integrating the stress tensor σ over the boundary (Appendix B).

As common in the shear analysis of passive fluids [62], we assume no-slip boundary conditions
for the flow field v(x,±Ly/2) = (±V,0), which translate into an overdetermined system [63] for
the stream function ψ (Appendix A). In contrast to the classical second-order NS equations, the
sixth-order PDE (3a) requires additional higher-order boundary conditions to specify solutions.
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Active components in a fluid can form complex boundary-layer structures [15–17], which are poorly
understood experimentally and theoretically. To identify physically acceptable boundary conditions,
we tested different types of higher-order conditions. These test simulations showed that imposing
∇2ω = 0 and ∇4ω = 0 at the boundaries reproduces the vortical bulk flow patterns observed in
free-standing thin bacterial films [10], whereas stiffer boundary conditions generally do not produce
the experimentally observed flow structures. We therefore fix ∇2ω = 0 and ∇4ω = 0 at the upper
and lower boundaries in the following discussion. In a rectangular geometry, these soft higher-order
boundary conditions mean that integrated force contributions coming from the higher-order stress
terms vanish. Other choices of boundary conditions are discussed and illustrated in Appendix E.

Numerical solution of the coupled nonlinear sixth-order PDEs (3) with nonperiodic boundary
conditions for experimentally relevant domain sizes [9–11,14] is computationally challenging.
We implemented an algorithm that achieves the required numerical accuracy by combining a
well-conditioned Chebyshev-Fourier spectral method [64,65] with a third-order semi-implicit
time-stepping scheme [66] and integral conditions for the vorticity field [63] (Appendix A). This
computationally efficient code, which runs in real time on conventional CPUs, can be useful in
simulations of a wide range of fluid-based pattern-formation processes, including Kolmogorov
flows [52].

B. Parameters and observables

We performed systematic large-scale parameter scans of realistic bulk coefficients �0, �2, and
�4 and boundary conditions γ̇ , Lx , and Ly , where γ̇ = V/Ly is the shear rate [Figs. 2(a)–2(c)].
Nondimensionalization reduces the effective number of parameters to four, which we chose to be �2,
γ̇ , Lx , and Ly . We explored more than 200 experimentally relevant parameter combinations in total.
For a given parameter set, we repeated numerical shear experiments at least ten times, initializing
simulations with a randomly perturbed linear shear profile (Appendix A). For each simulation, we
recorded the spatial averages of the kinetic energy [Figs. 2(d) and 2(e)]

E(t) = 1

LxLy

∫
D

dx dy(v2/2) (8)

and the kinematic shear stresses

	±(t) = 1

Lx

∫
∂D±

dx σyx (9)

acting on the top and bottom boundaries [Figs. 2(f)–2(i)]. The statistics of these time series are
analyzed for an interval [T ,T + �], where T is chosen larger than the numerically determined
flow relaxation time. The averaging interval � is taken sufficiently long to ensure convergence of
statistical observables [Figs. 2(f), 2(g), and 6(a)–6(e)]. For each time series O(t), we compute mean
values

〈O〉 = lim
T ,�→∞

1

�

∫ T +�

T

dt O(t) (10)

and histograms [Figs. 2(h) and 2(i)], by performing additional ensemble averaging over simulation
runs with identical parameters but different initial conditions [Figs. 6(a)–6(d)]. Of particular interest
for the subsequent analysis are measurements of the total shear stress on the two boundaries,
〈	〉 = 〈	+〉 + 〈	−〉, and the associated mean kinematic viscosity

ν = 〈	〉/γ̇ . (11)
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PDF

FIG. 6. To estimate the effective viscosity at fixed separation Ly and shear rate γ̇ from an ensemble average,
we generate ten or more simulations with initial data corresponding to a randomly perturbed linear shear profile
(Appendix A). (a) Time series of the kinetic energy E(t) for multiple runs. (b) Time series of the shear stress
	+(t) on the upper boundary for Ly = 5� and γ̇ = 1.4τ−1. The vertical dotted line indicates the relaxation
time T . (c) Combined time series for t > T from all runs of the shear stress 	(t) = 	+(t) + 	−(t) rescaled by
the kinematic viscosity �0 and shear rate γ̇ . (d) The histogram corresponding to the combined time series in (c)
yields the estimates for the mean viscosity ν = 〈	〉/γ̇ and its variance. (e) Convergence of the mean viscosity
estimates as a function of the averaging interval �. (f) The relative magnitude of the Fourier-Chebyshev
coefficients of the vorticity field at a random representative time of the simulation demonstrates geometric
convergence to zero, confirming that the number of modes used in the simulations suffices to completely
resolve the dynamics at double precision accuracy (ε ∼ 10−16).

