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Abstract Important decisions related to human health, such as screening
strategies for cancer, need to be made without a satisfactory understand-
ing of the underlying biological and other processes. Rather, they are often
informed by mathematical models that approximate reality. Often multiple
models have been made to study the same phenomenon, which may lead to
conflicting decisions. It is natural to seek a decision making process that iden-
tifies decisions that all models find to be effective, and we propose such a
framework in this work. We apply the framework in prostate cancer screen-
ing to identify prostate-specific antigen (PSA)-based strategies that perform
well under all considered models. We use heuristic search to identify strate-
gies that trade off between optimizing the average across all models’ assess-
ments and being “conservative” by optimizing the most pessimistic model
assessment. We identified three recently published mathematical models that
can estimate quality-adjusted life expectancy (QALE) of PSA-based screen-
ing strategies and identified 64 strategies that trade off between maximizing
the average and the most pessimistic model assessments. All prescribe PSA
thresholds that increase with age, and 57 involve biennial screening. Strategies
with higher assessments with the pessimistic model start screening later, stop
screening earlier, and use higher PSA thresholds at earlier ages. The 64 strate-
gies outperform 22 previously published expert-generated strategies. The 41
most “conservative” ones remained better than no screening with all models
in extensive sensitivity analyses. We augment current comparative modeling
approaches by identifying strategies that perform well under all models, for
various degrees of decision-makers’ conservativeness.

Keywords comparative modeling · decision analysis · sensitivity analysis ·
model averaging · optimization · prostate cancer screening · simulation
modeling
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1 Introduction

Mathematical modeling has long been an important tool in medical decision
making. Modeling is valuable in assessing and determining optimal cancer
prevention and control strategies [15,52,17,38] because it is a principled way to
estimate the consequences of the large number of plausible screening strategies
(combinations of screening schedules, modalities and positivity thresholds)
and to structure causally explicit analyses of screening trials when there are
substantial protocol departures and extensive missing data [17,25].

All models are based on assumptions that are largely unverifiable; it is
therefore good practice to perform comparative analyses of models, evaluating
the same phenomenon using multiple models whose assumptions differ in im-
portant ways [50,16]. The National Cancer Institute (NCI)-sponsored Cancer
Intervention and Surveillance Modeling Network (CISNET) consortium has
employed comparative modeling to explore screening for lung, breast, and col-
orectal cancers, informing screening guideline recommendations for the United
States Preventative Services Task Force (USPSTF) [34,39,51]. CISNET has
also used comparative modeling to address other public health questions for
prostate [18,12,25] and esophageal cancers [33].

Making sense of comparative model analyses is easy when the results from
multiple models agree, because the conclusions from the multi-model exercise
are the same as those drawn from any of the individual models. When models
disagree, however, making sense of their results is more involved. As Habbema
et al. comment in their reflections on a successful multiyear comparative mod-
eling exercise on breast cancer, “The challenge for reporting multimodel results
to policymakers is to keep it (nearly) as simple as reporting one-model results,
but with an understanding that it is more informative and more credible. We
have not yet met this challenge” [27].

To help address these challenges, we introduce a general framework in
which we identify strategies that have desirable characteristics across the set
of considered models. For cancer screening, it is often the case that a large num-
ber of screening strategies are practical, defined by combinations of clinically
plausible screening schedules (i.e., at which ages to screen), screening modal-
ities (tests or combinations thereof) and, for quantitative tests, thresholds
beyond which the result is considered positive. To identify effective screening
strategies from a large set (in the millions) of implementable decisions instead
of a smaller number of hand-selected strategies, we propose to use mathemat-
ical optimization, a field with a rich history that provides techniques to make
high quality decisions in the presence of models [5].

Consider the following fictitious comparative modeling example, which
compares screening strategies with respect to patients’ quality-adjusted life
expectancy (QALE), using three equally plausible mathematical models. Ta-
ble 1 shows the models’ assessments of the difference in QALE between five
screening strategies and no screening, ordered by the most pessimistic (min-
imum) model assessment. All models agree that strategies 4 and 5 result in
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Table 1 A comparison of three fictitious models

Difference in QALE vs no screening (months)
Strategy Model 1 Model 2 Model 3 Average Pessimistic

1 -1.0 3.0 4.0 2.0 -1.0
2 (no screening) 0 0 0 0 0

3 0.9 1.1 1.0 1.0 0.6
4 1.0 1.5 2.0 1.5 1.0
5 1.2 1.2 1.2 1.2 1.2

higher QALE than (dominate) strategies 2 and 3. However, models disagree
about the ranking of the non-dominated strategies 1, 4, and 5.

Choosing between the non-dominated strategies represents a trade-off. Given
equally plausible mathematical models, the average of all models’ assessments
is the best estimate of a strategy’s health impact; however, most decision mak-
ers would forgo strategy 1 despite its having the highest average assessment
because it is assessed as worse than not screening by at least one model. De-
pending on the degree to which a decision maker is conservative concerning
the most pessimistic model assessment, they might instead prefer strategies
4 or 5. In this work, we use mathematical optimization via an iterated local
search heuristic to identify a set of non-dominated strategies from a large set
of competing strategies, allowing decision makers to optimally trade off the
average and pessimistic assessments based on their preferences.

For concreteness, we outline our methodology through an application to
prostate cancer screening.Among men, prostate cancer is a major cause of
death globally and a leading cause of death in developed countries [19,9].
Because early cancer is more likely to be successfully controlled, early identifi-
cation and treatment of the disease may reduce prostate cancer mortality and
morbidity, decrease treatment costs, and increase the length and the quality of
life at a population level. At the same time, screening can lead to overdiagno-
sis and overtreatment of indolent disease that would never manifest clinically.
Thus, improving screening strategies to optimize the tradeoff between the ad-
vantages and disadvantages of screening holds can have a huge impact on a
global scale [10].

