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Abstract 

Big cities often witness land price outgrowing structure price. For such cities this paper derives 

two predictions regarding the dynamics between house prices, rent and structure age. First, older 

houses have a higher price growth rate than younger ones, even after controlling for location and 

other attributes; second, the age depreciation of house price, defined as the decline of house price 

with respect to house age, is slower than the similarly-defined age depreciation of rent. These 

hypotheses are supported by the micro-data on housing market in Beijing. These two inferences 

have implications for both real estate valuation and house price index construction. 
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1. Introduction 

Researchers have become increasingly aware that house price should be decomposed into land 

price and structure price. Glaeser, Gyourko and Saks (2005) suggest that house price appreciation 

since the 1970s has been largely driven by increasing land costs in the U.S. Based on the 

land-structure decomposition, Davis and Heathcote (2007) infers the land price from data on 

house price and structure cost for US cities, which helps explain trends, fluctuations and regional 

variations in the price of housing. Similarly, Bostic, Longhofer and Redfeaarn (2007), and 

Bourassa, Hoesli, Scognamiglio, et al. (2011) focus on the land leverage of houses (the ratio of 

land to total value); both find that land value accounts for a large share of total home value, and 

that this decomposition can help explain price fluctuations, regional differences and other 

important issues in the real estate market. 

In this paper we explore this land-structure decomposition from another perspective that 

complements the existing literature. It has been widely observed that in many big cities land price 

tends to increase in value faster than structure price due to land scarcity. We begin with the 

assumption that land price outgrows structure price, offer two theoretical predictions based on this 

assumption and empirically test them using data from Beijing city: First, older houses (houses 

with an older structure) have a higher price growth rate than younger ones, even after controlling 

for location and other important attributes. The intuition is that, as a house ages, the share of land 

value as a percentage of total value increases.  Thus the price of an old house typically increases 

quickly provided that land price outgrows structure price. Second, the age depreciation of house 

price, defined as the decline of house price with respect to house age, is slower than the 

similarly-defined age depreciation of rent. Intuitively, house price more clearly reflects the 

investment value of a house, while rent represents only its consumption value. For an old house, 

the consumption value declines due to the depreciation of its structure, but at the same time, 

investment value depreciates to a lesser extent or even increases because of growing land price. 

Our theory also shows that if land price grows less quickly than structure price, then both of these 

predictions will be reversed.  
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For Chinese cities we are able to directly observe the sales price of new land parcels auctioned on 

the residential land market. Although land prices are available only for new land parcels, they are 

a reasonably good proxy of the price for adjacent residential land that has already been developed. 

Based on the quality-controlled land price (that is, based on the auction prices of new land parcels) 

and house price indices released by Tsinghua University’s Hang Lung Center for Real Estate, in 

Beijing from 2006-2014, the average annual growth rate of land price was 25.2%, which is about 

25% higher than the annual growth rate of house price (20.3%). This implies that land price has 

grown much faster than that of structure price, as is consistent with results seen in many other big 

cities with limited land supply (see Glaeser and Gyourko 2006, Davis and Heathcote 2007, Davis 

and Palumbo 2008 for cities in the US. For evidence in China, see Deng et al. 2012.). From this 

premise, we empirically test the above two theoretical predictions using a large micro-data set 

representative of Beijing's housing market. The dataset contains 55,706 second-hand housing sales 

and 210,600 rental transactions for the period of 2005-2012. Our transaction-level data on house 

price and rent are suitable for the test. In particular, for each residential complex
1
, we have 

individual observations for both rental and re-sale transactions, facilitating a location-controlled 

comparison of the age depreciation of house price and rental rate.  

Since we focus our study on house age, one empirical challenge is to effectively separate age, 

cohort and time effects (Coulson and McMillen 2008). Because we have a sufficiently large 

dataset, we adopt a methodology that controls for age, cohort and time effects in different 

functional forms, so as to avoid the multi-collinearity problem (McKenzie 2006) and obtain 

credible estimates of the age effects for both second-hand house sales and rental samples. 

Our empirical results are consistent with the two theoretical predictions. Older houses have a 

higher price growth rate. This is true both at the level of individual houses and at the level of 

residential complexes. As for the second hypothesis, we estimate the depreciation rate with respect 

to age for both house price and house rent, and find that the depreciation rate of house rent is 

25%-60% higher than that of house price (after controlling for both cohort effect and time trend), 

                                                             
1 Housing development in many high-density cities in Mainland China occurs at a uniquely large scale and with a 

high degree of homogeneity in the units built within the typical residential “complex”. In each complex, a 

number of buildings are constructed containing altogether hundreds or even thousands of units, all with 

essentially equivalent location, architectural design, structure, appliances and finishes.  
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and this difference is statistically significant. 

Our theoretical framework and empirical findings shed light on the mechanism behind the distinct 

house price growth rates in two housing sub-markets – markets of older and younger housing units 

whose land leverage ratios differ. This paper also furthers our understanding of the distinct age 

depreciation rates in the housing sale and rental markets. These two inferences are useful in real 

estate valuation, for both growth trends and age depreciation rates are crucial factors in the 

commonly used valuation methodologies such as the hedonic pricing model. Another implication 

lies in the repeated-sales approach which is widely used to construct house price indices. Since 

age is not controlled for in the conventional repeated-sales regression, the estimated house price 

indices will depend on the age distribution in the repeated sales sample – everything else being 

equal, a larger share of older homes in the sample is likely to generate higher estimates for house 

price indices.  

Housing is both consumption good and investment good (Henderson and Ioannides 1983). In the 

literature, a standard way to measure housing investment demand is through additionally owned 

houses other than primary living residence (Rosenthal and Ioniades 1994). However, due to 

financial friction which is prevalent in housing markets, households may have to divert their 

investment need into primary living residence when they are constrained from buying multiple 

houses. It is challenging to measure the investment need for owned-occupied houses. Dusanski 

and Koc (2007) and Cao, Chen and Zhang (2016) show that expected capital gains increase the 

investment need of owned-occupied houses. Our paper complements their work by offering 

another way to identify housing investment demand. We explore the decomposition of housing 

value into structure value and land value. Our theory suggests that because of the appreciation of 

land value, the expected capital gain of old houses is higher than that of new houses. Thus we 

expect a slower age depreciation rate for house prices (which may carry investment purposes) than 

that for rental prices. Our empirical analysis finds strong evidence supporting those predictions. 