IV. RESULTS

A. Dynamic symmetry breaking and directed transport

Recent experimental studies of bacterial suspensions [18] and ATP-driven active liquid crystals
[68] in long narrow channels observed the spontaneous formation of persistent unidirectional
macroscale flows [46,69]. Our generalized NS model reproduces a similar dynamical symmetry-
breaking effect (Figs. 2 and 5) and predicts optimal geometries that maximize directed transport
[Fig. 3(a)]. Fixing �2 < 0 to realize bacterial vortex structures as described above, we investigate
how the boundary separation Ly and the shear rate γ̇ affect the mean velocity Vc.m. of an active fluid
modeled by Eqs. (1), which is governed by [see Eq. (B7) in Appendix B]

dVc.m.

dt
= 1

Ly

(	+ − 	−). (12)

For wide channels with Ly � �, the flow structures found in the simulations typically resemble a
mixed vortex lattice [Fig. 2(a)]. In this case, the mean flow can fluctuate but is typically undirected
[Fig. 2(d); see also movie 1 in Ref. [67]]. By contrast, for narrow channels, the center-of-mass
velocity Vc.m.(t) can spontaneously select a persistent mean-flow direction [Figs. 2(b), 2(c), and 2(e);
see also movies 2 and 3 in Ref. [67]]. Our parameter scans show that this broken-symmetry phase
extends over a wide range of shear rates if approximately two (Ly ∼ 2�) or four (Ly ∼ 4�) rows of
vortices fit between the boundaries [Fig. 3(a)]. These results are in good qualitative agreement with
recent microfluidic measurements in linearly confined bacterial suspensions; cf. Fig. 4 in Ref. [18].
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B. Frustrated vortex packings

In addition to unidirectional center-of-mass motions, our simulations predict another secondary
top-bottom symmetry-breaking phenomenon. When the boundary separation is close to 2�, the
stress statistics for the two boundaries can be substantially different at high shear V > U [Figs. 2(g)
and 2(i)]. Intuitively, this statistical asymmetry can be explained by the fact that two counterrotating
vortices cannot simultaneously satisfy the externally imposed shear boundary conditions. Thus, one
of the two vortices will be effectively pushed away from the boundary. The resulting asymmetric
vortex alignment produces unequal shear forces on upper and lower boundaries even after long-time
averaging [Fig. 2(i)], illustrating that the rheological analysis of active fluids requires more sensitive
measures than in the case of passive fluids.

C. Low-viscosity phases and edge stresses

Recent experiments [22] reported the observation of zero- and negative-viscosity states in
concentrated Escherichia coli suspensions. Adopting typical bacterial parameters �, τ , and U

as described above, we investigate how the boundary separation Ly and the shear rate γ̇ affect the
effective viscosity ν in the general NS model [Figs. 3(b)–3(f)]. Consistent with the experimental
observations [22], the numerically obtained (γ̇ ,Ly)-phase diagram confirms the existence of an
effectively inviscid phase with ν/�0 � 1 at low to intermediate values of the shear rate γ̇ , when the
boundary separation is around 3� [blue domain in Fig. 3(b)]. Varying the shear rate γ̇ at constant
separation 3�, one observes a viscosity minimum when γ̇ matches approximately the inverse vortex
growth rate 1/τ [Fig. 3(d)]. In this quasi-inviscid regime, three counterrotating vortices fit between
the boundaries, so the flow near the top and bottom aligns optimally with the boundary velocity
[Fig. 3(e), top; see also movie 4 in Ref. [67]]. The nematic field lines of the associated stress field (2)
are defined by the eigenspace axis of the largest eigenvalue ‖σ‖2. In the low-viscosity state, these
director field lines connect primarily to the same boundary and they are separated by stress-free
defects concentrated in the bulk region [Fig. 3(e), bottom; see also movie 4 in Ref. [67]]. Thus, only
a few stress-carrying strings connect the two boundaries, resulting in a significantly reduced shear
viscosity.