In particular, PSA-based screening for prostate cancer is controversial be-
cause of the risk of overdiagnosis and overtreatment of relatively prevalent
indolent cancers that are unlikely to ever manifest clinically [10]. Five random-
ized controlled trials (RCTs) have compared a recommendation for PSA-based
screening against a no-screening strategy [2,47,45,37,31]. Because of protocol
departures and missing data, strong and untestable assumptions are required
to estimate the causal effect of screening in those who actually received screen-
ing, which complicates the interpretation of the evidence base with respect to
whether screening affects prostate cancer mortality [30]. For these reasons,
modeling is an important tool for evaluating screening strategies [17]. Several
investigators have proposed models that could be used to evaluate competing
screening strategies for prostate cancer, typically modeling the natural history
of the disease, the effectiveness of a specified screening strategy at detect-
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ing the disease, and post-detection outcomes for patients [24,29,32,35,44,49].
Comparative modeling has previously been used to estimate the impact of
PSA screening on U.S. prostate cancer mortality [18], prostate cancer over-
diagnosis rates [12], and the causal effect of screening on those screened in
the PLCO trial [25]. To our knowledge, comparative modeling has not been
used to optimize competing screening strategies for prostate cancer. We use
mathematical optimization via an iterated local search heuristic to identify
all non-dominated strategies from among millions of practical strategies for
PSA-based prostate cancer screening.

2 Methods

2.1 Identification of eligible models

We searched PubMed and the Tufts Cost-Effectiveness Analysis (CEA) Reg-
istry [28] to identify English-language reports of mathematical models that can
evaluate PSA-based screening for prostate cancer in the general population of
screening-age men. We considered eligible any model that allows the estima-
tion of quality-adjusted life expectancy (QALE) for strategies with different
screening schedules (varying start and stop ages and intra-screening intervals)
and age-specific PSA positivity thresholds. We examined publications from
January 1, 2010 to October 3, 2015 to identify models that are current (have
been developed recently or have a longer development history, but are actively
maintained). A single reviewer screened citations and full texts for eligibility.
The exact search strategy is in Appendix A.

2.2 Model implementation and adaptation

For eligible models, we either re-implemented the model de novo if the pub-
lication provided sufficient detail to do so or otherwise obtained a software
implementation of the model from the original investigators.

For each model, we extracted information on their evidence sources, the
health states or events they account for (e.g., how they modeled cancer devel-
opment and progression and how they model downstream effects of screening
including management of screen-detected cases), how they modeled the evo-
lution of PSA levels (e.g., accounting for within-person correlations or not),
and their computational approach (e.g. discrete time Markov processes or mi-
crosimulation models). We also recorded data sources, whether model param-
eters were calibrated, and, as applicable, the calibration targets.

We adapted eligible models to estimate QALE in a uniform way. We as-
signed quality-of-life decrements for screening attendance, biopsy, cancer diag-
nosis, radiation therapy, radical prostatectomy, active surveillance, palliative
therapy, and terminal illness, and we used the literature-based estimates of
preference weights that were employed in a quality-of-life analysis of the Euro-
pean Randomized Study of Screening for Prostate Cancer (ERSPC) trial [29].
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2.3 Identification of optimal screening strategies across all models

There are infinitely many screening strategies defined by start and stop ages,
intra-screen intervals, and age-specific positivity thresholds. To select those
that are practical to implement, we consider all annual and biennial screening
strategies with age-specific PSA cutoffs of 0.5, 1.0, 1.5, . . . , 6.0 ng/mL. Because
PSA levels rise slowly with age [43], we assumed that practical screening strate-
gies can have fixed PSA cutoffs for 5-year age ranges and that cutoffs should
not decrease as patients age. In total, there are more than 10.4 million such
screening strategies for men aged 40–100, which can be evaluated with each
eligible model.

For each model, we computed the optimal strategy, that is, the strategy
with the largest QALE improvement over no screening.

In comparative modeling we aimed to identify screening strategies that
maximally improve QALE compared to no screening across the K models that
are considered in the analysis. Given a screening strategy s and models’ evalu-
ations of that strategy’s improvement over no screening, m1(s), . . . ,mK(s), we
define the average assessment of the models to be [m1(s)+. . .+mK(s)]/K and
the most pessimistic assessment to be the minimum min[m1(s), . . . ,mK(s)].
The average model assessment (model averaging) is a typical choice within the
subjective expected utility framework [13]. The most pessimistic assessment
is also a typical choice in a maxmin expected utility framework [21]. In the
main analyses, we assigned equal weight to each model’s assessment, because
we chose to not favor one model over another a priori. Because models can
differ in the range of the assessments, the equally-weighted average assessment
can be influenced more by an “outlier” model that systematically yields larger
assessments. In sensitivity analyses we scaled each model’s assessment by the
model’s maximum assessment. Alternative objectives can be used, including
objectives that assign different weights to each model’s assessment and use
different aggregation functions over models’ assessments.

Because of the large number of screening strategies that must be evaluated,
it is impractical to identify optimal strategies within and across models by
exhaustively enumerating all possible strategies. Rather, we employed mathe-
matical optimization using a constrained local search algorithm. Details on and
validation results of the optimization procedure are provided in Appendices C
and D.