The remainder of this paper is organized as follows: Section 2 presents the theory and derives the 

two hypotheses. Section 3 introduces the data. Section 4 discusses the empirical strategies and 

reports the empirical results regarding the two hypotheses. The final section concludes. 
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2. Theory and Hypothesis 

Let Pt denote the price of a housing unit at time t whose structure has an age of a years, it can be 

decomposed into 

    =

t t t

l l s s

t a t

P L S

q p q p

 


 (1) 

i.e., house price is the sum of land value Lt and structure value St. both land value and structure 

value are expressed as the product of quantity and price. Land price 
l

tp  and structure price 
s

tp  

have subscript t, because prices change over time. The quantity of structure 
s

aq  is subscripted by 

age a, indicating that structure depreciates with age. 

Further, let 
1 /L

t t tG L L  and 
1 /S

t t tG S S  be the growth factors of land value and 

structure value. We have 

1 1

l l l
L t t
t l l l

t t

q p p
G

q p p

    (2) 

And 

1 1 1

s s s
S a t t
t s s s

a t t

q p p
G

q p p
     (3) 

Where 1 / 1s s

a aq q   determines the depreciation of structure with age. For simplicity we 

assume it is time- and age-invariant. 

Using equation (1), the growth factor of house price is 

1P L St t t
t t t

t t t t t

P L S
G G G

P L S L S

  
 

 (4) 
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2.1 House Age and House Price Growth Rate 

We are interested in how the growth rate of house price changes with age, i.e., what the sigh of 

P

tdG

da
is. Before we proceed, we shall discuss what exactly 

P

tdG

da
means. Theoretically, price of a 

house is determined by a set of factors, including house age, local amenities, land supply in the 

surrounding area, employment opportunity in the city and macroeconomic policies and others. A 

simple view of the complex dynamics of house price is to summarize the time-varying factors into 

the time effect and age effect. The growth rate of house price, 
P

tG , is essentially the derivative of 

house price with respect to time. Therefore, 

P

tdG

da
is essentially the cross derivative of house price 

with respect to time and age. The effect of age on house price reflects the depreciation of structure. 

It is distinct in theory from the effect of fundamental changes in the economy and the change of 

people’s expectation over time. However, empirically it is not easy to disentangle the two effects 

because time and age have perfect collinearity for a given house. We will return to this point in the 

empirical part of the paper. 

It is reasonable to assume the growth factors of land price and structure price over time, as given 

in equation (2) - (3), are independent of house age. Rather, they are determined by fundamentals 

of the economy such as income growth, migration, labor cost and the cost of construction 

materials. Thus the derivatives of 
P

tG  and 
P

tG  with respect to age are both zero. From 

equation (4), we derive the following 

2

2

( )
[ ( )]

( )

( ) ( ) ( )
         = [ ( )]

( )

P L S

t t t t t
t t

t t

L S l l s s

t t t a t
t t

t t

dG G G dL dS
S L

da L S da da

G G d q p d q p
S L

L S da da


  




 



 (5) 

The term in brackets in the above equation is generally positive. First, land quantity and price 

should not change with structure age, so 
( )l l

td q p

da
=0. Second, while structure quantity 
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depreciates over time (

s

adq

da
<0), it is reasonable to assume structure price is independent of 

structure age, therefore 
( )s s s

sa t a
t

d q p dq
p

da da
 <0.

2
 Hence  

( ) 0t t
t t

dL dS
S L

da da
    (6) 

Therefore, from equation (5) we reach the hypothesis (1). 

Hypothesis (1): if land price grows faster than structure price, i.e., 0L S

t tG G  , then the prices 

of older houses have higher growth rates, i.e., 

0
P

tdG

da
  

(

6

) 

Conversely, if 0L S

t tG G  , then prices of older houses will have lower growth rates. 

Intuitively, as a housing unit ages, its price is composed more of land price than of structure price, 

and hence its growth rate increases and becomes closer and closer to the growth rate of land price. 

2.2 Age Depreciation of House Price and Rent 

Given a housing unit, let 
tR  be the rental rate at period t. Standard asset pricing theory gives rise 

to the following equation 

                                                             
2 A more general condition for the bracketed term to be negative is that structure value is more elastic with respect 

to age than land value, i.e., / /

/ /

t t

t t

dL da dS da

L a S a
 . This can be easily derived from equation (5). 
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1 1[ ]t t t tP R E D P    (7) 

Where 
1tD 

 is the stochastic discount factor between period t and t+1 and E is the expectation 

operator.
3
 Here it is assumed that rent is collected in the beginning of the period. Notice that Pt+1 

contains all the relevant information about future rents and future discount factors, therefore 

equation (7) is essentially a Gordon growth model with time-varying discount rates. In the 

appendix we show in detail how to get from a version of Gordon growth model to equation (7). 

We apply 1 t

P

t tP P G    to equation (7) to get  

1+ [ ]P

t t t t tP R P E D G   (8) 

This equation makes explicit that house price depends on rent and the future growth of house price. 

Recall that p

tG  is the growth factor of house price between period t and t+1, and hence is 

stochastic at time t.  

Clearly
tP and 

tR are functions of house age. On the other hand, the stochastic discount factor 

does not depend on house age, but instead depends on the marginal utility of consumption. 