D. Viscosity resonances

In contrast to a passive Newtonian fluid, the effective viscosity ν of the active fluid generally
depends nonlinearly on both the shear rate γ̇ and boundary separation Ly [Figs. 3(b)–3(d)].
Qualitatively, we can distinguish between two characteristic regimes, corresponding to shear speeds
V = γ̇ Ly larger or smaller than the characteristic bulk vortex speed U [black lines in Figs. 3(a) and
3(b)]. At small shear speeds V < U , the effective viscosity ν and its fluctuations depend primarily
on the boundary separation Ly , exhibiting oscillatory behavior as Ly increases [Figs. 3(a) and 3(b)].
Viscosity minima occur at selected integer multiples of the characteristic bulk vortex size � and are
separated by maxima that can exceed �0 by more than a factor 2 [Fig. 3(c)]. In such high-viscosity
states, the stress field is nearly defect-free and similar to that of a laminar Newtonian fluid, with
most of the stress field lines connecting the two boundaries [Fig. 3(f), bottom; see also movie 5 in
Ref. [67]]. At supercritical shear speeds V > U , the viscosity ν depends on both Ly and γ̇ , and
viscosity fluctuations decrease strongly with γ̇ , signaling that the bulk dynamics becomes dominated
by the no-slip boundary conditions at high shear [Figs. 3(b) and 3(d)].

V. DISCUSSION

A. Inviscid transition

The (γ̇ ,Ly)-parameter scans confirm the existence of low-viscosity phases when confinement
geometry and shear-rate resonate with the natural bulk vortex size and circulation time scale of an
active fluid [Fig. 3(b)]. The presence of an active driving mechanism is essential for the emergence
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P
D
F

FIG. 7. Transition from a low-viscosity to a normal fluid by changing the activity parameter �2 = �∗
2 + δ�2,

starting from the quasi-inviscid state with �∗
2 < 0 in Fig. 3(e) and keeping Ly = 3� and γ̇ = 2.7τ−1 fixed.

(a) Increasing �2 via δ�2 corresponds to an effective reduction in activity. As the activity is decreased, the
effective shear viscosity first increases before dropping to the value ν/�0 = 1, expected for a passive fluid
with kinematic viscosity �0. (b) Shear-stress histograms for the colored points in (a) show the transition from
low-viscosity flow (blue) to normal laminar flow (red) through a highly viscous state (green). In the vicinity
of the critical point (orange) the fluid can fluctuate between low-stress and high-stress states. Histograms and
mean values were sampled from 12 long runs for each value of δ�2.

of intrinsic length and time scales in the statistically stationary nonequilibrium flow states [14]. It is
therefore interesting to explore how a decrease in the activity, which can be realized experimentally
through oxygen or nutrient depletion [14,22], affects the quasi-inviscid behavior. We study this
process numerically through a systematic change of �2, while keeping all other parameter fixed.
Starting from the low-viscosity state with �∗

2 < 0 shown in Fig. 3(e), we increase �2 by adding an
increment δ�2 > 0 to �∗

2 , corresponding to a decrease in activity. As δ�2 increases, the average
viscosity undergoes a rapid increase before dropping to the value ν/�0 = 1 expected for a passive
fluid with kinematic viscosity �0 [Fig. 7(a)]. The viscosity peak separating the active from the passive
phase can be explained by studying the stress distributions [Fig. 7(b)]: Away from the transition
region, the system remains locked in the quasi-inviscid or the laminar ground state [blue and red
curves in Fig. 7(b)]. In the critical transition regime, large fluctuations can cause the dynamics to
oscillate between a low-stress ground state and excited higher-stress states, resulting in a bimodal
stress distribution and a higher average viscosity [green and orange curves in Fig. 7(b)].

