
Data-Driven Methods for Statistical Verification of

Uncertain Nonlinear Systems
by

John Francis Quindlen
M.S., The Pennsylvania State University (2012)
B.S.,The Pennsylvania State University (2010)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Aeronautics and Astronautics

December 13, 2017

Certified by. .
Jonathan P. How

R. C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Ufuk Topcu

Assistant Professor of Aerospace Engineering and Engineering
Mechanics

Certified by. .
Girish Chowdhary

Assistant Professor of Agricultural and Biological Engineering
Certified by. .

Russ Tedrake
Toyota Professor of Electrical Engineering and Computer Science

Accepted by .
Hamsa Balakrishnan

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Data-Driven Methods for Statistical Verification of

Uncertain Nonlinear Systems

by

John Francis Quindlen

Submitted to the Department of Aeronautics and Astronautics
on December 13, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Due to the increasing complexity of autonomous, adaptive, and nonlinear systems,
engineers commonly rely upon statistical techniques to verify that the closed-loop sys-
tem satisfies specified performance requirements at all possible operating conditions.
However, these techniques require a large number of simulations or experiments to ex-
haustively search the set of possible parametric uncertainties for conditions that lead
to failure. This work focuses on resource-constrained applications, such as prelimi-
nary control system design or experimental testing, which cannot rely upon exhaustive
search to analyze the robustness of the closed-loop system to those requirements.

This thesis develops novel statistical verification frameworks that combine data-
driven statistical learning techniques and control system verification. First, two
frameworks are introduced for verification of deterministic systems with binary and
non-binary evaluations of each trajectory’s robustness. These frameworks implement
machine learning models to learn and predict the satisfaction of the requirements over
the entire set of possible parameters from a small set of simulations or experiments. In
order to maximize prediction accuracy, closed-loop verification techniques are devel-
oped to iteratively select parameter settings for subsequent tests according to their
expected improvement of the predictions. Second, extensions of the deterministic
verification frameworks redevelop these procedures for stochastic systems and these
new stochastic frameworks achieve similar improvements. Lastly, the thesis details a
method for transferring information between simulators or from simulators to exper-
iments. Moreover, this method is introduced as part of a new failure-adverse closed-
loop verification framework, which is shown to successfully minimize the number of
failures during experimental verification without undue conservativeness. Ultimately,
these data-driven verification frameworks provide principled approaches for efficient
verification of nonlinear systems at all stages in the control system development cycle.

Thesis Supervisor: Jonathan P. How
Title: R. C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

The past few years have been an interesting and enlightening phase of my life. My

time at MIT has introduced me to countless new concepts and ideas that will serve

me well in the future and has cultivated my professional development. It’s been quite

a journey and I’d like to acknowledge the following people for their help and support

along the way.

First, I would like to thank my advisor, Professor Jonathan How for his guidance

and wisdom. Throughout the years, I was always amazed by his ability to remember

the smallest of details from our previous conversations and his breadth of knowledge

about all things “control.” His inputs would often highlight previously unknown

limitations of existing work and help me solidify and buttress the contributions of my

research. Through his guidance, I was able to become a significantly better researcher

and ask the right questions about a problem.

I would also like to thank my thesis committee, Professors Girish Chowdhary,

Ufuk Topcu, and Russ Tedrake, for their invaluable input and support. I’ve worked

with Girish since my first days in ACL and have greatly benefited from his continued

advice over the past years. Unbeknown to me at the time, my earliest conversations

with Ufuk were some of the most critical as they ultimately led me down the direction

taken in this thesis. He helped me understand the strengths and weaknesses of the

various analytical and statistical verification techniques and their implementation. I

would also like to thank Russ for his help in narrowing down my thesis topic and

connecting it to the wider class of applications.

I am very grateful to my thesis readers, Dr. Nghia Trong and Dr. Stefan Bieni-

awski, for their help in the last stages of this thesis. Nghia has not been at MIT

long, but already I’ve picked his brain about all things active learning and statistical

inference. Likewise, Stefan was a fantastic supervisor during my internship at Boeing

and that experience also directly motivated this thesis research. Myself and this work

have continued to benefit from his insights on industry’s challenges and procedures

with respect to flight control system design and verification.

5

Without my labmates and friends, I would never have made it to this point. I

would like to thank my labmates past and present - Brett Lopez, Steven Chen, Justin

Miller, Mark Cutler, Shayegan Omidshafiei, Mike Everett, Kris Frey, and everyone

else - for their collaboration on psets, advice on research, funny banter, and helping

me stay grounded. They made our office space as enjoyable as possible, especially

during all those late nights and weekends. I’m glad to have my friends Tony Tao, Matt

Keffalas, Jess Hebert, and Andrew Owens for their support here at MIT. I appreciate

all those Friday nights where we would unwind and watch movies or play games after

a long week. The same goes for my old roommates Bobby Klein and David Clifton.

I also need to thank my friends from Penn State who are up in the greater Boston

area: Alan Campbell, Andrew Weinert, Charlie Cimet, and Pei Wang. I would have

never guessed we would still be living in the same area after our time in undergrad. I

also can’t forget my best friends scattered across the country: Joe Wood, Matt Sowa,

and Henry Ball. All these friends got me through the up and downs of grad school

(and there were many downs).

Finally, I would like to thank my family for all their unending support. My parents

have always encouraged me to pursue my passions, whatever they were, and worked

tirelessly for my sister and I. There is no way I would be in my current position

without them and I am eternally grateful.

6

Contents

1 Introduction 21

1.1 Motivation . 22

1.2 Problem Statement . 26

1.2.1 Challenges . 26

1.3 Literature Review . 28

1.3.1 Analytical Verification Methods 28

1.3.2 Statistical Verification Methods 30

1.4 Summary of Contributions . 33

2 Background 37

2.1 Support Vector Machines . 37

2.1.1 Linear Classifiers . 38

2.1.2 Nonlinear Classifiers . 38

2.2 Gaussian Process Regression Models 41

2.2.1 Training . 42

2.2.2 Predictions . 44

2.2.3 Hyperparameter Optimization 46

2.3 Temporal Logic . 48

3 Deterministic Verification with Binary Evaluations of Performance 51

3.1 Problem Description . 51

3.1.1 Discrete Evaluations of Performance Requirement Satisfaction 54

3.1.2 Region of Satisfaction . 55

7

3.2 Deductive Verification Methods . 56

3.2.1 Limitations . 58

3.3 Statistical Data-Driven Verification 60

3.3.1 SVM Classification Models . 60

3.3.2 Comparison to Simulation-Guided Barrier Certificates 65

3.4 Closed-Loop Statistical Verification 66

3.4.1 Sample-Selection Criteria . 68

3.4.2 Sequential Sampling . 70

3.4.3 Batch Sampling . 72

3.5 Simulation Results . 76

3.5.1 Van der Pol Oscillator . 76

3.5.2 Concurrent Learning Model Reference Adaptive Controller . . 81

3.5.3 Adaptive System with Control Saturation 85

3.6 Summary . 88

4 Deterministic Verification with Improved Evaluations of Trajectory

Robustness 89

4.1 Problem Description . 90

4.1.1 Continuous Measurements of Performance Requirement Satis-

faction . 90

4.2 Regression-based Binary Verification 93

4.2.1 Gaussian Process Regression Model 94

4.2.2 Prediction Confidence . 98

4.3 Closed-Loop Statistical Verification 100

4.3.1 Sample-Selection Criteria . 101

4.3.2 Sequential Sampling . 107

4.3.3 Batch Sampling . 109

4.4 Simulation Results . 116

4.4.1 Concurrent Learning Model Reference Adaptive Controller . . 117

4.4.2 Robust Multi-Agent Task Allocation 125

8

4.4.3 Adaptive Control with Complex Temporal Specifications . . . 127

4.4.4 Lateral-Directional Autopilot 131

4.5 Summary . 134

5 Stochastic Verification with Gaussian Distributions of Trajectory

Robustness 137

5.1 Problem Description . 138

5.1.1 Distribution of Trajectory Robustness Measurements 140

5.1.2 Satisfaction Probability Function 143

5.2 Regression-based Stochastic Verification 145

5.2.1 Gaussian Process Regression Model 145

5.2.2 Measuring Prediction Accuracy 149

5.3 Closed-Loop Statistical Verification 152

5.3.1 Sample-Selection Criteria . 153

5.3.2 Sampling Algorithms . 160

5.4 Extension: Heteroscedastic Gaussian Distributions 163

5.4.1 Heteroscedastic Gaussian Process Regression Model 166

5.4.2 Modifications to the Stochastic Verification Framework 169

5.5 Discussion: Non-Gaussian Distributions 171

5.6 Simulation Results . 173

5.6.1 Concurrent Learning Model Reference Adaptive Controller . . 173

5.6.2 Robust Multi-Agent Task Allocation 186

5.6.3 Lateral-Directional Autopilot 189

5.7 Summary . 194

6 Extension: Stochastic Verification with Bernoulli Evaluations of Per-

formance 197

6.1 Problem Description . 198

6.2 Probabilistic Classifiers for Stochastic Verification 201

6.2.1 Expectation Propagation Gaussian Process Models 202

6.2.2 Closed-Loop Statistical Verification 205

9

6.3 Simulation Results . 206

6.3.1 Concurrent Learning Model Reference Adaptive Controller . . 208

6.3.2 Stochastic Van der Pol Oscillator 211

6.4 Summary . 216

7 Multi-Stage Verification and Experimental Testing 217

7.1 Forward Transfer in Multi-Stage Verification 218

7.1.1 Forward Transfer with Nonzero Priors 219

7.2 Impact of Failures in Experimental Testing 224

7.2.1 Region of Safe Operation . 225

7.2.2 Problem with Trajectory Robustness Measurements 227

7.3 Failure-Adverse Closed-Loop Verification 229

7.3.1 Forward Transfer of Simulation-Based Predictions 230

7.3.2 Selection Criteria . 233

7.3.3 Sampling Algorithms . 236

7.4 Demonstration of Failure-Constrained Verification 240

7.5 Summary . 246

8 Conclusions and Future Work 249

8.1 Future Work . 251

A Concurrent Learning Model Reference Adaptive Control 257

B Robust Multi-Agent Task Allocation for Aerial Forest Firefighting 263

C Lateral-Directional Autopilot Model 269

D Determinantal Point Processes for Sampling 273

10

List of Figures

1-1 Crash of the NASA Helios aircraft . 24

1-2 Verification as a step within a broader control system design process . 25

3-1 Illustration of simulation-guided barrier certificates on a Van der Pol

oscillator . 58

3-2 Lyapunov function-based predicted region of satisfaction for a Van der

Pol oscillator . 59

3-3 SVM-based predicted region of satisfaction for a Van der Pol oscillator 66

3-4 Computational complexity of the sequential and batch closed-loop ver-

ification procedures for binary measurements 76

3-5 Example 3.5.1: Ranking of prospective sample locations for the VDP

example . 78

3-6 Example 3.5.1: Sample selections for different batch sizes 79

3-7 Example 3.5.1: SVM-based prediction model after 250 samples 79

3-8 Example 3.5.1: Misclassification error convergence of statistical verifi-

cation techniques . 80

3-9 Example 3.5.1: Estimation error for online validation methods 82

3-10 Example 3.5.2: Ranking of prospective sample locations 83

3-11 Example 3.5.2: Prediction model and misclassification error convergence 84

3-12 Example 3.5.2: Estimation error for online validation methods 85

3-13 Example 3.5.2: Effect of increasing false-positive penalties 86

3-14 Example 3.5.3: Total misclassification error convergence 88

11

4-1 Comparison of two trajectories with the same binary evaluation but

different continuous measurements . 92

4-2 Illustration of prediction confidence for GP-based deterministic verifi-

cation . 100

4-3 Binary classification entropy as a function of prediction confidence . . 104

4-4 Computational complexity of the sequential and batch closed-loop ver-

ification procedures for non-binary measurements 116

4-5 Comparison of the chosen samples for the different batch sampling

techniques . 117

4-6 Example 4.4.1: Regression surface corresponding to the actual satis-

faction of the performance requirement over Θ 119

4-7 Example 4.4.1: Initial prediction model after an initial training dataset

of 50 trajectories . 120

4-8 Example 4.4.1: Final prediction model after 350 samples 120

4-9 Example 4.4.1: Misclassification error convergence of Algorithm 6 in

comparison to the other approaches 121

4-10 Example 4.4.1: Ratio of runs where Algorithm 6 directly outperforms

the competing approaches . 123

4-11 Example 4.4.1: Illustration of confidence levels in the predictions . . . 124

4-12 Example 4.4.1: Rate of misclassification error in the 95% prediction

confidence level . 124

4-13 Example 4.4.1: Average misclassification error of the closed-loop pro-

cedures with and without hyperparameter optimization 126

4-14 Example 4.4.2: Rate of misclassification errors for Algorithm 3 and the

competing approaches . 128

4-15 Example 4.4.2: Ratio of runs where Algorithm 3 directly outperforms

the competing approaches . 128

4-16 Example 4.4.3: Misclassification error convergence of Algorithm 6 in

comparison to the other approaches 130

12

4-17 Example 4.4.3: Ratio of runs where Algorithm 6 directly outperforms

the competing approaches . 130

4-18 Example 4.4.3: Rate of misclassification error in the 95% prediction

confidence level . 131

4-19 Example 4.4.4: Misclassification error convergence of Algorithm 6 in

comparison to the other approaches 134

4-20 Example 4.4.4: Ratio of runs where Algorithm 6 directly outperforms

the competing approaches . 134

4-21 Example 4.4.4: Rate of misclassification error in the 95% prediction

confidence level . 135

5-1 Illustration of the effects of stochasticity in the closed-loop trajectory 140

5-2 Distribution of robustness measurements for trajectories with the same

initialization . 142

5-3 Illustration of the satisfaction probability function as the cumulative

distribution of the Gaussian PDF . 144

5-4 Illustration of prediction error resulting from uncertainty over the mean

of the distribution . 150

5-5 Approximation of CDF variance using the 1st order Taylor series ex-

pansion . 152

5-6 Binary classification entropy fails to quantify prediction uncertainty in

stochastic systems . 155

5-7 Comparison of homoscedastic and heteroscedastic Gaussian distributions165

5-8 Example 5.6.1: Histogram of robustness measurements from 500 re-

peated trajectories at the same parameter setting 174

5-9 Example 5.6.1: True satisfaction probability function for the stochastic

CL-MRAC system . 176

5-10 Example 5.6.1: Deterministic measurements from Example 4.4.1 for

comparison to the mean of the noisy measurements in this stochastic

variation on the problem . 176

13

5-11 Example 5.6.1: Predicted satisfaction probability function at the initial

training step . 177

5-12 Example 5.6.1: Illustration of the CDF variance selection criterion and

the chosen set of future training locations 178

5-13 Example 5.6.1: Predicted satisfaction probability function halfway through

the verification process after 250 trajectories 179

5-14 Example 5.6.1: Predicted satisfaction probability function at the end

of the verification after all 450 trajectories 179

5-15 Example 5.6.1: Mean absolute error convergence of Algorithm 8 in

comparison to the other sampling strategies 180

5-16 Example 5.6.1: Mean absolute error convergence with static hyperpa-

rameters . 180

5-17 Example 5.6.1: Ratio of runs where Algorithm 8 directly outperforms

the competing sampling strategies . 181

5-18 Example 5.6.1: Concentration of prediction error in points with the

top 1% of CDF variance . 183

5-19 Example 5.6.1: Concentration of prediction error in points with the

top 5% of CDF variance . 183

5-20 Example 5.6.1: Changes in the probability of requirement satisfaction

associated with increases and decreases in process noise 184

5-21 Example 5.6.1: Mean absolute error convergence with lower process noise185

5-22 Example 5.6.1: Mean absolute error convergence with higher process

noise . 185

5-23 Example 5.6.2: Mean absolute error performance with low measure-

ment variance . 187

5-24 Example 5.6.2: Mean absolute error performance with high measure-

ment variance . 187

5-25 Example 5.6.2: Concentration of prediction error in points with the

top 1% of CDF variance . 188

14

5-26 Example 5.6.2: Concentration of prediction error in points with the

top 5% of CDF variance . 188

5-27 Example 5.6.3: Comparison of mean absolute error convergence as-

suming the standard measurement distribution 190

5-28 Example 5.6.3: Comparison of mean absolute error convergence after

the requirement is loosened by 10 feet 191

5-29 Example 5.6.3: Comparison of mean absolute error convergence after

the requirement is loosened by 20 feet 191

5-30 Example 5.6.3: Concentration of prediction error in points with the

top 1-5% of CDF variance . 192

5-31 Example 5.6.3: Changes in variance across the set of all operating

conditions as the result of a heteroscedastic Gaussian distribution . . 193

5-32 Example 5.6.3: Degradation in mean absolute error if the baseline GP

is applied to a heteroscedastic distribution. 194

5-33 Example 5.6.3: Comparison of mean absolute error convergence using

homoscedastic vs. heteroscedastic GP models. 195

6-1 Binomial distributions for empirical estimation of the probability of

requirement satisfaction at a particular parameter setting 201

6-2 Example 6.3.1: True probability of requirement satisfaction for the

stochastic CL-MRAC system . 209

6-3 Example 6.3.1: Predicted satisfaction probability function at the initial

training step and after 20 iterations of Algorithm 11. 209

6-4 Example 6.3.1: Comparison of mean absolute error convergence for the

different sampling strategies . 210

6-5 Example 6.3.1: Ratio of runs where Algorithms 10 and 11 directly

outperform or match the MAE levels of the other sampling approaches. 211

6-6 Example 6.3.2: True probability of requirement satisfaction for the

stochastic Van der Pol oscillator . 212

15

6-7 Example 6.3.2: Predicted satisfaction probability function at the initial

training step and after 20 iterations of Algorithm 11. 213

6-8 Example 6.3.2: Comparison of mean absolute error convergence for the

different sampling strategies . 214

6-9 Example 6.3.2: Ratio of runs where Algorithms 10 and 11 directly

outperform or match the MAE level of the other sampling approaches. 214

6-10 Example 6.3.2: True probability of satisfaction with higher variance . 215

6-11 Example 6.3.2: Comparison of mean absolute error convergence for the

different sampling strategies for the high variance case. 215

7-1 Illustration of zero- and nonzero-mean priors 222

7-2 Example of a safety requirement for an aircraft with unequal costs of

satisfactory and unsatisfactory trajectories 225

7-3 Illustration of the region of safe operation 226

7-4 Selection of the most robust point according to the simulation predictions.232

7-5 Example 7.4: True probability of satisfaction and safe operating region

for the simulation stage . 242

7-6 Example 7.4: True probability of satisfaction and safe operating region

for the real-world dynamics . 242

7-7 Example 7.4: Comparison of prediction error convergence and the num-

ber of failures using the previous active sampling approaches 244

7-8 Example 7.4: Illustration of the effects of small number of failures

upon the prediction accuracy when using the previous active sampling

approaches . 244

7-9 Example 7.4: Evolution of the predicted region of safe operation with

each additional experiment . 245

7-10 Example 7.4: Comparison of a batch version of Algorithm 12 against

the previous active sampling approaches 246

16

7-11 Example 7.4: Comparison of a batch version of Algorithm 12 against

the previous active sampling approaches modified with a restricted

search area . 247

7-12 Example 7.4: Comparison of sequential Algorithm 12 against the pre-

vious active sampling approaches modified with a restricted search area 247

B-1 Illustration of realized mission score as a function of wind parameters 266

C-1 Components of the lateral-directional autopilot and flight control sys-

tem for the de Havilland Beaver flight simulation model 270

C-2 Satisfaction of the heading autopilot’s requirements over an example

trajectory . 271

17

18

List of Tables

3.1 Comparison of SVM and barrier certificate prediction accuracy for a

Van der Pol oscillator . 66

19

20

Chapter 1

Introduction

Control systems are employed to ensure an open-loop system adequately satisfies a

set of performance objectives. For instance, possible open-loop plants under consid-

eration may range from localized subsystems like a computer hard-drive to physical

vehicles such as an aircraft or automobile, or even higher-level system-of-systems like

a team of interacting robotic agents. All of these applications will typically require

some form of control system and more complex systems-of-systems will include mul-

tiple layers of control.

As the demand for higher performance, efficiency, and autonomy grows, advanced

control techniques will be increasingly relied upon to meet these demands. Complex

methods such as model reference adaptive control (MRAC) [1], reinforcement learn-

ing [2], and a variety of other robust nonlinear control architectures [3] will replace

traditional linear control techniques which simply cannot meet the demands. These

advanced control approaches have already experimentally demonstrated the ability to

control damaged aircraft [4–6], aerobatic helicopters [7–9], and drifting racecars [10],

and have been proposed as key enablers for brand new applications such as hyper-

sonic [11] and lightweight flexible aircraft [12,13].

The largest obstacle impeding wider acceptance and implementation of advanced

control techniques is the lack of trust in the robustness of the closed-loop system. The

complexity and nonlinearity of the control architectures which allow them to perform

so well also complicates predictive analysis of the closed-loop system’s trajectory. For

21

instance, reinforcement learning will eventually converge towards a locally-optimal

controller, but there is no guarantee an intermediate controller will not cause catas-

trophic failure let alone satisfy the performance requirements. The difficulty in ana-

lyzing the robustness is further compounded by the fact the systems of interest are

usually expected to operate over a wide range of possible conditions with little-to-no

human oversight. Given the various conditions and nonlinear evolution of the states,

it is extremely difficult to guarantee all the possible trajectories will meet the objec-

tives. Until the approach is shown to either work robustly or gracefully degrade, any

new control architecture is of rather limited utility even if experimental results point

to large potential improvements. In fact, the Office of the US Air Force Chief Scien-

tist [14] recently stated that “establishing certifiable trust in autonomous systems is

the single greatest technical barrier that must be overcome to obtain the capability

advantages that are achievable by the increasing use of autonomous systems” and

“this level of autonomy will be enabled only when automated methods for verification

and validation of complex, adaptive, highly nonlinear systems are developed.” This

thesis develops data-driven, black-box methods for statistical verification of nonlinear

systems without the need for human supervision or restrictive modeling assumptions.

The chapters will demonstrate these new verification techniques on multiple examples

with adaptive, nonlinear, or otherwise complex control systems.

1.1 Motivation

The fundamental goal of control system verification is to identify at which operating

conditions the closed-loop system will satisfy a certain set of performance require-

ments and at which conditions it will not. These requirements may cover a wide

range of possible criteria such as simple concepts like stability and boundedness of the

states to more complex functions of state and time. These well-defined requirements

are provided by relevant certification experts or authorities, such as military [15] and

civilian [16] aviation agencies. Regardless of the exact specifics, the closed-loop sys-

tem must successfully meet all the given requirements in order for the control system

22

to be considered “satisfactory” for final implementation.

There are multiple approaches that can be taken towards verification, but they

typically fall into two general categories: deductive analytical techniques and statis-

tical methods. Analytical verification approaches encompass proof-based certificates

or numerically-exact solutions which provably guarantee the closed-loop system will

satisfy the requirements under specific modeling assumptions. In contrast, statistical

techniques relax the modeling assumptions and apply to a wider class of systems, but

replace the provable guarantees with less absolute probabilistic bounds. Despite their

implementation differences, both these verification approaches must contend with the

same issues and considerations.

First, closed-loop systems are expected to successfully meet a wide range of dif-

ferent performance criteria. As discussed earlier, these requirements may include

everything from stability to nonlinear functions of space and time, but the closed-

loop systems may also have to simultaneously address multiple requirements with

potentially competing objectives. For instance, high performance aircraft such as a

F-16 fighter jet will have to satisfy high speed and maneuverability requirements to

complete the assigned combat missions, but also meet slow speed and docile handling

requirements for landing [17]. Given a set of competing requirements, the closed-loop

system will likely not be able to satisfy all the requirements by a large margin. Ulti-

mately, it is not immediately obvious whether the closed-loop system will meet those

requirements and verification will be a nontrivial endeavor.

Second, verification requires a sufficiently-realistic representation of the actual

system to capture the change in performance at various conditions. For analytical

verification problems, a sufficiently-realistic representation would require the full set

of equations of motion of the true system to be known or approximated. For statisti-

cal verification, this representation is typically a simulation model of the closed-loop

system dynamics, but could also include a physical prototype for experiment-based

testing. In the statistical verification case, simulation models will have to be of high-

enough fidelity to meet the certification authority’s acceptable level of realism. While

certain applications may allow simple equations of motion for verification purposes,

23

(a) Helios before breakup (b) Helios after exceeding failure limits

Figure 1-1: NASA Helios aircraft which broke apart due to failure modes of the flight control
system inadvertently missed by linear verification methods. Image source [23]

the minimum level of realism for most applications will generally require complex

simulators with models of full nonlinear dynamics and relevant saturation, logic, and

switching modes. It may even require surrogate models with the most realistic depic-

tion of a physical system as possible, such as FAA-approved flight-training simulators

that are judged realistic enough to replace real-world flight hours for airline pilot

training and currency [18].

Likewise, the verification model may be more complex than the model used to

construct the control policy under consideration. For instance, many control systems

are designed using a reduced-order model of the full system dynamics [19–21]. While

this eases design and optimization of the controller, verification should be performed

on the full-order model rather than the simplified representation. For instance, one

of the root causes leading to the crash of NASA’s Helios Unmanned Aerial Vehicle

(UAV) was the lack of control system verification on a nonlinear model with inter-

actions between aircraft subsystems and the effects of different meteorological condi-

tions [22, 23]. The reliance upon linear methods “did not provide the proper level of

complexity to understand the technology interactions on the vehicle’s stability and

control characteristics” [22] and missed failure modes for the flight control system

that ultimately led the lightweight, flexible aircraft to break apart (Figure 1-1). The

end result highlights the need for the verification model to adequately capture the

dynamics that adversely affect the performance of the actual system.

24

(a) Simple control design process

(b) Simulation and experimental verification within a more complex design process

Figure 1-2: Verification as a step within a broader control system design process.

Lastly, verification is usually one step in a much larger control system design

and optimization process. For instance, consider the generic iterative control design

process shown in Figure 1-2(a). Verification is used to identify whether the candidate

controller produces an acceptable level of robustness to uncertainties. If the system

fails to meet the minimum level of robustness or some other objective function, the

process is repeated until a suitable controller is produced. Although the specific

implementation details differ, various control design works [24–26] employ verification

methods within some form of similar iterative process. Likewise, verification may even

occur at multiple stages within a control policy design cycle, as shown in Figure 1-2(b).

For example, a low-cost UAV design procedure used simulation and hardware-in-the-

loop testing to prune out poorly-performing control system designs earlier in the

process before experimental flight testing [27]. This multi-stage verification approach

could be extended even further to include multiple simulation models of increasing

fidelity in conjunction with hardware-based testing. A similar approach has already

been used for multi-fidelity reinforcement learning [28] and would easily transfer to

verification applications. All these various examples simply serve to highlight that

verification tends to be performed multiple times over the course of a control system

design and optimization process.

25

1.2 Problem Statement

The goal of this work is to develop data-driven methods for statistical verification of

nonlinear closed-loop systems. While analytical verification techniques provide prov-

able guarantees, their restrictive modeling assumptions and conservativeness limit

their utility and availability in complex nonlinear systems. For example, the large

state and parameter spaces associated with industrial applications challenge analytical

methods [29,30]. In many of these applications, simulation-based statistical methods

are significantly easier and faster to perform than it is to compute an analytical so-

lution, if that is even feasible [30, 31]. Some analytical methods are able to scale to

arbitrarily complex systems; however, they typically require very restrictive or con-

servative assumptions and abstractions to achieve that result. While they do produce

a solution, the resulting guarantees may not reflect the full response of the actual

system. Therefore, statistical verification is often a more suitable approach towards

verification of arbitrary closed-loop systems with adaptive, nonlinear, or complex

control systems.

1.2.1 Challenges

The implementation considerations discussed in Section 1.1 illustrate a number of

challenges associated with verification of complex nonlinear systems. These challenges

present major obstacles or hindrances to existing statistical verification procedures

and motivate the approach taken in this thesis.

The primary challenge is the large overhead cost required for statistical verifica-

tion using full nonlinear simulation models or, to an even greater extent, real-world

experimentation. One of the leading reasons for this is the large range of possible

operating conditions faced by the system. In aerospace applications, the operating

conditions include various uncertainties such as weight and center of gravity location.

Even when the number of uncertain variables is small, these terms span a continuous

spectrum of potential values rather than a small, discrete set of possible conditions.

Similarly, the aforementioned need to employ sufficiently-realistic models also con-

26

tributes to the overhead cost in model-based verification. In order to adequately

capture the interaction of the uncertainties with the system dynamics, verification re-

quires a high-fidelity simulation model and a small numerical integration timestep for

the simulations. These simulation models require significant computational resources

and may take several minutes on a suitable computer to generate a single simulation

test [32]. These issues will only be further exacerbated when verification is part of an

iterative process (Figure 1-2).

Additionally, one secondary challenge faced during verification is stochasticity

and the randomness it introduces into the system dynamics. Stochasticity is present

in many physical systems, commonly as process and/or measurement noise in the

underlying dynamics. While the system’s trajectories will still vary according to the

operating conditions, the stochastic noise terms will also affect the evolution of the

states. Due to the randomness introduced by stochasticity, no two simulations or

experiments will ever be the same, even if they are performed at the same parameter

setting. In fact, when multiple trajectories are performed at the same operating

condition, some trajectories may satisfy the designed requirement(s) while others

may not, as shown later in Figure 5-1. Ultimately, the fact multiple trajectories

at the same operating condition may produce different results means a stochastic

system will no longer always satisfy or fail to satisfy the designated requirement at

a particular operating condition, but will instead have a probability of satisfying the

requirement.