Therefore, taking the logarithm of both sides of equation (8), and then taking derivatives with 

respect to age, we have 

1 1

1

log log
[ ] [ ]

log

+ [ ]

p
pt t t

t t t t t t
t

P

t t t t

d R d P dG
R PE D G PE D

d P da da da

da R P E D G

 



 



 (9) 

Where the last expression in the numerator comes from the Leibniz Rule; that is, 

                                                             
3 In a consumption-based asset pricing model, 

1tD 
 is the marginal rate of substitution between consumption 

bundles in period t+1 and period t.  All the derivation holds true if the discount factor 
1tD 
 is non-stochastic. 
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1
1

[ ]
[ ]

p p

t t t
t

dE D G dG
E D

da da


  

After multiplying both sides of equation (9) with
1[ ]P

t t t tR PE D G  and rearranging terms, we 

have 

1

log log
[ ]

P

t t t t
t

t

d P d R P dG
E D

da da R da
   (10) 

It is natural to assume that the aging of a house negatively affects its price and rent, i.e., 

log
0td P

da
 and

log
0td R

da
 , hence equation (10) leads to equation (11).  

1

log log P

t t t t
t

t

d R d P P dG
E D

da da R da


 
   

 
 (11) 

where .  denotes the absolute value operator. Therefore, the gap between age depreciation of 

rent and that of price depends on /P

tdG da . If the prices of older houses reveal a higher growth 

rate, then we expect rent to decline more quickly with age than house price does. 

Using equation (4), equation (11) becomes   

1 2

log log ( )
[ ( )]

( )

L S

t t t t t t t
t t t

t t t

d R d P P G G dL dS
E D S L

da da R L S da da


 
    

 
 (12) 

Based on (12), we have the following hypothesis. 

Hypothesis (2): If 0L S

t tG G  , then rental rate depreciates more quickly with age than house 

price, i.e., 
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log logt td R d P

da da
  (13) 

Conversely, if 0L S

t tG G  , then rental rate depreciates more slowly with age than house price. 

Intuitively, house price depends on the rental rate and the expected growth in house price in the 

future. As a house ages, it depreciates because the rental rate decreases due to the reduced utility 

flow from an older structure. However, the house price growth rate is higher for older houses 

given that land price grows faster than structure price, as stated in Hypothesis (1). This mitigates 

the effect of depreciation of rental rate caused by age, leading to house price depreciating more 

slowly. 

3. Data 

Our micro data on second-hand housing sales and rental transactions are from WoAiWoJia, a major 

real estate broker in Beijing, with a local market share of about 10%. The dataset contains 55,706 

housing re-sales and 210,600 rental transactions for the period of 2005-2012. The housing unit 

transactions come from over 2,500 residential complexes distributed throughout Beijing’s 

landscape and hence are representative of Beijing's housing market. It is worth mentioning that the 

large sample size of our dataset provides us a remarkable advantage in the empirical study. 

Because the sample size within each complex is large enough to run a complex-specific Hedonic 

regression, and also because there are a large number of complexes, we can first estimate the 

growth rate of house price for each complex, and then study how the growth rate of house price 

varies with house age at the complex level. Moreover, since the unobserved variables of housing 

units may be correlated within each complex, we cluster the standard errors by complex in our 

regressions at the housing unit level. 

For each transaction, we have information about transaction price (price or rent), address, and 

physical attributes of housing such as unit size (size), level of decoration (decoration) and whether it is 

on the top floor (top). By geo-coding all sales and rental transactions on Beijing’s GIS map, we 
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construct several location attribute measures for each residential complex, including distance from 

each residential complex to the city center (d_center), whether the complex is within the 2-km 

reach of a “key” primary school (school), of a “Grade-A” hospital (hospital) and within the 1-km 

reach of a subway stop (subway).
 
Summary statistics are provided in Table 1. 

** Figure 1 here ** 

** Table 1 here ** 

Figure 1 shows the geographical distributions for both the sales sample and rental sample in our 

data. A comparison of the left and right panels reveals that the two samples differ in their spatial 

distributions, although both samples contain housing units all over the city. Therefore, it is 

necessary to control for location attributes in our empirical analysis.  

Table 1 shows other differences between sales and rental units. Sales units have an average size of 

77.6 m
2
 and an average price of 18,250 RMB/m

2
. On average they are about 11.6 km away from 

the city center. Among these resale units, 52% are within 2km of the closest key primary school, 

45% are within 2 km of the closest high-quality hospital, and 38% are within 1 km of the closest 

subway station. 

In contrast, rental units have an average size of 64.3 m
2
 and an average rent of 47.5 RMB/m

2
 per 

month. Additionally, rental units are in slightly better locations than the sales units. On average 

they are 11.0 km away from the city center. The percentage of units within 2 km from the key 

primary school, the Grade-A hospital and within 1 km of the subway station are 64%, 57% and 42% 

respectively, all of which are higher than the corresponding percentages of sales units. In our 

empirical analysis, we control for both physical attributes and location attributes.   

House age at the time of transaction (age) is a key variable in our study. Although the data do not 

have direct information about house ages\ for each transaction, we located the building year for 

each complex based on its address and complex name on the broker’s website, and this enables us 

to calculate house age. Most sales units were built during the period of 2000-2005. While most 

rental units were also built in about the same period, the variation of the building year for the 
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rental sample is larger than that for the sales sample
4
. The distribution of building year for both the 

sales sample and rental sample are reported in Figure 2.  The average house age is 11.2 for the 

sales sample and 13.0 years for the rental sample.  

** Figure 2 here ** 

As mentioned previously, the disentanglement of age effect, year effect and cohort effect is a 

crucial issue in our empirical study. To control for the cohort effect, we divide all housing 

transactions into 5-year cohort groups according to their construction year. Thus in total we have 7 

cohort groups (that is, 7 cohort dummies). Table 2 shows the distribution of transactions among 

the 7 groups and the range of house age for each group for both the sales and rental samples. 

Thanks to our large data set, we observe that the variable age still has sufficient variation within 

each cohort. Thus we can control for both the cohort dummy and year effect, and still have a valid 

estimation of age depreciation in the empirical study. 

** Table 2 here ** 

 

4. Empirical Analysis 

In this section we test the two hypotheses identified in section 2 for the Beijing’s housing market, 

on the premise that 0L S

t tG G  . The house price and land price indices recently released by 

Tsinghua University, as shown in Figure 3, indicate that land price has grown more quickly than 

house price from 2006-2014 in Beijing; this implies that the land growth rate is indeed larger than 

the structure growth rate . 