B. Active fluids as motors

Work extraction from active suspensions has been investigated both theoretically [40,43,70] and
experimentally [42,71,72] in recent years, resulting in a number of promising design proposals for
bacteria-powered motors [73] and rectification devices [74,75]. Moreover, recent experiments [22]
report long-lived (greater than 25 s) negative viscosity flows in bacterial suspensions, supporting
theoretical predictions that suggested the possibility of extracting work from polar active fluids
[40]. Equations (1) offer an alternative mechanism for constructing microbial motors by exploiting
long-lived turbulent states that perform work on the boundaries. Conditions for the existence of such
states can be deduced analytically from energy balance considerations (Appendix D), which yield
for the power input

P =
∑

k

k2(�0 + �2k
2 + �4k

4)ε(k), (13)

where ε(k) is the energy spectrum at wave number k. For active fluids with �2 < 0, the power input P
can become negative if the boundary conditions are tuned such that the energy spectrum ε(k) favors
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FIG. 8. Decreasing the aspect ratio α = Lx/Ly stabilizes flow states capable of performing mechanical
work. (a) and (b) Steady-state flows for a narrow channel Ly = 2� and moderate shear γ̇ = 0.77 τ−1, shown
for two different aspect ratios: (a) α = 5 and (b) α = 3. (c) The kinetic energy time series indicates that, for
α = 3, the flow locks into a time-independent steady state, in which fluctuations are completely suppressed by
the no-slip shear boundary conditions. (d) Shear stresses 	±(t) acting on the top (+) and bottom (–) boundary
for the simulations in (a) and (b) yield a negative effective viscosity in both cases, implying that the fluid is
pushing the boundaries. This negative-viscosity effect is enhanced for the stationary state observed at smaller
aspect ratios (b).

modes that produce a negative right-hand side in Eq. (13). Spectra of this type allow the extraction of
mechanical work from the active fluid. We tested this idea by scanning different spectra ε(k) through
variation of the aspect ratio α = Lx/Ly of the simulation domain. Our numerical results confirm the
existence of long-lived work-performing states in the low-shear regime V < U (Fig. 8). In particular,
when the aspect ratio is not too large, α ∼ 3, and the boundary separation matches twice the bulk
vortex scale, Ly ∼ 2� [Fig. 8(b)], then the active flow is found to lock into a stationary state, in
which the shear forces exerted on the boundaries remain constant and have negative sign. In this
case, a simple active fluid motor is obtained by connecting the ends of the domain in Fig. 8(b) to
form a cylindrical film. Such a setup could, in principle, be realizable with bacterial soap films [19].

C. Superfluid analogy

The observation of frictionless flow states in E. coli suspensions [22], which have been
termed superfluid [22,60], raises the question whether there might exist certain phenomenological
similarities between the flow dynamics in quantum superfluids [76] and active suspensions. Effective
hydrodynamic models as in Eq. (3) can provide a useful starting point for systematic future
investigations that explore the parallels and differences at the mean-field level. Such a comparison
is made possible by the fact that quantum fluids can also be effectively described in terms of
hydrodynamic equations after applying a Madelung transformation [77–79] to the complex order
parameters in the Ginzburg-Landau [38,39] and Gross-Pitaevskii [80,81] equations. An important
physical and mathematical difference between the incompressible active suspension model (3) and
the quantum hydrodynamic equations is that the latter are compressible and feature a quantum
pressure that depends nonlinearly on the density [79]. It is interesting that, despite such differences,
the periodic bulk solutions of Eqs. (3) include inviscid vortex lattices [Figs. 1(b)–1(d)] reminiscent of
those in Ginzburg-Landau quantum fluids [38,39,82–84]. In particular, the lattice shown in Fig. 1(c)
is of Abrikosov-type (cf. figures in Refs. [38,39]), suggesting that frictionless flow states may share
universal vortex signatures despite fundamental differences in the microscopic details and in the
form of the governing equations. Similar to quantum vortex lattices, the marginally stable lattice
solutions of our model are exact only in the quasi-infinite fluid and they become replaced by cavity
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modes in the presence of confinement. Yet lattice remnants remain visible in simulations with shear
boundaries (see movie 1 in Ref. [67]).