Lastly, the incorporation of prior verification work in the later stages of a multi-

stage verification analysis (Figure 1-2(b)) is another secondary challenge. In those

problems, it is desirable from a cost perspective to transfer the results from the

preceding stages into later stages and speed up the process; the question is how to

do this in a correct manner. The differences in the dynamics between lower- and

higher-fidelity simulation models will cause inaccuracies in the certification output

from the lower-fidelity model. The same type of inaccuracy is experienced between

simulation models and experimental results. These inaccuracies are usually slight but

their existence does complicate forward transfer of verification output from an earlier

27

stage of the process into later stages.

1.3 Literature Review

There exists a wide range of verification techniques that have been used to address

some form of control system verification or testing. This section will overview these

various techniques and discuss their merits or limitations with respect to the verifi-

cation challenges identified in Section 1.2.1.

1.3.1 Analytical Verification Methods

Analytical verification encompasses a variety of disparate approaches with either

closed-form or numerically-exact solutions for theoretically-proven robustness. For

discrete-time dynamical systems, methods originally developed for rapidly-exploring

random trees (RRTs) can be used to analyze the closed-loop trajectories from simple

linear or linearized nonlinear models. In particular, chance-constrained, closed-loop

RRT (CC-CL-RRT) methods [33–35] are able to efficiently propagate the effects of

stochastic noise in closed-loop trajectories by placing Gaussian distributions around

a nominal trajectory to model the stochasticity in the system’s states. Although

this has been demonstrated on relevant aerospace applications [36], the method’s

applicability is limited due to it’s reliance upon linear or linearized models. More

importantly, there is no readily-apparent extension to incorporate parametric uncer-

tainties in non-state variables and the verification analysis would have to be repeated

for each realization of the parameterized, linear model.

A second type of approach focuses on finite abstractions of the nonlinear closed-

loop dynamics. These approaches either assume the closed-loop dynamics are pre-

sented as a finite transition system or approximate the dynamics in such a way. For

example, Markov chain analysis methods [37,38] assumes the set of all possible states

is a n-dimensional hypercube (or similar shape) and models stochasticity in the dy-

namics as transition probabilities between those states. Similar common verification

tools such as SpaceEx [39] approximate the state space with a finite lattice and com-

28

pute the approximate reachability of a hybrid system. Although more recent work [40]

has applied parametric transition systems to discretize both the state and parameter

spaces in adaptive control problems, the utility of finite transition systems is lim-

ited by the discretization of the dynamics. As the complexity of the system grows,

the level of discretization required becomes intractable and further exacerbated in

high-dimensional systems.

Satisfiability modulo theorem (SMT) solvers [41, 42] verify the 𝛿-satisfiability of

logic requirements in overapproximations of the reachable state space. These tech-

niques construct proofs to provably guarantee whether a set of requirements will be

satisfied given nonlinear differential equations representing the system’s closed-loop

dynamics. The approach has also been extended to include stochastic systems [43].

Even though these techniques have been shown to handle polynomial and logrith-

mic nonlinear systems with simple discrete mode transitions, they fail to scale well

to higher-dimensional and -complexity systems and suffer from the same issues with

uncertain parameters as the previous approaches.

The most relevant approach for verification of complex, uncertain nonlinear sys-

tems is bounding function-based analysis. As the name suggests, these techniques

rely upon analytical functions such as Lyapunov, barrier, or storage functions to

bound the reachability of the system’s trajectory. For instance, the Lyapunov func-

tion common to MRAC systems defines a convex, quadric hypersurface that bounds

the reachable set of states from a given set of initial conditions and parametric un-

certainties [1, 44]. More advanced methods like barrier certificates [45–47] and LQR

trees [48] can be constructed for a variety of nonlinear systems with stochasticity

and complex performance requirements. While these analytical techniques produce

extremely powerful certificates that provably verify the set of reachable states, they

can be difficult to construct for arbitrary nonlinear systems [49]. The existence and

conservativeness of the certificate is tied to the choice in Lyapunov function, but the

correct or best function representation may not be known in advance. Likewise, as

the complexity or number of states and parameters increases, the minimum complex-

ity for an appropriate Lyapunov function also increases and complicates finding a

29

useful verifying certificate. Recent work [29] has been able apply these techniques to

higher-dimensional systems, but does so by introducing additional conservatism.

Simulation-Guided Analytical Verification Methods

In order to more easily find and construct analytical certificates, simulation-guided

barrier certificates [50–53] and LQR trees [54] were developed to automate the ver-

ification process. As the choice of function representation is inherently coupled to

the conservativeness of the certificate, but the best choice is generally unknown, it is

difficult to compute a maximizing bounding set without prior knowledge or experi-

ence. These methods use simulation traces and the gradient of candidate Lyapunov

functions to determine suitable Lyapunov functions and calculate their maximizing

invariant set, effectively automating the process. These techniques also serve as a

bridge between analytical verification methods and statistical ones.

1.3.2 Statistical Verification Methods

On the opposite side of the spectrum, statistical verification methods are brute-force

approaches that return statistical certificates or bounds based upon large sets of

trajectory data. In comparison to analytical techniques, statistical approaches are

much more straightforward, but usually more data intensive. In extreme cases, the

system can be treated as a black-box model with zero information on the internal

model structure/dynamics.

One popular, recent development is falsification-guided software tools such as

Breach [55] or S-TaLiRo [56,57]. These approaches use temporal logic properties and

nonlinear optimization to intelligently search for counterexamples to a given perfor-

mance requirement and simulation model. Although they have been demonstrated

on multiple relevant applications, falsification approaches address a similar, but dif-

ferent type of problem. Rather than identify the set of operating conditions for

which the system will satisfy the performance criteria, falsification methods utilize

optimization techniques to converge towards a single trajectory (counterexample) of

30

the system that fails to meet the requirement. This underlying optimization pro-

cess controls falsification-guided testing and will direct the search towards areas with

lower robustness; however, falsification methods may encounter problems similar to

those seen in non-convex optimization. Just as optimization may repeatedly fall into

the same local optimums, falsification searches may inadvertently return the same

counterexample, even if they are initialized at different starting points. While these

methods are extremely useful for quickly finding a single counterexample, they are

not perfectly suited to problems where multiple counterexamples exist and the goal

is to identify the entire set of unsatisfactory operating conditions. For this reason,

falsification-guided techniques are of limited use to the particular problem of interest

in this thesis.

The most general, widely-used, and versatile approaches are Monte Carlo methods

[30,31,58–69]. Part of the reason for their popularity and versatility is their simplicity:

they randomly generate a large number of trajectories and reason about the system’s

robustness from this finite number of observations. Monte Carlo methods are practical

tools for measuring the effects of stochasticity [58–60] and parametric uncertainties

[25,26,61,70] in the dynamics and have been used in conjunction with various tools like

S-TaLiRo [58,62,63], PRISM [64,65], and other statistical model checking approaches

[30,31,66–69]. The main drawback of Monte Carlo methods is that they rely upon the

law of large numbers to provide bounds or statistical estimates [59,60], meaning a large

amount of data is required. Importance sampling and cross-entropy methods [60,61,

63,67] have been developed to reduce the number of samples required for statistically-

relevant results, but are still inherently random and require many samples.

Additional techniques like Dirichlet Sigma point processes [24], set-oriented mod-

els [71], and box thresholding [72] all attempt to circumvent the limitations of Monte

Carlo approaches with finite, structured groupings. Rather than randomly sample

from the set of all operating conditions, these approaches select some subset of condi-

tions explicitly chosen for their perceived informativeness about the results over the

full set. Design of experiments techniques [73, 74] can also be considered to roughly

fall within this category or the intersection between it and Monte Carlo methods.

31

While these approaches offer an alternative to pure Monte Carlo methods, they can

still be viewed as sample inefficient because they rely upon pre-generated grids or

lattices covering the set of all possible operating conditions. These structured group-

ings will typically require a fine discretization or some equivalent in order to observe

the changes in performance satisfaction with adequate resolution and will therefore

require a nontrivial number of simulations or experiments.

The closest approach to the work in this thesis are the Gaussian process-based

methods for safe learning of regions of satisfactory performance [75,76]. These meth-

ods combine Lyapunov analysis from analytical verification techniques with Bayesian

optimization to efficiently estimate the region verified by a Lyapunov function-based

barrier certificate. While these methods straddle the line between analytical and

statistical verification techniques, they ultimately break analytical techniques’ funda-

mental assumption of provable guarantees of closed-loop performance with the use of

Bayesian predictions. This fact shifts the methods’ implementation closer to statis-

tical techniques, but their reliance upon a given Lyapunov function for verification

of the system causes them to suffer the same limitations as analytical techniques. In

effect, these methods are useful for searching the set of uncertainties to estimate the

limits of a barrier certificate, but are not able to provide provable guarantees like the

aforementioned analytical methods nor do they posses the same versatility of most

statistical methods.

One important observation is that all of the discussed approaches, both analytical

and statistical methods, do not present an explicit solution to the challenge of forward

transfer of predictions from prior verification stages in a multi-stage process. Although

these earlier stages indirectly aid later steps by pruning out unsatisfactory candidate

controllers, none of the approaches posses a mechanism for direct incorporation of

previous results. In fact, many of these approaches will lose all guarantees once

applied to a different model. For instance, barrier certificates are coupled to the

model of the system dynamics used to construct the proof and lose any guarantees as

soon as the later stage’s dynamics deviate from the original equations. The results

from proceeding stages can be used to inform initializations of later steps, but there

32

is no mechanism to transfer the output. Effectively, the later verification procedure

will be performed without any direct knowledge of the earlier predictions or proofs

and will have to replicate those results. This presents an obvious inefficiency and can

prove extra costly in experiment-based verification if the later experiment-based stage

crashes or destroys a prototype at an operating condition that was already identified

as dangerous by the preceding stage(s).

1.4 Summary of Contributions

This thesis proposes a unified framework to address all the aforementioned challenges

with statistical verification. At a high level, this work combines control system veri-

fication with machine learning to produce novel, data-driven procedures for efficient

statistical verification in resource-constrained environments. The thesis is structured

around three sets of major contributions corresponding to 1) the baseline problem

with verification of deterministic systems, 2) verification of stochastic systems, and

3) multi-stage verification (Figure 1-2(b)) with multiple, sequential verification steps.

These contributions build upon one another to address the fundamental challenges

in Section 1.2.1 that plague efficiency and tractability in statistical verification of

complex, nonlinear control systems.

The first major set of contributions concentrates on verification of determinis-

tic systems where each reinitialization of the trajectory will produce the same exact

result. This work shows deterministic verification is ultimately a binary classifica-

tion problem - a trajectory will either satisfy a performance requirement or it will

not - and introduces new machine learning algorithms aimed at that problem. The

contributions for deterministic verification are as follows:

∙ The development of a new machine learning framework for statistical verification

called data-driven verification certificates. Unlike barrier certificate methods,

this framework directly translates raw trajectory data into a predictive cer-

tificate without intermediate analytical, proof-based steps. These data-driven

certificates sacrifice the conservative guarantees of analytical certificates in order

33

to apply to a significantly wider class of systems. Chapters 3 and 4 introduce

two parallel modeling techniques each tailored to exploit one of the two most

common sources of feedback on a trajectory’s performance.

∙ The introduction of validation techniques for online quantification of prediction

accuracy. Section 3.3.1 extends traditional machine learning methods for model

validation to data-driven verification certificates and analyzes their effectiveness

in statistical verification. Most importantly, Section 4.2.2 designs a completely

new approach for online computation of prediction confidence without reliance

upon external validation datasets or retraining of the prediction model. This

latter validation technique minimizes the amount of additional computational

overhead and guarantees the predictive certificate will explicitly answer both

relevant questions for each query:

– Is the trajectory going to satisfy the requirements?

– How confident is the model in that prediction?

The second question is almost as important as the prediction itself, but is fre-

quently not addressed in statistical verification and relevant machine learning

techniques.

∙ The development of closed-loop verification algorithms to maximize the accu-

racy of prediction certificates while limited to fixed sample budget. A major

part of this contribution is the introduction of new entropy-based selection met-

rics (Section 4.3) to evaluate the informativeness of prospective trajectories and

select future training samples to produce the largest expected improvement

in prediction confidence. Several examples demonstrate closed-loop verifica-

tion’s improvement in prediction accuracy over comparable analytical verifica-

tion techniques, open-loop (non-iterative) verification approaches, and compet-

ing iterative procedures adapted from existing machine learning methods.

The second set of contributions extends data-driven verification to stochastic sys-

tems. Due to the introduction of stochasticity, the preceding work in deterministic

34

certificates will no longer apply without heavy modification. This set of contributions

reproduces the same high-level concepts behind data-driven certificates and closed-

loop verification for the separate and distinct stochastic problem. These contributions

include:

∙ The development of data-driven verification frameworks to model the probabil-

ity of satisfaction or failure in stochastic systems. Specifically, Chapters 5 and 6

introduce different approaches to model the various distributions of performance

feedback evaluations possible with stochastic dynamics. These techniques all

predict the likelihood of an unsatisfactory trajectory given a small set of individ-

ual trajectories (Chapter 5) or limited groups of repeated trajectories (Chapter

6).

∙ The redevelopment of closed-loop verification algorithms to address the changes

with stochastic systems. Sections 5.2 and 5.4 introduce new selection criteria to

rank prospective trajectories based upon their expected reduction in prediction

error. Several examples in Sections 5.6 and 6.3 again demonstrate the improve-

ment in prediction accuracy over open-loop verification approaches afforded by

closed-loop verification and the novel selection metrics’ further improvement

over relevant procedures adapted from existing machine learning methods.

The last major set of contributions in Chapter 7 builds upon the preceding chap-

ters to address implementation issues in multi-stage verification. These contributions

mainly focus on the value of prior verification work during later stages of the pro-

cess and its use to further maximize accuracy in the presence of restrictive testing

constraints. The contributions are:

∙ The demonstration of a principled approach for forward transfer of earlier ver-

ification analysis of the same control policy on a verification model from an

earlier stage. In particular, Section 7.1 details the use of nonzero-mean pri-

ors taken from the output of earlier prediction models to explicitly incorporate

their effects into later stages. Simultaneously, this approach avoids naïve as-

35

sumptions about the accuracy of earlier, lower-fidelity models and allows for

posterior prediction models to vary drastically from their priors.

∙ The introduction and formalization of a variant of multi-stage verification called

failure-constrained statistical verification (Section 7.2). This subproblem con-

siders the challenge of statistical verification in experimental domains where

unsatisfactory trajectories lead to unacceptable costs. Failure-constrained sta-

tistical verification places limits on the maximum allowable number of failures

during testing at the experimental stage.

∙ The development of new closed-loop verification algorithms for failure-constrained

statistical verification. Section 7.3 introduces two novel algorithms, one adap-

tive and one static, to simultaneously minimize the number of failures while

maximizing informativeness of the prediction model. Section 7.3 also introduces

a new selection criteria specifically tailored to maximize the informativeness of

each experiment while limiting the likelihood of failure. Results in Section

7.4 demonstrate the limitations and unacceptable costs of existing procedures

when applied to failure-constrained statistical verification and the improvement

offered by the new algorithms.

36

Chapter 2

Background

This chapter introduces and details a number of tools used throughout the thesis.

These sections are intended to provide basic background and motivation for the tools

as well as present implementation details. Each subsequent chapter will discuss its

particular application of these tools and any relevant extensions.

2.1 Support Vector Machines

Support vector machines (SVMs) are one of, if not the, most common tools for binary

classification [77–82]. In binary classification problems, the SVM will classify all

elements of the feature set Θ ⊂ R𝑝 as either an exclusive element of set Θ− or its

complement Θ+, where Θ = Θ−∪Θ+ and Θ−∩Θ+ = ∅. This work assumes there are

only two classes (Θ−,Θ+), although other work has considered SVMs for multi-class

classification [81, 83, 84]. Additionally, set Θ, the set of all feasible features, may be

either discrete/countable or uncountable. As will be discussed later in the thesis, this

work assumes the feasible set Θ is an uncountable set, but will accurately approximate

it with a finely-discretized countable set.

In short, a support vector machine is a supervised learning technique that con-

structs an optimum maximum-margin classifier with respect to a set of training data.

This training dataset consists of 𝑁 input vectors {𝜃1,𝜃2, . . . ,𝜃𝑁} with corresponding

binary targets {𝑦1, 𝑦2, . . . , 𝑦𝑁}, where 𝑦𝑖 ∈ {−1,+1} for 𝑖 = 1, . . . , 𝑁 . The con-

37

structed classifier will then predict the label for any arbitrary element of Θ, vector

𝜃 ∈ Θ.

2.1.1 Linear Classifiers

In the simplest form of the problem, it is assumed label 𝑦𝑖 is the output of a linear

model

𝐻R(𝜃) = w𝑇𝜃 + 𝑏, (2.1)

with decision function

𝐻(𝜃) = sign(w𝑇𝜃 + 𝑏) (2.2)

such that 𝑦𝑖 = 𝐻(𝜃𝑖). Elements with w𝑇𝜃 + 𝑏 > 0 are said to belong to set Θ+,

while those with w𝑇𝜃 + 𝑏 < 0 belong to set Θ−. A linear optimization program can

then be used to compute optimal w and 𝑏 with respect to the training dataset. These

terms define a hyperplane in the R𝑝 space that is used to separate 𝜃 datapoints. In

this simplest form, the data is assumed to be linearly separable, meaning there exists

two parallel hyperplanes that separate all points with 𝑦(𝜃) = +1 from those with

𝑦(𝜃) = −1. The optimal w and 𝑏 then correspond to the unique maximum-margin

hyperplane, which minimizes the distance between the decision boundary given by

the hyperplane and any of the training samples [81]. As mentioned earlier, these

optimal terms can be computed via the following primal linear optimization problem:

minimize
w,𝑏

1

2
||w||2

such that 𝑦𝑖(w
𝑇𝜃𝑖 + 𝑏) ≥ 1 𝑖 = 1, . . . , 𝑁.

(2.3)

2.1.2 Nonlinear Classifiers

In practice, the linear model and classifier are not adequate for all types of problems

and applications, particularly the ones considered in this thesis. The nonlinearities

in dynamical systems often result in nonconvex regions in R𝑝 which simply cannot

be handled by linear models. The following subsection will discuss nonlinear classifi-

cation models as well as modifications to handle the lack of linear separability in the

38

training dataset.

In place of the linear model from (2.1), nonlinear classifiers can be constructed

from nonlinear basis functions that are functions of the input vector 𝜃. This new

representation is given by

𝐻R(𝜃) = w𝑇𝜑(𝜃) + 𝑏, (2.4)

where 𝜑(𝜃) ∈ R𝑞 is a vector of basis functions and typically 𝑞 > 𝑝. The decision

function 𝐻(𝜃) and the resulting classification rule for elements of Θ− and Θ+ are

mostly unchanged from (2.2), with basis vector 𝜑(𝜃) replacing 𝜃. The new primal

optimization program is also similar to (2.3):

minimize
w,𝑏

1

2
||w||2

such that 𝑦𝑖(w
𝑇𝜑(𝜃𝑖) + 𝑏) ≥ 1 𝑖 = 1, . . . , 𝑁.

(2.5)

In addition to nonlinear models, the baseline SVM classifier can be modified to

accommodate datasets which are not linearly separable, as exact separation of the

training data by hyperplanes is not possible in many applications [81]. Instead, a

soft-margin nonlinear classifier will allow datapoints to fall on the “incorrect” side

of the decision boundary, thus enabling a solution where the previous hard-margin

SVM would fail. To accommodate possible inseparability in the dataset, a non-

negative slack variable 𝜉𝑖 is introduced for each of the 𝑁 training points to relax

the constraints from (2.5). While these slack variables allow for misclassifications,

the objective function is also modified with a hinge-loss function in order to penalize

these misclassifications and minimize their presence in the optimal solution. The

resulting soft-margin primal problem is given by the following quadratic program:

minimize
w,𝑏

1

2
||w||2 + 𝐶

𝑁∑︁
𝑖=1

𝜉𝑖

such that 𝑦𝑖(w
𝑇𝜑(𝜃𝑖) + 𝑏) ≥ 1− 𝜉𝑖 𝑖 = 1, . . . , 𝑁

𝜉𝑖 ≥ 0 𝑖 = 1, . . . , 𝑁

(2.6)

with scalar 𝐶 > 0. This scalar term 𝐶 controls the likelihood of misclassifications

39

and with a sufficiently-high penalty on non-zero 𝜖𝑖, the soft-margin classifier begins to

operate similar to a hard-margin SVM. Thus, the soft-margin nonlinear SVM is the

most general form of classifiers and is capable of handling all the problems previously

addressed by the hard-margin, linear and nonlinear SVMs. Due to the fact little-

to-nothing is assumed in advance about the performance of the nonlinear systems of

interest in this thesis, soft-margin nonlinear SVMs offer the most robust solution with

the widest applicability.

Rather than compute the solution using the primal optimization problem in (2.6),

it is generally easier to solve the problem in its dual form:

maximize
𝛼

𝑁∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑁∑︁
𝑖,𝑗=1

𝛼𝑖 𝛼𝑗 𝑦𝑖 𝑦𝑗𝜑(𝜃𝑖)
𝑇𝜑(𝜃𝑗)

such that 0 ≤ 𝛼𝑖 ≤ 𝐶 𝑖 = 1, . . . , 𝑁

𝑁∑︁
𝑖=1

𝛼𝑖𝑦𝑖 = 0,

(2.7)

with weighting terms now set to

w =
𝑁∑︁
𝑖=1

𝛼𝑖 𝑦𝑖 𝜑(𝜃𝑖). (2.8)

As the dimension 𝑞 of the feature space associated with 𝜑(𝜃) grows, computing the

mapping w𝑇𝜑(𝜃) + 𝑏 becomes increasingly computationally demanding. Instead, the

“kernel trick” [79] is used to reduce this cost through a kernel function 𝜅(𝜃,𝜃′) :

R𝑞 × R𝑞 → R, defined such that

𝜅(𝜃,𝜃′) = 𝜑(𝜃)𝑇𝜑(𝜃). (2.9)

This use of the kernel function enables a solution to the dual problem in (2.7) to

be found without having to work in the potentially high-dimensional feature space

for 𝜑(𝜃). Various forms of the mapping and kernel functions exist, such as polyno-

mial, hyperbolic, and Gaussian radial basis function (RBF) [77,79,81]. In this work,

40

Gaussian RBFs are used unless otherwise noted. These RBF kernels are given by

𝜅(𝜃𝑖,𝜃𝑗) = exp(−||𝜃𝑖 − 𝜃𝑗||2/𝛾), (2.10)

with 𝛾 > 0. Finally, the decision function for the soft-margin, nonlinear SVM in its

dual form is given by

𝐻(𝜃) = sign
(︁ 𝑁∑︁
𝑖=1

𝛼𝑖𝑦𝑖𝜅(𝜃,𝜃𝑖) + 𝑏
)︁
. (2.11)

Note that not all of the 𝑁 training points are considered “active.” Only a subset of the

training points are selected as support vectors (𝑁𝑠𝑣 ≤ 𝑁); all remaining points can be

considered to have 𝛼𝑖 = 0 and are thus not active. In practice, only the active subset

of 𝑁𝑠𝑣 support vectors are used for predictions, improving computational efficiency.

For the remainder of this thesis, the SVM optimization problem and its decision

function will be shown and discussed in the format of the dual representation from

(2.7) and (2.11).

2.2 Gaussian Process Regression Models

Gaussian process (GP) regression models, sometimes known as Kriging, are Bayesian

nonparametric regression tools for modeling scalar target variables across a continuous

input space [85–87]. Gaussian processes have been widely used throughout a variety

of relevant applications such as adaptive control [88, 89], reinforcement learning [90,

91], and optimization [92]. In this thesis, GPs are used to model measurements of

performance requirement satisfaction by the closed-loop system under consideration.

The following material will provide background on the construction of GP regression

models and explain certain steps which will be discussed later in the thesis.

While a Gaussian process is formally defined as the joint Gaussian distribution of a

finite collection of random variables, it can more easily be thought of as a distribution

over possible functions for ℎ(𝜃). Here, ℎ(𝜃) is a real, scalar function with input vector

41

𝜃 ∈ R𝑝. Additionally, the GP is completely defined by a scalar mean function 𝑚(𝜃)

and covariance function 𝜅(𝜃,𝜃′) such that

ℎ(𝜃) = 𝐺𝑃
(︀
𝑚(𝜃), 𝜅(𝜃,𝜃′)

)︀
. (2.12)

The overall aim of the GP regression model is to infer the true, but unknown, function

ℎ(𝜃) from a limited number of sample locations {𝜃1,𝜃2, . . . ,𝜃𝑁} and corresponding

observations of ℎ(𝜃), labeled 𝑦(𝜃𝑖). Both the cases where 𝑦(𝜃𝑖) are noisy and noiseless

measurements of ℎ(𝜃𝑖) are considered and will be discussed later. The resulting GP

regression model can then be used to predict function values ℎ(𝜃) at unobserved

input vectors 𝜃. Rather than specifying a particular parameterized form of ℎ(𝜃) and

attempting to infer the correct coefficients, the GP model treats ℎ(𝜃) as a random

function. This allows the GP to be free of any restriction to a parameterized form,

assuming one even exists, and improves its applicability.

2.2.1 Training

At its core, Gaussian process regression relies upon Bayesian inference to construct the

predictive model. Model training is performed according to Bayes’ rule with a prior

probability distribution and likelihood model of the data used to compute a posterior

probability distribution. In this problem, the posterior probability distribution defines

the distribution of ℎ(𝜃) values conditioned on the evidence provided by the training

dataset of 𝑁 sample locations and corresponding observations mentioned earlier. For

simplicity, this training set is labeled as ℒ = {𝒟,y} where set 𝒟 = {𝜃1, . . . ,𝜃𝑁}

contains the input locations and vector y = [𝑦(𝜃1), . . . , 𝑦(𝜃𝑁)]𝑇 is the corresponding

observations. The underlying true function values of ℎ(𝜃) at these training locations

are labeled as vector h = [ℎ(𝜃1), . . . , ℎ(𝜃𝑁)]𝑇 . The posterior distribution of h is

determined from the likelihood model formed by the observations in ℒ and a pre-

specified prior probability distribution for h.

The prior probability distribution for h is assumed to be a joint, multivariate

Gaussian distribution defined by mean vector m = [𝑚(𝜃1), . . . ,𝑚(𝜃𝑁)]𝑇 and 𝑁 ×𝑁

42

covariance matrix K = [𝜅(𝜃𝑖,𝜃𝑗)] for 𝑖, 𝑗 = 1, . . . , 𝑁 ,

P(h|𝒟, 𝜓) = 𝒩 (h|m,K). (2.13)

The term 𝜓 refers to the kernel function’s hyperparameters. While there are many

different possible kernel functions, this thesis always uses the default squared expo-

nential kernel function with automatic relevance determination (SE-ARD) for GPs.

The SE-ARD kernel is an RBF kernel much like the kernel in (2.9) for SVMs,

𝜅(𝜃,𝜃′) = 𝜎2
𝑓exp{−0.5(𝜃 − 𝜃′)𝑇Λ−1(𝜃 − 𝜃′)} (2.14)

Λ = diag(𝜎2
1, 𝜎

2
2, . . . , 𝜎

2
𝑝),

but with a weighting term 𝜎1, . . . , 𝜎𝑝 for each dimension in 𝜃 ∈ R𝑝. The ker-

nel hyperparameters 𝜓 is the set of these terms along with the signal ratio 𝜎𝑓 ,

𝜓 = {𝜎𝑓 , 𝜎1, . . . , 𝜎𝑝}. In comparison to isotropic squared exponential kernels, SE-

ARD enables the hyperparameters associated with each element of 𝜃 ∈ R𝑝 to vary

independently. Combined with the hyperparameter optimization process in Section

2.2.3, this allows the GP training process to automatically discover elements with low

impact on ℎ(𝜃) and deemphasize them with a low 𝜎𝑖 or emphasize those with high

sensitivity with large 𝜎𝑖.

In addition to the choice of kernel function for K and its hyperparameters 𝜓,

the prior mean m has a large impact upon the trained GP regression model. In the

vast majority of applications, the prior mean m is set to 0 [85]. This ensures an

unbiased prior probability distribution and has been shown to produce good results

for countless problems [86], assuming 𝑁 ≫ 𝑝. The same zero-mean prior is used

throughout the thesis, except for specific applications discussed in Chapter 7.

The likelihood model given the observations can be factorized amongst each of

the 𝑁 training points

P(y|h, 𝜗) =
𝑁∏︁
𝑖=1

P(𝑦𝑖|ℎ(𝜃𝑖), 𝜗), (2.15)

43

where 𝜗 is the set of hyperparameters associated with the likelihood model. The

posterior probability distribution for h is computed from Bayes’ rule

P(h|ℒ, 𝜓, 𝜗) ∝ P(y|h, 𝜗) P(h|𝒟, 𝜓). (2.16)

2.2.2 Predictions

The posterior probability distribution from (2.16) is then used predict the distribu-

tion of ℎ(𝜃) at unobserved points in the input space conditioned on the observed

data ℒ. These unobserved query locations, assume 𝑁* in total, are labeled 𝒟* and

h* denotes their values of ℎ(𝜃). According to the GP prior in (2.13), the joint proba-

bility distribution of the training h and the prediction h* is a multivariate Gaussian

distribution

P(h,h*|𝒟,𝒟*, 𝜓) = 𝒩

(︃⎡⎣ h

h*

⎤⎦ ⃒⃒⃒⃒⃒
⎡⎣m

m*

⎤⎦ ,
⎡⎣ K K*

K𝑇
* K**

⎤⎦)︃. (2.17)

Note that the covariance matrix pictured is segmented into three components for

easier viewing: the 𝑁 × 𝑁 covariance matrix K from the training data, K** the

𝑁* × 𝑁* covariance matrix of the query locations, and the 𝑁 × 𝑁* cross-covariance

matrixK* between the two sets of 𝜃 locations. From this, the conditional distribution

of h* given h is also a multivariate Gaussian,

P(h*|h,𝒟,𝒟*, 𝜓) = 𝒩
(︀
m* + K𝑇

*K
−1(h−m),K** −K𝑇

*K
−1K*

)︀
. (2.18)

Ultimately, the desired posterior predictive distribution of h* is the conditional dis-

tribution (2.18) marginalized over the posterior distribution (2.16),

P(h*|ℒ,𝒟*, 𝜓, 𝜗) =

∫︁
P(h*|h,𝒟,𝒟*, 𝜓) P(h|ℒ, 𝜓, 𝜗) 𝑑h . (2.19)

This posterior predictive probability distribution will change based upon the likeli-

hood model of the observations. The two cases to consider are whether the observa-

44

tions of ℎ(𝜃) are noisy or noise-free.