** Figure 3 here ** 

4.1. Testing Hypothesis (1) 

                                                             
4 In order to have a strong comparison between the growth rate and depreciation rate of house price and rent, we 

only include houses built after 1980 in implementing our empirical equations.  
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Because only a very limited number of housing units have repeated sales information in our 

sample period, estimating the price growth rate for individual housing units is not feasible. To test 

Hypothesis (1), we estimate the average annual price growth rate for each residential complex and 

then study how the growth rate varies by the house age of each residential complex. We choose 

residential complexes with enough transactions; that is, with more than 50 or 20 transactions from 

2005 to 2012.  

Specifically, for the j- th residential complex, we estimate Equation (15) with a linear time trend t 

(in years).  

log( )it j j i j itprice t      φ X  (15) 

where the subscripts i, t denote the transaction of housing unit i in year t (the earliest year takes the 

value of 1), priceit denotes the unit price of per square meter for the housing unit i (in complex j) 

in year t, and iX includes the physical features of the housing unit excluding house age since it is 

perfectly correlated with t within a complex. The estimate of coefficient 
j  proxies the average 

annual price growth rate of complex j in our study period. Next, we examine how the estimated 

j varies by the house age of residential complex j: 

j j j jage u      λ Y  (16) 

Where 
jage  is the house age of residential complex j at the beginning of our sample period. 

jY

is a set of location attributes at the complex level, including d_center, subway, hospital, and 

school. The estimation results of equation (16) are reported in Table 3. The results are reported in 

Columns (1) and (2) respectively. The coefficients of age in the two columns are both significantly 

positive, indicating that price growth rate does increase with age. 

** Table 3 here ** 

As an alternative test of Hypothesis (1), we also pool all sales transactions together and regress the 
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logarithm of house price on transaction year, age, interaction of transaction year and age, and other 

physical and location attributes at the housing unit level. The coefficient of the interaction term 

indicates whether the growth rate of house price over time varies by house age.  If the coefficient 

is positive, this means older houses have higher house price growth rate. The regression 

specification is as in Equation (17).  

log( ) *ijt ijt ijt ij ijtprice S age t age t cohort v             ijδ W  (17) 

where Wij is a vector of control variables, including physical attributes of the house such as size, 

decoration, floor, top, and house location attributes such as log(d_center), school, hospital, 

subway, S denotes seasonal dummies
5
. Note that we analyze the age effect of house price based on 

repeated cross sectional data. A classical issue in this kind of regression is the identification of age 

effect, year effect and cohort effect. To extract the real age effect, it is necessary to filter out year 

and cohort effects. This is done by including time variable t and cohort vector cohortj together in 

the regression as explanatory variables. To address the problem of multi-collinearity among age, 

cohort and year, we let t be the month in which the transaction happens (with 1 denoting the 

earliest month), while agejt is still the house age in year. We also let cohortj be a series of dummy 

variables indicating the 5-year group during which the transacted house was built
6
. Standard errors 

are clustered by complex. 

The empirical results are reported in Table 4. The coefficients of physical and location attributes 

are all consistent with our expectations. Smaller houses with better decoration and on higher floors 

(but not the top floor) have higher prices per square meter, and houses in prime locations (near 

Central Business District, key primary schools and high-quality hospitals) also have higher prices. 

The coefficient of t is significantly positive, showing the growing trend for house price from 

2006-2012. The coefficient of age is significantly negative, showing that house price decreases by 

0.01% for every 1 year increase in housing age. The coefficient of the interaction term age*t is 

significantly positive, indicating that older houses have higher growth rates of their prices, as is 

                                                             
5 Here we take month January to March as the default, so we have three dummies: month April to June, month 

July to September, month October to December. 
6 While we admit that the cohort setting may be arbitrary, we make a robustness check without the cohort 

dummies in the appendix. 
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consistent with Hypothesis (1). In column (2) we replace the variable age with its logarithm 

log(age) as a robustness check. Although the interaction term also has a positive sign, it is not 

statistically significant. 

** Table 4 here ** 

4.2. Testing of Hypothesis (2) 

We test Hypotheses (2) by running the following two regressions of house price and rent 

separately 

,log( )ijt p p ijt p p ij p ijtprice S age T cohort v          p ijδ W  (18) 

,log( )ijt r r ijt r r ij r ijtrent S age T cohort v          r ijδ W  (19) 

Where priceijt and rentijt denote the unit sale price and rental price per square meter for the housing 

unit i in year t, respectively.βp and βr denote the depreciation rate of house price and house rent 

for every 1 year increase in housing age, respectively. Again, standard errors are clustered by 

complex in both regressions. 

We also control for time and cohort effects (T and cohort). As discussed earlier, there is a 

multi-collinearity issue among age, cohort and time since agejt + cohortj=t. To deal with this issue, 

here we let agejt be a continuous variable of housing age in years, and cohortj be a series of 

dummy variables indicating the 5-year group during which the transacted house was built (we also 

use a 1-year group and 10-year group as robustness checks).  We replace the continuous variable 

t with T, which is a polynomial vector of time; i.e., T=(t, t
2
, t

3
, …) where t is a continuous variable 

denoting the month in which the transaction happens with the earliest month being 1
7
. 

According to Hypotheses (2), we should have 

                                                             
7 The same as Table 4, we include a robustness check without cohort effect in the appendix. The results show that 

we would underestimate the age depreciation rate without controlling for cohort effect. 
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p r   (20) 

The empirical results are reported in Table 5. Physical attributes are included in the regressions but 

are not reported. Comparing the coefficients in column (1) with those in column (2), we can see 

that
p r  , which is consistent with Hypothesis (2). The Wald test

8
 testing if these two 

coefficients are statistically different also confirms the significant difference between the 

depreciation rates of house price and house rent. As robustness checks, we also re-define our 

cohort dummies with 1-year and 10-year cohort groups.  Columns (3) and (4) show house price 

and rent regressions with 1-year cohort dummies, respectively. Columns (5) and (6) present results 

with 10-year cohort dummies. The Wald test confirms the significant difference between the 

depreciation rates in the 10-year cohort regressions, although this gap is not that significant in the 

1-year cohort regressions (perhaps due to the limited variation within each 1-year cohort). 