Another interesting observation is that the half loops in the stress-field lines that form along
moving boundaries in the low-viscosity state [Fig. 3(e), bottom; see also movie 4 in Ref. [67]] bear a
resemblance to the presumed edge-current structure in solid-state quantum Hall devices [cf. Fig. 1(c)
in Ref. [85]]. The role played by the stress tensor for force transmission in an active fluid is comparable
to that of the conductivity tensor for charge current transport in a quantum superfluid [86–88]. The
superfluid defects in the stress field of an active fluid reflect an interruption of force transmission
lines between the boundaries giving rise to low-viscosity states [Fig. 3(e), bottom; see also movie 4
in Ref. [67]]. The suggested phenomenological similarities between active and quantum fluids can
likely be traced back to the fact that these two distinct classes of systems share two key features:
(i) The governing equations describe collective low-energy excitations in the form of coherent vortex
structures and (ii) unlike classical turbulence, the emergent flow structures have a dominant length
scale [89]. In the quantum case, vortices can be supported by an external magnetic field, whereas
in active fluids vortices arise spontaneously from the microscopic and hydrodynamic interactions of
bacteria [12,14], ATP-driven microtubule bundles [5], or other active components. In the future, it
will be interesting to investigate whether, in the quasi-incompressible limit, quantum hydrodynamic
equations can be systematically approximated by equations similar to Eqs. (3) through a suitably
truncated Madelung transformation [77] or by eliminating one of the two velocity fields in two-fluid
models [90]. Moreover, it would be interesting to explore both theoretically and experimentally
whether biologically or chemically driven nonequilibrium flows described by Eqs. (1) and (2) can
mimic other defining characteristics of conventional quantum superfluids, such as wall-climbing
Rollin films [91,92] or the Hess-Fairbank effect [86,93].

VI. CONCLUSION

Phenomenological stress tensors of the type (2) provide a simplified description of nonlocal
stresses in non-Newtonian fluids [34–36,51]. In pattern-forming liquids, such higher-order stresses
arise naturally from diagrammatic expansions [94]. Although quantitatively more accurate stress
tensors for complex active fluids likely include nonlinear correction terms, it is expected that
the generic long-wavelength expansion (2) captures essential stability properties, similar to the
success of Landau-type polynomial approximations for order-parameter potentials in equilibrium
phase-transition theories. In particular, many pattern-forming liquids can be expected to have damped
and growing modes that are separated by a zero-stress manifold in Fourier space. Nonlinear advection
and confinement can bias the flow dynamics towards spending substantial time periods in the vicinity
of effectively frictionless states, suggesting that quasi-inviscid phases may be a quite generic feature
of active fluids. If the predicted nonmonotonic viscosity behavior in Fig. 3(b) can be confirmed
in future experiments, then the practical challenge reduces to designing fluids and confinement
geometries that realize stress fields similar to that in Fig. 3(e).
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APPENDIX A: NUMERICAL METHODS

We simulate typical shear experiments [22] in which two parallel boundaries move in opposite
directions, both at a constant speed V [Fig. 2(a)]. After rescaling by Lx/2π and Ly/2, the simulation
domain is a rectangle (x,y) ∈ D = [−π,π ] × [−1,1] with periodic boundary conditions in the x
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direction and nonperiodic conditions in the y direction. The usual no-slip boundary conditions for
the velocity field v translate into ∂yψ(x,±1) = ±V − Vc.m. and ψ(x,±1) = 0.

A well-known challenge when working in the vorticity–stream-function formulation is that
the Poisson equation (3b) is overdetermined by the combined Dirichlet [ψ(x,±1) = 0] and
Neumann [∂yψ(x,±1) = ±V − Vc.m.] boundary conditions for ψ . For the standard incompressible
NS equations with no-slip boundary conditions, this issue was resolved by Quartpelle and Valz-Gris
[63], who proposed to reinterpret the Neumann data for ψ as a set of integral conditions for the
vorticity ω. In practice, the implementation of these integral conditions involves computing all the
harmonic functions on a given domain.

To solve Eqs. (3) numerically, we translate the integral conditions from the corresponding classical
Navier-Stokes problem, which specifies two boundary conditions. Because Eq. (3a) is a sixth-order
PDE, we need four more constraints to determine the solution. We therefore additionally impose
∇2ω = 0 and ∇4ω = 0 at y = ±1. This phenomenological choice corresponds to the assumption
that the total force on the boundary coming from the higher-order terms (proportional to �2 and
�4) vanishes in a rectangular geometry. Combined with the no-slip assumption, these higher-order
conditions suffice to close the system (3).