Noise-free Observations

The first case assumes the measurements of ℎ(𝜃) are noise-free, meaning y = h. Since

y measures h directly, there is no posterior uncertainty about h after the observations.

The posterior predictive distribution of h* reduces to

P(h*|ℒ,𝒟*, 𝜓, 𝜗) = 𝒩
(︀
m* + K𝑇

*K
−1(h−m),K** −K𝑇

*K
−1K*

)︀
, (2.20)

which is simply the conditional distribution (2.18).

Noisy Observations

In the other case, the observations of ℎ(𝜃) are assumed to be corrupted by some noise

term that prevents y from measuring h directly. Many possible types of noise exist,

the simplest of which is the standard uniform Gaussian noise assumption made by

the vast majority of GP literature [85–92]. The following paragraphs will discuss GP

predictions using observations corrupted by uniform Gaussian noise. Later chapters

will discuss variations on this noise model as they apply to problems of interest.

In the standard problem, the observations y are corrupted by a noise term 𝜖,

which is assumed to follow a uniform Gaussian distribution 𝜖 ∼ 𝒩 (0, 𝜖2𝑛) such that

𝑦(𝜃) = ℎ(𝜃) + 𝜖 and

P(y|h, 𝜖𝑛) = 𝒩 (y|h, 𝜖2𝑛). (2.21)

Due to the fact the noise variance 𝜖𝑛 is 𝜃-invariant and constant across the space,

uniform Gaussian noise is also referred to as homoscedastic Gaussian noise. When

noise variance 𝜖𝑛 is known in advance, likelihood model hyperparameters 𝜗 = 𝜖𝑛 and

the likelihood model for the observations can be written as

P(y|h, 𝜗) = 𝒩 (y|h, 𝜖2𝑛I). (2.22)

45

The resulting posterior predictive distribution is now

P(h*|ℒ,𝒟*, 𝜓, 𝜗) = 𝒩
(︁
m*+K𝑇

*
(︀
K+𝜖2𝑛I

)︀−1
(y−m),K**−K𝑇

*
(︀
K+𝜖2𝑛I

)︀−1
K*

)︁
, (2.23)

where the predictions are based upon the evidence provided by the noisy observations

y. When 𝜖𝑛 is not known in advance, the noise variance can be approximated from

the training data and the hyperparameter 𝜗 is set to that estimate.

2.2.3 Hyperparameter Optimization

The choice of hyperparameters 𝜓,𝜗 greatly affects the GP regression model and its

predictions. These hyperparameters define the kernel width, scaling, etc., which

ultimately determine the posterior predictive distribution P(h*|ℒ,𝒟*, 𝜓, 𝜗). Sur-

prisingly, in many recent GP-based active learning and Bayesian optimization ap-

proaches [93–96], there is little-to-no discussion about the selection of hyperparam-

eters. Often, convergence guarantees are contingent upon the assumption that the

ideal, or “true”, hyperparameters that maximize the accuracy of the predictions are

known in advance.

In this thesis, little about the system’s performance is assumed to be known a

priori, meaning the optimal hyperparameters will generally not be known in advance.

Instead, the hyperparameters can only be estimated with the current available in-

formation, training dataset ℒ. From a Bayesian perspective, the uncertainty in the

hyperparameters is modeled as the following probability distribution

P(𝜓, 𝜗|ℒ) =
P(y|𝒟, 𝜓, 𝜗)P(𝜓, 𝜗)∫︀

P(y|𝒟, 𝜓, 𝜗)P(𝜓, 𝜗) 𝑑𝜓 𝑑𝜗
, (2.24)

where P(y|𝒟, 𝜓, 𝜗) is the marginal likelihood of y and P(𝜓, 𝜗) is the joint prior dis-

tribution on the hyperparameters. Without prior knowledge about the choice of 𝜓, 𝜗,

prior P(𝜓, 𝜗) should be set to an uniform distribution. In order to encapsulate the

effects of uncertain hyperparameters, the posterior predictive distribution should be

46

marginalized over P(𝜓, 𝜗|ℒ),

P(h*|ℒ,𝒟*) =

∫︁
P(h*|ℒ,𝒟*, 𝜓, 𝜗) P(𝜓, 𝜗|ℒ) 𝑑𝜓 𝑑𝜗. (2.25)

In practice, the analytical integral in (2.25) is computationally intractable as

P(𝜓, 𝜗|ℒ) will likely be more complex than a Gaussian distribution [85]. Sampling-

based approximations of (2.25) using a large number (𝑀𝑡𝑜𝑡𝑎𝑙) of evaluations at different

𝜓, 𝜗 settings can be obtained, i.e.

P(h*|ℒ,𝒟*) ≈
𝑀𝑡𝑜𝑡𝑎𝑙∑︁
𝑘=1

P(h*|ℒ,𝒟*, 𝜓𝑘, 𝜗𝑘) P(𝜓𝑘, 𝜗𝑘|ℒ), (2.26)

but such numerical approximations are infeasible as they require repeated inversions

of the 𝑁 ×𝑁 matrix K, an 𝒪(𝑁3) operation. Markov Chain Monte Carlo (MCMC)

methods can also be used to compute (2.25) [85,86], but suffer from the same limita-

tion.

Rather than compute the full distribution over the hyperparameters and the sub-

sequent marginalized posterior predictive distribution for h*, maximum likelihood

estimation [85] will produce a computationally-efficient approximation of (2.25). As-

suming the prior P(𝜓, 𝜗) is uniform, the distribution P(𝜓, 𝜗|ℒ) is directly proportional

to the marginal likelihood P(y|𝒟, 𝜓, 𝜗) according to (2.24). Therefore, the locally-

optimum hyperparameters 𝜓*, 𝜗* are obtained by maximizing the model evidence

P(y|𝒟, 𝜓, 𝜗),

𝜓*, 𝜗* = argmax
𝜓,𝜗

P(y|𝒟, 𝜓, 𝜗). (2.27)

This likelihood maximization is known as hyperparameter optimization and can be

computed using steepest ascent [85] or gradient-based [89] methods. The integral in

(2.25) is then replaced with a point estimate at these maximum likelihood values,

P(h*|ℒ,𝒟*) ≈ P(h*|ℒ,𝒟*, 𝜓
, 𝜗). (2.28)

47

2.3 Temporal Logic

In many of the verification problems considered in this thesis, the performance re-

quirements for the system under test are trajectory-based specifications. The require-

ments could include traditional objectives such as stability, boundedness, rise-time,

and settling time, or more complex spatial-temporal requirements such as those found

in civilian [16] and military [15] aviation standards. All of the aforementioned per-

formance requirements can be expressed in temporal logic [97], which simply pro-

vides a mathematical framework for formally defining these specifications. Various

derivations of temporal logic exist, with the most common and relevant to control

applications being linear temporal logic (LTL) [98–101]. This thesis will consider two

particular extensions of LTL, namely metric temporal logic (MTL) [58, 63, 102, 103]

and signal temporal logic (STL) [102,104–106], which were developed to extend LTL

into real-time [107]. As will be elaborated later in this section, MTL returns a binary

evaluation of a requirement’s satisfaction while STL returns a quantitative, real-

valued measurement that indicates both the satisfaction of the requirement and the

corresponding level of robustness to that requirement. Note that MTL is sometimes

referred to as metric interval temporal logic (MITL) when handling interval-based for-

mula. For clarity and simplicity, all binary temporal logic problems will be referred

to as MTL.

Metric Temporal Logic

For both MTL and STL problems, a requirement is given by a temporal logic formula

𝜙. In binary MTL problems, this formula consists of boolean atomic propositions 𝑝

as well as boolean and temporal operations on those propositions. The most com-

mon temporal operators include � and ♦, which express that a proposition/formula

must “always” hold or “eventually” be true. These operators can also be functions

of time intervals such as �[𝑡1,𝑡2] and ♦[𝑡1,𝑡2], which state that it must “always hold

between times 𝑡1 and 𝑡2” or “eventually be true at some point within time interval

[𝑡1, 𝑡2].” Boolean operators include ¬, ∧, and ∨ to express negation, conjunction, and

48

disjunction. One of the more important points about temporal logic is that these

boolean operators can be used to construct more complex formula from simpler ones.

For example, formula 𝜙3 = �[𝑡1,𝑡2]𝜙1 ∧♦[𝑡2,𝑡3]𝜙2 states that 𝜙1 must hold for all times

between 𝑡1 and 𝑡2 and 𝜙2 must occur at some point between 𝑡2 and 𝑡3 in order for

the formula 𝜙3 to be satisfied.

Satisfaction of the formula is denoted by operator |=, where tuple (Φ, 𝑡) |= 𝜙

indicates trajectory Φ satisfied 𝜙 at time 𝑡. Failure to satisfy 𝜙 is denoted by (Φ, 𝑡) |=

¬𝜙 or (Φ, 𝑡) 2 𝜙. For MTL problems, the boolean satisfaction of 𝜙 is signified by

binary indicator function 𝜒(𝑡), where

𝜒(𝑡) =

⎧⎪⎨⎪⎩+1, if (Φ, 𝑡) |= 𝜙

−1, otherwise.

(2.29)

The corresponding binary measurement 𝑦 for verification over the entire trajectory is

the minimum indicator function value, 𝑦 = min {𝜒(𝑡)} ∀𝑡 ≤ 𝑇𝑓 , where 𝑇𝑓 is the final

time of the trajectory.

Signal Temporal Logic

While MTL is useful for determining satisfaction of 𝜙, it does not differentiate between

trajectories that barely satisfy the requirement and those that have a comfortable level

of robustness. Signal temporal logic addresses this limitation with the inclusion of a

real-valued robustness signal 𝜌𝜙 ∈ R that not only signifies the boolean satisfaction

of 𝜙, but also quantifies the minimum level of robustness.

The overall syntax for STL formula 𝜙 is almost identical to MTL [106], with the

exception that boolean propositions 𝑝 are replaced by predicates 𝜁. STL predicates

are boolean operators on some real-valued function of states, control inputs, and/or

sensor measurements. These predicates are also used to define the robustness degree

𝜌𝜙. For example, if the requirement specifies state 𝑥1(𝑡) must remain above 2, then

the corresponding predicate is given by 𝜁(𝑡) = 𝑥1(𝑡)−2 > 0. With this predicate, the

robustness signal is simply 𝜌𝜙(𝑡) = 𝑥1(𝑡)− 2. A short summary of robustness signals

49

for more complex STL formula is listed below:

𝜌𝜙1∧𝜙2(𝑡) = min
(︀
𝜌𝜙1(𝑡), 𝜌𝜙2(𝑡)

)︀
𝜌�[𝑡1,𝑡2]

𝜙(𝑡) = min
𝑡′∈[𝑡+𝑡1,𝑡+𝑡2]

𝜌𝜙(𝑡′)

𝜌♦[𝑡1,𝑡2]𝜙(𝑡) = max
𝑡′∈[𝑡+𝑡1,𝑡+𝑡2]

𝜌𝜙(𝑡′).

(2.30)

Note that the robustness signal 𝜌𝜙(𝑡) is consistent with the binary indicator function

𝜒(𝑡)

𝜒(𝑡) = sign
(︀
𝜌𝜙(𝑡)

)︀
, (2.31)

where here it is assumed 𝜌𝜙(𝑡) = 0 signifies (Φ, 𝑡) 2 𝜙 and 𝜒(𝑡) = −1. Similar to the

MTL case, the robustness/satisfaction measurement for the entire trajectory is the

minimum robustness degree, 𝑦 = min{𝜌𝜙(𝑡)} ∀𝑡 ≤ 𝑇𝑓 , where 𝑇𝑓 is the final time in

the trajectory.

50

Chapter 3

Deterministic Verification with

Binary Evaluations of Performance

This chapter considers the problem of binary verification of deterministic nonlinear

systems. Binary verification assumes the performance of a closed-loop system is given

by binary (“satisfactory”/”unsatisfactory”) evaluations, which naturally segments the

set of all possible operating conditions into two distinct sets: those that lead to

satisfactory performance and those that do not. This chapter presents statistical

data-driven verification procedures to estimate these two sets given a limited amount

of simulation or experimental trajectories. The second contribution is a closed-loop

verification approach which minimizes the prediction error for a fixed budget of tra-

jectories.

3.1 Problem Description

Consider the deterministic nonlinear system

ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡),𝜃) (3.1)

subject to uncertain operating conditions 𝜃 ∈ R𝑝, where x(𝑡) ∈ R𝑛 is the state vector

and u(𝑡) ∈ R𝑚 is the control input. The open-loop dynamics in (3.1) are said to be

51

deterministic, meaning two instantiations of (3.1) with identical {x,u,𝜃} will produce

the same ẋ every time. Additionally, the goal of this work is to verify the performance

of closed-loop systems; therefore, the control inputs u(𝑡) are assumed to be generated

by deterministic control policy

u(𝑡) = 𝑔(x(𝑡)). (3.2)

The resulting closed-loop deterministic system with controller (3.2) implemented is

written as

ẋ(𝑡) = 𝑓𝑐𝑙(x(𝑡),𝜃) (3.3)

to emphasize control inputs u(𝑡) can effectively be treated as hidden states within

the closed-loop system dynamics.

Both the open- and closed-loop systems are functions of parametric uncertainties

𝜃. The parametric uncertainties are treated as uncertain, time-invariant conditions

that affect the state dynamics. These uncertainties 𝜃 are assumed to fall within a

known, bounded set Θ as the “known unknowns.”

Assumption 3.1. The set of all possible perturbations 𝜃 ∈ Θ is a known, compact,

uncountable set Θ ⊂ R𝑝.

Although the assumption limits 𝜃 to an element of set Θ, the vast majority of phys-

ical dynamical systems will have feasible bounds on 𝜃 and this is not a restrictive

assumption. For instance, a commercial airliner at cruise will only operate between

well-defined weight limits, i.e. empty weight and max take-off weight. Thus, when

aircraft weight is a relevant parameter for 𝜃, these weight limits will define bounds

on the corresponding element in Θ.

The closed-loop system’s trajectory is given by Φ(x(𝑡)|x0,𝜃) and defines the time

evolution of the states from (3.3) over a time interval 𝑡 ∈ [0, 𝑇𝑓𝑖𝑛𝑎𝑙]. The trajectory

itself is completely determined by two terms: a nominal initial state vector x0 that is

constant for every instantiation of the system and parametric uncertainties 𝜃. Any

uncertainty in the initial state vector x(0) can be modeled as the combination of

52

nominal x0 and corresponding elements of 𝜃, ex: x(0) = x0 + 𝜃. Only the non-state

terms that change across different instantiations of the system are incorporated as

uncertain parameters in 𝜃. The trajectory response can then be mapped directly to

its underlying 𝜃 values.

While the parametric uncertainties may describe uncertainty in the initial condi-

tion x(0), they are not restricted to simply varying initial states x(0). For example,

in flight vehicles, 𝜃 may include uncertain system parameters such as aircraft weight,

center of gravity location, and moments inertia as well as uncertain initial states for

altitude, airspeed, and vehicle orientation. In fact, these uncertain system parame-

ters greatly affect the longitudinal and lateral response of aircraft, but are typically

difficult to perfectly calculate before flight. Even within the same production variant

of aircraft, small differences in manufacturing and maintenance will result in mea-

surable changes in the aforementioned system parameters between individual flight

vehicles. Regardless of the particular source, it is important to incorporate relevant

uncertainties in the system parameters whenever appropriate.

Likewise, the assumption of constant parametric uncertainties 𝜃 does not com-

pletely eliminate applications with time-varying system parameters. For instance,

in conventional fuel-powered aircraft, aircraft weight will decrease as fuel is burned.

In problems with short timescales relative to the length of a complete mission, the

change in aircraft weight will be negligible and can approximated as a constant. For

problems with longer timescales of roughly the same order as a complete flight, this

approximation will no longer apply. While the weight will noticeably vary with time,

the rate of fuel burn is a well-modeled function of control inputs like throttle and

power settings, states, and parameters. Thus, aircraft weight can instead be treated

as an internal state defined by an uncertain initial take-off weight and relevant fuel

burn parameters. Many other time-varying system parameters can be treated in a

similar manner.

Lastly, the parametric uncertainties may also include design parameters under

consideration by the controls engineer. For instance, the engineer may examine the

effect of controller gains or settings upon the satisfaction of requirements. While

53

controller gains themselves are typically fixed before implementation on the final,

“consumer-ready” product, it may be helpful to vary these terms during the verifica-

tion analysis to explore their interactions with the effects of other uncertainties and

their cumulative impact on requirement satisfaction. Similarly, design parameters

may include other relevant features such as time delays. In that case, verification

would help identify the maximum allowable time delay before the system no longer

satisfies the requirement(s) and produce something similar to a time-delay margin for

a nonlinear system. Ultimately, these design variables simply act as another compo-

nent of 𝜃 for the statistical verification procedure to consider during the robustness

analysis.

3.1.1 Discrete Evaluations of Performance Requirement Sat-

isfaction

In verification applications, the system’s trajectory Φ(x(𝑡)|x0,𝜃) is evaluated against

pre-specified performance requirements. These performance requirements may in-

clude straightforward considerations such as stability and avoidance of failure states

or more complex spatial and/or temporal specifications. Regardless of the level of

complexity, a binary oracle determines whether these requirements are satisfied by a

particular trajectory.

Assumption 3.2. There exists an oracle which provides deterministic Boolean

evaluations on whether a trajectory Φ(x(𝑡)|x0,𝜃) satisfied the performance require-

ments under consideration. These Boolean evaluations are output as binary measure-

ments 𝑦 ∈ {+1,−1} corresponding to {“satisfied”, “did not satisfy”}.

Remark 3.3. As each trajectory is completely defined by constant x0 and the

particular instance of 𝜃, a binary measurement is written as 𝑦(𝜃) ∈ {+1,−1} to

emphasize the performance is an explicit function of 𝜃.

Assumption 3.2 states discrete evaluations of requirement satisfaction are provided

by a general binary oracle. Typically, the requirements under consideration can be

54

written in metric temporal logic (MTL) format discussed in Section 2.3 and the oracle

would simply be based upon the binary indicator function 𝜒 from (2.29). However, the

oracle output and the requirements under test can also be provided by a much larger

set of sources than just MTL. For instance, the binary measurements could be output

from a proprietary gray-box function or even labels produced by a human supervisor.

“Oracle” is used as a catch-all term for the white or gray-box model that produces

binary labels indicating whether the system satisfies particular requirements.

Systems with Multiple Requirements

Additionally, it is important to clarify that the binary oracle can be used to indicate

satisfaction of a single requirement or an entire set of requirements. The preceding

paragraphs and discussions referred to a set of pre-specified requirements under con-

sideration as most real-world systems will have multiple performance requirements

that have to be addressed simultaneously. In those problems, a positive measure-

ment 𝑦(𝜃) = +1 indicated that the trajectory satisfied all the requirements, while

a negative measurement 𝑦(𝜃) = −1 indicated the trajectory did not satisfy all the

requirements. In the latter case, it is possible a subset of the requirements were in-

deed satisfied, but at least one requirement was not. If it is desirable to examine each

requirement individually, the oracle could be reconfigured to output multiple binary

measurements with each measurement corresponding to the satisfaction of a single

requirement. However, the upcoming data-driven statistical verification techniques

would have to be performed on each requirement individually.

3.1.2 Region of Satisfaction

The ultimate goal of deterministic verification is to identify which parametric uncer-

tainties 𝜃 will result in satisfactory performance and those which will not. The binary

aspect of this problem leads to the following two definitions.

55

Definition 3.4. The region of satisfaction Θ𝑠𝑎𝑡 contains all 𝜃 ∈ Θ for which the

resulting trajectory satisfies the performance requirements. In other words,

Θ𝑠𝑎𝑡 :=
{︁
𝜃 ∈ Θ : 𝑦(𝜃) = 1

}︁
. (3.4)

Under weak assumption, Θ𝑠𝑎𝑡 ̸= ∅.

Definition 3.5. The region of failure Θ𝑓𝑎𝑖𝑙 contains all remaining 𝜃 ∈ Θ for

which the resulting trajectory fails to satisfy the performance requirements, i.e.

Θ𝑓𝑎𝑖𝑙 :=
{︁
𝜃 ∈ Θ : 𝑦(𝜃) = −1

}︁
. (3.5)

It is also assumed Θ𝑓𝑎𝑖𝑙 ̸= ∅. By construction, Θ𝑓𝑎𝑖𝑙 is the complement of Θ𝑠𝑎𝑡, so

Θ𝑠𝑎𝑡 ∪Θ𝑓𝑎𝑖𝑙 = Θ and Θ𝑠𝑎𝑡 ∩Θ𝑓𝑎𝑖𝑙 = ∅.

While the conditions for membership in sets Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙 are known, the sets

themselves are unknown in advance; it is not clear whether arbitrary 𝜃 belongs to

Θ𝑠𝑎𝑡 or Θ𝑓𝑎𝑖𝑙. Therefore, the underlying aim of the verification process is to predict

Θ𝑠𝑎𝑡.

Problem 3.1. Given the deterministic closed-loop system (3.3) and determinis-

tic binary measurements of requirement satisfaction, compute an estimated region of

satisfaction ̂︀Θ𝑠𝑎𝑡.

Due to the binary nature of the problem, all remaining elements not in ̂︀Θ𝑠𝑎𝑡 are

considered to be elements of estimated ̂︀Θ𝑓𝑎𝑖𝑙, ̂︀Θ𝑓𝑎𝑖𝑙 = Θ ∖ ̂︀Θ𝑠𝑎𝑡. This same binary

perspective also forms the basis for this chapter’s approach.

Proposition 3.2. The problem described in Prob. 3.1 can be viewed as a binary

classification problem: predict whether queried 𝜃 is an element of ̂︀Θ𝑠𝑎𝑡 or ̂︀Θ𝑓𝑎𝑖𝑙.

3.2 Deductive Verification Methods

The region of satisfaction estimation objective described in Problem 3.1 can be ap-

proached from two primary directions: deductive analysis and statistical methods.

56

The key distinguishing factor between the two is that deductive methods produce an

analytically-verified, proof-driven solution while statistical methods output weaker

probabilistic bounds or approximations. While a theoretically-proven analytical re-

sult is stronger than a statistical estimate, this section will illustrate the limitations

of deductive approaches which are addressed by statistical data-driven verification.

In particular, it will highlight simulation-guided deductive methods that bridge the

gap between two directions, and these methods will also serve as a foil to statistical

methods for direct comparison of the two.

Deductive methods such as LQR-trees [48,54] and barrier certificates [45,46,108]

are common techniques for verification of nonlinear systems. These techniques rely

upon continuously-differentiable analytical functions 𝑉 (x,𝜃) : R𝑛+𝑝 → R like Lya-

punov, barrier, or storage functions to construct proofs that are used to provably

guarantee certain 𝜃 vectors will belong to Θ𝑠𝑎𝑡 under the given modeling assump-

tions. With respect to Problem 3.1, these elements proven to belong to Θ𝑠𝑎𝑡 form set̂︀Θ𝑠𝑎𝑡.

One of the primary difficulties associated with analytical function-based verifica-

tion is the choice of an appropriate analytical function used to construct the proof. An

appropriate Lyapunov or Lyapunov-like function must be fully known in advance for

these analytical verification methods to be even applied to the problem. Simulation-

guided barrier certificates [47,50–52] and LQR-trees [54] remove some of this difficulty

by automatically constructing proofs with the help of simulation (or experimental)

trajectories. Typically, simulations of the systems are used to discover invariant sets

that bound convergent or stable trajectories according to some polynomial or loga-

rithmic Lyapunov function of pre-specified degree. Simulations are chosen according

to a data generation procedure in an attempt to discover a maximizing invariant set,

and thus the largest ̂︀Θ𝑠𝑎𝑡 [51, 109].

This process is illustrated on the well-studied [51, 53] unstable Van der Pol oscil-

lator problem shown in Figure 3-1. In this example, the simulation-guided barrier

certificate technique generates samples to maximize the size of the verified region

produced by a barrier certificate with a second-order Lyapunov function. The bar-

57

(a) True region of satisfaction (b) Simulation-guided barrier certificate [53]

Figure 3-1: Illustration of simulation-guided barrier certificate construction techniques [53]
on an unstable Van der Pol oscillator case study. Initial conditions 𝜃 = [𝜃1, 𝜃2] for the
simulations are shown as dots and their respective colors denote whether the resulting tra-
jectory satisfied the requirement (green) or did not (red). The invariant level set described
by a second-order Lyapunov function is shown as a dashed blue line. Figure 3-2 will further
discuss the conservativeness of this set.

rier certificate is able to produce an estimated region of satisfaction ̂︀Θ𝑠𝑎𝑡, but this

prediction falls short of the true Θ𝑠𝑎𝑡. This result highlights some of the limitations

encountered with analytical methods.

3.2.1 Limitations

There are a number of aspects of deductive methods that limit their applicability

to the verification objective in this chapter. First, deductive methods are essentially

conservative by design because they seek to address a different objective. Elements

that are theoretically guaranteed by the proof to meet the requirements are obviously

labeled as members of set ̂︀Θ𝑠𝑎𝑡; however, the problem lies with elements of Θ that are

not verified by the proof-based certificate. As pictured in Figure 3-1(b), the quadratic

barrier certificate for the Van der Pol oscillator is not able to verify all elements

of Θ𝑠𝑎𝑡, even points where simulation trajectories have shown this to be true. As

nothing else can be inferred, deductive methods must classify all locations not proven

safe by the barrier certificate as elements of set ̂︀Θ𝑓𝑎𝑖𝑙, illustrated in Figure 3-2. This

inherent conservativeness ensures analytical deductive methods will never misclassify

58

Figure 3-2: Illustration of the predicted region of satisfaction ̂︀Θ𝑠𝑎𝑡 produced by a second-
order Lyapunov function-based barrier certificate for the unstable Van der Pol oscillator
previously shown in Figure 3-1. The method is conservative by design and only points
verified by the barrier certificate are included in ̂︀Θ𝑠𝑎𝑡, resulting in the noticeably conservative
predictions shown as the green ellipse.

elements of Θ𝑓𝑎𝑖𝑙 within ̂︀Θ𝑠𝑎𝑡, but this is not true for elements of Θ𝑠𝑎𝑡 within ̂︀Θ𝑓𝑎𝑖𝑙.

These barrier certificate methods addressed a slightly different objective and were not

concerned with the possibility of these false negatives where 𝜃 ∈ Θ𝑠𝑎𝑡 are misclassified

as elements of ̂︀Θ𝑓𝑎𝑖𝑙.

A second limitation of analytical methods, particularly barrier certificate tech-

niques, is that they require the availability of continuously-differentiable Lyapunov

or Lyapunov-like functions. These Lyapunov functions must be specified in advance,

but often the correct choice or form of the function is not known and can be dif-

ficult to determine, if one even exists. While simulation-guided methods relax this

by automatically discovering function coefficients and bounding terms, they still re-

quire an approximate degree for the polynomial Lyapunov function to be set by the

user [51]. If an incorrect order is chosen, there may not exist an appropriate barrier

certificate for that particular set of functions, even if one exists for another form.

There may even be multiple possible polynomial orders that can be used to construct

barrier certificates, but the choice that maximizes the accuracy of the resulting ̂︀Θ𝑠𝑎𝑡

is unknown.

59

Lastly, the computational complexity of deductive methods limits their utility.

At a minimum, the corresponding analytical function 𝑉 (x,𝜃) must be a function of

both the closed-loop states x and the parametric uncertainties 𝜃 in order to produce

a barrier certificate. This can pose a problem for high-dimensional systems, even if

the dimension 𝑝 of uncertainties 𝜃 ∈ R𝑝 is low, due to the necessary inclusion of x in

order to calculate suitable bounds on the trajectory response. This problem is exacer-

bated as the parameterized form of the function becomes more complex. In general,

the function forms that maximize the accuracy of ̂︀Θ𝑠𝑎𝑡 are higher-order polynomi-

als or similar representations and the more complex the closed-loop dynamics, the

higher the order or complexity of the function required to achieve even a suboptimal̂︀Θ𝑠𝑎𝑡. Therefore, it may become extremely difficult to find any suitable Lyapunov or

Lyapunov-like function to ̂︀Θ𝑠𝑎𝑡.

3.3 Statistical Data-Driven Verification

Instead of the previous deductive techniques, Problem 3.1 can be approached through

statistical methods. Rather than utilize simulations (or experiments) to construct and

refine a proof that eventually produces a verified ̂︀Θ𝑠𝑎𝑡, statistical methods operate

more directly with the data. The resulting predictions for ̂︀Θ𝑠𝑎𝑡 and their accuracy

are directly coupled to the quality of the observed data, hence the term data-driven

verification.

3.3.1 SVM Classification Models

In order to translate a finite number of trajectories into nontrivial predictions over

the entire set Θ, these trajectories are used to form a classification model. With the

assumption of binary measurements 𝑦(𝜃), there are a number of applicable machine

learning/data-mining techniques such as relevance vector machines [110], kernel lo-

gistic regression [81], decision trees [111], and random forests [81] that can be used

to produce classifiers. Ultimately, this approach uses nonlinear, soft-margin support

vector machines (SVMs) [77,79] for binary classification as they can efficiently handle

60

arbitrary, nonlinearly-separable datasets without modification, an important consid-

eration when nothing is assumed about the shape, convexity, or separability of Θ𝑠𝑎𝑡.