** Table 5 here ** 

4.3. Robustness Check in terms of the land leverage hypothesis 

In order to get a consistent conclusion in terms of the land leverage hypothesis, we also implement 

similar tests to other two structural variables top and floor as a robustness check. The regression 

results are reported as Table A3 and Table A4 in the Appendix. In Table A3, we include the floor 

level of house units in the Hedonic regression for both house price and rent. The results show that 

house units on higher floors have higher prices but lower growth rate of the price; and the positive 

effect of floor level on the rent is larger than that on the price. On the contrary, house units on top 

of a building have lower prices (due to the less comfort on the top) but higher price growth rate; 

and the negative effect on the rent is larger than that on the price. In Table A4, we firstly run the 

Hedonic regressions on the complex level and find that the variables top and floor have the same 

                                                             
8 As pointed out by the anonymous referee, the two estimated depreciation rates of house price and house rent are 

correlated with each other, since they are derived from the regressions for two highly related sub-markets. In this 

case we employ the Wald test, and use the command “suest” (designed for seemingly unrelated estimation) in 

STATA to test whether the two coefficients are statistically different, taking the covariance of the two 

coefficients into consideration. 
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impact pattern on house price and rent as in Table A3. Then we repeat what we have done in Table 

3. We firstly estimate the growth rate of housing price based on the unit-level Hedonic regression 

of each complex (γ, not reported as a table), and then use top and floor to explain the difference in 

γ across complexes. The results are consistent with those of the tests of housing age, which 

confirms the hypotheses in terms of the land leverage theory. 

5. Conclusion 

By decomposing house price into separate prices for land and structure, this paper has studied an 

important factor in real estate valuation -- house age. The effect of house age on price, rent, and 

the growth rate of house price depends on the relative growth speed of land price and structure 

price. For cities where land price grows more quickly relative to structure price, we predict 

theoretically that older houses have higher growth rates in their house price, and that house rent 

has a larger depreciation rate with respect to age than that of house price. Both theoretical 

predictions are reversed if land price grows less quickly than structure price. 

Using our unique micro data for the Beijing market, we find that both predictions are empirically 

supported. Our analysis sheds light on the distinct house price growth trends in markets with 

different land leverage ratios. It also explains the difference between age depreciation rates in the 

sales and rental markets. These two inferences have implications for both real estate valuation and 

house price index compilation. 

While the growth rate of land price is observable for the Beijing market due to the unique land 

auction policy in China, it is usually not directly observable for markets in many advanced 

economies. For these markets, our theoretical predictions provide a novel way of testing the 

dynamic relationship between land price and structure price.  -- researchers can infer whether 

land price outgrows structure price based on the age depreciation patterns of house price and rent 

which is more easily observable. 

  



19 
 

 

References  

[1] Bostic, R., Longhofer, S., Redfearn C. (2007). Land leverage: decomposing home price 

dynamics. Real Estate Economics, 35(2), 183-208. 

[2] Bourassa, S., Hoesli, M, Scognamiglio, D, et al. (2011). Land leverage and house prices. 

Regional Science and Urban Economics, 41(2), 134-144. 

[3] Cao, Y., Cheng, J. and Zhang, Q. (2016). Housing Investment in Urban China: Evidence from 

Chinese Household Survey. Working paper. 

[4] Coulson, N., McMillen, D. (2008). Estimating time, age and vintage effects in housing prices. 

Journal of Housing Economics, 17(2), 138-151. 

[5] Davis, M., Heathcote, J. (2007). The price and quantity of residential land in the United 

States. Journal of Monetary Economics, 54(8), 2595-2620.  

[6] Davis, M., Palumbo, M. (2008). The price of residential land in large US cities. Journal of 

Urban Economics, 63(1), 352-384. 

[7] Deng, Y., Gyourko, J., Wu, J. (2012). Land and house price measurement in China. National 

Bureau of Economic Research. 

[8] Dusansky, R., Koç, Ç. (2007). The capital gains effect in the demand for housing. Journal of 

Urban Economics, 61(2), 287-298. 

[9] Glaeser, E., Gyourko, J. (2005). Housing dynamics. National Bureau of Economic Research. 

[10] Glaeser, E., Gyourko, J., Saks R. (2005). Why have housing prices gone up? American 

Economic Review, 95(2), 329--333. 

[11] Henderson, J., Yannis, M. (1983). A model of housing tenure choice. The American Economic 

Review, 73(1), 98-113. 

[12] Hornstein, A., Greene, W. (2012). Usage of an estimated coefficient as a dependent variable. 

Economics Letters, 116(3), 316-318. 

[13] Ioannides, Y., Rosenthal, S. (1994). Estimating the consumption and investment demands for 

housing and their effect on housing tenure status. The Review of Economics and Statistics, 

127-141. 

[14] McKenzie, D. (2006). Disentangling age, cohort and time effects in the additive model. 

Oxford Bulletin of Economics and Statistics, 68, 473–495. 

[15] Saxonhouse, G. (1976). “Estimated parameters as dependent variables.” The American 

Economic Review, 66(1), 178-183. 

 

  



20 
 

Fig.1 Spatial distribution of transaction samples 

  

Spatial distribution of sales units Spatial distribution of rental units 

 

 

 

 

 

 

 

 

Fig.2 Distribution of building years 
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Fig.3 Hedonic land and house (land + structure) price indices in Beijing 

 

                     Source: Tsinghua Hang Lung Center for Real Estate 
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Table 1 Summary statistics 

  Sales observations Rental observations 

Variable Definition Obs. Mean Std. Obs. Mean Std. 

price/rent 

Transaction price/rent (RMB 

yuan per square meter for 

price and RMB yuan per 

square meter per month) 