We computed the efficient frontier of non-dominated strategies that trade
off between the average and most pessimistic model assessments in a manner
analogous to the example in Table 1. This is in agreement with α-maxmin
expected utility frameworks [23], which have been used to analyse decision
making in the context of ambiguity. Among the strategies on the efficient
frontier, we define as more “conservative” those that have higher QALE as-
sessments under the most pessimistic model. Finally, we compare the screening
strategies on the efficient frontier to five expert-generated strategies from Ross
et al. [44] and 17 expert-generated strategies from Gulati et al. [24].
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2.4 Sensitivity analyses

We performed two sets of sensitivity analyses. First, we used one-way sensi-
tivity analyses to examine the stability of QALE assessments for strategies on
the efficient frontier, the optimal strategies according to each model, and the
22 expert-generated strategies. These analyses pertained either to parameters
governing the natural course of the disease, which were specific to each model,
or to quality-of-life decrements associated with various events or health states,
which were common across models and obtained from [29]. We varied each
parameter of each model over the range defined in the sensitivity analysis in
the respective papers (Appendix B) and recorded QALE assessments.

In the second set of sensitivity analyses we repeated the main analyses using
quality-of-life decrement values that least favor screening, from the sensitivity
analysis ranges in [29]. Specifically, we chose the sensitivity range values that
least discount time spent under palliative therapy and with terminal illness
and the sensitivity range values that most discount biopsy, cancer diagnosis,
radiation therapy, radical prostatectomy, and active surveillance.

3 Results

3.1 Description of eligible models

Appendix Figure 5 shows the results of the literature search. Briefly, of the 547
and 75 citations returned by PubMed and CEA Registry searches, respectively,
36 were examined in full text. Three models fulfilled the eligibility criteria and
were included in this analysis; we refer to them as Z [53], U [49] and G [24]. The
most common reasons for exclusion were that a publication did not pertain
to a mathematical model of PSA-based screening or that a described model
could not evaluate screening under alternative PSA thresholds. Notably, we
did not include two CISNET models of prostate cancer natural history [48,12]
because they do not model PSA values through time and therefore cannot be
used to evaluate screening strategies with different PSA positivity thresholds.

Table 2 summarizes the characteristics of the three models. Model G is a
CISNET microsimulation model, and models U and Z both use discrete-time
Markov models of disease state. Models U and Z were developed by the same
research team but have different disease states and different approaches to
modeling PSA levels through time.

3.2 Optimal strategies with each model

The three models differ in their estimate of the maximum attainable improve-
ment in QALE across the 10.4 million strategies. The maximum attainable im-
provements with models G, U and Z were 0.5, 4.8, and 6.7 months of QALE,
respectively (Table 3). Models U and Z favored more aggressive strategies,
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Table 2 Characteristics of eligible models

Model G [24] Model U [49] Model Z [53]
Stated purpose

Screening strategy evaluation Yes Yes Yes
Epidemiological analysis Yes No No
Population trends Yes No No

Modeled interventions
Screening Yes Yes Yes
Treatment Active surveillance,

radical prostatectomy,
radiation ± hormones

Radical prostatectomy Radical prostatectomy

Structure & assumptions
Health states or attributes No cancer; cancer

(by grade and stage);
metastases; cancer death;
other death

No cancer;
non-metastatic cancer;
metastases; cancer death;
other death

No cancer;
cancer; cancer death;
other death

PSA modeling Linear changepoint model
for log(PSA)

PSA varies by health state
and last PSA measurement

PSA varies by health state

Adherence to screening Imperfect Perfect Perfect
Data sources

Biopsy compliance/accuracy PLCO, systematic review Autopsy study Autopsy study
Natural and clinical history Fitted via calibration,

SEER, life tables
Autopsy study, chart review,
decision analysis, SEER,
life tables

Autopsy study,
retrospective cohort study,
life tables

PSA growth PLCO, PCPT OC PSA data OC PSA data
Screening dissemination NHIS — —
Treatment dissemination SEER — —
Treatment effectiveness SPCG4, observational

studies
MCRPR MCRPR

Analytic approach
Modeling approach Microsimulation,

time to event
Microsimulation with
underlying Markov model

Discrete time Markov

Calibration To clinical trial and
registry results

To incidence observed
in autopsy studies

To incidence observed
in autopsy studies

ERSPC: European Randomized Study of Screening for Prostate Cancer; MCRPR: Mayo
Clinic Radical Prostatectomy Repository; NHIS: National Health Interview Survey; OC:
Olmsted County, Minnesota, USA; PCPT: Prostate Cancer Prevention Trial; PLCO:
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; PSA: prostate specific anti-
gen; SEER: Surveillance, Epidemiology and End Results; SPCG4: Scandinavian Prostate
Cancer Group trial 4.

with earlier start age, annual screening, and lower PSA thresholds, while model
G favored less aggressive screening with PSA thresholds that rise as people
age. The models disagreed not only about the magnitude of the maximum
expected improvement in QALE but also about the relative ranking of the
strategies. For example, according to model G, the best-performing strategy
identified with model U was worse than no screening by approximately 6 days
of QALE.
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Table 3 Best-performing strategies with each model

Strategy QALE, Improvement over no-screening (months)
Age range @ PSA threshold Model G [24] Model U [49] Model Z [53] Average Pessimistic
Biennial 45-54 @ 1.5

55-59 @ 2.5
60-64 @ 3.5
65-69 @ 4.0
70-74 @ 6.0

0.5 1.7 5.4 2.6 0.5

Annual 40-69 @ 0.5
70-74 @ 1.5

−0.2 4.8 5.8 3.5 −0.2

Annual 40-84 @ 2.5
85-89 @ 4.0

0.2 1.6 6.7 2.8 0.2

PSA thresholds are in ng/mL.

3.3 Efficient frontier of strategies across all models

Figure 1 displays aggregates of models’ assessments of select strategies. Out
of 10.4 million possible strategies, 64 stand out when we considered results
across all three models, in that they form an efficient frontier (empty circles
in the figure): No other strategies attained higher QALE improvement over
no screening both on average and according to the most pessimistic model.
Model G had the most pessimistic assessment for all strategies on the efficient
frontier.