To evolve Eqs. (3) in time, we use a third-order semi-implicit backward differentiation formula
time-stepping scheme introduced by Ascher et al. [66], calculating the nonlinear advection term
explicitly, while inverting the linear part implicitly. The instantaneous center-of-mass velocity is
computed by integrating Eq. (B7) with the forward Euler method. For the spatial discretization, we
adopt a spectral method, expanding functions in a basis composed of Fourier modes and Chebyshev
polynomials of the first kind. The implicit inversion is discretized using the well-conditioned scheme
introduced by Olver and Townsend [64,65]. Since the system is periodic in the horizontal direction,
the linear operator separates into one-dimensional operators, one for each Fourier mode. The resulting
one-dimensional discretized linear operators augmented with integral and boundary conditions are
sparse and almost banded and therefore can be efficiently inverted. The explicit calculation of
advection is done by collocation, that is, the relevant derivatives of ω and ψ are evaluated on the
Fourier-Chebyshev grid using the discrete Fourier transform (DFT) and the discrete cosine transform
(DCT), then multiplied, and subsequently converted back to the expansion coefficients using the
inverse DFT and the inverse DCT. Furthermore, the 3/2-zero-padding rule [95] is applied during
the explicit step, to ensure that no spurious terms arising from the finite discretization affect the
collocation calculation. Advection is the most expensive part with a complexity of O(n log n) when
using the computationally optimal fast Fourier transform for a discretization with n = nC × nF,
where nC and nF are the numbers of Chebyshev and Fourier modes, respectively. In our simulations,
a discretization size of nC,nF ∼ 102 suffices to obtain geometric convergence to double-precision
accuracy [Fig. 6(f)].

Simulation runs are initiated as follows. For fixed shear rate γ̇ , a linear shear profile corresponds to
a constant vorticity field ω0 = −2γ̇ . We set ω = ω0 + (small noise) and then correct ω by projection
so that it obeys the integral and boundary conditions. We then solve the Poisson equation (3b) for
ψ . The such generated pair (ω,ψ) is then used to start the time-stepping scheme.

Prior to scanning the parameter space relevant to the shear experiments, we validated our algorithm
against results obtained earlier [33] for the periodic case. When the separation between the boundaries
is large compared to the vortex size, the effect of the boundaries becomes negligible and we recover
energy spectra consistent with those obtained for periodic boundary conditions as well as with
corresponding analytical results. After this cross validation, we applied the Chebyshev-Fourier
spectral method to simulate shear experiments in active fluids.

APPENDIX B: HODGE DECOMPOSITION

In a two-dimensional planar region D with boundary ∂D, the Hodge decomposition for a vector
field v reduces to

v = ∇φ + ∇ ∧ ψ + ∇g + H, (B1)
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where φ and ψ are scalar functions satisfying the boundary conditions φ|∂D = ψ |∂D = 0, g is
a harmonic function ∇2g = 0 with arbitrary boundary data, and H is a harmonic vector field
(∇ · H = 0 and ∇ ∧ H = 0) that is tangential to the boundary (H⊥ = 0). For divergence-free flow
fields, Eq. (B1) simplifies to

v = ∇ ∧ ψ + ∇g + H, (B2)

because ∇ · v = 0 makes φ harmonic with zero boundary data, implying φ = 0 throughout D.
Moreover, imposing no penetration through the boundary (v⊥ = 0) fixes Neumann data for g as
n · ∇g = 0 on ∂D and therefore g = const throughout D. We are then left with

v = ∇ ∧ ψ + H . (B3)

Given that ψ vanishes on the boundary, the physical interpretation of the harmonic field H is that it
accounts for the center-of-mass motion of the fluid. This follows from∫

D
v =

∫
D

H, (B4)

since
∫
D ∇ ∧ ψ vanishes because of ψ |∂D = 0.

Now consider a rectangle with periodic boundary conditions in the x direction. We write the
harmonic field as H = Hx x̂ + Hy ŷ. Since H is harmonic, both Hx and Hy satisfy Laplace’s
equation. Additionally, H⊥ = 0 requires that Hy = 0 on the boundary and hence Hy = 0 throughout
the domain. The divergence-free condition ∇ · H = 0 requires that Hx is a function of t and y only,
Hx(t,y). The curl-free condition ∇ ∧ H = 0 further reduces Hx to be solely a function of time.
From Eq. (B4) we see that Hx represents the center-of-mass speed

H = Vc.m.(t)x̂, (B5)

where x̂ is the unit vector along the x axis. The dynamical equation for Vc.m. follows from Newton’s
second law

M
dVc.m.

dt
= F+ − F−, (B6)

where M is the total fluid mass and F+ = F+ x̂ and F− = −F− x̂ are the forces on the upper
and lower boundaries (i.e., F+ = F− if the boundaries are pulled in opposite directions with equal
force). Since M = ρLxLy , where ρ is the constant two-dimensional fluid density, we obtain

dVc.m.

dt
= 1

Ly

(	+ − 	−), (B7)

where 	±(t) = 1
Lx

∫
dx σyx(x,y = ±1) are the mean kinematic stresses as defined in the main text.