56411 18250.83 8798.92 254322 47.61 21.74 

size 
Housing unit size (square 

meter) 
56411 77.56  30.96  254322 51.34 50.37 

age House age (years) 56411 11.42 7.37 216076 13.07 8.83 

decoration 
Decoration status 

(4=best; 1=worst) 
56411 2.72 0.97 254322 1.80 1.62 

floor Floor number 56411 7.59 6.03 254322 7.04 5.79 

top 
Whether the unit is on the top 

floor (1=yes, 0=no) 
56411 0.12 0.33 254322 0.12 0.33 

d_center 
Distance to the city center 

(km) 
56411 11.63 5.85 254322 10.97 5.52 

school 

Whether the observation is 

within 2km of key primary 

school 

56411 0.52 0.50 254322 0.64 0.48 

hospital 
Whether the observation is 

within 2km of hospital 
56411 0.45 0.50 254322 0.57 0.49 

subway 
Whether the observation is 

within 1km of subway stop 
56411 0.38 0.48 254322 0.42 0.49 
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Table 2 Sample distribution by cohort groups and within-cohort age range 

Building year Sales Rentals 

1981-1985 
Sample size: 3379 

Age range: 20-31 

Sample size: 17402 

Age range: 20-31 

1986-1990 
Sample size: 5539 

Age range: 15-26 

Sample size: 25977 

Age range: 15-26 

1991-1995 
Sample size: 7203 

Age range: 10-21 

Sample size: 34571 

Age range: 10-21 

1996-2000 
Sample size: 12351 

Age range: 5-16 

Sample size: 43883 

Age range: 5-16 

2001-2005 
Sample size: 21006 

Age range: 0-11 

Sample size: 62469 

Age range: 0-11 

2006-2010 
Sample size: 5626 

Age range: 0-6 

Sample size: 20842 

Age range: 0-6 

2011-2012 
Sample size: 160 

Age range: 0-1 

Sample size: 937 

Age range: 0-1 
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 Table 3 House age and house price growth: complex-level regressions 

  
>20 transactions >50 transactions 

(1) (2) (3) (4) 

age 0.00123*** 0.00111*** 0.000941** 0.000969*** 

 (0.000239) (0.000181) (0.000363) (0.000273) 

log(d_center) 0.00346 0.00476** 0.00374 0.00481 

 (0.00230) (0.00204) (0.00409) (0.00296) 

school 0.0102 0.0101** 0.0175** 0.0117** 

 (0.00622) (0.00413) (0.00720) (0.00587) 

hospital 0.00477 -2.39e-05 -0.00245 -0.00444 

 (0.00332) (0.00282) (0.00573) (0.00418) 

subway 0.00137 0.000200 0.00289 0.00150 

 (0.00353) (0.00302) (0.00579) (0.00449) 

Constant 0.170*** 0.173*** 0.171*** 0.176*** 

 (0.00904) (0.00723) (0.0140) (0.0105) 

Heteroscedasticity 

approach 

OLS, Robust WLS OLS, Robust WLS 

     

Observations 607 607 194 194 

R-squared 0.068 0.080 0.085 0.100 

Note:  

(1) First, we regress house price with time trend t (in month) using all the transaction data to get 

price growth rate


, and then we regress growth rate 


 with housing age. Here we choose 

those complexes with enough transactions to insure the regression. Column (1) and (2) show the 

results of regressions based on complexes with more than 20 transactions, column (3) and (4) 

show the results of regressions based on complexes with more than 50 transactions. 

(2) According to Saxonhouse (1976), Hornstein, Greene (2012), et al., we use two different 

methods to mitigate the heteroskedasticity problem. In column (1) and (3) we use formula 

allowing for the presence of the heteroscedasticity in OLS regression and adjust the t statistic. In 

column (2) and (4) we use the weighted least square method, by the inverse of the estimated 

standard error of the predicted  


 in the first stage. 

(3) The coefficient of age in this table indicates that older houses have, in price per square meter, 

a higher growth rate. 

(4) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Table 4 House age and house price growth: unit-level regressions 

  (1) (2) 

log(price) Coefficient Std. Err Coefficient Std. Err 

    

 

  

 log(size) -0.107*** (0.0118) -0.106*** (0.0117) 

decoration 0.0128*** (0.00234) 0.0130*** (0.00234) 

top -0.0498*** (0.00523) -0.0496*** (0.00525) 

floor 0.00139*** (0.000489) 0.00138*** (0.000490) 

t 0.0167*** (0.000368) 0.0174*** (0.000899) 

age -0.0123*** (0.00323)   

age*t 0.00813*** (0.00148)   

log(age)   -0.0966*** (0.0186) 

log(age)*t   0.000149 (0.000293) 

log(d_center) -0.0305*** (0.00860) -0.0305*** (0.00853) 

school 0.0679*** (0.0112) 0.0676*** (0.0112) 

hospital 0.0689*** (0.0114) 0.0696*** (0.0113) 

subway 0.0667*** (0.00951) 0.0672*** (0.00942) 

Constant 9.266*** (0.0893) 9.307*** (0.0774) 

Cohort settings Every 5 years Every 5 years 

Observations 55,427 55,427 

R-squared 0.725 0.725 

Note: 

(1) Here we use the traditional Hedonic function of house price to test Hypothesis (1). We add in 

an interaction term age*t to the Hedonic function, and its coefficient is significantly positive, 

indicating that older houses have a higher growth rate of their prices. 

(2) We include cohort dummies in this regression, which are lumped into groups according to 5 

year intervals, based on year of construction. 