For comparison, Figure 1 depicts the optimal strategies identified with
models G, U , and Z (shown in Table 3) as well as the 22 expert-generated
strategies. None of the expert-generated strategies were on the efficient fron-
tier: For each expert-generated strategy, there was a strategy on the efficient
frontier with at least as good of a pessimistic assessment and at least 0.5 more
incremental months of QALE according to the average assessment. Further,
for each expert-generated strategy, there was a strategy on the efficient fron-
tier with at least as good of an average assessment and at least 0.05 more
incremental months of QALE according to the most pessimistic assessment.

The left panel in Figure 2 displays the exact screening schedules and age-
specific thresholds for select strategies that span the efficient frontier (EF1,
EF22, EF44, and EF64). The most conservative of these, EF1, is the optimal
strategy with model G (first row in Table 3). The right panel of the figure
outlines all 64 strategies on the efficient frontier. Fifty-seven strategies on the
frontier are biennial strategies. The most conservative strategies (light blue
in the right panel of the figure) tend also to be less aggressive, in that they
tend to start screening at later ages, stop at earlier ages, and use higher PSA
thresholds. The least conservative (light red) tend to be more aggressive, as
they start screening at earlier ages, stop at later ages, and use lower PSA
screening thresholds.
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Fig. 1 Average and most pessimistic assessments of identified and expert-generated screen-
ing strategies. The 64 strategies on the efficient frontier are shown as empty circles. Strategies
EF1 to EF22 (most conservative tertile) are in blue, EF23 to EF44 (next less conservative
tertile) in purple, and EF45 to EF64 (least conservative tertile) in red. The optimal strate-
gies according to models G (G-best), U (U -best), or Z (Z-best) are shown with ‘x’ markers.
The 22 expert-generated strategies are shown as empty squares. Assessments of QALE over
no screening with each model are shown in parentheses for some strategies. For example, for
strategy EF1, which is also the optimal strategy with model G, the assessments of models
G, U , and Z were 0.5, 1.7, and 5.4 months, respectively.

3.4 Sensitivity Analysis

In one-way sensitivity analysis we assessed each strategy plotted in Figure 1
under the 80 sensitivity scenarios specified in Appendix B. Several strate-
gies were found to improve over no screening in all scenarios, including all 22
expert-generated strategies and 53 of the 64 strategies on the efficient frontier,
including the 41 most conservative strategies, EF1 (the strategy optimized
according to model G) through EF41. Eleven strategies on the efficient fron-
tier (EF42–EF45, EF48–EF49, and EF56–EF60) and the strategies optimized
according to models U and Z performed worse than no screening in at least
one of the 80 scenarios.

When the 64 strategies on the efficient frontier were evaluated using model
G under all 30 sensitivity scenarios specified in Appendix B, they had the
worst average performance when the metastasis rate was set to the low value
in its sensitivity range (0.18 months of incremental QALE) and when the post-
recovery QALE decrement was set to its high value (0.21 months of incremen-
tal QALE), while the strategies had their best average performance when the
post-recovery QALE decrement was set to its low value (0.74 months of incre-
mental QALE) and when the palliative therapy QALE decrement was set to
its high value (0.47 months of incremental QALE). When the same 64 strate-
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Fig. 2 Screening strategies on the efficient frontier in Figure 1 trading off average and most
pessimistic QALE assessment. The left panel shows four strategies along the efficient frontier
(from most to least conservative: EF1, EF22, EF44, and EF64). Dots indicate screenings.
EF1 optimizes the pessimistic assessment; it is also among the least aggressive strategies on
the efficient frontier, in that it starts screening at a later age, ends at an earlier age, and
uses higher age-specific positivity thresholds. The right panel outlines all 64 strategies on
the efficient frontier, with random jitter added for visibility. EF1 to EF22 (most conservative
tertile of the efficient frontier) are in light blue, EF23 to EF44 (next less conservative tertile)
are in light purple, and EF45 to EF64 (least conservative tertile) are in light red.

gies were evaluated using model U under all 26 sensitivity scenarios specified
in Appendix B, they had the worst average performance when the incidence
rate was set to its low value (0.39 months of incremental QALE) and when
the metastasis probability was set to its low value (3.12 months of incremental
QALE), while they had the best average performance when the death rate
with metastatic cancer was set to its high value (7.18 months of incremental
QALE) and when the incidence rate was set to its high value (6.90 months
of incremental QALE). Finally, when the same 64 strategies were evaluated
using model Z under all 24 sensitivity scenarios specified in Appendix B, they
had the worst average performance when the incidence rate was set to its low
value (1.12 months of incremental QALE) and when the prostate cancer death
rate was set to its low value (4.30 months of incremental QALE), while they
had the best average performance when the incidence rate was set to its high
value (9.12 months of incremental QALE) and when the prostate cancer death
rate was set to its high value (7.31 months of incremental QALE).

Figure 3 shows another set of sensitivity analyses using the most pessimistic
quality-of-life decrements in the sensitivity ranges from [29] and re-optimizing
to find the strategies on the efficient frontier and the most effective strategies
according to each model. Of the 112 strategies on the efficient frontier, 73
improved QALE compared to no screening according to all three models. The
remaining 39 performed worse than no screening according to model G. In all,
18 of the 22 expert-generated strategies and the optimal strategies obtained
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with models U and Z performed worse than no screening according to modelG.
According to the most pessimistic assessment across the three models (strategy
EF′

1 in Figure 3), patients undergo biennial screening between ages 50–69
years, with PSA positivity thresholds of 3.5 ng/mL between 50–54, 5.0 ng/mL
between 55–59, and 6.0 ng/mL between 60–69.
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Fig. 3 Average and most pessimistic assessments of identified and expert-generated screen-
ing strategies using the most pessimistic quality-of-life decrements from [29]. The color of
strategies on the efficient frontier changes from light blue to light purple to light red as one
moves from more to less conservative strategies.