The overall process of constructing and training the SVM-based classification

model follows the details discussed in Section 2.1.2. The support vector machine

is constructed from a training dataset ℒ consisting of 𝑁 trajectories initialized at lo-

cations 𝒟 = {𝜃1,𝜃2, . . . ,𝜃𝑁} in Θ and the 𝑁 ×1 vector of their corresponding binary

evaluations y = [𝑦(𝜃1), 𝑦(𝜃2), . . . , 𝑦(𝜃𝑁)]𝑇 , i.e. ℒ = {𝒟,y}. Isotropic Gaussian radial

basis functions (2.10) are used as kernels 𝜅(𝜃,𝜃′) in order to project from R𝑝 space

into a higher-dimensional space where the dataset is linearly separable. The resulting

SVM output is given in the same format as (2.11) with

𝐻(𝜃) = sign
(︁ 𝑁𝑠𝑣∑︁
𝑗=1

𝛼𝑗 𝑦𝑗 𝜅(𝜃𝑗,𝜃) + 𝑏
)︁
, (3.6)

where 𝑗 = 1, . . . , 𝑁𝑠𝑣 are the active support vectors chosen from ℒ (𝑁𝑠𝑣 ≤ 𝑁). All

elements of ℒ not selected as support vectors can be viewed as having 𝛼𝑗 = 0 and

ignored for computational efficiency.

The support vector machine classifier’s output from (3.6) is used to construct the

predicted regions of satisfaction and failure. The binary output is used directly as the

predicted satisfaction label, ̂︀𝑦(𝜃) = 𝐻(𝜃). The estimated regions parallel Definitions

3.4 and 3.5, but with predicted label ̂︀𝑦(𝜃) in place of true 𝑦(𝜃).

Definition 3.6. The predicted region of satisfaction ̂︀Θ𝑠𝑎𝑡 contains all 𝜃 ∈ Θ for

which the resulting trajectory is predicted to satisfy the performance requirements,

̂︀Θ𝑠𝑎𝑡 :=
{︁
𝜃 ∈ Θ : ̂︀𝑦(𝜃) = 1

}︁
. (3.7)

Definition 3.7. The predicted region of failure ̂︀Θ𝑓𝑎𝑖𝑙 is the complement of ̂︀Θ𝑠𝑎𝑡

and contains all remaining 𝜃 ∈ Θ for which the resulting trajectory is predicted to fail

to satisfy the performance requirements,

̂︀Θ𝑓𝑎𝑖𝑙 :=
{︁
𝜃 ∈ Θ : ̂︀𝑦(𝜃) = −1

}︁
. (3.8)

61

The SVM classifier contains two hyperparameters that can be tuned to adjust

the prediction regions. First, the 𝛾 hyperparameter used by all isotropic RBF ker-

nels (2.10) controls the width of the kernel function. As this 𝛾 value increases, the

relevance of distant training datapoints decreases. For this work, the kernel hyperpa-

rameter is set to 𝛾 = 1 and the training positions 𝒟 are normalized to interval [−1, 1]

in each of the 𝑝 dimensions.

The second hyperparameter is the box constraint 𝐶 used by the soft-margin SVM

primal objective (2.6)/dual constraint (2.7) functions to penalize misclassifications.

In the simplest implementation, a scalar 𝐶 > 0 can be increased to more heavily

penalize all misclassifications (̂︀𝑦(𝜃) ̸= 𝑦(𝜃)) in the training data. As 𝐶 grows towards

∞, the soft-margin SVM classifier converges towards a hard-margin classifier which

assumes linear separability. However, in most applications, misclassification errors are

not weighted equally: false negatives, where ̂︀𝑦(𝜃𝑖) = −1 but in reality 𝑦(𝜃𝑖) = 1, are

more acceptable than false positives, where ̂︀𝑦(𝜃𝑖) = 1 but 𝑦(𝜃𝑖) = −1. This is because

a false negative mistakenly classifiers a truly safe point as unsafe, but mistakenly

classifying unsafe operating conditions as safe may have disastrous consequences. In

such situations, the scalar box constraint can be replaced by a 2× 2 matrix

𝐶 =

⎡⎣𝐶𝐹𝑁 0

0 𝐶𝐹𝑃

⎤⎦ (3.9)

with 𝐶𝐹𝑁 > 0 and 𝐶𝐹𝑃 > 0. An increase in the ratio 𝐶𝐹𝑃/𝐶𝐹𝑁 will penalize false

positives more heavily than false negatives to discourage the classifier from accepting

such errors during the training process. It is important to note that 𝐶 does not

explicitly control the rate of misclassification errors; it only changes the penalties

during the training process, which implicitly controls misclassification rate.

Model Validation

While the training process optimizes the classifier to suppress misclassification errors,

it can not completely eliminate or control the possibility of incorrect predictions. At

the most basic level, this is because a finite number of training points in ℒ is used

62

to predict response over the full uncountable set Θ. There will always be unsam-

pled/unexplored points and regions in Θ and thus the possibility of errors will always

exist. The real problem is that the binary classifier described in (3.6) does not ex-

plicitly indicate confidence in the predicted outputs ̂︀𝑦(𝜃). The following validation

methods will estimate or qualify the confidence in each predicted ̂︀𝑦(𝜃) as well as

estimate the cumulative rate of misclassifications over the total Θ space.

First, methods can be applied to the SVM model output to estimate the local

confidence for each individual prediction ̂︀𝑦(𝜃). The simplest evaluation of prediction

confidence is the non-binary model output before the sign function is applied in (3.6),

𝐻R(𝜃) =
𝑁𝑠𝑣∑︁
𝑗=1

𝛼𝑗 𝑦𝑗 𝜅(𝜃𝑗,𝜃) + 𝑏. (3.10)

This real-valued output 𝐻R(𝜃) ∈ R signifies the query point’s distance from the

prediction boundary, where |𝐻R(𝜃)| ≫ 0 is further from the boundary and thus

further away from points with the opposite satisfaction label. Additionally, Platt

scaling [112] can also be applied to the output 𝐻R(𝜃), which uses a logistic regression

model to convert 𝐻R(𝜃) into a direct measure of confidence probability.

While these methods are tools for computing some measure of confidence, they do

not capture all possible errors. Mainly, the non-binary output 𝐻R(𝜃) only indicates

distance from the prediction boundary, but does not indicate proximity to training

points. A point 𝜃𝑖 may be predicted to lie far away from the boundary, but this same

point may lie far away from all the other training datapoints as well and therefore

the classifier has no justification as to what the prediction should be at 𝜃𝑖. 𝐻R(𝜃)

does not indicate the presence of dangerous “holes” in the training data where there

does not exist any training data to actually support the predictions made the SVM

model. This also applies to Platt scaling since it requires this output to pass through

the logistic regression model. Additionally, Platt scaling assumes linear separability,

which limits the types of problems it can accurately be applied to. As a result,

these two approaches provide some useful qualitative measures of local prediction

confidence, but cannot provide complete quantitative estimates.

63

Other tools can be used to estimate the total accuracy of the SVM model pre-

dictions over the full set Θ. These approaches generally rely upon the existence of

an independent validation set 𝒱 complete with training locations and corresponding

binary measurements, just like in ℒ. The most straightforward approach is to simply

select more 𝜃 conditions, usually through Monte Carlo sampling, and perform simula-

tions at those conditions in order to collect new measurements and form a validation

set 𝒱 . Once a classifier has been trained on the initial training dataset ℒ, the model is

used to predict labels at all locations in 𝒱 and these predictions are compared against

the true answers, which are known for the validation set. Leave-one-out and k-fold

cross-validation approaches [82,113] exploit this same idea, but instead randomly seg-

ment ℒ into a set of data used to actually train the SVM model and a smaller subset

that acts as 𝒱 . The cumulative prediction error on the validation set 𝒱 is treated as

the estimated prediction error for Θ. K-fold cross validation [113] performs a more

complicated version of the leave-one-out approach. The process segments ℒ into 𝑘

equal-sized subsets. One of these subsets is used as 𝒱 while the other 𝑘 − 1 sets

collectively train the SVM. The procedure repeats 𝑘 times so that each of the 𝑘 sets

is used as the validation set once. The validation error from each of the 𝑘 validation

sets is averaged together to produce a single estimate of misclassification error.

Just like before, these validation tools have their limitations. Regardless of its

source, if the independent validation fails to adequately cover a region in Θ, then it

will fail to accurately predict the misclassification rate in that area. Larger numbers

of validation points are required to ensure better probabilistic coverage of Θ, which

means additional simulations or experiments. More generally, the reliance upon an

independent set of observations is a major limitation in itself. All the observed data

allocated to the validation set could have been incorporated as additional data for ℒ,

which would generally produce a more accurate classifier. Therefore, its a challenging

conundrum to decide whether new trajectories should be added to the validation set

𝒱 to improve the estimation of misclassification error rate or to the training dataset

ℒ to actually decrease the misclassification error [114]. All these validation methods

are useful, but imperfect, tools for estimating the rate of prediction errors.

64

3.3.2 Comparison to Simulation-Guided Barrier Certificates

Statistical data-driven verification was originally developed as a parallel, complimen-

tary approach to simulation-guided barrier certificate techniques to identify and ad-

dress conservativeness in those approaches [115]. Statistical verification can exploit

the same datasets used to construct the barrier certificates in order to train SVM

classifiers not restricted by the barrier certificate’s assumptions. The following sub-

section will illustrate this fact and directly compare the two approaches applied to

the same datasets.

As shown in Figure 3-1(b), simulation-guided deductive methods can be used

to generate analytical barrier certificates. In that example, the approach produces

quadratic Lyapunov-function based predictions of ̂︀Θ𝑠𝑎𝑡 for an unstable Van der Pol

oscillator. The sampling procedure [53] distributes 𝜃 points in order to construct the

maximum verifiable set, but even with this procedure, the verifiable results are obvi-

ously conservative. When statistical data-driven verification is applied to this same

exact dataset, the SVM model will produce significantly less conservative results, pic-

tured in Figure 3-3. The SVM model closely approximates the true boundary, with

the predicted boundary (blue line) almost indistinguishable from the true boundary

(black line). This is accomplished through the use of 31 support vectors (magenta cir-

cles) selected from the training dataset of 633 trajectories and binary measurements.

The accuracy of the SVM-based predictions is summarized in Table 3.1. K-fold

cross-validation error using 10 folds is computed as 0.153%; however, this value is only

based upon the 633 training datapoints. The true mean error is approximated using

an empirical grid of 77,284 datapoints that span Θ. When evaluated on this grid, the

SVM’s prediction error is a close 0.48%, with a total of 203 false positives and 166

false negatives. For comparison, the simulation-guided barrier certificate avoids false

positives completely, but it’s conservativeness leads to a significantly higher rate of

false negatives and a total misclassifcation error percentage of 11.44%. As discussed

in Section 3.2, barrier certificates were designed to address a different objective, so the

higher rate of false negatives is not unexpected when both false negatives and false

65

Figure 3-3: Illustration of the predicted region of satisfaction ̂︀Θ𝑠𝑎𝑡 produced by a SVM-based
statistical classifier for the unstable Van der Pol oscillator previously shown in Figure 3-1.
The predicted boundary separating ̂︀Θ𝑠𝑎𝑡 from ̂︀Θ𝑓𝑎𝑖𝑙 is depicted as the solid blue line. Initial
conditions 𝜃 = [𝜃1, 𝜃2] for the simulations are shown as dots and their respective colors
denote whether the resulting trajectory satisfied the requirement (green) or did not (red).
Note that this is the same dataset from Figure 3-1. The support vectors chosen from this
dataset are surrounded by magenta rings.

positives are now considered. By relaxing the problem from proof-based certificates

to statistical certificates, the total misclassification error is significantly reduced as a

result of the decreased conservativeness with respect to false negatives at the cost of

only a small increase in the rate of false positives.

Table 3.1: Comparison of SVM- and barrier certificate-based predictions generated using
the same training dataset. The predictions are both evaluated on a grid of 77,284 points
and the empirical mean error, false positive count, and false negative count are displayed.

Prediction Method K-fold Error Empirical Error False Pos. False Neg.

SVM classifier 0.153% 0.48% 203 of 21962 166 of 55322
Barrier cert. N/A 11.44% 0 of 21962 8842 of 55322

3.4 Closed-Loop Statistical Verification

The statistical verification process described in the preceding section is able to produce

a data-driven classifier for predictions given an arbitrary set of training data. This

66

makes it particularly well-suited to supplement existing simulation-guided barrier

certificate methods, but it can be applied to a much wider class of problems with any

source of data, either simulation or experiment-based. However, Section 3.3 highlights

two important, but conflicting, issues that arise with respect to this training data.

First, the coverage and expressiveness of the training data limits the quality of

the data-driven predictions. As mentioned in Section 3.3.1, the predictions are only

accurate in regions where the training data has adequately covered the space. The

definition of “adequate” might change based upon the application and desired level of

validation error, but it fundamentally requires multiple datapoints to be distributed

throughout that region of Θ, with concentrations near the decision boundary. Con-

versely, the second issue that arises in data-driven binary verification is that only a

subset of the training data is used as active support vectors for the SVM classifier;

the remaining datapoints were deemed uninformative. For instance, the Van der Pol

example in Section 3.3.2 ultimately only chose 31 out of 633 trajectory datapoints as

support vectors. This is not much of a problem if trajectory data is easy to obtain,

but quickly becomes wasteful if the source of the trajectory data is computationally-

intensive simulations or experimental tests. Thus, from this viewpoint, it is better

to minimize the amount of trajectory data. These two competing considerations

both greatly affect the utility of data-driven verification for such resource-constrained

problems.

In many applications with nonlinear systems, the latter consideration about the

strain on computational resources is increasingly relevant. In simulation environ-

ments, the complexity of the simulation model necessary for verification purposes

often drives computational demands. These models can range from simple two-state

systems to full 6 degree-of-freedom flight simulators with realistic-enough dynamics

to replace actual real-world flight hours [18]. At the latter end of the spectrum, it is

impractical to run thousands upon thousands of simulation tests. Even with rather

simple dynamics, verification may be part of a larger process, such as robust nonlinear

control design, which restricts the number of simulations allocated to verification of

each prospective controller. When applied to hardware experiments, a feasible limit

67

on resources such as time, money, and testing objects is even more obvious. Regard-

less of the source and cost of the trajectory data, the computational cost of the SVM

training process also increases at a rate of 𝒪(𝑁2) [116], which becomes non-negligible

for large numbers of training points 𝑁 . For simplicity, all these sources of concern

can be imagined as imposing an upper limit on the number of training(+validation)

datapoints. The objective laid out earlier in Problem 3.1 would have to be modified

to reflect this constraint.

Problem 3.3. Given the deterministic closed-loop system (3.3) and determin-

istic binary measurements of requirement satisfaction, compute an estimated region

of satisfaction ̂︀Θ𝑠𝑎𝑡 while subject to a limit 𝑁𝑙𝑖𝑚 on the number of allowed training

datapoints.

In an ideal scenario, the optimal training dataset would minimize prediction er-

ror while subject to a sample budget by distributing datapoints solely along the

Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙 boundary. The prediction error would be minimized/eliminated while the

entire dataset would be selected as necessary support vectors. Although this would

avoid wasteful, uninformative trajectory data, it is impossible in practice because it

requires Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙 to be known in advance. Instead, this section describes an

active learning-based sampling procedure that approximates this ideal dataset. It

does so by iteratively selecting the best trajectory conditions to evaluate based upon

the current SVM model. This allows the verification procedure to minimize approxi-

mate prediction error while subject to constraints on the training data and ultimately

converge to a solution that resembles the ideal training dataset.

3.4.1 Sample-Selection Criteria

Active learning [114,116–119] describes a wide variety of machine learning techniques

that iteratively select sample locations based upon a given model, obtain new mea-

surements, and retrain that model with the new measurements. Due to the closed-

loop train→select→test→retrain nature of active learning procedures, the procedure

is called closed-loop statistical verification to emphasize the iterative feedback-based

68

improvement of the classification model and training dataset. Central to the closed-

loop process is the selection of the best prospective sample locations to most improve

the predictions; however, the “best” location will change according to the objective of

the active learning algorithm [117]. The objective with respect to Problem 3.3 is to

minimize the prediction error of ̂︀Θ𝑠𝑎𝑡/̂︀Θ𝑓𝑎𝑖𝑙 while limited to 𝑁𝑙𝑖𝑚 total simulation or

experimental tests (trajectories).

In order to maximize the improvement in the prediction model for each addi-

tional training sample, the expected model change selection metric [118] is used to

rank potential sample locations. The metric identifies the sample point that, if mea-

sured, is expected to induce the largest change between the current model and the

retrained model with the new information. For support vector machines, this point

that maximizes the expected model change is found using the objective function of the

Lagrangian dual in (2.7). If a new sample is taken at arbitrary location 𝜃𝑁𝑠𝑣+1 with

hypothetical measurement 𝑦(𝜃𝑁𝑠𝑣+1), then the modified Lagrangian dual objective is

given by

𝐷(𝛼) =
𝑁𝑠𝑣+1∑︁
𝑖=1

𝛼𝑖 −
1

2

𝑁𝑠𝑣+1∑︁
𝑖,𝑗=1

𝛼𝑖 𝛼𝑗 𝑦𝑖 𝑦𝑗 𝜅(𝜃𝑖,𝜃𝑗). (3.11)

With the weighting term 𝛼𝑁𝑠𝑣+1 and bias 𝑏 set to zero, the gradient of the objective

with respect to 𝛼𝑁𝑠𝑣+1 defines the model change under consideration. This gradient

is written as

𝜕𝐷(𝛼)

𝜕𝛼𝑁𝑠𝑣+1

= 1− 𝑦(𝜃𝑁𝑠𝑣+1)
𝑁𝑠𝑣∑︁
𝑗=1

𝛼𝑗 𝑦𝑗 𝜅(𝜃𝑗,𝜃𝑁𝑠𝑣+1) (3.12)

= 1− 𝑦(𝜃𝑁𝑠𝑣+1)𝐻R(𝜃𝑁𝑠𝑣+1), (3.13)

where 𝐻R(𝜃𝑁𝑠𝑣+1) is the non-binary output produced by the original SVM model

before a measurement at 𝜃𝑁𝑠𝑣+1 is obtained. Note that the weighting term 𝛼𝑁𝑠𝑣+1 is

set to zero so the 𝑁𝑠𝑣 + 1 index is dropped from the summation function. Since the

weighting term 𝛼𝑁𝑠𝑣+1 is non-negative, the model would only update with this sample

if the gradient is positive, meaning 𝑦(𝜃𝑁𝑠𝑣+1)𝐻R(𝜃𝑁𝑠𝑣+1) < 1. However, the only way

for 𝑦(𝜃𝑁𝑠𝑣+1)𝐻R(𝜃𝑁𝑠𝑣+1) < 0 is for the signs of the actual measurement 𝑦(𝜃𝑁𝑠𝑣+1) and

69

𝐻R(𝜃𝑁𝑠𝑣+1) to disagree. If this measurement 𝑦(𝜃𝑁𝑠𝑣+1) was indeed known somehow,

then the optimal sample 𝜃 would maximize the model change

𝜃 = argmax
(︁

1− 𝑦(𝜃)𝐻R(𝜃)
)︁
. (3.14)

In reality, the actual measurements would not be known before their selection; there-

fore, it is only possible to work with the predicted measurement ̂︀𝑦(𝜃). In place of the

actual model change, the sample location which maximizes expected model change is

given by

𝜃 = argmax
(︁

1− ̂︀𝑦(𝜃)𝐻R(𝜃)
)︁
. (3.15)

Since the predicted measurements are binary, ̂︀𝑦(𝜃) ∈ {−1, 1}, the most informative

datapoints are expected to be samples with |𝐻R(𝜃| ≈ 0,

𝜃 = argmin |𝐻R(𝜃)|. (3.16)

3.4.2 Sequential Sampling

The closed-loop statistical verification procedure exploits the selection criterion (3.16)

to rank prospective datapoints and identify the one which is expected to most improve

the prediction when a simulation or experiment is performed there. In order for this

to happen, there must first be an initial classification model, constructed from some

initial training dataset of 𝑁0 points, used to start the process. This initial dataset can

be generated from any open-loop process, such as traditional design of experiments

(DOE) techniques like Latin hypercubes [74] or uniformly-distributed randomized

data [73]. Additionally, while the selection criterion evaluates prospective sample

locations, these sample locations must come from some set. Although the selection

metric can evaluate any arbitrary point, it is impossible to actually analyze every

point in the uncountable set Θ. Instead, the following assumption is made to ensure

a feasible analysis.

70

Assumption 3.8. There exists a sufficiently fine discretization of Θ, called Θ𝑑,

which is suitable for verification. The closed-loop verification process selects its sam-

ples from Θ𝑑 rather than Θ.

Remark 3.9. Because Θ𝑑 is assumed to be an extremely fine approximation of Θ,

it will never be possible to fully cover Θ𝑑 with samples, i.e. |Θ𝑑| ≫ 𝑁𝑙𝑖𝑚.

In order to avoid redundant samples at the same location, the samples are chosen

from the set of available sample locations 𝒰 , where 𝒰 = Θ𝑑 ∖ 𝒟 after 𝒟 has been

updated with the new measurements.

Given this initial SVMmodel and 𝒰 , the closed-loop verification process can begin.

The most straightforward approach is to iteratively select single measurements in a

sequential manner until the sampling budget 𝑁𝑙𝑖𝑚 has been filled. The following

paragraph summarizes the closed-loop verification procedure in Algorithm 1.

Step 1 lists the necessary inputs required to start the active sampling process.

These inputs include the initial training dataset of 𝑁0 points in 𝒟 and their mea-

surements y, the set of available sample locations 𝒰 , and the maximum number of

additional training points 𝑇 = 𝑁𝑙𝑖𝑚 − 𝑁0. The initial training dataset is used to

train the initial SVM classification model (Step 2). The procedure then calculates

the SVM output 𝐻R(𝜃) at each available 𝜃 ∈ 𝒰 and selects the location 𝜃 according

to the selection criterion (3.16) (Step 4). Next, the procedure performs a simulation

or experiment at the selected location 𝜃 in order to obtain a binary measurement 𝑦(𝜃)

(Step 5) and incorporates this information into the training dataset ℒ (Step 6). The

procedure then retrains the SVM classification model to exploit the new information

provided by the updated training dataset and improve the predictions (Step 7). The

process in Steps 4-7 repeats until the limit of 𝑇 additional simulations/experiments

has been reached and the loop terminates. The final prediction model and its output

𝐻R(𝜃) produces the predicted sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 (Step 9).

Although the closed-loop verification procedure in Algorithm 1 tends to improve

the resulting prediction model’s accuracy over ones produced with traditional, open-

loop DOE techniques, the active selection of training locations produces a higher cost

71

Algorithm 1 Sequential closed-loop deterministic verification framework using SVM
classification models

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , max # of
additional samples 𝑇

2: Initialize: train SVM model 𝐻R(𝜃)
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Select 𝜃 = argmin
𝜃∈𝒰

|𝐻R(𝜃)|

5: Perform test at 𝜃, obtain measurement 𝑦(𝜃)
6: Add {𝜃, 𝑦(𝜃)} to training set ℒ, remove 𝜃 from 𝒰
7: Retrain model 𝐻R(𝜃) with updated ℒ
8: end for

9: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙

when compared to the random sampling DOE technique [73]. In addition to the

𝒪(𝑁2) cost of training the SVM prediction model at Step 2 and the 𝒪(𝑁 |𝒰|) cost

of the predictions for the final ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 at Step 9, the for-loop in Steps 3-8

will increase the cumulative computational cost. As a result, the process will require

𝒪(𝑁 |𝒰|) operations for the selection of each point (Step 4) and 𝒪(𝑁2) operations for

retraining the SVM after each measurement (Step 7). After 𝑇 iterations, the active

sampling procedure will ultimately require𝒪(𝑁 |𝒰|𝑇)+𝒪(𝑁2𝑇) more operations than

the passive, random sampling procedure. Note, this analysis does not include the cost

of actually performing simulations or experiments, which will vary from example to

example, but will be independent of the sample-selection method.

3.4.3 Batch Sampling

The sequential verification process described in Algorithm 1 correctly selects each

point as intended; however, it neglects two potentially important computational con-

siderations. First, the 𝒪(𝑁2) computational cost associated with retraining the active

learning SVM after each iteration becomes non-negligible if the sampling budget 𝑁𝑙𝑖𝑚

is large [116]. Second, sequential sampling fails to exploit the inherent parallelism

present in many, but not all, applications. Particularly in simulation environments,

it is common for multiple resources such as processor cores or computers to be al-

located for testing purposes. In these cases, samples can be selected in groups of

72

𝑀 > 1 points, reducing the retraining cost and allowing multiple simulations (or

experiments) to be performed in parallel. Such procedures are referred to as batch

verification processes.

Although batches of 𝑀 points will reduce the total cost of retraining, batch sam-

pling also has the potential to degrade prediction performance. The primary cause

for this degradation is lack of diversity among samples in the batch. Due to the fine

resolution of Θ𝑑, neighboring points will have similar rankings according to (3.16).

If the 𝑀 highest ranked points are naïvely selected for the batch, then many of the

points could be located in close proximity. Redundant samples will generally induce

little change in the model after the first measurement and at the very least reduce

the number of samples that can be allocated towards other regions of Θ𝑑. Naïve

implementations of batch algorithms will most likely have significantly poorer predic-

tion performance than their corresponding sequential versions given the same total

number of samples.

In order to prevent the selection of redundant points, a diversity measure is in-

corporated into the selection criteria. The angle between induced hyperplanes is a

common heuristic diversity metric in generic active learning procedures [116,118] used

to rank similarity between potential sample locations. The angle between induced hy-

perplanes 𝜑(𝜃) can be written in terms of kernel functions 𝜅(𝜃𝑖,𝜃𝑗),

| cos
(︀
∠(𝜑(𝜃𝑖), 𝜑(𝜃𝑗))

)︀
| = |𝜅(𝜃𝑖,𝜃𝑗)|√︀

𝜅(𝜃𝑖,𝜃𝑖)𝜅(𝜃𝑗,𝜃𝑗)
. (3.17)

Maximum diversity between samples would entail maximizing this angle. Rather than

select samples to maximize either expected model change or diversity, a weighted

combination of the two will both ensure the selection of relevant datapoints and

also encourage diversity among those locations to prevent redundant samples. The

resulting selection metric is simply a convex combination of (3.16) and (3.17)

𝜃 = argmin
𝜃∈𝒰

(︁
𝜆
⃒⃒
𝐻R(𝜃)

⃒⃒
+ (1− 𝜆) max

𝜃𝑗∈𝒮

⃒⃒
cos
(︀
∠(𝜑(𝜃), 𝜑(𝜃𝑗))

)︀⃒⃒)︁
, (3.18)

73

where 𝜆 ∈ [0, 1] and 𝒮 is the set of samples previously selected in the current batch

(|𝒮| ≤ 𝑀). All the example problems heuristically set 𝜆 = 0.7 as that setting

produced good misclassification error rates in every example problem considered.

Although the training and testing are performed in batches of 𝑀 points, each of the

𝑗 = 1, . . . ,𝑀 points in the batch are selected sequentially (one-at-a-time) and added

to 𝒮. The next potential sample location in the current batch 𝒮 is evaluated for

diversity with respect to the locations already in 𝒮 rather than the entire training

dataset 𝒟. This is because the goal is not to encourage diversity amongst all points,

but only within the current batch. Ultimately, it is still desirable for samples to be

distributed along the Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙 boundary, not spread out over all of Θ𝑑.

Algorithm 2 details the batch verification framework. Just as before, the procedure

starts with a given initial training dataset ℒ generated by an offline, open-loop process

and a set of prospective sample locations 𝒰 (Step 1). The procedure constructs

the initial SVM prediction model from this training dataset (Step 2). Unlike the

sequential algorithm, the batch procedure selects 𝑇 batches of 𝑀 samples, where it

is assumed 𝑁0 + 𝑇𝑀 = 𝑁𝑙𝑖𝑚. The active sampling process is contained within Steps

3-12. In each batch, the process sequentially selects the 𝑀 points according to the

combined criterion in (3.18) (Steps 4-8). Once all 𝑀 locations have been selected,

tests are performed at each of the locations and the procedure adds this information

to training dataset ℒ (Steps 9-10). The procedure then retrains the SVM model to

incorporate the new observations (Step 11). This process repeats until the sampling

budget has been exhausted and the procedure returns the final predictions for ̂︀Θ𝑠𝑎𝑡

and ̂︀Θ𝑓𝑎𝑖𝑙 (Step 13).

The computational cost of the batch procedure is similar to Algorithm 1. The

batch active sampling process requires additional operations when compared to the

passive, random sampling approach. In particular, the selection criterion in Step

6 requires 𝒪(𝑁 |𝒰|) operations to rank the available sample locations according to

their SVM output and 𝒪(𝑀 |𝒰|) operations to calculate the diversity measure for all

𝑀 points in the batch. This combines with the 𝒪(𝑁2) cost of retraining the SVM

in Step 11 for a total cost of 𝒪(𝑁 |𝒰|) + 𝒪(𝑀 |𝒰|) + 𝒪(𝑁2) operations for each

74

Algorithm 2 Batch closed-loop deterministic verification framework using SVM clas-
sification models

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀

2: Initialize: train SVM model 𝐻R(𝜃)
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: for 𝑘 = 1, 2, . . . ,𝑀 do

6: Select 𝜃 = argmin
𝜃∈𝒰

(︁
𝜆
⃒⃒
𝐻R(𝜃)

⃒⃒
+ (1− 𝜆) max

𝜃𝑗∈𝒮

⃒⃒
cos
(︀
∠(𝜑(𝜃), 𝜑(𝜃𝑗))

)︀⃒⃒)︁
7: Add 𝜃 to 𝒮, remove 𝜃 from 𝒰
8: end for

9: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
10: Add {𝒮,y𝒮} to training set ℒ
11: Retrain model 𝐻R(𝜃) with updated ℒ
12: end for

13: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙

iteration. While the batch process does require 𝒪(𝑀 |𝒰|) more operations for each

iteration than was required in Algorithm 1, the total cumulative cost for the same

number of 𝑁𝑙𝑖𝑚 −𝑁0 points is lower. Assuming the sequential and batch procedures

share the same budget 𝑁𝑙𝑖𝑚, the batch procedure will require fewer iterations since

the remaining 𝑁𝑙𝑖𝑚 − 𝑁0 points are broken into batches of 𝑀 > 1 points. However,

the exact savings will vary with each particular example since the size of 𝒰 , 𝑁𝑙𝑖𝑚,

𝑁0, and 𝑀 will change in every example. Figure 3-4 demonstrates the improvement

in computational complexity produced by the batch sampling approach in Example

3.5.2. Algorithm 2 produces a lower complexity than the sequential approach in

Algorithm 1 and this improvement increases with larger batch sizes 𝑀 .