The Hodge decomposition is also quite natural from an energetic perspective, for it provides an
orthogonal splitting of the kinetic energy. In the present case, we have for the total kinetic energy

E(t) = 1

2

∫
D

dx dy v2 = 1

2

∫
D

dx dy[(∂yψ + Vc.m.)
2 + (∂xψ)2] = Eψ + Ec.m., (B8)

where the cross term
∫
D dx dy ∂yψVc.m. vanishes by virtue of the boundary conditions imposed on

ψ . Thus, the total kinetic energy splits into the vortical kinetic energy

Eψ = 1

2

∫
D

dx dy[(∂yψ)2 + (∂xψ)2]

and the center-of-mass kinetic energy

Ec.m. = 1

2

∫
D

dx dy V 2
c.m..

Figure 3(a) shows the proportions of how the total kinetic energy splits between the two components.
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APPENDIX C: CHARACTERISTIC SCALES

To derive characteristic length, time, and velocity scales for the generalized Navier-Stokes model,
consider the linearized vorticity equation

∂tω = �0∇2ω − �2∇4ω + �4∇6ω. (C1)

In Fourier space, this equation reads

∂t ω̂ = −k2(�0 + �2k
2 + �4k

4)ω̂ (C2)

and has solutions of the form

ω̂k(t) = ω̂k(0)eσ (k)t , (C3)

where σ (k) = −k2(�0 + �2k
2 + �4k

4). For �2 < 0, the peak of the spectrum is well approximated
by the maximum kp of the function f (k) = �0 + �2k

2 + �4k
4, yielding

k2
p = −�2

2�4
. (C4)

The associated wavelength is λp = 2π/kp. This wavelength represents two vortices, one with
positive and one with negative vorticity, each of characteristic diameter

� = λp

2
= π

√
2�4

−�2
. (C5)

The corresponding growth rate is

σ (kp) = �2

2�4

(
�0 − �2

2

2�4
+ �2

2

4�4

)
= �2

2�4

(
�0 − �2

2

4�4

)
, (C6)

which sets the time scale

τ = 1

σ (kp)
. (C7)

If we roughly expect that, within time τ , a fluid particle can travel around the vortex pair, then the
characteristic speed is

U = πλpσ (kp) = 2π2

√
−�2

2�4

(
�2

2

4�4
− �0

)
. (C8)

APPENDIX D: ENERGY BALANCE

We derive the energy balance (13) by considering how the total kinetic energy E(t) =
1
2

∫
D dx dy v2 changes with time (using an Einstein summation convention),

dE
dt

=
∫
D

dx dy vi∂tvi =
∫
D

dx dy vi(−vj∂jvi − ∂ip + ∂jσji)

=
∫
D

dx dy

{
−∂i

[
vi

(
1

2
v2 + p

)]
+vi∂jσji

}
= −

∫
∂D

dx

[
v⊥

(
1

2
v2 + p

)]
+

∫
D
dx dy vi∂jσji

=
∫
D

dx dy vi∂jσji . (D1)

In the second line, we used the equation of motion [Eq. (1b)], in the third the incompressibility
condition [Eq. (1a)], in the fourth the divergence theorem (v⊥ is the normal component to the
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boundary ∂D), and in the last the fact that there is no penetration of the fluid through the walls
(v⊥ = vy = 0 at y = ±1). Integration by parts further gives

dE
dt

=
∫
D

dx dy[∂j (viσji) − (∂jvi)σji] =
∫

∂D
dx σyivi −

∫
D

dx dy(∂jvi)σji

= V (F+ + F−) −
∫
D

dx dy(∂jvi)σji . (D2)

In the second line we used the divergence theorem and in the last line the no-slip boundary condition.
Further, F+ and F− are the magnitudes of the force acting on the upper and lower boundaries, as
defined above, and V is the speed of the boundaries. We recognize V (F+ + F−) as the power input
P and therefore, for steady states with dE/dt = 0, we have

P =
∫
D

dx dy(∂jvi)σji . (D3)

Using the explicit form of the stress tensor (2), we obtain

P =
∫
D

dx dy(∂jvi)
(
�0 − �2∂nn + �4∂

2
nn

)
∂jvi .