Figure 4 outlines all strategies on the efficient frontier in Figure 3. Strategy
outlines are color-coded according to their place on the efficient frontier. As
in the main analyses, the more conservative ones (light blue) tend to start
screening at later ages, stop at earlier ages, and use higher PSA thresholds.
The less conservative ones (light red) tend to start screening at earlier ages,
stop at later ages, and use lower PSA thresholds.

Appendix E provides details of a further sensitivity analysis, normaliz-
ing each model’s assessment of the QALE change compared to not screen-
ing to have a maximum value of 1. This normalization ensures that models
with systematically more optimistic assessments of screening strategies are not
weighted more heavily than others in the model averaging objective. This nor-
malization results in a qualitatively different efficient frontier that is smaller
and has more homogeneous screening strategies.
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Fig. 4 Outlines of 112 strategies on the efficient frontier in Figure 3, with random jitter
added for visibility. The color changes from light blue to light purple to light red as one moves
from more to less conservative strategies on the efficient frontier (from EF′

1 to EF′
112).

4 Discussion

We describe an approach that is practical for addressing public health and clin-
ical questions by means of comparative mathematical modeling, much like the
comparative modeling used by the USPSTF to inform their recommendations
about cancer screening [34,39,51]. One of the major challenges in comparative
modeling pertains to dealing with and communicating the implications of con-
flicting model assessments [27,36]. We believe we advance typically employed
comparative modeling methodologies in two ways. First, instead of exploring
a relatively small set of predefined strategies (on the order of hundreds), we
use mathematical optimization via an iterated local search heuristic to iden-
tify optimal strategies amongst a much larger set (in the millions) of imple-
mentable strategies. In the prostate cancer screening application we improved
substantially over 22 previously published expert-generated strategies [44,24].
Second, we identify strategies that perform well under all considered models.
We provide decision makers with tunable control by computing an efficient
frontier of optimal strategies that trade off between performing well on av-
erage across models and performing well on the most pessimistic model. An
advantage of the more pessimistic strategies is that they are more robust to
parameter uncertainty: In the prostate cancer screening example, the 41 most
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conservative strategies out of 64 on the efficient frontier remained beneficial
over no screening across all 80 one-way sensitivity scenarios considered.

More generally, decision making is complicated by uncertainty — aleatory
uncertainty that stems from the imprecision with which we learn from the finite
empirical data in our evidence base and epistemic uncertainty that stems from
our limited understanding of how the world works and that hinders our ability
to structure and interpret said imprecise learnings [41]. Much theoretical and
applied work has focused on decision making under aleatory uncertainty [41,
7], but, at least in health applications, less work has focused on negotiating
epistemic uncertainty. We add to the methodological literature by providing
a way to explore the impact of epistemic uncertainty, at least to the extent
it is represented by a finite set of well-defined interpretations of the avail-
able evidence. In that sense, our work complements approaches such as model
averaging and structural sensitivity analysis [13,6].

The optimal strategies implied by models U and Z (Table 3 and Figure 1)
are aggressive according to current clinical thinking [10], because they start
early (age 40) and employ low PSA positivity cutoffs. Several key differences
in the structures of the models could lead to the more aggressive screening
strategies favored by models U and Z: neither of these models include clinical
detection of cancer, both assume perfect screening and treatment adherence,
and neither includes an active surveillance treatment option. Additionally,
model Z does not model a patient’s screening history of PSA test results
when simulating a new PSA test result, likely overestimating how informative
frequent tests will be. Beyond differences in the models, certain classes of
screening strategies, such as those that take into account PSA velocity, those
that vary screening strategies based on an initial baseline measurement, and
those screening with other biomarkers were not considered in this work. The
fact that the findings of this study cannot inform public health decision making
is a limitation of the example but not of the proposed framework. Further, the
large difference in the aggressiveness of the optimal strategies according to the
three models nicely illustrates how our tool presents a range of decisions when
models disagree in their assessments of strategies.

We adopted an approach similar to the α-maxmin expected utility frame-
work [23] and examined objectives that are convex combinations of the average
and the most pessimistic of (equally-weighted) model assessments. The aver-
age model assessment is the theory-based choice within a subjective expected
utility framework, and the most pessimistic assessment is a typical choice in a
maxmin expected utility framework [21]. However, the objective that a deci-
sion maker might use depends on the decision maker’s preferences and on the
problem at hand, and is determined by practical and aesthetic criteria and not
by data. Entirely different objectives can be sensible and defensible, as long as
they are consistent with the decision maker’s thinking and with the context
of the problem.

The approach proposed in this work could be extended in several ways. The
more models one considers, the more extreme the observed range in model as-
sessments can be. One way to reduce the observed heterogeneity in models’
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assessments is to use ratios of QALE attained by different strategies versus
QALE attained with no screening, instead of absolute differences [27]. More
generally, however, one can aggregate model assessments in various ways to
decrease the impact of extreme model assessments. In sensitivity analyses, we
scaled each model’s assessments by their maximum; this effectively assigns
smaller weight to models U and Z and larger weight to model G in the model
averaging objective, and Appendix E shows that this can qualitatively im-
pact the efficient frontier obtained. More generally, one could use different
objectives. Instead of using the most pessimistic assessment one could use a
different rank-based statistic such as a weighted average of several of the most
pessimistic assessments. Analogously, one could replace the average assessment
with weighted averages or averages of ranks of models’ assessments.