While batch sampling methods do offer improved computational efficiency for

the same number of total training points, it is important to recognize that they do

not completely supplant sequential methods, but rather supplement them whenever

appropriate. In some problems, it may not be possible to perform multiple tests

in parallel. When this occurs, it is generally advisable to treat the problem with a

sequential procedure in order to ensure every sample is exploited to its fullest effect

when selecting new trajectories.

75

50 100 150 200 250

Samples

0

2

4

6

8

10

C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
xi

ty

108

Algorithm 1
Algorithm 2 (M=2)
Algorithm 2 (M=5)
Algorithm 2 (M=10)

Figure 3-4: Computational complexity of the sequential (Algorithm 1) and batch (Algorithm
2) closed-loop verification procedures when applied to Example 3.5.2. By reducing the
number of retraining steps, Algorithm 2 lowers the computational complexity required for
active sampling. The exact reduction varies according to the example, but a larger batch
size 𝑀 will lower the complexity.

3.5 Simulation Results

The following section presents simulation results for three examples in nonlinear sys-

tem verification. The results compare active learning-based, closed-loop statistical

verification against traditional design of experiments (DOE) techniques for “open-

loop” statistical verification. The section will also discuss the effectiveness of model

validation methods for estimation of prediction error in these techniques. Addition-

ally, the first two examples will contrast both open- and closed-loop statistical veri-

fication techniques with simulation-guided deductive barrier certificates discussed in

Section 3.2. All of the simulation results demonstrate the improved prediction accu-

racy of active closed-loop statistical verification in comparison to other techniques,

particularly when limited to small sampling budget.

3.5.1 Van der Pol Oscillator

The first example considers the same well-studied [51, 120] unstable Van der Pol

oscillator discussed previously in the chapter in Sections 3.2 and 3.3. Due to the fact

barrier certificates are known to provably verify the dynamics and are freely available,

76

this example is also particularly useful for contrasting the statistical methods against

analytical certificates.

The nonlinear dynamics for the two-state system are⎡⎣𝑥̇1
𝑥̇2

⎤⎦ =

⎡⎣ −𝑥2
𝑥1 + (𝑥22 − 1)𝑥1

⎤⎦ , (3.19)

which are known to have an unstable limit cycle and an asymptotically stable equi-

librium point at the origin. The perturbations 𝜃 are uncertainties on the initial

conditions, 𝜃 = [𝑥1(0), 𝑥2(0)]𝑇 . The verification goal is to determine the “region-of-

attraction” (ROA): determine 𝜃 conditions that will lead to convergence to the origin

and those that will lead the trajectory to diverge. These conditions correspond to the

Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙 sets of interest, already pictured in Figure 3-1(a). A successfully converged

trajectory is indicated by 𝑦(𝜃) = 1 while a trajectory that diverged is indicated by

𝑦(𝜃) = −1.

For this example, the feasible set of initial conditions is restricted to 𝑥1(0) : [−3, 3]

and 𝑥2(0) : [−3, 3], well outside the ROA boundary that separates Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙. This

two-dimensional space is covered by a fine lattice Θ𝑑 of 14,641 points. The closed-

loop verification frameworks start with an initial training dataset of 20 trajectories

randomly chosen from Θ𝑑. Note that since a barrier certificate is known to exist,

the initial training dataset could have been provided or produced by simulation-

guided deductive methods much like in Section 3.3.2. In addition to closed-loop

statistical verification, open-loop data-driven verification is performed for comparison.

These approaches use Latin hypercube and uniform random space-filling design of

experiments (DOE) techniques [73, 74] to passively generate training datasets from

Θ𝑑. In these two techniques, all of the trajectories’ initial conditions 𝜃 for ℒ are

selected at once and without any sort of feedback, hence are referred to as “open-

loop”.

Both sequential (𝑀 = 1) and batch (𝑀 = 5) versions of the closed-loop verifi-

cation framework are analyzed. Figure 3-5 displays an SVM-based prediction model

after 30 training samples and the corresponding ranking of prospective sample loca-

77

(a) SVM prediction model (b) Ranking of Θ𝑑 according to (3.16)

Figure 3-5: [Example 3.5.1] Ranking of prospective sample locations based upon the expected
model change metric. The SVM prediction model and corresponding expected model change
metric are computed after 30 samples. Initial conditions 𝜃 = [𝜃1, 𝜃2] for the simulations are
shown as dots and their respective colors denote whether the resulting trajectory satisfied
the requirement (green) or did not (red).

tions according to (3.16). Areas of high expected model change straddle the predicted̂︀Θ𝑠𝑎𝑡/̂︀Θ𝑓𝑎𝑖𝑙 boundary line. Figure 3-6 compares the selection of datapoints according

to the sequential and batch closed-loop verification algorithms, where both use the

same model and baseline sample ranking from Figure 3-5. The effect of the diversity

metric is readily apparent in Figure 3-6(b). The sample locations are distributed

around areas of high expected model changed. It is also possible to see the slight

devaluing of regions surrounding the chosen samples when it is compared to Figure 3-

6(a). This devaluing is a direct result of the diversity metric to discourage redundant

samples. The active sampling algorithms are allowed to run for a total of 250 addi-

tional training samples. Figure 3-7 displays the final training dataset and prediction

model at the conclusion of both the sequential and batch processes. Both models

have converged to the correct boundary, which is almost indistinguishable from the

predicted boundary, indicating that the algorithms have produced accurate ̂︀Θ𝑠𝑎𝑡 and̂︀Θ𝑓𝑎𝑖𝑙.

Figure 3-8 compares the total misclassification error, the percentage of ̂︀𝑦(𝜃𝑖) ̸=

𝑦(𝜃𝑖) for all 𝜃𝑖 ∈ Θ𝑑, for the various verification procedures over 100 randomly initial-

ized runs. In both sequential and batch cases, the closed-loop statistical verification

78

(a) Sequential (batch size 𝑀 = 1) (b) Batch size 𝑀 = 5

Figure 3-6: [Example 3.5.1] Comparison of sample selections for batch sizes of 𝑀 = 1 and
𝑀 = 5. Sample selections are shown as magenta stars.

(a) Sequential (batch size 𝑀 = 1) (b) Batch size 𝑀 = 5

Figure 3-7: [Example 3.5.1] Comparison of prediction models after the collection of 250
training samples with Algorithms 1 and 2. Both predictions models have converged to
roughly the same result, an accurate approximation of the true boundary.

79

50 100 150 200 250

Samples

0

5

10

15

20

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Barrier Certificate
Uniform Random
Latin Hypercube
Closed-loop w/ EMC

(a) Sequential (batch size 𝑀 = 1)

50 100 150 200 250

Samples

0

5

10

15

20

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Barrier Certificate
Uniform Random
Latin Hypercube
Closed-loop w/ EMC

(b) Batch size 𝑀 = 5

Figure 3-8: [Example 3.5.1] Comparison of the misclassification error convergence of open-
and closed-loop statistical verification techniques. The lines show the mean (solid lines)
and 1𝜎 standard deviation for each statistical verification approach after 100 random ini-
tializations. For comparison, the figure also displays the misclassification error from the
simulation-guided barrier certificate in Table 3.1. This error is shown as a straight line
because it was taken directly from the results in [53].

procedure outperforms the two open-loop DOE-based procedures. The closed-loop

verification procedure also produces the lowest standard deviation out of the three

statistical verification approaches. From these results, it is clear the closed-loop veri-

fication frameworks will possess the best prediction accuracy given a limited amount

of simulations.

Additionally, Figure 3-8 displays the 11.44% misclassification error produced by

the 2nd order, simulation-guided barrier certificate from Section 3.2. The barrier

certificate’s objective is to avoid false positives, so all its misclassification errors cor-

respond to false negatives. The figure displays the misclassification error as a straight

line since this barrier certificate was taken directly from the results in [53], which

used 221 simulations to generate the barrier certificate. It’s also important to note

that the misclassification error would change given a different Lyapunov function.

Evaluation of Validation Methods

Although Figure 3-8 illustrates the convergence of misclassification errors and high-

lights the improvement afforded by closed-loop verification, this error value would

80

not be known online. It requires the true labels 𝑦(𝜃) to already be known for every

𝜃 ∈ Θ𝑑. Instead, Section 3.3.1 discussed two validation methods to estimate total mis-

classification error online: K-fold cross-validation and validation on an independent

dataset. Of these, K-fold cross-validation is generally preferable as it only requires

the current training set ℒ while an independent validation dataset subtracts from the

number of samples allocated to ℒ.

The estimation errors of the two validation methods applied to sequential closed-

loop and open-loop verification are illustrated in Figure 3-9. Independent validation

datasets are shown to accurately estimate the total misclassification error for both

open- and closed-loop approaches. The decreased standard deviation of the active

learning-based closed-loop procedure minimizes the estimation error when compared

to the passive, random sampling DOE method. However, the estimation error for

K-fold cross-validation degrades with additional samples when it is applied to the

active learning procedure. This poor performance is due to the fact that active

learning concentrates datapoints along the decision boundary in comparison to open-

loop methods which spread the datapoints over the full space. In the active learning

approach, each validation fold (subset) of the training dataset will contain a high

number of points in this likely-to-be-misclassified region, thus producing a higher

(and inaccurate) misclassification error than a uniformly distributed validation set.

This suggests that K-fold cross-validation cannot be used to accurately estimate total

misclassification error for closed-loop verification.

3.5.2 Concurrent Learning Model Reference Adaptive Con-

troller

The second example is a model reference adaptive control (MRAC) system. In this

problem, concurrent learning adaptive control (CL-MRAC) [121] is used to control

an uncertain, second-order linear system⎡⎣𝑥̇1
𝑥̇2

⎤⎦ =

⎡⎣ 0 1

−0.2 + 𝜃1 −0.2 + 𝜃2

⎤⎦⎡⎣𝑥1
𝑥2

⎤⎦+

⎡⎣0

1

⎤⎦𝑢(𝑡) . (3.20)

81

50 100 150 200 250

Samples

-10

0

10

20

30

40

E
st

im
at

io
n

 E
rr

o
r

(%
)

K-fold Cross Validation
Inde. Validation Set

(a) Closed-loop verification w/ EMC

50 100 150 200 250

Samples

-15

-10

-5

0

5

10

15

E
st

im
at

io
n

 E
rr

o
r

(%
)

K-fold Cross Validation
Inde. Validation Set

(b) Open-loop w/ uniform random DOE

Figure 3-9: [Example 3.5.1] Comparison of estimation error using K-fold cross validation and
validation on an independent validation dataset. Both figures are derived from the results
of the sequential (𝑀 = 1) procedure. Note: results for the open-loop Latin hypercube DOE
approach are not shown but are consistent with the random sampling technique.

Just as in the previous example, there are two sources of uncertainty under consider-

ation 𝜃 = [𝜃1, 𝜃2]
𝑇 ; however, these terms correspond to uncertain system parameters

rather than initial states x(0). The adaptive controller actually estimates these pa-

rameters while simultaneously steering the system to track a desired reference trajec-

tory produced by a linear reference system. For easier viewing, the detailed discussion

of the adaptive controller for 𝑢(𝑡) is found in Appendix A. Due to the adaptation,

the resulting closed-loop system is highly nonlinear and difficult to analyze.

Although the CL-MRAC controller guarantees asymptotic closed-loop stability,

the performance of the closed-loop system is based upon boundedness of the tracking

error between the actual states and desired reference trajectory. The performance

requirement is for the actual state 𝑥1(𝑡) to remain within unit error of the reference

state 𝑥𝑚1(𝑡) at every point along the 40 second trajectory. Described in temporal

logic format, this requirement states

𝜙𝑏𝑜𝑢𝑛𝑑 = �[0,40] (1− |𝑒1[𝑡]| ≥ 0) (3.21)

where 𝑒1(𝑡) = 𝑥𝑚1(𝑡)− 𝑥1(𝑡) is the tracking error. The goal of the verification proce-

dure is to determine which 𝜃 vectors will result in trajectories that stay within this

82

(a) SVM prediction model (b) Ranking of Θ𝑑 according to (3.16) and selection
of sample points

Figure 3-10: [Example 3.5.2] Ranking of prospective sample locations based upon the ex-
pected model change metric. The SVM prediction model and corresponding expected model
change metric are computed after 50 samples. Parameter settings 𝜃 = [𝜃1, 𝜃2] for the simu-
lations are shown as dots and their respective colors denote whether the resulting trajectory
satisfied the requirement (green) or did not (red).

bound (𝑦(𝜃) = 1) and those that will lead to failure (𝑦(𝜃) = −1).

In this example, the set of all possible sample locations Θ𝑑 is a lattice of 32,400

points covering 𝜃1 : [−8, 8] and 𝜃2 : [−10, 10]. The open- and closed-loop verification

procedures all start with an initial training dataset ℒ of 50 randomly-initialized sim-

ulation trajectories and corresponding binary measurements. The closed-loop active

sampling process operates in batches of 10 points. Figure 3-10 displays the SVM

prediction model trained on an initial dataset of 50 samples and the first batch of 10

points selected according to the expected model change metric. The closed-loop pro-

cedure runs for 20 more iterations for a total of 250 training samples. Figure 3-11(a)

depicts the SVM model at the conclusion of this process and it compares favorably

to the barrier certificate produced by simulation-guided deductive techniques [109].

Figure 3-11(b) illustrates the convergence of the misclassification error for the statis-

tical verification techniques. For comparison, the simulation-guided analytical barrier

certificate method in [109] produced a 34% misclassification error rate, although all

these errors correspond to false negatives since barrier certificates use a different ob-

jective. Just as in the Van der Pol example, closed-loop verification using active

learning noticeably outperforms both the open-loop statistical verification methods

83

(a) Final SVM model after 250 samples

50 100 150 200 250

Samples

0

5

10

15

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Uniform Random
Latin Hypercube
Closed-loop w/ EMC

(b) Misclassification error convergence

Figure 3-11: [Example 3.5.2] Misclassification error convergence of statistical verification
techniques. The left plot displays the SVM prediction at the completion of 𝑁𝑙𝑖𝑚 = 250
training samples for the closed-loop procedure. The right plot shows the mean (solid lines)
and 1𝜎 standard deviation for each approach in 100 random initializations.

as well as current analytical barrier certificate techniques when the latter are applied

to the binary classification problem.

Figure 3-12 compares the estimation accuracy of online validation using K-fold

cross-validation and independent datasets. Just as was seen in the previous example

in Figure 3-9, K-fold cross-validation fails to accuracy estimate the misclassification

error when applied to active learning approaches. This reaffirms the previous results

and further highlights issues with online estimation of prediction confidence for active

learning-based approaches.

Effect of Penalizing False-Positives

The complexity of the decision boundary in this example highlights the effect of hy-

perparameters, namely the box constraint 𝐶, on misclassification errors. In Figure 3-

11(a), even after 250 training samples, the SVM prediction model cannot completely

capture the true boundary. More importantly, this figure also demonstrates a visible

area of false-positive misclassification errors in the upper-left corner of the predicted

boundary. These errors are typically considered worse than false negatives as they

involve accidentally labeling unsatisfactory points as satisfactory. Section 3.3.1 pre-

84

50 100 150 200 250

Samples

-10

0

10

20

30
E

st
im

at
io

n
 E

rr
o

r
(%

)

K-fold Cross Validation
Inde. Validation Set

(a) Closed-loop verification w/ EMC

50 100 150 200 250

Samples

-10

-5

0

5

10

E
st

im
at

io
n

 E
rr

o
r

(%
)

K-fold Cross Validation
Inde. Validation Set

(b) Open-loop w/ uniform random DOE

Figure 3-12: [Example 3.5.2] Comparison of estimation error using K-fold cross validation
and validation on an independent validation dataset. Note: results for the open-loop Latin
hypercube DOE approach are not shown but are consistent with the other open-loop tech-
nique.

sented an extension of the constraint hyperparameter 𝐶 to penalize false positives

with a term 𝐶𝐹𝑃 . Figure 3-13 illustrates the effect of this penalty term as it is in-

creased from the default value of 1 up to 𝐶𝐹𝑃 = 6. This term adds conservativeness to

the SVM model, sacrificing total misclassification error with a larger number of false

negatives for a diminishing number of false-positive errors. For the prediction model

shown in Figure 3-13, the total misclassification error rate increases from 2.67% at

𝐶𝐹𝑃 = 1 to 9.50% at 𝐶𝐹𝑃 = 6, but the rate of false-positive errors decreases from

2.80% to 0. While it cannot explicitly restrict the rate of false-positive errors to a

certain limit, the hyperparameters can be used to indirectly adjust the different types

of misclassification errors.

3.5.3 Adaptive System with Control Saturation

The third example is a more complex CL-MRAC system with control saturation. The

open-loop dynamics are the same as in (3.20) except the control input 𝑢(𝑡) is satu-

rated between limits −𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥. In order to counter the adverse effects

of control saturation upon reference trajectory tracking, the baseline CL-MRAC con-

troller is augmented with pseudo-control hedging (PCH) [122]. More information on

85

Figure 3-13: [Example 3.5.2] Effect of increasing false-positive penalties in the SVM predic-
tion model. All three models have the same training data (shown as dots), but the 𝐶𝐹𝑃
term used to penalize false positives is increased from the default 1 to 6.

CL-MRAC with control saturation and PCH is provided in Appendix A. This new for-

mulation increases the complexity of the closed-loop system and further complicates

analytical verification of the system. Unlike the previous two examples, there is no

known barrier certificate to compare to statistical verification techniques. This fact

highlights the wider applicability of statistical verification procedures over existing

analytical barrier certificate approaches.

In addition to changes in the control architecture, this example also has a more

complex set of performance requirements for the system to satisfy. The closed-loop

system is expected to satisfy three separate conditions. First, at some point within

the time interval 𝑡 = [2, 3], the trajectory must visit the region 𝑥1(𝑡) ∈ [0.7, 1.3],

𝜙1 = ♦[2,3] (𝑥1[𝑡]− 0.7 ≥ 0) ∧ ♦[2,3] (1.3− 𝑥1[𝑡] ≥ 0). (3.22)

Similarly, the trajectory must also reach a state within 𝑥1(𝑡) ∈ [1.1, 1.7] at some point

between 𝑡 = [12, 13], i.e.

𝜙2 = ♦[12,13] (𝑥1[𝑡]− 1.1 ≥ 0) ∧ ♦[2,3] (1.7− 𝑥1[𝑡] ≥ 0). (3.23)

86

Lastly, the system must satisfy 𝑥1(𝑡) ∈ [−1.6,−1.2] at 𝑡 = 22.5 seconds in order to

satisfy the third requirement, roughly expressed as

𝜙3 = �[22.4,22.6] (𝑥1[𝑡] + 1.6 ≥ 0) ∧�[22.4,22.6] (−1.2− 𝑥1[𝑡] ≥ 0) . (3.24)

The complete requirement is the conjunction of all three: 𝜙 = 𝜙1 ∧ 𝜙2 ∧ 𝜙3. In order

for the trajectory to satisfy 𝜙 (i.e. 𝑦(𝜃 = 1)), all three requirements must be met. If

only one or two of the requirements are met, the trajectory is still labeled with the

“unsatisfactory” measurement 𝑦(𝜃) = −1.

This example shares the same two uncertain parameters (𝜃1, 𝜃2) as the preceding

problem, but add two new sources: 𝜃3 captures uncertainty in the initial state 𝑥1(0)

and 𝜃4 models variations in the control saturation limit 𝑢𝑚𝑎𝑥. The statistical proce-

dure constructs a 4-dimensional lattice Θ𝑑 of 2.356 million possible sample locations

covering 𝜃1 : [−5, 5], 𝜃2 = [−5, 5], 𝜃3 : [−1, 1], and 𝜃4 : [3, 8]. The open- and closed-

loop statistical verification procedures each start with an initial training dataset of

50 randomly-selected simulation trajectories chosen from Θ𝑑. The closed-loop sam-

pling procedure operates in batches of 10 points up to a sampling budget 𝑁𝑙𝑖𝑚 = 750

training points.

The total misclassification error produced by the statistical verification procedures

in 100 randomly initialized runs is shown in Figure 3-14. In this example, the active

learning-based procedure significantly outperforms the passive open-loop processes.

At the conclusion of the 750 training samples, the average misclassification error of

the closed-loop procedure is less than half the error produced by open-loop verifi-

cation. Additionally, the standard deviation of the closed-loop procedure is lower

than the open-loop approaches. This example in particular illustrates the improved

performance of closed-loop statistical verification over open-loop variants and high-

lights the wider applicability of statistical verification to problems without suitable

or appropriate analytical verification methods.

87

100 200 300 400 500 600 700

Samples

0

5

10

15

20

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Uniform Random
Latin Hypercube
Closed-loop w/ EMC

Figure 3-14: [Example 3.5.3]: Comparison of the misclassification error convergence of open-
and closed-loop statistical verification techniques. The plot shows the mean (solid lines) and
1𝜎 standard deviation for each approach in 100 random initializations.

3.6 Summary

This chapter presented the development of data-driven procedures for statistical ver-

ification of arbitrary deterministic nonlinear systems. In particular, the work in this

chapter addressed the problem of binary verification, where a trajectory’s satisfac-

tion of performance requirements is measured with a binary evaluation, and the set

of all possible perturbation conditions can be partitioned exactly into two distinct

sets corresponding to their binary evaluation. This SVM-based data-driven approach

compliments existing simulation-based analytical verification methods, but applies to

a much wider class of systems that cannot be addressed with these analytical meth-

ods. More importantly, the data-driven approach enables “closed-loop” verification

procedures that actively select future trajectories to best improve the statistical pre-

diction model. Simulation results on three nonlinear systems of increasing complexity

illustrate the strengths of statistical verification methods over deductive techniques

and the improvement in prediction error with closed-loop verification procedures over

traditional design of experiments.

88

Chapter 4

Deterministic Verification with

Improved Evaluations of Trajectory

Robustness

This chapter considers an extension of the statistical verification approaches from

Chapter 3 to address the challenge with suitable online validation techniques for the

learned prediction model. The binary nature of the measurements limits the types

of applicable classification models and restricts the ability to adequately estimate

the model’s prediction accuracy online in a sample-efficient manner. The results

demonstrated K-fold cross-validation’s inability to effectively estimate the error rate

for active learning-based closed-loop verification since the clustering of training data

near the decision boundary biases the error approximations. Without K-fold cross-

validation, only costly independent validation datasets can be used to estimate the

prediction accuracy.

This chapter will directly address this limitation in systems capable of provid-

ing continuous measurements of satisfactory performance. As the class of systems

with these continuous measurements is a subset of the class of systems considered in

Chapter 3, the overall problem is mostly unchanged. This chapter presents an al-

ternative Gaussian process regression-based formulation for binary verification. The

main difference is that while the new approach still provides the same predictions, it

89

also quantifies the confidence in those predictions without relying upon external val-

idation methods. This new information also enables modifications to the closed-loop

statistical verification procedures to further reduce the rate of prediction errors for a

fixed number of trajectories.

4.1 Problem Description

The systems considered in this work are a subset of the class of systems included in

Chapter 3. While this subset does exclude some systems discussed in the preceding

chapter, the additional assumptions made in this work are not overly restrictive. The

overall problem formulation itself remains almost entirely unchanged except for the

inclusion of continuous measurements in place of solely binary evaluations.

Consider the same deterministic nonlinear system originally described in (3.1)-

(3.3). The system is still subject to the same parametric uncertainties 𝜃, which are

assumed to fall within known compact set Θ just as in Assumption 3.1. The system’s

closed-loop trajectory also remains unchanged; trajectory Φ(x(𝑡)|x0,𝜃) defines the

time evolution of state vector x(𝑡) over time interval 𝑡 ∈ [0, 𝑇𝑓𝑖𝑛𝑎𝑙] subject to nominal

initial condition x0 and parameters 𝜃.

4.1.1 Continuous Measurements of Performance Requirement

Satisfaction

The system’s trajectory Φ(x(𝑡)|x0,𝜃) is evaluated against pre-specified performance

requirements supplied by some appropriate certification agency or expert. The satis-

faction of a requirement is still binary in nature, i.e. the trajectory either “satisfied” or

“did not satisfy” the requirement. However, the these binary evaluations are assumed

to be indicated through the sign of continuous measurements.

Assumption 4.1. There exists an oracle which provides deterministic continuous

measurements of whether a trajectory Φ(x(𝑡)|x0,𝜃) satisfied the performance require-

ment under consideration. These measurements are output as scalar variable 𝑦 ∈ R

90

where the sign of 𝑦 indicates satisfaction of the requirement. Positive measurement

𝑦 > 0 corresponds to “satisfied” while 𝑦 ≤ 0 corresponds to “did not satisfy.”

Remark 4.2. The measurement 𝑦 = 0 is ambiguous, but assumed to indicate

failure in this work.

As before, “oracle” is used as a generic catch-all term to capture a wide variety

of possible sources for continuous measurement 𝑦. In many problems, the require-

ments can be written using signal temporal logic (STL) discussed in Section 2.3. In

these problems, the continuous measurement is simply the STL robustness degree

𝜌𝜙. While signal temporal logic will be a common source for the measurement, it is

not the only one. One example later in this chapter will examine the execution of

an ordered set of agents’ tasks in a robust multi-agent task allocation problem. The

corresponding measurement 𝑦 outputs the difference between the plan’s realized score

and the minimum acceptable score. There are many other possible sources for 𝑦.

Regardless of the source, the continuous measurement provides an additional layer

of information that can be used to rank the robustness of points with the same sign.

For instance, if the requirement states the trajectory must remain above a certain

threshold, measurement 𝑦 indicates the difference between the lowest point in the

trajectory and the threshold. Positive values indicate that the trajectory successfully

remained above it, while negative values indicate just how far below the threshold

the trajectory reached at some point. Two positive measurements 𝑦2 > 𝑦1 > 0 both

signify satisfactory trajectories, but the trajectory with 𝑦2 is considered “more robust”

as it remains further away from the limit that delineates unsatisfactory performance.

Figure 4-1 illustrates this fact in a simple example problem. The second trajectory

remains farther away from the failure boundary (𝑥 = 0.7) and is therefore considered

more robust whereas binary evaluations would rank both trajectories equally. This

additional layer of information can be directly incorporated into statistical verification

in order to address the limitations resulting from purely binary measurements. Just

like the binary measurements in Chapter 3, continuous measurement 𝑦 is an explicit

function of parameters 𝜃 and is written as 𝑦(𝜃) to emphasize this fact.

91

Figure 4-1: Comparison of two trajectories with the same binary evaluation but different
continuous measurements. Both trajectories satisfy the requirement (stay above 𝑥 = 0.7),
but the first trajectory is less robust than the second since it strays closer to the failure
limit, particularly at 𝑡 = 4.

Systems with Multiple Requirements

While Section 3.1.1 discussed the use of binary evaluations 𝑦(𝜃) ∈ {−1, 1} to signify

the satisfaction of either a single requirement or an entire set of requirements, each

continuous measurement 𝑦(𝜃) ∈ R can only measure the satisfaction of a single re-

quirement. The main reason for this restriction is the robustness information provided

by the non-binary measurement is tied to a particular requirement. For example, if a

system under consideration has two requirements of interest, one corresponding to po-

sition (measured in feet) and another corresponding to angular position (in degrees),

it is straightforward for binary evaluations to indicate whether both requirements

were simultaneously satisfied since they only consider the Boolean “yes/no” result.

However, a single non-binary measurement 𝑦(𝜃) ∈ R cannot simultaneously measure

the robustness of the trajectory to both requirements. In order to signify the satis-

faction of both requirements, two separate, parallel measurements are needed. One

measurement will measure the robustness of the trajectory to the first requirement

(in feet), while a second measurement will measure the trajectory’s robustness to the

second requirement (in degrees). At the most fundamental level, the units correspond-

ing to each requirement are different and thus a single measurement cannot measure

92

the robustness of the trajectory to both. This highlights an important limitation of

continuous measurements.

Region of Satisfaction

Due to the addition of continuous measurements 𝑦(𝜃) ∈ R, the definitions of the

regions of satisfaction and failure are slightly modified.

Definition 4.3. The region of satisfaction Θ𝑠𝑎𝑡 contains all 𝜃 ∈ Θ for which the

resulting trajectory satisfies the performance requirement, i.e.

Θ𝑠𝑎𝑡 :=
{︁
𝜃 ∈ Θ : 𝑦(𝜃) > 0

}︁
. (4.1)

Definition 4.4. The region of failure Θ𝑓𝑎𝑖𝑙 contains all remaining 𝜃 ∈ Θ for

which the resulting trajectory fails to satisfy the performance requirement, i.e.