In terms of Fourier modes v = ∑
k v̂(k)eik·x , the balance reads

P =
∑

k

k2(�0 + �2k
2 + �4k

4)|v̂(k)|2, (D4)

where k = |k|. We now introduce the energy spectrum ε(k) = ∑
k′:|k′|=k |v̂(k′)|2 to recover Eq. (13),

P =
∑

k

k2(�0 + �2k
2 + �4k

4)ε(k). (D5)

APPENDIX E: BOUNDARY CONDITIONS

The dynamical system described by Eqs. (3) is of sixth order in the spatial derivatives. One
therefore needs to specify two more boundary conditions in addition to the usual no-slip conditions.
In contrast to passive flows [62] or passive liquid crystal models, the physically correct boundary
conditions for continuum models describing active polar and/or active nematic suspensions are
generally not well understood, as they may depend on swimmer type [96,97], details of cell-cell and
cell-surface interactions [16], boundary geometry [15], etc. The boundary conditions considered in
the main text (no slip plus ∇2ω = 0 and ∇4ω = 0 at the upper and lower boundaries) were selected
because they produce a bulk flow dynamics similar to those observed in recent bacteria experiments
[18]. In this section we illustrate how changing the higher-boundary conditions affects the bulk flow
solutions. Examples are shown in Fig. 9.

Keeping no-slip boundary conditions throughout, we consider separately the different higher-
order contributions to the stress tensor as well as the behavior of the Laplacian and bi-Laplacian of
the vorticity and its normal derivative on the boundary. In the vorticity–stream-function formulation,
the shear component of the stress tensor given in Eq. (2) reads

σxy = (�0 − �2∇2 + �4∇4)(−∂xx + ∂yy)ψ ≡ σ�0
xy + σ�2

xy + σ�4
xy , (E1)

where σ�i
xy represents the contribution to stress proportional to �i . Thus, one way of generating

higher-order boundary conditions is to fix the various stress contributions separately or combination
of them. Figure 9(a) shows the flow structures obtained by setting σ�2 = 0 and σ�4 = 0 on the
boundary ∂D with the same bulk flow parameters as in Fig. 3(e). The half-loop topology of the
stress field lines is still present in these case, although it appears less regular than in Fig. 3(e).
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FIG. 9. Flow structures for four other choices of higher-order boundary conditions. The following quantities
were set to zero pointwise on the boundary: (a) higher-order stress contributions σ�2 |∂D and σ�4 |∂D , (b) vorticity
and its normal derivative ω and ∂nω, (c) normal components of Laplacian and bi-Laplacian of vorticity ∂n∇2ω|∂D

and ∂n∇4ω|∂D , and (d) normal components of vorticity and the Laplacian of vorticity ∂nω|∂D and ∂n∇2ω|∂D .
The parameters are the same as in Fig. 3(e).

An alternative way of specifying boundary conditions is to control the Laplacian and bi-Laplacian
of the vorticity, ∇2ω and ∇4ω, and/or their normal derivatives, ∂n∇2ω and ∂n∇4ω, respectively. The
boundary conditions adopted in the main text, ∇2ω = 0 and ∇4ω = 0, fall into this category. This
choice implies that the integrated higher-order stress contributions vanish, that is,

∫
∂D

σ�2
xy = 0 and∫

∂D
σ�4

xy = 0. Figures 9(b)–9(d) show flow structures for three other possibilities, again using the
same parameters (Ly,γ̇ ) as in Fig. 3(e). The stiff combination ω = 0 and ∂nω = 0 enforces an
essentially linear shear profile [Fig. 9(b)]. By contrast, the softer choice ∂n∇2ω = 0 and ∂n∇4ω = 0
yields vortical structures with half loops in the stress lines [Fig. 9(c)]. Finally, the semistiff condition
∂nω = 0 and ∂n∇2ω = 0 [Fig. 9(d)] produces a more linear stress field topology without the half
loops but still allows a directed motion of the fluids center of mass. For bacterial suspensions, the
stiffer boundary conditions appear to be ruled out by the experimental results in Ref. [18].
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