In our example we used QALE as the only decision-relevant quantity,
though we could have measured and used other quantities instead, includ-
ing life expectancy or costs. We conjecture that the approach outlined here
can be extended to multi-criteria decision analyses with M decision-relevant
quantities [20]. One way would be to compute efficient frontier surfaces in
2M dimensions, the total number of average and pessimistic aggregations of
models’ assessments for the M decision-relevant quantities.

In our analysis we examined only the average length of quality-adjusted
life and did not explicitly consider the variation around it (i.e., the propaga-
tion of the aleatory uncertainty around model inputs [7]). Several ways exist
to incorporate variation in models’ assessments. In the computation of the
efficient frontier in Figure 1 one could also include strategies that are “near”
the efficient frontier in a sense that accounts for propagated uncertainty in
models’ assessments.

We believe that the largest practical obstacle in the routine application
of the proposed approach is to identify well developed and validated mod-
els that meaningfully capture the salient aspects of the decisional problem at
hand and that would be considered by the decision makers [27]. We used the
PSA-based screening example for exposition and not to inform public health
decision making. While we were systematic in selecting models for inclusion in
the example, this example does not rise to the standard of multi-year compar-
ative modeling exercises. For example, the identified prostate cancer models
differed substantially in their inputs, calibration to external data, preference
weights, and purpose, and are not as conducive to a comparative modeling
exercise as a they would be had they been developed in tandem, for the same
purpose. We deem that our approach is best suited in the context of already
established comparative modeling consortia, in which the input sources across
the models are standardized, the models’ output is calibrated against the same
external data, and there are iterative development steps for code verification
or to identify implausible assumptions. Examples include modeling consortia
on colorectal, breast, and lung cancer [51,39,34]; on tuberculosis [11]; and on
human immunodeficiency virus [14].
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T., Carlsson, S., Korfage, I.J., Essink-Bot, M.L., Otto, S.J., Draisma, G., Bangma, C.H.,
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A Literature Review

We searched PubMed (January 1, 2010, through October 3, 2015) using the following query:

("Early Detection of Cancer"[Mesh] OR "early diagnosis"[Mesh] OR

"Prostatic Neoplasms/Diagnosis"[Mesh] OR "Mass Screening"[Mesh] OR screening)

AND ("decision analysis" OR "decision analyses" OR

"Decision Support Techniques"[Mesh] OR "Decision Trees"[Mesh] OR

"decision trees" OR "Cost-Benefit Analysis"[Mesh] OR

"cost-benefit analysis" OR "Markov Chains"[Mesh] OR

"Computer Simulation"[Mesh] OR "computer simulation" OR

simulate OR simulation[all fields] OR simulating OR

"Monte Carlo Method"[Mesh] OR "monte carlo method" OR markov)

AND ("prostate cancer" OR "Prostatic Neoplasms"[Majr])

We also searched the Tufts Cost-Effectiveness Analysis Registry [28] (from inception to
October 3, 2015) for the term “prostate”. Two citations were retrieved in full text, but were
also identified in the PubMed searches. Figure 5 shows the results of searches and reasons
for exclusion.

One modification was required to use Model Z [53] to assess an arbitrary PSA-based
screening strategy. Given a patient’s cancer status, Model Z assigns a probability that the
patient will have a PSA value in the ranges [0, 1), [1, 2.5), [2.5, 4), [4, 7), [7, 10), and [10,∞).
We assume all PSA values in a range are equally likely to occur, and we limit to PSA values
between 10 ng/mL and 20 ng/mL for the highest range.

Cita%ons))
•  PubMed)(n=547)))
•  Tu7s)CEA)Registry)(n=75))

Retrieved)in)full)text)(n=36))

Eligible))
•  10)papers)referring)to)3)

mathema%cal)models)

Excluded((n=26)((
•  Not)a)mathema%cal)model)of)

PSAKbased)screening)(n=10))
•  Cannot)evaluate)ageKspecific)

PSA)thresholds)(n=9))
•  Not)for)general)popula%on)

(n=2))
•  Cannot)evaluate)varying)

screening)intervals)(n=2))
•  No)life%me)outcomes)(n=3))

Fig. 5 Literature identification.

B Sensitivity Analysis

We varied parameters based on sensitivity ranges used in the papers describing each model.
The variables names are from the respective papers.
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B.1 Model G [24], parameters governing the course of the disease

We varied each of the following five parameters to the maximum and minimum value in the
100 sets of sensitivity parameters used in Gulati et al. [24].

– grade.onset.rate: A rate controlling how quickly patients experience prostate cancer
onset.

– grade.metastasis.rate: A rate controlling how quickly patients with undetected prostate
cancer experience metastasis.

– grade.clinical.rate.baseline: A rate controlling how quickly a patient’s cancer is clinically
detected.

– grade.clinical.rate.distant : A rate controlling how quickly a patient’s cancer is clinically
detected after metastasis.

– low.grade.slope: A parameter controlling the likelihood that a patient who developed
cancer has a low-grade cancer.

B.2 Model U [49], parameters governing the course of the disease

We varied parameters using sensitivity ranges from [49].

– dt: The rate of other-cause (non-prostate cancer) mortality at age t was varied ±20%
from the base-case parameter values from [3,42].

– wt: The prostate cancer incidence rate for a man at age t was varied using sensitivity
ranges from [8]. For patients aged 40–49, the sensitivity range was defined as [0.00020,
0.00501]; for patients aged 50–59, the sensitivity range was defined as [0.00151, 0.00491];
for patients aged 60–69, the sensitivity range was defined as [0.00243, 0.00852]; for
patients aged 70–79, the sensitivity range was defined as [0.00522, 0.01510]; and for
patients aged 80 or more, the sensitivity range was defined as [0.00712, 0.01100].