Θ𝑓𝑎𝑖𝑙 :=
{︁
𝜃 ∈ Θ : 𝑦(𝜃) ≤ 0

}︁
. (4.2)

As before, both these sets are assumed to be non-empty, Θ𝑠𝑎𝑡 ̸= ∅ and Θ𝑓𝑎𝑖𝑙 ̸= ∅, and

Θ𝑓𝑎𝑖𝑙 is the complement of Θ𝑠𝑎𝑡 so Θ𝑠𝑎𝑡∪Θ𝑓𝑎𝑖𝑙 = Θ and Θ𝑠𝑎𝑡∩Θ𝑓𝑎𝑖𝑙 = ∅. If the sign of

the measurements is used to create a binary variable 𝑦𝑏𝑖𝑛 = sign(𝑦), the sets Θ𝑠𝑎𝑡 and

Θ𝑓𝑎𝑖𝑙 specified by Definitions 4.3 and 4.4 are actually the same exact sets produced by

Definitions 3.4 and 3.5 using 𝑦𝑏𝑖𝑛. This will be illustrated later in the chapter during

the example in Section 4.4.1. The ultimate goal of the verification process remains

unchanged from Problem 3.1: compute an estimated region of satisfaction ̂︀Θ𝑠𝑎𝑡.

4.2 Regression-based Binary Verification

The continuous measurements enable a drastically different approach than previously

possible with only binary measurements. Rather than a binary classification model,

a regression model can be fit to the training data to estimate ̂︀𝑦(𝜃) ∈ R from the

continuous measurements. Although regression models replace SVM-based binary

93

prediction models, the verification problem itself is still fundamentally binary clas-

sification. Given a queried condition 𝜃, the goal is to predict whether 𝜃 belongs to

Θ𝑠𝑎𝑡 or Θ𝑓𝑎𝑖𝑙. To emphasize the binary nature of the problem remains the same, the

new approach is called regression-based binary verification.

4.2.1 Gaussian Process Regression Model

A finite collection of trajectory data (simulated or experimental) taken from Θ is used

to form a regression model. There are a number of possible regression approaches

that can be applied [81], but this work utilizes the common Gaussian process regres-

sion modeling technique [85], also known as Kriging. Section 2.2 provides additional

information and background on Gaussian process regression models.

Informally, Gaussian process (GP) regression models define a distribution over

possible 𝑦(𝜃) values at all 𝜃 ∈ Θ conditioned on the evidence provided by the finite

collection of observed trajectories. This collection is the training dataset ℒ consisting

of 𝑁 trajectories initialized at parameter vectors 𝒟 = {𝜃1,𝜃2, . . . ,𝜃𝑁} with the cor-

responding 𝑁 ×1 vector of measurements y = [𝑦(𝜃1), 𝑦(𝜃2), . . . , 𝑦(𝜃𝑁)]𝑇 (ℒ = {𝒟,y}

as before). A posterior predictive distribution for 𝑦(𝜃) at unobserved locations in Θ

is computed from the evidence provided by this training dataset and a pre-specified

prior probability distribution.

The prior probability distribution is a joint multivariate Gaussian distribution be-

tween the training points in ℒ. Because nothing is assumed to be known about 𝑦(𝜃)

beforehand, the prior distribution is initialized with zero mean to prevent inadver-

tently biasing the subsequent posterior distribution. The prior distribution over ℒ is

then given by

P(y|𝒟, 𝜓) = 𝒩 (y|0,K) (4.3)

where K is the 𝑁 ×𝑁 covariance matrix with K𝑖𝑗 = 𝜅(𝜃𝑖,𝜃𝑗). There are a number

of suitable kernel functions 𝜅(𝜃𝑖,𝜃𝑗), but the squared exponential (Gaussian) ker-

nel is by far the most popular. This approach uses the squared exponential kernel

with automatic relevance determination (SE-ARD) from (2.14). The SE-ARD kernel

94

is defined by a set of hyperparameters 𝜓 that independently control the influence

associated with each component in 𝜃 ∈ R𝑝. This enables the kernel to devalue or

minimize components of 𝜃 to which 𝑦(𝜃) has shown low sensitivity and emphasize

those to which 𝑦(𝜃) has shown high sensitivity.

The posterior probability distribution (2.16) over ℒ is proportional to the product

of the prior distribution and a likelihood model (2.15) for the measurements. Since

these measurements y are noise-free observations of deterministic trajectories, there

is no uncertainty as to the value of 𝑦(𝜃) at the training conditions. The likelihood

model can be viewed as a collection of Dirac delta distributions or alternatively as

Gaussians with widths set to 0. Unlike GP regression with noisy observations, there

is no need for a second set of hyperparameters 𝜗 for the likelihood model.

Ultimately, the most important aspect of the GP regression model is the posterior

predictive distribution used to predict 𝑦(𝜃) at unobserved locations in Θ. The poste-

rior predictive distribution for measurement 𝑦(𝜃*) at arbitrary query location 𝜃* is a

Gaussian

P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓) = 𝒩
(︀
𝜇(𝜃*),Σ(𝜃*)

)︀
(4.4)

with posterior predictive mean 𝜇(𝜃*) and covariance Σ(𝜃*). These two terms are

computed by

𝜇(𝜃*) = K𝑇
*K

−1y

Σ(𝜃*) = K** −K𝑇
*K

−1K*

(4.5)

where scalar K** = 𝜅(𝜃*,𝜃*) and K* is the 𝑁 × 1 vector of 𝜅(𝜃*,𝜃𝑖) for 𝑖 = 1, . . . , 𝑁 .

The predicted value of the measurement at 𝜃* is simply the posterior predictive mean

𝜇(𝜃*); in other words, ̂︀𝑦(𝜃*) = 𝜇(𝜃*). At all the observed training locations from

ℒ, the output of the posterior predictive mean matches the actual measurement,

𝜇(𝜃) = 𝑦(𝜃) ∀𝜃 ∈ 𝒟. The predicted regions of satisfaction and failure are rewritten

in terms of ̂︀𝑦(𝜃).

Definition 4.5. The predicted region of satisfaction ̂︀Θ𝑠𝑎𝑡 contains all 𝜃 ∈ Θ for

95

which the resulting trajectory is predicted to satisfy the performance requirement,

̂︀Θ𝑠𝑎𝑡 :=
{︁
𝜃 ∈ Θ : ̂︀𝑦(𝜃) > 0

}︁
. (4.6)

Definition 4.6. The predicted region of failure ̂︀Θ𝑓𝑎𝑖𝑙 contains all remaining 𝜃 ∈

Θ for which the resulting trajectory is predicted to fail to satisfy the performance

requirement, ̂︀Θ𝑓𝑎𝑖𝑙 :=
{︁
𝜃 ∈ Θ : ̂︀𝑦(𝜃) ≤ 0

}︁
. (4.7)

Selection of Hyperparameters

The choice of kernel hyperparameters 𝜓 may have a substantial effect upon the output

of the GP regression model, and thus the predicted ̂︀Θ𝑠𝑎𝑡,̂︀Θ𝑓𝑎𝑖𝑙. In this work, it is

assumed the “ideal” or “true” hyperparameters that maximize the accuracy of the

predictions 𝜇(𝜃) for all 𝜃 ∈ Θ are unknown in advance. In general, it will be difficult

to correctly guess the hyperparameters without extensive prior knowledge or data.

Later results in Section 4.4.1 will demonstrate the problem with incorrectly fixing the

hyperparameters to suboptimal values.

If the hyperparameters are not known a priori, they will have to be estimated

online using only the current available information, training dataset ℒ. The process

is described in more depth in Section 2.2.3, but the end result is a new probability

distribution over possible hyperparameter values P(𝜓|ℒ). In order to capture the full

effects of the uncertain hyperparameters, the posterior predictive distribution (4.4)

should be marginalized over P(𝜓|ℒ),

P(𝑦(𝜃*)|ℒ,𝜃*) =

∫︁
P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓) P(𝜓|ℒ) 𝑑𝜓. (4.8)

In practice, this integral is computationally intractable to obtain online, so it can be

approximated through methods like sum-of-Gaussians (2.26), Markov Chain Monte

Carlo, or maximum likelihood estimation. This work uses maximum likelihood esti-

mation (2.27) to efficiently compute locally-optimum hyperparameters 𝜓*, which is

96

particularly important for later closed-loop verification procedures that will frequently

update ℒ and change the distribution P(𝜓|ℒ).

High-Dimensional and High-Volume Systems

The Gaussian process regression model discussed in this chapter is the baseline GP

model. Although this representation is by far the most common, it has been shown

to have difficulty with higher-dimensional systems [123], where the 𝑝 in 𝜃 ∈ R𝑝 is

large (𝑝 ≥ 10). More complex derivations of the baseline Gaussian process model

can be employed for these high-dimensional systems or to address similar issues with

high-volume data (size of Θ𝑑). These approaches [123,124] generally attempt to either

decompose the GP into the sum of additive models or find a sparse approximation

of the full GP, which becomes too computationally expensive. The focus of the work

in this thesis is on the verification framework and selection metrics for closed-loop

verification; therefore, these more-complex representations are not demonstrated in

the results in this thesis, but the statistical verification frameworks could be easily

be adapted to these approaches in high-dimensional systems.

Systems with Multiple Requirements

As discussed in Section 4.1.1, a single continuous measurement can only indicate the

satisfaction of a single performance requirement. Most industrial-scale problems will

require the simultaneous satisfaction of multiple requirements; therefore, the verifi-

cation process in these applications will have to produce a matching number of mea-

surements for every trajectory, with each measurement indicating the robustness of

the trajectory to the corresponding requirement. In those problems, each requirement

would require its own Gaussian process prediction model trained on the appropriate

measurements. Although each Gaussian process would share the same training lo-

cations 𝒟, they each model a fundamentally different regression surface. Likewise,

each requirement’s Gaussian process model should have its own kernel functions and

hyperparameters. It is inadvisable to share hyperparameters between the Gaussian

process models since the requirements may have very different sensitivities to param-

97

eter settings 𝜃, requiring drastically different hyperparameters. Ultimately, the need

for independent Gaussian processes matched to each requirement does translate into

higher computational costs since the multiple GPs will have to be trained in parallel.

The remainder of this chapter, as well as Chapters 5 and 7, will focus on verification

problems with a single requirement and corresponding GP model. The future work

section in Chapter 8 contains a more in-depth discussion of parallel GPs for multiple

requirements, particularly on the extension of the closed-loop verification procedures

in Section 4.3 to those problems.

4.2.2 Prediction Confidence

With the additional robustness information provided by continuous measurements,

the GP regression model can be used to not only predict which set (̂︀Θ𝑠𝑎𝑡 or ̂︀Θ𝑓𝑎𝑖𝑙)

arbitrary vector 𝜃* belongs to, but also explicitly quantify the confidence in that

prediction. Unlike the artificial non-binary output 𝐻R (3.10) from the SVM model

in Chapter 3, the predictive mean 𝜇(𝜃) estimates actual non-binary measurements

with physical meaning. More importantly, the combination of 𝜇(𝜃) and predictive

covariance Σ(𝜃) defines a probability distribution around 𝜇(𝜃) where the unknown

true value 𝑦(𝜃) will lie. This distribution is the probability density function (PDF),

the probability 𝑦(𝜃) will fall within a particular range of values. Points with higher

covariance Σ(𝜃) will have a wider distribution, signifying there is large uncertainty

over how close the true 𝑦(𝜃) lies to the prediction 𝜇(𝜃). Meanwhile, points with lower

Σ(𝜃) will have a tighter distribution and 𝑦(𝜃) is expected to fall much closer to 𝜇(𝜃).

Effectively, the covariance indicates the confidence in the accuracy of the predictive

mean.

Although the covariance Σ(𝜃) constructs confidence intervals about the accuracy

of 𝜇(𝜃) with respect to unknown true 𝑦(𝜃), it does not explicitly measure the con-

fidence in the binary predictions for ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙. These binary predictions are

based upon whether 𝑦(𝜃) > 0 rather than the exact value of 𝑦(𝜃) itself. Therefore,

the probability distribution around 𝜇(𝜃) is only as important as it pertains to the

likelihood 𝑦(𝜃) > 0. From a Bayesian standpoint, the confidence in the predictions

98

for 𝑦(𝜃) is given by the PDF, but the confidence in the binary predictions for ̂︀Θ𝑠𝑎𝑡

and ̂︀Θ𝑓𝑎𝑖𝑙 is specified by the cumulative distribution function (CDF). The probability

of satisfaction at each parameter vector 𝜃 is computed through the Gaussian CDF,

P(𝑦(𝜃) > 0|ℒ, 𝜓) =
1

2
+

1

2
erf
(︁ 𝜇(𝜃)√︀

2Σ(𝜃)

)︁
. (4.9)

Thus the prediction confidence P(𝑦(𝜃) > 0) is a function of both the predictive mean

and covariance. Perfect confidence is signified by P(𝑦(𝜃) > 0) = 1 or 0, meaning

there is 100% probability 𝑦(𝜃) > 0 or 100% probability it is not. Training points

𝜃 ∈ 𝒟 will have perfect confidence as the exact value of 𝑦(𝜃) is known at those points

(𝜇(𝜃) = 𝑦(𝜃)).

The intuition behind the use of the CDF to indicate binary prediction confidence

rather than the PDF is illustrated in Figure 4-2. In this example, a Gaussian process

regression model has been fit to a set of training points (red dots). Figure 4-2(a)

pictures the GP’s predictive mean 𝜇(𝜃) and the 95% confidence interval formed by the

covariance Σ(𝜃). In particular, consider the output at three different query locations

𝜃1 = −1.3, 𝜃2 = −0.1, and 𝜃3 = 1.5 (shown as magenta stars). The covariances

at the first two locations are similar, Σ(𝜃1) ≈ Σ(𝜃2), but the third location has

a noticeably larger distribution with Σ(𝜃3) > Σ(𝜃2). While covariance Σ(𝜃3) is

larger than at the other two locations, it does not necessarily translate into a worse

confidence in the binary predictions. The corresponding binary prediction confidence

P(𝑦(𝜃) > 0) is shown in Figure 4-2(b). Here, the two training points have perfect

confidence because the true value of 𝑦(𝜃) is known. The three query points have

unequal prediction confidence based upon the CDF (4.9). Although 𝜃1 and 𝜃2 have

similar covariance levels, the fact that 𝜇(𝜃2) is closer to 0 means the binary prediction

is highly sensitive to uncertainty over 𝑦(𝜃2) and the confidence is low (P(𝑦(𝜃2) > 0) =

0.5). Likewise, even though Σ(𝜃3) is larger than Σ(𝜃2), the predictive mean’s distance

from 0 (𝜇(𝜃3) = 0.7) reduces the sensitivity to this large covariance. In an exaggerated

example, it is possible to have high confidence in the binary predictions even with

large covariance, provided |𝜇(𝜃)| ≫ 0. The analysis of these query points highlights

99

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
y(

)
Predict ()
True y()
Training pt
Query pt

(a) GP output

-1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

 y
(

)>
0

Confidence
Training pt
Query pt

(b) Prediction confidence

Figure 4-2: Illustration of GP predictions and their confidence. The GP prediction mean
𝜇(𝜃) and 1𝜎 covariance Σ(𝜃) bounds (blue) are shown against the true measurements 𝑦(𝜃)
(black). Observed training points are shown in red. Consider the predictions and correspond-
ing confidence of the three query points (magenta). Despite the significantly larger covari-
ance, the right-most query point (𝜃 = 1.5) has relatively high confidence in P(𝑦(𝜃) > 0).

the fact prediction confidence is a function of both mean 𝜇(𝜃) and covariance Σ(𝜃).

It is important to note that the prediction confidence (4.9) is also a function of

the training dataset ℒ and the hyperparameters 𝜓. Changes to either one of these

two will affect the resulting mean and covariance. Just as with the true posterior

distribution for 𝑦(𝜃) (2.25), the prediction confidence should be marginalized over the

predictive distribution for the hyperparameters P(𝜓|ℒ) to find the true confidence.

As this is computationally intractable to solve, the prediction confidence is usually

approximated as a point estimate with the maximum likelihood estimate for the

hyperparameters 𝜓*, just as in (4.8).

4.3 Closed-Loop Statistical Verification

Despite the introduction of the GP-based prediction model, statistical verification

still suffers from many of the same limitations encountered by SVM-based classifi-

cation models. For one, the local predictive accuracy of the model is tied to the

quality of the training data in the surrounding region of Θ. Ideally, larger portions

of the training data would be clustered in regions with high sensitivity, such as near

100

the edge(s) separating Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙. Such a distribution would give the Gaussian

process increased predictive accuracy in “difficult” areas, although the introduction of

the prediction confidence (4.9) does enable the GP to indicate where the prediction

confidence is low. Second, statistical verification is usually limited by the amount

of resources (time, money, objects, etc.) allocated to the verification process. For a

variety of reasons, this limit generally manifests as a cap on the number of trajectories

that can be performed, and thus restricts the number of training points.

The overall verification problem is mostly unchanged from Problem 3.3: computê︀Θ𝑠𝑎𝑡 while restricted to 𝑁𝑙𝑖𝑚 number of trajectory samples. The following section

presents modified versions of the sequential and batch verification procedures from

Section 3.4. At the conclusion of the approaches after 𝑁𝑙𝑖𝑚 simulation or experi-

mental tests have been performed, the GP prediction models will output the two

sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙, as well as predictive confidence associated with each element of

the respective sets. The new predictive confidence can also be used to identify sub-

sets of ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 with specific confidence levels. For example, it can identify

subsets ̂︀Θ95%
𝑠𝑎𝑡 ⊂ ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ95%

𝑓𝑎𝑖𝑙 ⊂ ̂︀Θ𝑓𝑎𝑖𝑙 that only contain 𝜃 locations with at least

95% prediction confidence. Although these types of subsets are useful for estimating

misclassification error, the closed-loop procedures ultimately return ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙

because the fundamental problem is to separate Θ into exactly two sets to estimate

Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙. Closed-loop verification will minimize the binary misclassification

error of the two sets for a given sampling budget.

4.3.1 Sample-Selection Criteria

Active learning [117] again forms the basis of the closed-loop verification procedures.

Active learning methods are iterative machine learning procedures that actively se-

lect the best locations for future training samples. The definition of the “best” sample

varies according to the sample-selection criteria, and in turn guides the evolution of

the prediction model over time as more and more samples are obtained. First, existing

sample-selection metrics taken from relevant work and the approach described in Sec-

tion 3.4.1 are discussed. While these will certainly work, they are not ideally suited to

101

the regression-based binary verification problem using GPs. Subsequent paragraphs

will introduce a new selection metric tailor-made for the verification problem.

Existing Approaches

One possible selection metric is a recycled version of the expected model change

(EMC) criteria used for SVM-based closed-loop verification in Section 3.4. This

formulation replaces the SVM model output 𝐻R(𝜃) from (3.16) with the GP posterior

predictive mean 𝜇(𝜃). The resulting selection criteria ranks points according to their

proximity to the ̂︀𝑦(𝜃) = 0 prediction surface boundary, i.e.

𝜃 = argmin |𝜇(𝜃)| (4.10)

in a sequential sampling problem. The modified EMC approach is labeled a PDF

mean-focused approach since it only considers predictive mean 𝜇(𝜃) and neglects

prediction covariance Σ(𝜃).

While the EMC criteria does emphasize points near the prediction surface bound-

ary, it ignores the fact the GP output is a distribution rather than a point estimate

like in a SVM. An alternative approach is to select samples according to the GP’s

predictive covariance Σ(𝜃). This is a common technique [92,94,117,125] used to max-

imize the information gain with each additional training datapoint. After theoretical

analysis, the point that maximizes the information gain is simply the point with the

largest covariance,

𝜃 = argmax Σ(𝜃). (4.11)

If the true hyperparameters 𝜓* are known, then this approach is submodular as the

covariance Σ(𝜃) is independent of actual measurements 𝑦(𝜃) and only requires the

sample location 𝜃 itself to be known.

Although the submodularity of variance-based approach (4.11) is desirable, it

does not explicitly address the binary verification problem. As depicted in Figure 4-

2, large covariance Σ(𝜃) does not automatically equate to large uncertainty in the

binary prediction. This can also be seen in the applications addressed by the related

102

work: arrangement of temperature sensors [125], placement of rain sensors [125],

and indoor environmental monitoring [94], among others. All these applications are

focused on sensing or monitoring without any binary classification needs; their goal is

to distribute measurements in order to minimize uncertainty in ̂︀𝑦(𝜃), not determine

a decision boundary. As discussed in Section 4.2, the binary verification problem

instead focuses on the CDF of the measurements in order to measure the confidence

in the binary predictions. Therefore, variance-based selection criteria are not ideally

suited to this particular active learning application.

Binary Entropy-based Sampling Criteria

To replace the existing selection criteria, an entirely new metric is developed, specif-

ically tailored to exploit binary prediction confidence (4.9). This metric employs

binary classification entropy to quantify the uncertainty in the predictions at prospec-

tive sample locations. Note that variance-based methods [94, 125] may also use the

term “entropy,” but that term refers to conditional entropy with respect to mutual in-

formation, which is entirely different from binary classification entropy. In subsequent

discussions in this thesis, any reference to “entropy” is linked to binary classification

entropy. The binary classification entropy 𝐸(𝜃) is determined by the prediction con-

fidence P(𝑦(𝜃) > 0),

𝐸(𝜃|ℒ, 𝜓) = −
(︂
P(𝑦(𝜃) > 0|ℒ, 𝜓)log2P(𝑦(𝜃) > 0|ℒ, 𝜓) +

P(𝑦(𝜃) ≤ 0|ℒ, 𝜓)log2P(𝑦(𝜃) ≤ 0|ℒ, 𝜓)

)︂
.

(4.12)

The binary classification entropy is pictured as a function of P(𝑦(𝜃) > 0) in Figure 4-

3. Since the probability of failure is the opposite of the probability of success, i.e.

P(𝑦(𝜃) ≤ 0) = 1−P(𝑦(𝜃) > 0), the entropy 𝐸(𝜃) can be written as a function of just

P(𝑦(𝜃) > 0). The entropy is also a function of the chosen hyperparameters 𝜓 and the

current training dataset ℒ. The true entropy can be computed by marginalizing over

the distribution of possible hyperparameters, but this is computationally intractable

and is instead approximated using the MLE hyperparameters 𝜓* as in (4.8).

103

0 0.2 0.4 0.6 0.8 1

Probability y()>0

0

0.2

0.4

0.6

0.8

1

E
n

tr
o

p
y

E
(

)

Figure 4-3: Binary classification entropy (4.12) as a function of P(𝑦(𝜃) > 0). Note that
P(𝑦(𝜃) ≤ 0) = 1 − P(𝑦(𝜃) > 0) and thus the binary classification entropy 𝐸(𝜃) can be
written as a function of solely P(𝑦(𝜃) > 0).

In addition to the local entropy at each location 𝜃, the total cumulative entropy

over an entire set is also of interest. In particular, it is useful to measure the cumula-

tive entropy over the fine discretization of Θ, set Θ𝑑 from Assumption 3.8. The total

entropy is simply the sum of the local entropy over all locations 𝜃 ∈ Θ𝑑,

𝐸(Θ𝑑|ℒ, 𝜓) =

|Θ𝑑|∑︁
𝑖=1

𝐸(𝜃𝑖|ℒ, 𝜓). (4.13)

The ideal selection metric would minimize the posterior cumulative entropy with the

chosen sample,

𝜃 = argmin 𝐸
(︁

Θ𝑑|ℒ+, 𝜓
)︁
, (4.14)

where ℒ+ is the training set with the additional data ℒ+ = ℒ ∪ {𝜃, 𝑦(𝜃)}. The

problem with selection metric (4.14) is the unavailability of the posterior entropy since

it requires the measurement 𝑦(𝜃) to be known before a simulation or experiment is

actually performed there. In its place, the expected posterior entropy can be computed

using the current expected measurement E[𝑦(𝜃)] = ̂︀𝑦(𝜃) = 𝜇(𝜃). The minimization

104

of the expected posterior entropy follows the same principle

𝜃 = argmin ̂︀𝐸(︁Θ𝑑| ̂︀ℒ+, 𝜓
)︁

(4.15)

with the artificial training dataset ̂︀ℒ+ = ℒ ∪ {𝜃, ̂︀𝑦(𝜃)}.

While feasible, metric (4.15) is impractical for large datasets because the GP will

have to be retrained for each prospective sample location since ̂︀ℒ+ changes. Given

an artificial training dataset ̂︀ℒ+, the expected GP output is

E
[︀
P(𝑦(𝜃*)| ̂︀ℒ+,𝜃*, 𝜓)

]︀
= 𝒩

(︀̂︀𝜇+(𝜃*),Σ
+(𝜃*)

)︀
, (4.16)

which in turn affects the prediction confidence and finally the binary classification

entropy. The GP training process involves the inversion of the kernel matrix K, now

incremented with additional datapoint {𝜃, 𝑦(𝜃)}, a 𝒪(𝑁3) cost for every prospective

sample location under consideration. This cost quickly becomes intractable for large

Θ𝑑 and 𝒰 , especially for some of the examples considered later in this chapter with

grid space Θ𝑑 consisting of up to millions of possible sample locations. Therefore,

minimization of the expected posterior entropy (4.15) is possible for small grids, but

impractical for many verification problems.

In place of the expected posterior entropy, it is also useful to maximize the poste-

rior decrease in binary classification entropy with each new simulation or experimental

test. The rate of decrease in the cumulative posterior entropy is given by

𝜃 = argmax

(︃
𝐸
(︁

Θ𝑑|ℒ, 𝜓
)︁
− ̂︀𝐸(︁Θ𝑑| ̂︀ℒ+, 𝜓

)︁)︃
, (4.17)

although this too suffers from the same impracticality as (4.15) because it requires the

cumulative expected posterior entropy. However, the the local decrease in posterior

entropy does not require the repeated 𝒪(𝑁3) inversion of K. When considering the

posterior entropy at the location where a test has been performed, the result is always

𝐸(𝜃|ℒ, 𝜓) = 0. This occurs because the covariance Σ(𝜃) = 0 at all the training

locations, which would then include the sample location under consideration if a

105

simulation or experiment is indeed performed there. Given this fact, the maximization

of the posterior decrease in local entropy reduces to

𝜃 = argmax

(︃
𝐸
(︁
𝜃|ℒ, 𝜓

)︁
− ̂︀𝐸(︁𝜃| ̂︀ℒ+, 𝜓

)︁)︃
(4.18)

= argmax

(︃
𝐸
(︁
𝜃|ℒ, 𝜓

)︁
− 0

)︃
(4.19)

= argmax 𝐸
(︁
𝜃|ℒ, 𝜓

)︁
. (4.20)

Selection metric (4.20) finally presents a sample-selection criteria motivated by both

reduction in prediction uncertainty and computational tractability.

In comparison to the existing approaches, (4.20) can be viewed almost as a nonlin-

ear combination of (4.10) and (4.11). Points with low |𝜇(𝜃)| and high covariance Σ(𝜃)

are ranked above points with just one of those traits. The closest relevant approach

is GP regression for level set optimization [93] which expands upon variance-based

methods and GP optimization. The approach places confidence intervals around the

mean to predict level sets and bound the information gain with each sample. Unfortu-

nately, it makes a number of restrictive assumptions that limit its utility for a binary

verification problem. First, it assumes the true hyperparameters are known and fixed

in order to formulate the bound on the information gain which is central to the selec-

tion strategy. In most problems starting with zero knowledge, this assumption cannot

be made. Later results will show that fixing the hyperparameters to incorrect values

will lead to poor performance, even with active learning. Second, the approach’s crit-

ical bound on information gain is inversely proportional to the measurement noise.

The deterministic verification problem has no measurement noise, and even if it is

approximated as a narrow-width Gaussian, the bound will be near infinite and of

zero use. All of this discussion serves to highlight that binary entropy-based selection

criteria are similar to existing selection metrics, but are uniquely tailored to address

the deterministic, closed-loop statistical verification problem.

106

4.3.2 Sequential Sampling

The least-complex closed-loop verification procedure is the sequential approach that

selects one sample at a time between retraining steps. Just as with the processes

described in Section 3.4, there must first be an initial training dataset ℒ of passively-

selected trajectories before a GP regression model can be constructed. This dataset

can be generated using any open-loop, passive procedure such as Latin hypercube [74]

or randomly-distributed [73] design of experiments techniques. Once the initial GP

model has been obtained, the active selection of samples can begin. These samples

are chosen from the available sample set 𝒰 , which is the remainder of lattice Θ𝑑 after

observed training points have been removed: 𝒰 = Θ𝑑 ∖ 𝒟. After each iteration, 𝒰

is updated to remove the selected training point. The select-test-retrain process is

repeated for 𝑇 = 𝑁𝑙𝑖𝑚 − 𝑁0 additional points, where 𝑁0 is the size of the initial

training dataset. Algorithm 3 details the complete closed-loop verification procedure,

which is summarized in the following paragraph.

Step 1 lists the aforementioned inputs for the closed-loop verification procedure:

the initial training dataset ℒ, the available sample set 𝒰 , and the number of additional

samples 𝑇 . Given this information, the algorithm constructs the initial GP regression

model (Step 2). The procedure performs the actual active sampling process in Steps 3-

8. In Step 4, the algorithm computes the GP predictive mean and covariance at all 𝜃 ∈

𝒰 and uses these terms to calculate the entropy at each location in order to rank the

points accordingly. The process selects the highest-ranked location 𝜃 and performs a

simulation or experimental test with those parameter settings to obtain measurement

𝑦(𝜃) (Step 5). Once this information has been added to the training dataset ℒ

(Step 6), the retrained GP model in Step 7 incorporates the new observations. This

process continues until the number of training points reaches 𝑁𝑙𝑖𝑚. Once the active

sampling process terminates, the procedure returns the final prediction model with the

predicted sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 and the corresponding prediction confidence P(𝑦(𝜃) >

0|ℒ, 𝜓) for all points in Θ𝑑 (Step 9).