(3) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Table 5 Age depreciation of house price and rent 

  (1) (2) Wald test 

p r   

(3) (4) Wald test 

p r   

(5) (6) Wald test 

 
p r    VARIABLES log(price) log(rent) log(price) log(rent) log(price) log(rent) 

cohort setting 5years 5years 1year 1year 10years 10years 

                  

 

age 

βp 

-0.00693** 

βr 

-0.0112*** 

Chi2=18.25 

P=0.0000 

βp 

-0.0286 

βr 

-0.0376*** 

Chi2=0.20 

P=0.6553  

βp 

-0.00622*** 

βr 

-0.00772*** 

Chi2=7.56 

P=0.0060 

  (0.00296) (0.00274) (0.0223) (0.0120) (0.00174) (0.00141) 

t 0.0239*** 0.00638*** 0.0257*** 0.00852*** 0.0239*** 0.00603*** 

 

(0.000772) (0.000408) (0.00180) (0.00107) (0.000727) (0.000385) 

t
2
 -5.57e-05*** 1.66e-05*** -5.57e-05*** 1.70e-05*** -5.61e-05*** 1.72e-05*** 

 

(5.33e-06) (2.72e-06) (5.14e-06) (2.70e-06) (5.14e-06) (2.78e-06) 

Constant 10.26*** 6.194*** 10.84*** 6.879*** 10.26*** 6.112*** 

 (0.116) (0.104) (0.570) (0.307) (0.108) (0.0850) 

Cohort settings Every 5 years Every 1 year Every 10 years 

Physical 

attributes YES YES  YES YES  YES YES  

Locational 

attributes YES YES  YES YES  YES YES  

seasonality YES YES  YES YES 

 

YES YES 

 clustered by complex complex  complex complex 

 

complex complex 

 Observations 55,427 204,995  55,427 204,995 

 

55,427 204,995 

 R-squared 0.733 0.515   0.735 0.517   0.732 0.514   

 

Note:  

(1) We test Hypothesis (2) with this regression. Here we include cohort dummies based on year of construction using 3 different settings: every 1 year, every 5 years and every 10 years. 
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(2) To mitigate the multi-collinearity problem, we use the following function form: age is a continuous variable denoting housing age, cohort is a series of dummy variables indicating the 5-year 

group during which the transacted house is built, in addition we use the polynomial function of time trend (t, t2) where t is a continuous variable denoting the month in which the transaction 

occurs. 

(3) The coefficient of age indicates the age depreciation rate of house price and rent respectively.  We find that house price depreciates less than house rent, and the Wald test confirms the 

difference between them. The results in the 5-year and 10-year cohort setting both hold, showing the results are robust. 

(4) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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Appendix: Robustness check in terms of the cohort effect 

 

Table A1: Robustness check in terms of the cohort effect for Table 4 

 (1) (2) (3) (4) 

VARIABLES log(price) log(price) log(price) log(price) 

     

log(size) -0.114*** -0.103*** -0.116*** -0.105*** 

 (0.0121) (0.0116) (0.0120) (0.0114) 

decoration 0.00640*** 0.0189*** 0.00593** 0.0185*** 

 (0.00240) (0.00182) (0.00240) (0.00183) 

top -0.0515*** -0.0533*** -0.0478*** -0.0500*** 

 (0.00532) (0.00505) (0.00532) (0.00503) 

floor 0.00164*** 0.00171*** 0.00124** 0.00135*** 

 (0.000504) (0.000496) (0.000495) (0.000490) 

log(d_center) -0.0265*** -0.0278*** -0.0285*** -0.0296*** 

 (0.00897) (0.00881) (0.00888) (0.00874) 

school 0.0670*** 0.0647*** 0.0695*** 0.0670*** 

 (0.0111) (0.0110) (0.0110) (0.0110) 

hospital 0.0721*** 0.0735*** 0.0735*** 0.0748*** 

 (0.0116) (0.0116) (0.0116) (0.0116) 

subway 0.0666*** 0.0668*** 0.0667*** 0.0670*** 

 (0.00948) (0.00923) (0.00950) (0.00926) 

t 0.0234***  0.0227***  

 (0.000689)  (0.000723)  

t
2
 -0.00612***  -0.00608***  

 (0.000534)  (0.000536)  

age -0.00794*** -0.00756***   

 (0.00123) (0.00116)   

age*t 0.00924*** 0.00912***   

 (0.00159) (0.00149)   

log(age)   -0.0870*** -0.0808*** 

   (0.0127) (0.0122) 

log(age)*t   0.000783*** 0.000765*** 

   (0.000202) (0.000193) 

Constant 8.960*** 8.917*** 9.084*** 9.030*** 

 (0.0604) (0.0782) (0.0651) (0.0784) 

Sale month dummies NO YES NO YES 

Seasonality YES NO YES NO 

     

Observations 55,427 55,427 55,427 55,427 

R-squared 0.727 0.780 0.728 0.781 

Note: 

(1) Here we use the traditional Hedonic function of house price to test Hypothesis (1). We add in an interaction 

term age*t to the Hedonic function, and its coefficient is significantly positive, indicating that older houses have a 
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higher growth rate of their prices. We also take the logarithm function of age in Column (3) and (4) as a robustness 

check. 

(2) This table acts as a robustness check for Table 4 by excluding the cohort dummies in Column (1) and (3). In 

Column (2) and (4), we replace the quadratic polynomial function of time trend by the sale month dummies. 

(3) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Table A2: Robustness check in terms of the cohort effect for Table 5 

 

 (1) (2) Wald test 

p r   

 

(3) (4) Wald test 

p r   VARIABLES log(price) log(rent) log(price) log(rent) 

       

age -0.00199*** -0.00590*** Chi2=345.56 

P=0.0000 

-0.00168** -0.00594*** Chi2=474.52 

P=0.0000  (0.000667) (0.000622) (0.000660) (0.000617) 

t 0.0239*** 0.00635***     

 (0.000725) (0.000347)     

t
2
 -0.00567*** 0.00149***     

 (0.000527) (0.000281)     

Constant 8.899*** 4.732***  8.863*** 4.747***  

 (0.0589) (0.0363)  (0.0786) (0.0405)  

Physical attributes YES YES  YES YES  

Locational attributes YES YES  YES YES  

Sale month dummies NO NO  YES YES  

Seasonality YES YES  NO NO  

Cluster by complex complex  complex complex  

Observations 55,427 204,995  55,427 204,995  

R-squared 0.726 0.504  0.779 0.512  

Note: 

(1) We test Hypothesis (2) with this regression. This table acts as a robustness check for Table 5 by excluding 

cohort dummies. In Column (3) and (4) we further replace the time trend function with sale month dummies. The 

regression results show consistence of the relationship between age depreciation of house price and rent (the age 

depreciation rate of house rent is larger than that of house price). While the coefficients show that the cohort effect 

lead to a under-estimation of age depreciation. 