– bt: The annual probability of metastasis among patients with detected cancer treated
with radical prostatectomy was varied ±20% from the base-case parameter value of
0.006 derived from the Mayo Clinic Radical Prostatectomy Repository.

– et: The annual probability of metastasis among patients with undetected cancer was
varied ±20% from the base-case parameter value of 0.069 from [22,46].

– zt: The annual probability of dying from prostate cancer among men aged t with
metastatic disease was varied using the sensitivity range [0.07, 0.37] from [40,4] around
the base-case values of 0.074 for patients aged 40–64 and 0.070 for patients aged 75 and
older [42].

– f : The probability of a biopsy detecting cancer in a patient with prostate cancer was
varied ±20% from its base-case value of 0.8 from [26].

B.3 Model Z [53], parameters governing the course of the disease

The sensitivity analyses in [53] did not vary any parameters governing the course of the
disease, and pertained only to costs and literature-derived quality-of-life decrements. Because
of the similarities with model U , we used the sensitivity ranges from model U for model Z’s
dt, wt, and f parameters, additionally varying the following parameters:

– bt: The annual probability of a man of age t with detected prostate cancer treated with
radical prostatectomy dying of the disease was varied ±20% from its base-case value of
0.0067 for men aged 40–64 and 0.0092 for men aged 65 and older [42].

– et: The annual probability of a man of age t with undetected prostate cancer dying of
the disease was varied ±20% from its base-case value of 0.033 from [1].
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B.4 All models, quality-of-life decrements

Each model in this work uses the literature review-based quality-of-life decrements (utility
weights) from a re-analysis of the ERSPC study from [29]. The sensitivity analysis ranges
used in that work are as follows:

– Screening attendance: The utility estimate for the week following screening was varied
in range [0.99, 1.00] from base estimate 0.99.

– Biopsy: The utility estimate for the three weeks following biopsy was varied in range
[0.87, 0.94] from base estimate 0.90.

– Cancer diagnosis: The utility estimate for the month following cancer diagnosis was
varied in range [0.75, 0.85] from base estimate 0.80.

– Radiation therapy: The utility estimate for the first two months after radiation therapy
was varied in range [0.71, 0.91] from base estimate 0.73, and the utility estimate for
the next 10 months after radiation therapy was varied in range [0.61, 0.88] from base
estimate 0.78.

– Radical prostatectomy: The utility estimate for the first two months after radical prosta-
tectomy was varied in range [0.56, 0.90] from base estimate 0.67, and the utility estimate
for the next 10 months after radical prostatectomy was varied in range [0.70, 0.91] from
base estimate 0.77.

– Active surveillance: The utility estimate for the first seven years of active surveillance
was varied in range [0.85, 1.00] from base estimate 0.97.

– Postrecovery period : The utility estimate for years 1–10 following radical prostatectomy
or radiation therapy was varied in range [0.93, 1.00] from base estimate 0.95.

– Palliative therapy: The utility estimate during 30 months of palliative therapy was varied
in range [0.24, 0.86] from base estimate 0.60.

– Terminal illness: The utility estimate during six months of terminal illness was varied
in range [0.24, 0.40] from base estimate 0.40.

C Building an Efficient Frontier of Screening Strategies

Given a screening strategy s, let A(s) be the average assessment of the strategy across all
mathematical models and let P (s) be the pessimistic assessment of the strategy across
all mathematical models. To construct an efficient frontier of strategies trading off the
average and most pessimistic assessment, we use mathematical optimization via an iter-
ated local search heuristic to maximize the objective function λA(s) + (1 − λ)P (s) for
λ ∈ {0, 0.1, 0.2, . . . , 1.0} over annual screening strategies and biennial screening strategies,
optimizing a total of 22 times. From the set of all screening strategies encountered during the
optimization process (not just the final values identified through optimization), we construct
an efficient frontier trading off the average and pessimistic assessments. Solutions encoun-
tered while optimizing the objective with parameter value λ using iterated local search may
not be optimal for the objective with that λ but may still lie on the efficient frontier trading
off the average and pessimistic assessments, so the final efficient frontier may contain more
than 22 efficient strategies.

The key step in constructing the efficient frontier is solving maxs∈S λA(s)+(1−λ)P (s),
where S is the set of all feasible screening strategies. We consider strategies with age-specific
PSA cutoffs limited to 0.5, 1.0, 1.5, . . ., 6.0 ng/mL, fixed cutoffs for 5-year age ranges,
and cutoffs that are non-decreasing in a patient’s age. We consider screening from ages
40 through 99, so there are 10.4 million possible screening strategies; as a result, it would
be time consuming to use enumeration to identify the strategy with the highest average
incremental QALE compared to not screening. Instead, we use constrained iterated local
search to identify a locally optimal strategy that cannot be improved by changing a single
age-specific PSA threshold.

The central step in the iterated local search is the local search, which takes as input
a screening strategy s and a single age range r and searches a small number of similar
strategies to s. For each possible PSA threshold (0.5, 1.0, . . . , 6.0 ng/mL), the local search
procedure constructs a new strategy by modifying s to use that threshold in age range r,
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additionally making the smallest possible changes to the remaining PSA thresholds in s
to retain non-decreasing PSA thresholds in age. Each of these 12 screening strategies is
evaluated, and if any improves over s then the one with the best objective value is selected
to replace s. In the case where r is either the first or last age range in s in which patients
screen, the procedure also considers a no-screening option for age range r.