The computational complexity of the GP-based sequential procedure in Algorithm

107

Algorithm 3 Sequential closed-loop deterministic verification framework using GP
regression models

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , max # of
additional samples 𝑇

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Select 𝜃 = argmax
𝜃∈𝒰

𝐸
(︀
𝜃|ℒ, 𝜓

)︀
5: Perform test at 𝜃, obtain measurement 𝑦(𝜃)
6: Add {𝜃, 𝑦(𝜃)} to training set ℒ, remove 𝜃 from 𝒰
7: Retrain model with updated ℒ
8: end for

9: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙, and confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) ∀𝜃 ∈ Θ𝑑

3 is as follows. At the start of the process, the GP regression model training in Step

2 requires the full 𝒪(𝑁3) complexity to invert the K matrix. This cost will rise when

hyperparameter optimization is performed. Given the precomputed inverse K−1 in

Step 2, the 𝒪(𝑁2) +𝒪(𝑁 |𝒰|) and 𝒪(𝑁2|𝒰|) +𝒪(𝑁 |𝒰|) costs to compute 𝜇(𝜃) and

Σ(𝜃) at all 𝜃 ∈ 𝒰 dominates the complexity required to find entropy 𝐸(𝜃|ℒ, 𝜓). Once

the process has selected the highest-ranked location 𝜃 and performed a test there, the

retraining process in Step 7 poses the next major source of computational cost. While

this retraining process requires the inversion of the K matrix, this time with an extra

column and row corresponding to kernel evaluations with 𝜃, the process can employ

a number of techniques to reduce the cost. Using the Woodbury identity for matrix

inversion [126], the actual cost to invert the new K matrix reduces to 𝒪(𝑁2) +𝒪(𝑁)

operations, thus avoiding the full cubic cost in Step 2. As the process repeats Steps

4-7, the same matrix inversion technique will maintain quadratic complexity for Step

7 by reusing the previous iteration’s computations forK−1. Just as in Section 3.4, this

complexity analysis ignores the cost to perform an actual simulation or experiment

in Step 5 since it will vary from example to example.

Although Algorithm 3 is written using the new binary entropy-based selection

metric, the results in Section 4.4 will also examine the performance of closed-loop

verification using expected model change (EMC) and variance-based selection criteria.

In the PDF variance-based approach, Step 4 is replaced by the corresponding selection

108

metric (4.11) and other changes are needed. The PDF mean-focused/EMC approach

uses the same sampling procedure from Section 3.4, but with (4.10) replacing (3.16).

As part of the training and retraining steps, the hyperparameters 𝜓 are also re-

optimized with the new training dataset. Therefore, the different versions of the

closed-loop procedure using binary entropy, EMC, and variance selection metrics will

posses different hyperparameters since each procedure will construct a different ℒ.

4.3.3 Batch Sampling

While Algorithm 3 will select samples as intended, its viability breaks down when

applied to large Θ𝑑. It suffers from the same two limitations as the SVM-based

sequential algorithm: 1) the computational cost of retraining the GP after every

single additional sample becomes non-negligible and 2) the sequential approach does

not exploit parallelism inherent to many applications, particularly simulation-based

verification. The selection of samples in batches of 𝑀 points will help address both

of these concerns.

The main challenge with batch sampling is encouraging adequate diversity among

the 𝑀 datapoints. If the 𝑀 highest-ranked samples are naïvely selected, it will likely

choose redundant points in close proximity to one another. Instead, it is generally

more efficient to spread the samples out over multiple regions of relatively high rank-

ing. The closed-loop batch framework for SVMs in Algorithm 2 avoided redundancy

with the addition of a diversity measure (3.17). This diversity measure penalized pos-

sible sample locations in close proximity to locations already chosen for the current

batch, thus spacing out the 𝑀 points along the prediction surface. The following

subsection will present multiple alternatives for batch selection with binary entropy-

based selection criteria.

Approximate Entropy Reduction

One extension of Algorithm 3 is to artificially update the GP prediction model after

each sample selected for the batch. Points previously chosen for the current batch are

109

stored in set 𝒮. These stored points are used to create an artificial training dataset̂︀ℒ+ = ℒ∪{𝒮, ̂︀y𝒮} which is then used to retrain the GP model. The resulting approx-

imate GP model outputs predictive mean ̂︀𝜇(𝜃) and covariance ̂︀Σ(𝜃) that update the

approximate prediction confidence

̂︀P(𝑦(𝜃) > 0| ̂︀ℒ+, 𝜓) =
1

2
+

1

2
erf
(︁ ̂︀𝜇(𝜃)√︁

2̂︀Σ(𝜃)

)︁
(4.21)

and subsequent binary entropy ̂︀𝐸(𝜃| ̂︀ℒ+, 𝜓). For each point in the batch after the

first, the posterior reduction in entropy is not completely accurate, but rather an

approximation since ̂︀ℒ+ is not the actual (unknown) training dataset ℒ+. Algorithm

4 details the complete batch procedure.

As before, the first two steps list the necessary inputs and compute the initial

GP regression model. Unlike the sequential approach in Algorithm 3, the batch

procedure breaks the remaining 𝑁𝑙𝑖𝑚 −𝑁0 allowable simulations or experiments into

𝑇 batches with 𝑀 measurements in each batch, assuming 𝑁0 + 𝑇𝑀 = 𝑁𝑙𝑖𝑚. Given

this initial model, Steps 3-15 contain the batch active sampling process. At the start

of each batch, the procedure computes the predictive mean and covariance to find the

entropy 𝐸(𝜃|ℒ, 𝜓) for all 𝜃 ∈ 𝒰 (Step 4). The procedure initializes the approximate

entropy to this value and begins the batch selection process. The process selects the

location with the highest approximate entropy (Step 6) and stores that location in set

𝒮 (Step 7). At this point, no simulations or experiments have been performed yet, so

the procedure constructs the artificial training dataset ̂︀ℒ+ with the predictive mean̂︀𝑦(𝜃) = 𝜇(𝜃) taking the place of an actual measurement (Step 8). The process uses the

artificial training dataset to compute an approximate GP model (Step 9) in order to

estimate the effects of a measurement at location 𝜃 upon the entropy (Step 10) when

selecting subsequent locations. Steps 6-10 repeat until the batch set 𝒮 has been filled

with 𝑀 locations. Once the batch selection process has chosen all 𝑀 locations, the

algorithm performs tests at those 𝜃 settings and obtains the actual measurements y𝒮

(Step 12). Steps 13 and 14 add this information to the actual training dataset ℒ and

update the GP regression model. The algorithm will reinitialize the batch process and

110

Algorithm 4 Batch closed-loop deterministic verification framework using approxi-
mate entropy reduction

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅, approximate entropy ̂︀𝐸(𝜃| ̂︀ℒ+, 𝜓) = 𝐸(𝜃|ℒ, 𝜓)
5: for 𝑘 = 1, 2, . . . ,𝑀 do

6: Select 𝜃 = argmax
𝜃∈𝒰

̂︀𝐸(︀𝜃| ̂︀ℒ+, 𝜓
)︀

7: Add 𝜃 to set 𝒮, remove 𝜃 from 𝒰
8: Construct artificial training set ̂︀ℒ+ = ℒ ∪ {𝒮, ̂︀y𝒮}
9: Train approximate GP model with artificial ̂︀ℒ+

10: Recompute approximate entropy ̂︀𝐸(︀𝜃| ̂︀ℒ+, 𝜓
)︀

11: end for

12: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
13: Add {𝒮,y𝒮} to training set ℒ
14: Retrain model with updated ℒ
15: end for

16: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙, and confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) ∀𝜃 ∈ Θ𝑑

continue until it has completed 𝑇 batches. After the iterative process is complete, the

procedure returns the predicted sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 and the corresponding prediction

confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) for all points in Θ𝑑 (Step 16).

There are two main issues with the procedure listed in Algorithm 4. First, the

approximate entropy ̂︀𝐸(︀𝜃| ̂︀ℒ+, 𝜓
)︀
diverges with increasing 𝑀 . Since the true mea-

surements y𝒮 are unknown during the selection of the batch, the approximate GP is

forced to rely upon artificial measurements ̂︀y𝒮 in order to approximate the effects of

those sample locations upon the ranking of future potential sample locations. As the

number of samples in 𝒮 grows, cumulative error between what would have been the

true mean 𝜇(𝜃) with the actual measurements and the approximate mean ̂︀𝜇(𝜃) with

artificial measurements grows. This discrepancy will then cause the error between the

approximate confidence and entropy and their true values to grow as well. Interest-

ingly enough, the approximate covariance ̂︀Σ(𝜃) is actually the true covariance since

covariance only requires the location 𝜃 and is independent of the actual measurement

𝑦(𝜃). This same fact is the root of the submodularity of the PDF variance-based

111

methods.

The second issue with the approximate entropy procedure is the high computa-

tional load. Since Step 9 retrains the approximate GP after every new point in 𝒮, the

computational complexity matches the complexity required for the sequential pro-

cedure in Algorithm 3. This lack of an improvement over Algorithm 3 completely

contradicts one of the two reasons for batch sampling in the first place. The combi-

nation of these two issues limits the practicality of Algorithm 4.

Importance-Weighted Random Sampling

Rather than rely upon expensive approximations of future effects in order to encour-

age diversity in batch set 𝒮, importance-weighted random sampling can be used to

efficiently select samples. The crux of this approach is to form a probability distribu-

tion from the current binary entropy

P𝐸(𝜃) =
1

𝑍𝐸
𝐸(𝜃|ℒ, 𝜓), (4.22)

where 𝑍𝐸 =
∑︀|Θ𝑑|

𝑖=1 𝐸(𝜃𝑖|ℒ, 𝜓), and randomly select samples from this distribution.

This approach is essentially importance sampling Monte Carlo estimation [59,127,128]

using binary classification entropy. Regions with high entropy will have a larger prob-

ability of selection than areas with low entropy. Although this does not completely

eliminate the possibility of redundant points in 𝒮, the randomized sampling will gen-

erally lead samples to be distributed across all regions of high probability (entropy).

Assuming Θ𝑑 and 𝒰 are very large, the entropy will be high in many regions near the

prediction boundary and it is not likely that all samples are clumped into a single

nearby region.

Algorithm 5 depicts the importance-weighting batch procedure. This procedure

begins almost exactly the same as Algorithm 4; however, the importance-weighting

approach only utilizes the current entropy and does not require an approximate GP

model to be constructed. In Step 5, the process converts the entropy into probability

distribution P𝐸(𝜃). Next, 𝑀 sample locations are randomly chosen without replace-

112

Algorithm 5 Batch closed-loop deterministic verification framework using
importance-weighted random sampling

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: Transform 𝐸(𝜃|ℒ, 𝜓) into probability distribution 𝑃𝐸(𝜃)
6: Generate 𝑀 random samples from 𝑃𝐸(𝜃), add to 𝒮
7: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
8: Add {𝒮,y𝒮} to training set ℒ
9: Retrain model with updated ℒ
10: end for

11: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙, and confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) ∀𝜃 ∈ Θ𝑑

ment from 𝒰 according to this probability distribution (Step 6). Unlike the previous

algorithm, all 𝑀 points are randomly generated in one step, which yields computa-

tional savings compared to the previous sequential process within each batch of 𝑀

points. The procedure then performs simulations or experiments at the selected 𝜃

settings (Step 7) and adds the resulting measurements to the training dataset (Step

8). Finally, the procedure retrains the GP regression model with the 𝑀 additional

datapoints (Step 9). The iterative process repeats for 𝑇 batches until the sample

budget has been exhausted. Once it reaches this termination point, the algorithm

outputs predicted sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 and confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) (Step 11).

In terms of computational complexity, Algorithm 5 offers noticeable improvement

over Algorithms 3 and 4. The importance-weighted procedure requires the same

costs to train the GP regression model in Step 2 and compute the entropy 𝐸(𝜃|ℒ, 𝜓)

for Step 5. Unlike Algorithm 4, the new procedure transforms the entropy into

P𝐸(𝜃), which requires at least two more 𝒪(|𝒰|) operations. Given this probability

distribution, importance-weighted random sampling without replacement (Step 6)

will require 𝒪(𝑀 log|𝒰|)+𝒪(𝑀) operations in the best-case scenario [129]. The same

Woodbury matrix inversion identity [126] will help lower the complexity for Step 9

by reusing the previous iteration’s computations for K−1, allowing the inversion to

only require on the order of 𝒪(𝑀3) + 𝒪(𝑁2𝑀) + 𝒪(𝑀2𝑁) + 𝒪(𝑁2) operations for

113

the batch update. Figure 4-4 compares the computational complexity of Algorithm

5 against Algorithms 3 and 4 in Example 4.4.1 and demonstrates the importance-

weighted procedure’s improvements over those approaches.

Determinantal Point Process-based Random Sampling

The main drawback with importance-weighted random sampling is ensuring set 𝒮

does not contain any redundant points. Particularly, when the batch size𝑀 is low, it

is desirable to spread samples out across regions with similar levels of high probabil-

ity/entropy. Importance weighting will generally distribute the points across regions

of high probability, but it is likely some of the points will be in close proximity and

will be redundant. In order to address this redundancy issue while still maintaining

the computational feasibility of importance-weighting, the procedure in Algorithm 5

can be augmented with random matrix theory methods.

The main tool to encourage diversity is determinantal point processes (DPP). A

more detailed discussion of DPPs is found in the seminal work [130, 131], but an

overview of the approach is given in Appendix D. In short, DPPs take a large number

(𝑀𝑇) of 𝜃 locations randomly drawn according to P𝐸(𝜃) and construct a matrix that

measures correlation between the samples and penalizes similarities among the data-

points. The correlation matrix’s eigenvalues and eigenvectors can be used to generate

a second random set of datapoints distributed in regions of high probability, but with

increased spatial dispersion within those regions. For active learning purposes, the

set of chosen samples 𝒮 is this second set with the modified dispersion. In partic-

ular, this work uses a special form of determinantal point processes called a k-DPP

that is optimized to generate small subsets of 𝑀 points given a larger initial set of

𝑀𝑇 ≥ 1000 points from P𝐸(𝜃).

The k-DPP process is inserted into the batch sampling framework in Algorithm

6. The only changes from Algorithm 5 are in Steps 6 and 7 where the k-DPP is

constructed and the 𝑀 samples are randomly generated according to the k-DPP.

The main difference is that the k-DPP does require some additional computational

overhead in comparison to the baseline importance weighting approach. In Step 6, the

114

Algorithm 6 Batch closed-loop deterministic verification framework using determi-
nantal point processes

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: Transform 𝐸(𝜃|ℒ, 𝜎) into probability distribution 𝑃𝐸(𝜃)
6: Generate 𝑀𝑇 random samples from 𝑃𝐸(𝜃), construct k-DPP
7: Generate 𝑀 random samples according to k-DPP, add to 𝒮
8: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
9: Add {𝒮,y𝒮} to training set ℒ
10: Retrain model with updated ℒ
11: end for

12: Return: predicted sets ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙, and confidence P(𝑦(𝜃) > 0|ℒ, 𝜓) ∀𝜃 ∈ Θ𝑑

k-DPP steps requires many more samples (𝑀𝑇 ≫𝑀) from P𝐸(𝜃) to first construct the

k-DPP, as well as the additional operations with the correlation matrix’s eigenvalues

and eigenvectors. In total, the cost of constructing and sampling from the k-DPP

requires an additional 𝒪(𝑀3
𝑇) +𝒪(𝑀𝑇𝑀

3) operations per batch. Although this cost

is higher than Algorithm 5, it is still faster than the original batch procedure in

Algorithm 4 for small 𝑀 and 𝑀𝑇 ≪ |𝒰|. Figure 4-4 illustrates both the slight

increase in complexity over Algorithm 5 and the large improvement over Algorithms

3 and 4. Just as with the baseline importance-weighted approach, this improvement

will increase as batch size 𝑀 increases due to the decreased number of retraining

steps necessary for the same number of measurements.

A comparison of all three batch sampling strategies is shown in Figure 4-5. Each

algorithm begins with the same initial GP model and training dataset and selects a

batch of 𝑀 = 10 samples. Although Figure 4-5(b) does distribute points across the

full space, it fails to adequately disperse some of those samples. In the upper-left cor-

ner, there are 4 samples in close proximity that likely contain redundant information.

By comparison, the other two figures disperse all 10 points across high entropy regions

with little overlap. This illustrates that k-DPP sampling is a viable alternative to

Algorithm 4 with lower computational overhead and greater diversity than baseline

importance-weighted random sampling.

115

50 100 150 200 250 300 350

Samples

0

1

2

3

4

5

6

C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
xi

ty

1011

Algorithm 3
Algorithm 4 (M=5)
Algorithm 5 (M=5)
Algorithm 6 (M=5)

(a) Sequential vs. batch (M = 5) procedures

50 100 150 200 250 300 350

Samples

0

1

2

3

4

5

6

C
o

m
p

u
ta

ti
o

n
al

 C
o

m
p

le
xi

ty

1011

Algorithm 3
Algorithm 4 (M=10)
Algorithm 5 (M=10)
Algorithm 6 (M=10)

(b) Sequential vs. batch (M = 10) procedures

Figure 4-4: Computational complexity of the sequential (Algorithm 3) and batch (Algo-
rithms 4-6) closed-loop verification procedures when applied to Example 4.4.1. Note that
Algorithm 4 offers no improvement in complexity over Algorithm 3, while the efficiency of
the other two improves at 𝑀 increases. Since the k-DPP requires additional operations,
Algorithm 6 possesses a slightly higher complexity than the baseline importance-weighted
approach in Algorithm 5.

4.4 Simulation Results

The sequential and batch closed-loop verification algorithms are demonstrated on nu-

merous examples representative of the wide class of systems of interest. The first

example is the same 2D CL-MRAC verification problem from Section 3.5.2. This

example compares regression-based binary verification against SVM-based classifica-

tion methods from Chapter 3. The second example examines verification in a robust

multi-agent task allocation problem. This type of system is beyond the scope of the

previously-discussed analytical verification techniques. This fact highlights the new

statistical verification frameworks’ wider applicability when compared to traditional

analytical approaches. The later two examples demonstrate closed-loop statistical

verification on more complex, higher-dimensional systems. The results in these two

examples illustrate Algorithm 6’s clear improvement in prediction error over existing

open- and closed-loop methods.

116

(a) Approximate entropy reduction (b) Importance-weighed sampling

(c) k-DPP sampling

Figure 4-5: Selection of samples according to approximate entropy reduction (Algorithm
4), baseline importance-weighted random sampling (Algorithm 5), and k-DPP sampling
(Algorithm 6). The latter strategy distributes samples in regions of high entropy, but with
less redundancy than Algorithm 5 and a lower computational cost than Algorithm 4.

4.4.1 Concurrent Learning Model Reference Adaptive Con-

troller

The first example is the same concurrent learning model reference adaptive control

(CL-MRAC) system previously examined in Section 3.5.2. The system is corrupted

by two sources of uncertainty, parameters 𝜃 = [𝜃1, 𝜃2]
𝑇 , which are estimated online

with the CL-MRAC adaptive law. While the open-loop state dynamics listed in (3.20)

are linear, the adaptive control scheme adds a large amount of complexity and causes

the closed-loop dynamics to become nonlinear. This complexity prevents analytical

117

verification techniques from producing useful estimates for ̂︀Θ𝑠𝑎𝑡 and highlights the

necessity of statistical verification methods, displayed in Figure 3-11(a).

The performance requirement is also unchanged. The actual state 𝑥1(𝑡) must

remain within 1 position unit of the reference state 𝑥𝑚1(𝑡) at every point along the

40 second trajectory,

𝜙𝑏𝑜𝑢𝑛𝑑 = �[0,40] (1− |𝑒1[𝑡]| ≥ 0) (4.23)

where 𝑒1(𝑡) = 𝑥𝑚1(𝑡) − 𝑥1(𝑡) is the tracking error. Unlike the previous chapter,

continuously-valued performance evaluations are assumed to be available in place

of binary measurements. The signal temporal logic robustness degree 𝜌𝜙𝑏𝑜𝑢𝑛𝑑 [𝑡](𝜃)

indicates whether the trajectory satisfies 𝜙𝑏𝑜𝑢𝑛𝑑 at time 𝑡. The complete trajectory’s

robustness degree is the scalar term

𝜌𝜙(𝜃) = min
𝑡′∈[0,40]

𝜌𝜙𝑏𝑜𝑢𝑛𝑑 [𝑡′](𝜃). (4.24)

for the minimum level of robustness along the entire trajectory. This robustness de-

gree is passed to the Gaussian process regression model as measurement 𝑦(𝜃) = 𝜌𝜙(𝜃).

Parameter vectors 𝜃 with 𝑦(𝜃) > 0 indicate the resulting trajectory successfully met

requirement 𝜙𝑏𝑜𝑢𝑛𝑑, while parameters with 𝑦(𝜃) ≤ 0 resulted in unsatisfactory perfor-

mance. The robustness degree also quantifies the level of robustness (or lack thereof)

demonstrated by the trajectory. In this example, if 𝑦(𝜃) ≤ 0 then the value of 𝑦(𝜃)

measures how far 𝑥1(𝑡) deviated from 𝑥𝑚1(𝑡) at the worst point in the trajectory.

When 𝑦(𝜃) > 0, the value indicates just how close the trajectory was to failure at its

least-robust point.

Figure 4-6(a) displays the true robustness degree measurement 𝑦(𝜃). The black

line indicates the separation boundary between Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙 at 𝑦(𝜃) = 0. These two

sets are shown in Figure 4-6(b). This binary shape is the same exact plot previously

seen in Figure 3-11(a). By definition, the sets Θ𝑠𝑎𝑡,Θ𝑓𝑎𝑖𝑙 produced by both binary

MTL and non-binary STL are equivalent.

The sampling grid Θ𝑑 is a lattice of 40,401 points that cover the space between

−10 ≤ 𝜃1 ≤ 10 and −10 ≤ 𝜃2 ≤ 10. From this grid, a training set ℒ of 50 randomly

118

(a) Surface of 𝑦(𝜃) (b) True Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙

Figure 4-6: [Example 4.4.1] Plot of the actual 𝑦(𝜃) surface from the STL robustness degree
over Θ. The right-hand plot displays the Θ𝑠𝑎𝑡 (green) and Θ𝑓𝑎𝑖𝑙 (red) sets resulting from
whether 𝑦(𝜃) > 0 or 𝑦(𝜃) ≤ 0.

chosen trajectories and their measurements is used to train an initial GP regression

model. This model is the starting condition for the closed-loop verification procedures.

Figure 4-7 shows an example of the GP regression model trained on this small initial

training set of 50 points. Given the sparsity of the training dataset, the GP regression

model will only have limited information on which to base its predictions. As a result,

the predicted boundary separating the two sets (blue line) is a rough estimate of

the true boundary (black line) and obviously needs more data to correctly converge

towards the true shape pictured in Figure 4-6. The closed-loop sampling approach

will speed up this convergence by distributing samples into informative regions of Θ𝑑.

Two versions of Algorithm 6 are examined, one with batch size𝑀 = 5 and one with

𝑀 = 10. Figure 4-5(c) already displayed the selection of the first batch of 𝑀 = 10

points using the the same model from Figure 4-7 as the starting point. These entropy-

based algorithms are compared against closed-loop verification methods using the

PDF variance-based selection metric (4.11) and the modified expected model change

(EMC) metric applied to Gaussian processes (4.10). The closed-loop approaches are

also evaluated against open-loop verification methods. Due to the similar performance

between Latin hypercube and uniform-random DOE approaches in Section 3.5, only

the random sampling DOE procedure will be used in subsequent comparisons. All

of these approaches will operate until a sampling budget of 𝑁𝑙𝑖𝑚 = 350 trajectories

119

(a) Surface of ̂︀𝑦(𝜃) (b) Predicted ̂︀Θ𝑠𝑎𝑡/̂︀Θ𝑓𝑎𝑖𝑙

Figure 4-7: [Example 4.4.1] Initial prediction model after an initial training dataset of 50
randomly-selected parameter settings for the trajectories. Parameter settings 𝜃 = [𝜃1, 𝜃2] for
the simulations are shown as dots and their respective colors denote whether the resulting
trajectory satisfied the requirement (green) or did not (red). The figure illustrates the
prediction boundary (blue line) that separates ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 against the true boundary
(black line) separating Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙 (shown as green/red regions in the right-hand plot).
As a result of the small training dataset, the GP model has limited information on which
to base its predictions, leading to the areas with noticeable misclassification errors.

(a) Surface of ̂︀𝑦(𝜃) (b) Predicted ̂︀Θ𝑠𝑎𝑡/̂︀Θ𝑓𝑎𝑖𝑙

Figure 4-8: [Example 4.4.1] Final prediction model after 350 samples. The resulting pre-
diction boundary separating ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 is a much better approximation of the true
boundary than in Figure 4-7, although it is still an imperfect representation.

has been reached. Figure 4-8 pictures the same problem from Figure 4-7 after the

completion of the closed-loop verification process with all 350 samples. The final

estimate is a much more accurate representation of the true shape, although it still

misclassifies a few areas along the boundary.

120

50 100 150 200 250 300 350

Samples

2

4

6

8

10

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 5

50 100 150 200 250 300 350

Samples

2

4

6

8

10

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 10

Figure 4-9: [Example 4.4.1] Misclassification error convergence of Algorithm 6 in comparison
to the other approaches over the same 100 random initializations. For ease of viewing, the
standard deviation intervals around the mean (solid lines) are given by the 0.5𝜎 bound rather
than the traditional 1𝜎 bound.

Figure 4-9 illustrates the performance of the open- and closed-loop procedures

starting from the same 100 random initializations. In both the 𝑀 = 5 and 𝑀 = 10

versions of Algorithm 6, the entropy-based selection metric outperforms closed-loop

verification using the other metrics as well as the generic open-loop approach. At the

conclusion of the 350 samples, the entropy-based closed-loop algorithms demonstrate

a 20%(𝑀 = 10) and 26% (𝑀 = 5) improvement in average prediction error over

the PDF variance-based approach. Both of these approaches have similar standard

deviation levels and are better in both mean and standard deviation than the EMC-

based and open-loop procedures.

The results in Figure 4-9 are also directly compared to the results for Algorithm

2 from Figure 3-11. After 250 samples (what was used in Figure 3-11), the new

entropy-based algorithm using continuous measurements has a 17% improvement in

average misclassification error over the EMC approach in Algorithm 2 using only bi-

nary measurements. Interestingly enough, the variance-based approach has roughly

the same average error while the modified EMC algorithm actually does 43% worse

than the original version (Algorithm 2) using only binary measurements. This quick

comparison confirms that regression-based closed-loop verification using binary clas-

121

sification entropy is preferable to the classification-based verification procedures in

Chapter 3. Since the misclassification error rate for Algorithm 6 beats Algorithm

2, the regression-based closed-loop framework also outperforms the analytical barrier

certificates.

While the results in Figure 4-9 demonstrated Algorithm 6’s improvement in aver-

age misclassification error over the other three procedures, the results did not directly

indicate whether Algorithm 6 is consistently better, only that it has a lower average

error. However, since the approaches all start with the same 100 random initializa-

tions, the approaches can be directly compared against one another for each of the

100 runs. Figure 4-10 displays the percentage of these 100 runs where Algorithm 6 has

either a lower or matching level of misclassification error to the indicated approaches.

By the completion of the closed-loop verification process, Algorithm 6 outperforms

or matches the PDF variance-based method in 89% of the runs for both batch sizes.

Likewise, Algorithm 6 outperforms the modified EMC and open-loop techniques in al-

most 95% and 100% of the test cases. These results couple with Figure 4-9 to highlight

the improved rate of misclassification errors produced by the binary entropy-based

sampling algorithms. Given a limited sampling budget, Algorithm 6 will consistently

produce the most accurate prediction model.

Confidence Levels in the Predictions

The new ability to explicitly measure prediction confidence online without an external

validation set can be used for a variety of purposes. The primary use is to provide

a local confidence level associated with a queried location 𝜃 ∈ Θ; however, it is also

possible to examine the confidence levels over the entire lattice Θ𝑑. Since the true

misclassification error rate from Figure 4-9 is unknown during actual execution of the

procedures, the prediction confidence is an important tool to estimate the total rate

of misclassification errors.

First, prediction confidence is employed to identify subsets of ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 with

certain levels of confidence. For example, consider the initial GP model from Figure 4-

7. All the binary predictions have a certain level of confidence which can be used to

122

50 100 150 200 250 300 350

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(a) Batch size 𝑀 = 5

50 100 150 200 250 300 350

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(b) Batch size 𝑀 = 10

Figure 4-10: [Example 4.4.1] Ratio of runs where Algorithm 6 directly outperforms or
matches the misclassification error rate of the indicated approaches. All strategies start
with the same initial training set and thus each approach can be directly compared to the
others with the same initialization.

further segment Θ𝑑 and identify regions where misclassifications are likely to occur.

Figure 4-11 illustrates that the prediction confidence for P(𝑦(𝜃) > 0) segments ̂︀Θ𝑠𝑎𝑡

into tighter subsets with a minimum confidence level. At the 90% confidence level, the

new subset ̂︀Θ90%
𝑠𝑎𝑡 is more conservative than the initial prediction, but removes many

(but not all) of the misclassifications. The prediction confidence for P(𝑦(𝜃) ≤ 0)

segments ̂︀Θ𝑓𝑎𝑖𝑙 in a similar fashion with ̂︀Θ90%
𝑓𝑎𝑖𝑙 . The remaining points not in ̂︀Θ90%

𝑠𝑎𝑡 or̂︀Θ90%
𝑓𝑎𝑖𝑙 have a high likelihood of misclassification.

The ̂︀Θ50%
𝑠𝑎𝑡 , ̂︀Θ90%

𝑠𝑎𝑡 , etc. subsets are analogous to the 𝐶𝐹𝑃 = {1, 3, 6} predicted sets

in Figure 3-13 that penalized false-positive errors with constraint 𝐶𝐹𝑃 . Unlike the

previous results, the confidence levels for each subset ̂︀Θ50%
𝑠𝑎𝑡 , ̂︀Θ90%

𝑠𝑎𝑡 , etc. now have an

explicit meaning whereas the 𝐶𝐹𝑃 term was merely a penalization on the training

process that had no quantifiable measure of impact. More importantly, these subsets

do not require retraining of the model and are produced simultaneously. In order

to produce the different sets in Figure 3-13, the SVM had to be retrained for each

value of 𝐶𝐹𝑃 . For GP-based verification, the GP only has to be trained once and the

prediction confidence will segment ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 without retraining.