(2) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix: Robustness check in terms of the land leverage hypothesis 

 

Table A3: Robustness check in terms of the land leverage hypothesis – unit level 

 

 (1) (2) (3) (4) 

VARIABLES log(price) log(price) log(price) log(rent) 

     

log(size) -0.104*** -0.119*** -0.119*** -0.361*** 

 (0.00295) (0.00329) (0.00330) (0.00126) 

log(age) -0.0363*** -0.0399*** -0.0399*** -0.0731*** 

 (0.00185) (0.00206) (0.00206) (0.00118) 

decoration 0.0190*** 0.0117*** 0.0117*** 0.0149*** 

 (0.00120) (0.00127) (0.00127) (0.000465) 

top -0.0490*** -0.0868*** -0.0473*** -0.0818*** 

 (0.00323) (0.0102) (0.00362) (0.00228) 

floor 0.00125*** 0.00116*** 0.00382*** 0.00665*** 

 (0.000183) (0.000205) (0.000577) (0.000132) 

trend  0.0173*** 0.0177***  

  (5.94e-05) (8.52e-05)  

trend*top  0.000642***   

  (0.000155)   

trend*floor   -4.23e-05***  

   (8.61e-06)  

log(d_center) -0.0293***   -0.0438*** 

 (0.00224)   (0.00156) 

school 0.0673*** 0.0782*** 0.0781*** 0.0777*** 

 (0.00281) (0.00303) (0.00303) (0.00198) 

hospital 0.0758*** 0.0781*** 0.0779*** 0.0726*** 

 (0.00293) (0.00326) (0.00326) (0.00196) 

subway 0.0681*** 0.0740*** 0.0740*** 0.0638*** 

 (0.00230) (0.00255) (0.00255) (0.00161) 

Constant 8.938*** 9.089*** 9.065*** 4.853*** 

 (0.0720) (0.0166) (0.0169) (0.0154) 

     

Transaction monthly 

dummies 

YES NO NO YES 

Seasonality  NO YES YES NO 

Observations 55,706 55,706 55,706 210,286 

R-squared 0.780 0.723 0.723 0.514 

Note: 

(1) Column (1) is the Hedonic function for housing price, we control for transaction monthly dummies in the 

regression. Column (4) is the similar regression for housing rent, compare the coefficients of top and floor, being 

on the top of a building has a negative impact on housing price, but is smaller than the negative impact on housing 
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rent. While being on higher floors would have a positive impact on housing price, and also smaller than the 

positive impact on housing rent. 

(2) In column (2) and (3) we employ the interaction term trend*top and trend*floor to test the growth rate of 

housing price with different structural features. Trend refers to a continuous variable showing the transaction 

month. Their coefficients show that units on higher floors have lower growth rate in their prices, but those on the 

top have higher growth rate. 

(3) Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Table A4: Robustness check in terms of the land leverage hypothesis – complex level 

 

 (1) (2) (3) (4) 

VARIABLES log(price) log(rent)     

     

log(size) -0.0795*** -0.314***   

 (0.00428) (0.00224)   

log(age) -0.0356*** -0.0715***   

 (0.00251) (0.00169)   

decoration 0.0194*** 0.0146***   

 (0.00178) (0.000814)   

top -0.0547*** -0.0956*** 0.0810***  

 (0.00453) (0.00379) (0.0233)  

floor_mode 0.000666* 0.00541***  -0.00111** 

 (0.000342) (0.000256)  (0.000493) 

log(d_center) -0.0260*** -0.0437*** 0.00278 0.00389 

 (0.00312) (0.00237) (0.00299) (0.00351) 

school 0.0788*** 0.0961*** 0.0152*** 0.0107* 

 (0.00377) (0.00284) (0.00575) (0.00642) 

hospital 0.0814*** 0.0875*** -0.00367 -1.72e-05 

 (0.00389) (0.00285) (0.00418) (0.00484) 

subway 0.0609*** 0.0635*** 0.00259 0.000590 

 (0.00311) (0.00235) (0.00450) (0.00517) 

Constant 8.828*** 4.655*** 0.179*** 0.197*** 

 (0.0725) (0.0216) (0.0103) (0.0126) 

     

Transaction monthly 

dummies 

YES YES NO NO 

Heteroscedasticity 

approach 

-- -- WLS WLS 

Observations 25,215 74,019 194 194 

R-squared 0.827 0.579 0.098 0.057 

Note: 

(1) In column (1) – (2), we simply run a hedonic function for housing price and rent separately on the complex 

level, where the variable floor_mode here refers to the mode of floor in each complex, while other structural 
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feature variables are the mean value for units in the same complex. The coefficients of top and floor show the same 

pattern as in column (1) and (4) in Table A3. 

(2) In column (3) – (4), we repeat the tests as in Table 3. 


 is the coefficient of time trend in the Hedonic 

regression of unit-level for each complex (we also choose those complexes with more than 50 transactions). And 

then we use the structural and locational features to explain the difference in 


, which is the growth rate of 

housing price. The coefficients of top and floor_mode show the same pattern as in Column (2) and (3) in Tale A3. 

(3) Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Appendix: From the Gordon growth model to equation (7) 

Let Rt and     
  denote the rental rate at period t and the discount factor between period t and t+1, 

then house price at period t can be written as the discounted present value of rents from the current 

and future periods, as in the following equation. 

 
                

     

 

   

     

 

   

  A(1) 

where Et is the expectation operator that take all the information available at time t into account. 

This equation is the Gordon growth model with time-varying stochastic discount rate.  

 

In period t+1, we have the following 

 
                        

   

 

   

       

 

   

  

                  
     

 

   

     

 

   

  

A(2) 

 

We multiply both sides of the above equation with     
 , and then take expectation using Et. This 

leads to   

 
       

              
              

             
     

 

   

 

 

   

       

        
                  

     

 

   

     

 

   

   

           
     

 

   

     

 

   

  

A(3) 

 

In equation A(3) we used the law of iterated expectations, i.e.,                  . Plugging A(3) 

into A(1), we have 

 

              
       A(4) 
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Equation A(4) is exactly equation (7) in the paper, except that we omitted the superscript t in the 

discount factor. 

 

 

 