As an example, consider a screening strategy for which annual screening is performed
for ages 45–69, with cutoff 2.0 ng/mL from ages 45–49, 3.0 ng/mL from ages 50–54, and 5.0
ng/mL from ages 55–59, 60–64, and 64–69. We can write this screening strategy compactly
as (2, 3, 5, 5, 5), with each value in the vector representing the cutoff for a 5-year period. If
we apply local search to the cutoff for ages 55–59, then we will consider changing the cutoff
for that age range to each value in {0.5, 1.0, 1.5, . . . , 6.0} ng/mL, adjusting other cutoffs the
smallest amount possible to ensure all cutoffs are non-decreasing in age. For instance, if the
cutoff for ages 55–59 were set to 2.5 ng/mL, then the cutoff for ages 50–54 would also need
to be decreased to 2.5 ng/mL in order to maintain non-decreasing cutoffs, yielding final
screening strategy (2, 2.5, 2.5, 5, 5). The set of all possible screening strategies considered by
a local search on age range 55–59 is:

(0.5, 0.5, 0.5, 5, 5)

(1, 1, 1, 5, 5)

(1.5, 1.5, 1.5, 5, 5)

(2, 2, 2, 5, 5)

(2, 2.5, 2.5, 5, 5)

(2, 3, 3, 5, 5)

(2, 3, 3.5, 5, 5)

(2, 3, 4, 5, 5)

(2, 3, 4.5, 5, 5)

(2, 3, 5, 5, 5)

(2, 3, 5.5, 5.5, 5.5)

(2, 3, 6, 6, 6)

Among these strategies, the one resulting in the largest objective value λA(s) + (1 −
λ)P (s) is the one selected by the local search.

The iterated local search begins with a strategy of never screening for prostate cancer.
The procedure repeatedly loops through a random permutation of the age ranges, performing
local search on an age range if it’s within 5 years of an age range for which the current
strategy screens with PSA. The procedure terminates when the current screening strategy
cannot be improved by applying local search to any valid age range.

D Details of Optimizing Screening Strategies

The iterated local search procedure was implemented in python. The C source code for
model G and the C++ source code of model U were provided by the authors of those works;
model U was re-implemented in python to improve the efficiency of the procedure. Model Z
was implemented in python based on the published description of that model. All procedures
were tested on a Dell Precision T7600 with 128 GB RAM and two Intel Xeon E5-2687W
Processors, each with 8 cores and a clock speed of 3.1 GHz.

The runtime of the iterated local search procedure for each objective function is provided
in Table 4.

To validate the performance of the local search optimization approach, we computed
the exact optimal solution for models Z and U by evaluating all 5.2 million feasible biennial
strategies and all 5.2 million feasible annual strategies with each model, a process that
required 60.1 CPU hours for model Z and 369.1 CPU hours for model U . The local search
heuristic had identified the global optimal solution for models Z and U . Given the heavy
computational burden of evaluating strategies with model G, we did not compute exact
optimal solutions for model G or for any of the objectives used to compute the efficient
frontier.
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Table 4 Computation time required for iterated local search procedure

Runtime (minutes)
Objective Annual Strategies Biennial Strategies
Single-Model: Model G 183 225
Single-Model: Model U 1 1
Single-Model: Model Z 1 1
Efficient Frontier: λ = 0.0 185 227
Efficient Frontier: λ = 0.1 338 248
Efficient Frontier: λ = 0.2 213 247
Efficient Frontier: λ = 0.3 251 288
Efficient Frontier: λ = 0.4 212 171
Efficient Frontier: λ = 0.5 203 271
Efficient Frontier: λ = 0.6 161 237
Efficient Frontier: λ = 0.7 161 237
Efficient Frontier: λ = 0.8 161 226
Efficient Frontier: λ = 0.9 199 263
Efficient Frontier: λ = 1.0 266 248

E Sensitivity Analysis: Model Averaging of Normalized
Assessments

As a sensitivity analysis, we reproduced the efficient frontier using a normalized version of
the objective function. For each model, we normalized the QALE change compared to not
screening to have a maximum value of 1, ensuring that models with systematically more
optimistic assessments of screening strategies are not weighted more heavily than others in
the model averaging objective.

We computed an efficient frontier as before, trading off the average and most pes-
simistic assessment of the normalized objective function. The efficient frontier, single-model
solutions, and expert strategies are plotted in Figure 6.
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Fig. 6 Average and most pessimistic assessments of identified and expert-generated screen-
ing strategies. The 6 strategies on the efficient frontier are shown as black circles. The optimal
strategies according to models G (G-best), U (U -best), or Z (Z-best) are shown as red cir-
cles. The 22 expert-generated strategies are shown as gray circles. Normalized assessments of
QALE over no screening with each model are shown in parentheses for some strategies. For
example strategy EF-1′ was assessed as 0.8 proportion of the maximum attainable QALE
improvement by models G, U , and Z.
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The efficient frontier with the normalized objective function is qualitatively different
from the efficient frontier with the non-normalized objective. No screening strategy opti-
mized with a single model falls on the efficient frontier, and all strategies in the efficient
frontier dominate the single-model and expert-generated strategies in both the most pes-
simistic and the average model assessments. The efficient frontier is smaller, comprising only
six screening strategies, and the strategies in the frontier are more homogeneous. The strat-
egy optimizing the most pessimistic assessment prescribes biennial screening with threshold
0.5 ng/mL from ages 40–54, 1.5 ng/mL from ages 55–64, 4.0 ng/mL from ages 65–69, and
5.0 ng/mL from ages 70–74. The strategy optimizing the average assessment is similar,
prescribing biennial screening with threshold 0.5 ng/mL from ages 40–49, 1.0 ng/mL from
ages 50–59, 1.5 ng/mL from ages 60–64, 2.0 ng/mL from ages 65–69, and 6.0 ng/mL from
ages 70–79. For all six strategies on the efficient frontier model U was the most pessimistic
in the normalized assessment.