Additionally, the prediction confidence is independent of the chosen sampling met-

123

(a) Prediction confidence P(𝑦(𝜃) > 0) (b) Confidence levels for ̂︀Θ𝑠𝑎𝑡

Figure 4-11: [Example 4.4.1] Illustration of confidence levels in the predictions of ̂︀Θ𝑠𝑎𝑡. Note:
the corresponding levels in ̂︀Θ𝑓𝑎𝑖𝑙 are not shown.

50 100 150 200 250 300 350

Samples

0

1

2

3

4

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 5

50 100 150 200 250 300 350

Samples

0

1

2

3

4
M

is
cl

as
si

fi
ca

ti
o

n
 E

rr
o

r
(%

)
Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 10

Figure 4-12: [Example 4.4.1] Rate of misclassification error in the 95% prediction confidence
level. This percentage is out of the number of points classified with 95% prediction confidence
rather than the total set Θ𝑑. For ease of viewing, the standard deviation intervals also
correspond to 0.5𝜎 bounds.

ric or whether open- or closed-loop statistical verification is employed. Figure 4-12

shows the misclassification error rate corresponding to the 95% confidence intervals

of ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 for the various approaches. Regardless of the chosen procedure, the

confidence levels have a much lower ratio of misclassification errors compared to the

full ̂︀Θ𝑠𝑎𝑡, ̂︀Θ𝑓𝑎𝑖𝑙 even during the initial stages of the process. The EMC metric is a

slight outlier, but the overall rate (<5%) still makes sense within the 95% confidence

level.

124

Importance of Hyperparameter Optimization

As was discussed in Section 4.2, the true hyperparameters are not assumed to be

known in advance and maximum likelihood estimation optimizes the hyperparameters

online. Especially during the initial steps of the closed-loop process, the distribution

of points within ℒ will change drastically and the hyperparameters will likely vary

accordingly. While it may seem advantageous to simply fix the hyperparameters due

to the computational savings of avoiding hyperparameter optimization, naïvely fixing

the hyperparameters can lead to poor performance.

Consider the comparison of the three batch (𝑀 = 10) closed-loop procedures in

Figure 4-13. In the static (fixed) cases with dashed lines, the hyperparameters are

optimized at the initial training step, but are not updated any further. Meanwhile,

the other three solid lines show the average misclassification error when the hyper-

parameters are updated after each step, as was done with all the results shown up

to this point. If the hyperparameters are fixed, the misclassification error actually

increases between steps, even though there are more samples and these samples were

actively chosen according to the indicated selection metric. This complete breakdown

in prediction accuracy highlights the dangers of naïvely fixing the hyperparameters

when the true values are unknown and demonstrates the limitations of similar proce-

dures [93] based upon the assumption of fixed hyperparameters.

4.4.2 Robust Multi-Agent Task Allocation

The second example is a robust multi-agent task allocation problem. This task al-

location problem is very different than the other examples considered in Chapters 3

and 4 and demonstrates data-driven statistical verification can be applied to a very

broad range of systems with little-to-no modification. Here, the verification goal is to

test whether a multi-agent system can successfully complete an ordered list of tasks

while subject to parametric disturbances.

In particular, this problem considers aerial forest firefighting using UAVs in the

presence of uncertain wind conditions [32]. Two sets of 2 UAVs of heterogeneous

125

50 100 150 200 250 300 350

Samples

0

5

10

15

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
) PDF Mean (EMC): Hyp Opt

PDF Variance: Hyp Opt
Binary Entropy: Hyp Opt
PDF Mean (EMC): Static Hyp
PDF Variance: Static Hyp
Binary Entropy: Static Hyp

Figure 4-13: [Example 4.4.1] Average misclassification error of the closed-loop verification
procedures with hyperparameter optimization (solid lines) versus the same procedures with
static hyperparameters (dashed lines). Both sets start with the same initial training set
and model, but the static versions do not update the hyperparameters during the retraining
process.

capabilities are used to complete 30 surveillance tasks scattered throughout the world

map. These surveillance tasks correspond to areas of possible forest fires that the

UAVs must investigate. If a UAV spots a fire, it must map the perimeter of the fire

at the location to provide the human fire commander with updates on the size, rate,

and direction of fire expansion. The challenge with these fire surveillance tasks is

that the tasks may take significantly longer to complete when the UAV maps the fire

perimeter than if the UAV did not detect a fire and moved on to the next task in the

list. Fire perimeter mapping is also a function of wind parameters (wind speed and

direction) since the winds will affect the burn rate and spread the fire into different

areas with varying terrain and vegetation combustibility. More details on the aerial

forest firefighting problem and task allocation are found in Appendix B.

For the sake of simplicity, it is assumed the fixed control policy, the ordered list

of tasks assigned to each UAV, has already been generated by a multi-agent task

allocation procedure. This work uses the robust consensus-based bundle algorithm

(CBBA) to produce the control policy [26, 132]. The realized score of the control

policy is a function of wind speed and direction. As the firefighting tasks take shorter

or longer to complete depending upon the wind conditions, tasks at the end of the

ordered list could be performed significantly behind schedule and potentially not at

126

all if the UAVs run out of fuel and have to return to base. Each task also has a time-

decaying reward, so severely-delayed tasks will produce a lower score than originally

intended. The cumulative reward of the given control policy will vary with the two

wind parameters.

The verification goal of the process is to determine whether the control policy at

a given set of wind conditions will reach a minimum score threshold. In order to test

this with the statistical verification framework, a lattice of 16,641 points covers the

feasible space between 𝜃1 : [0∘, 359∘] and 𝜃2 : [0, 40] (km/hr). Unlike the preceding

MRAC example, this example utilizes the sequential form of the closed-loop procedure

(Algorithm 3) and the competing open- and closed-loop approaches.

Figure 4-14 demonstrates the rate of misclassification error for the various verifi-

cation procedures over 100 random initializations. The closed-loop framework with

the entropy-based selection criteria outperforms the competing algorithms, depicted

in Figures 4-14(a) and 4-15. Likewise, Figure 4-14(b) examines the error rate within

the 95% confidence levels for ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙. Just as in the last example, the error

rate within the 95% confidence levels is significantly lower than in the full Θ𝑑. The

results further highlight the utility of the prediction confidence to identify regions

with high likelihood of misclassification errors.

4.4.3 Adaptive Control with Complex Temporal Specifications

The third example is an adaptive control system with complex spatial-temporal per-

formance requirements. The example uses the same closed-loop state dynamics from

Sections 3.5.2 and 4.4.1, but with the more complex requirements from Section 3.5.3.

The requirement 𝜙 states the system must eventually satisfy all three of the following

specifications (𝜙 = 𝜙1∧𝜙2∧𝜙3) in order for a trajectory to be considered satisfactory.

These three specifications are

𝜙1 = ♦[2,3] (𝑥1[𝑡]− 0.7 ≥ 0) ∧ ♦[2,3] (1.3− 𝑥1[𝑡] ≥ 0),

𝜙2 = ♦[12,13] (𝑥1[𝑡]− 1.1 ≥ 0) ∧ ♦[2,3] (1.7− 𝑥1[𝑡] ≥ 0),

and 𝜙3 = �[22.4,22.6] (𝑥1[𝑡] + 1.6 ≥ 0) ∧�[22.4,22.6] (−1.2− 𝑥1[𝑡] ≥ 0).

(4.25)

127

20 30 40 50 60 70 80 90

Samples

0

5

10

15

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Total misclassification error

20 30 40 50 60 70 80 90

Samples

0

1

2

3

4

5

6

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Misclassification error in the 95% prediction
confidence level

Figure 4-14: [Example 4.4.2] Rate of misclassification errors for Algorithm 3 and the com-
peting approaches. The left plot shows the total misclassification error across all of Θ𝑑 while
the right-hand figure shows the error of the 95% confidence level. The standard deviation
intervals correspond to 0.5𝜎 bounds.

20 30 40 50 60 70 80 90

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

Figure 4-15: [Example 4.4.2] Ratio of runs where Algorithm 3 directly outperforms or
matches the misclassification error rate of the indicated approaches. All strategies start
with the same initial training set and thus each approach can be directly compared to the
others with the same initialization.

The STL robustness degree for each trajectory is the minimum robustness degree

encountered during the trajectory,

𝜌𝜙(𝜃) = min {𝜌𝜙1(𝜃), 𝜌𝜙2(𝜃), 𝜌𝜙3(𝜃)}, (4.26)

128

where

𝜌𝜙1(𝜃) = max
𝑡′∈[2,3]

𝜌𝜙1 [𝑡′](𝜃), 𝜌𝜙2(𝜃) = max
𝑡′∈[12,13]

𝜌𝜙2 [𝑡′](𝜃),

and 𝜌𝜙3(𝜃) = min
𝑡′∈[22.4,22.5]

𝜌𝜙3 [𝑡′](𝜃).
(4.27)

The continuous measurement 𝑦(𝜃) for each trajectory is the total STL robustness

degree, 𝑦(𝜃) = 𝜌𝜙(𝜃).

This example considers the same two uncertain parameters (𝜃1, 𝜃2) from Section

4.4.1, but adds a third source of uncertainty 𝜃3 to capture uncertainty in the initial

state 𝑥1(0). The statistical verification frameworks select trajectory conditions from

a grid Θ𝑑 of 214,221 possible sampling locations that cover 𝜃1 : [−5, 5], 𝜃2 : [−5, 5] and

𝜃3 : [−1, 1]. Each of the open- and closed-loop verification procedures start with an

initial training dataset of 100 trajectories at randomly-selected parameter settings.

The algorithms operate in batch sizes of 𝑀 = 10 and 𝑀 = 20 up to a sampling

budget of 𝑁𝑙𝑖𝑚 = 1, 050/1, 060 training points.

The total misclassification error produced by the statistical verification procedures

is shown in Figure 4-16. For both batch sizes, the entropy- and variance-based closed-

loop procedures have comparable levels of standard deviation, but the entropy-based

approaches demonstrate a 35% improvement in average prediction error over PDF

variance methods and a 33% improvement over the modified EMC algorithm. When

the four approaches are directly compared against each other in Figure 4-17, Algo-

rithm 6 consistently outperforms or matches the other approaches in the vast majority

of the 100 randomly-initialized runs. At the completion of the verification procedure,

Algorithm 6 has the lowest misclassification error rate in at least 95% of the 𝑀 = 10

cases and 85% of the 𝑀 = 20 cases. In contrast to Figure 4-10 from Example 4.4.1,

the modified EMC algorithm takes the place as the nearest competitor to the entropy-

based sampling approaches. This switch from the PDF variance-based approach to

the EMC-based approach as the “next-best” approach highlights the inconsistent per-

formance of those procedures. The EMC and PDF variance-based procedures will

perform better in some problems and worse in others, while the binary classifica-

tion entropy procedures are consistently the best. Ultimately, these results reinforce

129

200 400 600 800 1000

Samples

5

10

15

20

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 10

200 400 600 800 1000

Samples

5

10

15

20

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 20

Figure 4-16: [Example 4.4.3] Misclassification error convergence of Algorithm 6 in com-
parison to the other approaches over the same 100 random initializations. The standard
deviation intervals around the mean (solid lines) are given in traditional 1𝜎 bounds.

200 400 600 800 1000

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(a) Batch size 𝑀 = 10

200 400 600 800 1000

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(b) Batch size 𝑀 = 20

Figure 4-17: [Example 4.4.3] Ratio of runs where Algorithm 6 directly outperforms or
matches the misclassification error rate of the indicated approaches. All strategies start
with the same initial training set and thus each approach can be directly compared to the
others with the same initialization.

the notion that entropy-based closed-loop verification produces the most accurate

predictions for ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙.

The results in Figure 4-21 also agree with the observations in the preceding exam-

ples. The rate of misclassification error within the 95% confidence level is lower than

the rate over the full set, meaning the majority of incorrectly-labeled points possessed

low prediction confidence. As was seen in Figure 4-14(b), the rate of misclassification

130

200 400 600 800 1000

Samples

1

2

3

4

5

6

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 10

200 400 600 800 1000

Samples

1

2

3

4

5

6

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 20

Figure 4-18: [Example 4.4.3] Rate of misclassification error in the 95% prediction confidence
level. The standard deviation intervals around the mean (solid lines) are given in 1𝜎 bounds.

errors within the 95% confidence interval is roughly the same between the different

statistical verification procedures.

4.4.4 Lateral-Directional Autopilot

The last example verifies an aircraft’s autopilot for controlling lateral-directional flight

modes. In particular, the example examines the “heading-hold” autopilot mode used

to turn the aircraft to and maintain a desired reference heading. The closed-loop

aircraft dynamics are provided by the DeHavilland Beaver flight simulator in the

Aerospace Blockset of Matlab/Simulink [133, 134]. This simulation model is signif-

icantly more complex than any of the previous examples as it includes numerous

nonlinearities such as the full nonlinear 6 degree-of-freedom aircraft dynamics, non-

linear pitch, roll, and yaw controllers, and actuator models for each control surface

with position and rate saturations. The autopilot itself includes various modes and

switching logic that may affect the closed-loop response.

The heading-hold autopilot has various requirements that should be satisfied, but

the dominating specification was found to be the altitude-hold requirement 𝜙ℎ𝑒𝑖𝑔ℎ𝑡

after a trade-space exploration. This requirement states the aircraft must remain

within 35 feet of the initial altitude at every point in the turn [133,134],

131

𝜙ℎ𝑒𝑖𝑔ℎ𝑡 = �[0,50](35− |ℎ[𝑡]− ℎ[0]| ≥ 0), (4.28)

where ℎ[𝑡] is aircraft altitude at time 0 ≤ 𝑡 ≤ 50 seconds. The continuous measure-

ments are given by the STL robustness degree

𝑦(𝜃) = 𝜌𝜙(𝜃) = min
𝑡′∈[0,50]

𝜌𝜙ℎ𝑒𝑖𝑔ℎ𝑡 [𝑡′](𝜃). (4.29)

More detailed information about the example is found in Appendix C. The satisfaction

of requirement 𝜙ℎ𝑒𝑖𝑔ℎ𝑡 is tested against four uncertain initial conditions: Euler angles

for roll (𝜃1), pitch (𝜃2), and yaw (𝜃3), as well as pitching moment of inertia 𝐼𝑦𝑦

(𝜃4). The last parameter, moment of inertia 𝐼𝑦𝑦, corresponds to uncertainty in the

loading of the aircraft; the same amount of weight could be distributed towards the

front or back of the aircraft and would affect the longitudinal dynamics. Interestingly

enough, an initial trade space exploration did not indicate any sensitivity to the actual

weight, only the moment of inertia. The space of allowable perturbations spans 𝜃1 :

[−60∘, 60∘], 𝜃2 : [4∘, 19∘], heading angle 𝜃3 : [75∘, 145∘], and 𝜃4 : [5430, 8430](𝑘𝑔 ·𝑚2)

with a desired reference heading angle of 112∘. The discrete sampling grid Θ𝑑 consists

of a total of 937,692 possible sampling locations.

The results of the various statistical verification approaches over 100 random ini-

tializations are shown in Figures 4-19 and 4-20. The approaches start from an initial

training dataset of 100 points and operate until a sampling budget of 𝑁𝑙𝑖𝑚 = 500

points is reached. The results are consistent with the observations from the preced-

ing examples; the entropy-based algorithm outperforms the competing approaches in

average misclassification error rate. For a batch size of 𝑀 = 5, the entropy-based

procedure demonstrates a 37% improvement in prediction error over the EMC-based

closed-loop framework and an even higher rate over the other two approaches. In the

𝑀 = 10 case, entropy-based sampling again outperforms the EMC-based competitor

by 34% and the other two by roughly 44%. However, it is important to note that the

results for the EMC algorithm shown in Figure 4-19, the EMC batch diversity term 𝜆

was heuristically optimized to minimize the prediction error. If the verification pro-

132

cedures are compared against the results for the original (non-optimized) 𝜆 term, the

performance of the EMC approaches quickly degrade (not shown) and entropy-based

sampling demonstrates a 50% improvement over the sub-optimal EMC algorithm.

This discussion merely identifies an extra challenge faced with EMC algorithms, the

best choice for 𝜆, that does not affect the other three sampling strategies.

Beyond the mean prediction error rate, Figure 4-20 illustrates Algorithm 6’s clear

benefit over the other three approaches when directly compared against them in each

of the 100 runs. Algorithm 6 has either a better or matching rate of misclassification

error upon completion of the verification process for all of the 100 randomly-initialized

runs. In contrast to the previous example problems, this autopilot example is a better

representation of the complex systems considered in real-world industrial problems.

This clear reduction in prediction error shown in Figures 4-19 and 4-20 highlights

the large potential benefit of the entropy-based closed-loop statistical verification

frameworks for more accurate predictions of robustness in industrial-level problems.

Additionally, the effects of hyperparameter optimization are more clearly visible

in this example than in the previous three. In particular, the noticeable jumps in

the standard deviation intervals for the binary entropy and EMC procedures from

Figure 4-19(b) are due to hyperparameter optimization. Since nothing is known

about the hyperparameters in advance, the hyperparameter optimization procedure

can only rely upon the training dataset ℒ to select the hyperparameters. Both of those

jumps in total prediction error are caused by a drastic switch in the hyperparameter

values which lower (binary entropy) or increase (EMC) the prediction error in the

next iteration of the active sampling process. This sensitivity demonstrates the need

for effective hyperparameter optimization to help minimize the prediction error.

Lastly, Figure 4-21 plots the misclassification error rate within the set of points of

high prediction confidence. As seen in Figure 4-21 and the earlier examples, the ratio

of misclassification errors is lower than the full set Θ𝑑 once all the points with low

prediction confidence have been removed. This sharp decrease reinforces the idea (4.9)

is a useful tool to compute prediction error online without an external, independent

validation dataset.

133

100 200 300 400 500

Samples

2

4

6

8

10

12
M

is
cl

as
si

fi
ca

ti
o

n
 E

rr
o

r
(%

)
Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 5

100 200 300 400 500

Samples

2

4

6

8

10

12

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 10

Figure 4-19: [Example 4.4.4] Misclassification error convergence of Algorithm 6 in com-
parison to the other approaches over the same 100 random initializations.. The standard
deviation intervals around the mean (solid lines) are given in 0.5𝜎 bounds for easier visual-
ization.

100 200 300 400 500

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(a) Batch size 𝑀 = 5

100 200 300 400 500

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance

(b) Batch size 𝑀 = 10

Figure 4-20: [Example 4.4.4] Ratio of runs where Algorithm 6 directly outperforms or
matches the misclassification error rate of the indicated approaches. All strategies start
with the same initial training set and thus each approach can be directly compared to the
others with the same initialization.

4.5 Summary

This chapter introduced a substantial redevelopment of data-driven procedures for

statistical verification of deterministic nonlinear systems. In comparison to Chapter

3, this chapter assumes non-binary performance measurements are available and con-

structs a Gaussian process regression model for binary classification/prediction. The

134

100 200 300 400 500

Samples

0.5

1

1.5

2

2.5

3

3.5

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(a) Batch size 𝑀 = 10

100 200 300 400 500

Samples

0.5

1

1.5

2

2.5

3

3.5

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean (EMC)
PDF Variance
Binary Entropy

(b) Batch size 𝑀 = 20

Figure 4-21: [Example 4.4.4] Rate of misclassification error in the 95% prediction confidence
level. The standard deviation intervals around the mean (solid lines) are given in 0.5𝜎
bounds for easier visualization.

main benefit of this new approach is the ability to compute prediction confidence

online without relying upon sample-inefficient, external validation sets. Additionally,

the new GP-based approach motivates a new set of closed-loop verification proce-

dures that exploit binary classification entropy in order to minimize the prediction

error. These procedures are demonstrated on multiple case studies covering a vari-

ety of controls applications. In the most complex examples, the proposed GP-based,

closed-loop verification frameworks demonstrate a 30-40% reduction in misclassifica-

tion error over the nearest competing approach.

135

136

Chapter 5

Stochastic Verification with Gaussian

Distributions of Trajectory

Robustness

This chapter details the development of data-driven approaches for statistical verifi-

cation of stochastic systems. The previous two chapters demonstrated the benefits

of data-driven verification for efficient verification of deterministic systems; however,

these deterministic techniques fail to address additional challenges introduced by

stochastic systems. Chapters 5 and 6 develop data-driven verification procedures

specifically designed to combat these additional challenges.

In particular, this chapter extends the previous work in Chapter 4 to address

the baseline problem in stochastic systems. Section 5.1 introduces the main chal-

lenge associated with verification of stochastic systems: the closed-loop system will

no longer deterministically satisfy performance requirements. Stochasticity means

there will be a distribution of robustness measurements when multiple trajectories

are performed at the same parameter setting. The work in this chapter assumes a

Gaussian distribution for these measurements and presents a new Gaussian process

regression-based formulation in Section 5.2 to estimate the distribution. The main

difference from the earlier work is that the Gaussian process model no longer seg-

ments Θ into two sets Θ𝑠𝑎𝑡 and Θ𝑓𝑎𝑖𝑙, but rather computes the expected probability

137

of satisfactory performance at every 𝜃 ∈ Θ. The new formulation also necessitates

significant changes to the closed-loop verification frameworks. Section 5.3 presents

new sample-selection metrics specifically designed to minimize the prediction error

between the true (unknown) distribution and the Gaussian process output. Sections

5.4 and 5.5 both describe extensions to the baseline approaches to include more com-

plicated distributions. As in the previous chapters, the last section demonstrates

these algorithms’ improvements in prediction error over competing active learning

and design of experiments procedures.

5.1 Problem Description

In this work, consider a closed-loop nonlinear system with a similar form to the

deterministic system in (3.3),

ẋ(𝑡) = 𝑓𝑐𝑙(x(𝑡),𝜃,w(𝑡)), (5.1)

with state vector x(𝑡) ∈ R𝑛 and parametric uncertainties 𝜃 ∈ R𝑝. These parametric

uncertainties are assumed to fall within the known, compact set Θ discussed in As-

sumption 3.1. Unlike the deterministic system in (3.3), the stochastic system (5.1) is

corrupted by stochastic noise w(𝑡).

The stochastic noise may be the byproduct of many different possible sources, the

most common of which are process noise in the open-loop dynamics and measurement

noise in the system output used by the control system to generate feedback control

inputs. When the system is subject to process noise, the open-loop dynamics are

corrupted by random disturbance v𝑞(𝑡),

ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡),𝜃,v𝑞(𝑡)). (5.2)

Typically, the effects of random events such as wind gusts or other disturbances are

modeled as additive Gaussian noise v𝑞(𝑡) ∼ 𝒩 (v̄𝑞, 𝜖
2
𝑞) with mean v̄𝑞 and variance 𝜖2𝑞.

The process noise causes the system to produce a random output ẋ(𝑡) for the same

138

set of inputs {x,u,𝜃} and therefore no two trajectories will be the same, even with

identical parameter settings and control inputs.

The second likely source of stochasticity is measurement noise v𝑟(𝑡). Particularly

in real-world, physical systems, the true state x(𝑡) ∈ R𝑛 is often not directly measured

and instead the states are inferred from measured output z(𝑡) ∈ R𝑛𝑟 ,

z(𝑡) = ℎ(x(𝑡),v𝑟(𝑡)). (5.3)

Even in the simplest case where the open-loop dynamics are deterministic (v𝑞(𝑡) = 0)

and z(𝑡) = x(𝑡) + v𝑟(𝑡), the control system will not have direct access to x(𝑡) and

the only source of feedback is a noisy measurement z(𝑡). This reliance upon z(𝑡)

introduces randomness into the closed-loop system and the end result is the same as

with process noise: no two trajectories will be the same.

Although the examples in this thesis only consider process and measurement noise

that enter the open-loop dynamics as additive zero-mean Gaussian distributions, non-

linearities in the closed-loop dynamics will complicate analysis. As a result, even those

simple noise terms may appear nonlinearly in the closed-loop dynamics. The noise

term w(𝑡) merely captures the effect of any randomness in the closed-loop dynamics,

regardless of its source. Ultimately, stochasticity breaks the underlying argument

from the previous two chapters. The closed-loop trajectory Φ(x(𝑡)|x0,𝜃) is no longer

purely a deterministic function of known initial state x0 and parameters 𝜃, but now

includes a random element in its time evolution. The effect of stochasticity in the tra-

jectories is demonstrated in Figure 5-1. Four trajectories all start from the same initial

conditions, but quickly diverge from one another even though they share the same

controller. As will be discussed in the next paragraphs, this randomness will have an

effect upon the satisfaction of performance requirements at a given a x0 and 𝜃. This

can be seen in Trajectory 2 from the figure, where the state 𝑥(𝑡) actually exceeds the

bound stipulated by the performance requirement 𝜙 = �[0,25] (2.1 − 𝑥[𝑡] > 0). Even

though the other three trajectories all satisfy the requirement, they each demonstrate

a varying degree of robustness.

139

Figure 5-1: Illustration of the effects of stochasticity in the closed-loop response of four
trajectories with the same initialization. The red box depicts a performance requirement for
an upper bound on the state 𝑥(𝑡), 𝜙 = �[0,25] (2.1− 𝑥[𝑡] > 0).

5.1.1 Distribution of Trajectory Robustness Measurements

The four example trajectories in Figure 5-1 highlight the biggest challenge with ver-

ification of stochastic systems: the satisfaction of a performance requirement is no

longer deterministic. As in Assumption 4.1, continuous measurements 𝑦(𝜃) ∈ R

indicate the robustness of the system’s trajectory Φ(x(𝑡)|x0,𝜃) to a pre-specified per-

formance requirement.

Assumption 5.1. There exists an expert or oracle which provides a determinis-

tic, scalar output 𝑦(𝜃) ∈ R that measures a trajectory’s minimum robustness to the

specified performance requirement. As before in Assumption 4.1, the sign of 𝑦 indi-

cates satisfaction of the requirement where positive 𝑦 > 0 corresponds to “satisfied”

while 𝑦 ≤ 0 corresponds to “did not satisfy.”

The expert or oracle will return a single robustness measurement for each observed

trajectory to indicate that trajectory’s satisfaction of the requirement.

Remark 5.2. Even though the system is stochastic, these measurements are de-

terministic with respect to the exact trajectory Φ(x(𝑡)|x0,𝜃); the expert/oracle will

always return the same 𝑦(𝜃) given Φ(x(𝑡)|x0,𝜃).

This aspect of Assumption 5.1 prevents any prospective measurement noise from

effecting the evaluation of trajectory performance and does slightly limit the applica-

bility of the approach. However, in many applications, the absence of measurement

140

noise on 𝑦(𝜃) is not a restrictive assumption. In simulation environments, the true

state x(𝑡) may be hidden from the control system to replicate real-world conditions,

but this state and its effects upon performance requirements would be completely ob-

servable to the certification oracle in the simulation model. In real-world laboratory

experiments, external sources of information such as motion-capture systems [135] or

other special testing apparatuses like air-data probes on flight-test aircraft [136, 137]

would typically provide additional state information that may be hidden from the

control system under test. Additionally, the satisfaction of the requirements might

be completely observable even without perfect state information. For instance, fail-

ures to complete certain tasks or collisions with obstacles do not require noiseless

state measurements to observe their fairly obvious effects. In situations where the

measurements 𝑦(𝜃) are not deterministic with respect to Φ(x(𝑡)|x0,𝜃), recent meth-

ods like probabilistic STL [105] can be employed to consider probabilistic predicates

(requirement specifications), but are not discussed further.

Although 𝑦(𝜃) are deterministic with respect to the exact trajectory, these mea-

surements are no longer deterministic with respect to the operating conditions 𝜃,

unlike Chapter 4. This complicates mapping parameters 𝜃 to particular robustness

levels since the same initialization could generate a different 𝑦(𝜃) for each repeated

trajectory. This is seen in Figure 5-1 where all four of the trajectories produced dif-

ferent STL robustness degrees 𝜌𝜙(𝜃). Figure 5-2 displays this same effect on an even

greater number of trajectories. Figure 5-2(a) displays the trajectories for 20 repeti-

tions of the same initial condition, each with their own different robustness degree

measurement for 𝑦(𝜃). As the number of repetitions grows, the set of corresponding

robustness measurements 𝑦(𝜃) empirically constructs a distribution for the likelihood

of 𝑦(𝜃) given that same operating condition. In Figure 5-2(b), the histogram for 500

repetitions of the same system clearly illustrates a distribution over possible values

for 𝑦(𝜃). In particular, the red line shows this set of 500 repetitions resembles a

Gaussian distribution over 𝑦(𝜃).

Just like the histogram in Figure 5-2(b), the approach presented in this chapter

assumes the true distribution of 𝑦(𝜃) at each query location is a Gaussian distribution.

141

(a) 20 trajectories with the same initialization

-0.4 -0.2 0 0.2 0.4 0.6 0.8

y()

0

10

20

30

40

50

60

70

H
is

to
g

ra
m

(b) Histogram of robustness measurements from
a total of 500 trajectories

Figure 5-2: Distribution of robustness measurements for stochastic trajectories with the
same initialization. Note that the performance requirement in (a) is the same bound from
Figure 5-1 and the measurement 𝑦(𝜃) is the corresponding STL robustness degree. The red
line in the right-hand figure displays a Gaussian distribution fit to the data.

Assumption 5.3. The distribution of continuous measurements 𝑦(𝜃) at every

𝜃 ∈ Θ is a Gaussian distribution 𝑦(𝜃) ∼ 𝒩 (𝑦(𝜃), 𝜖2𝑦) with spatially-varying mean

𝑦(𝜃) and constant variance 𝜖2𝑦.

This distribution is also known as a homoscedastic Gaussian distribution [138] as

the variance 𝜖2𝑦 is independent of 𝜃. In short, Assumption 5.3 effectively states any

trajectory performed at arbitrary condition 𝜃 will possess a corresponding robustness

measurement 𝑦(𝜃) generated according to distribution 𝒩 (𝑦(𝜃), 𝜖2𝑦). Note that this

distribution 𝑦(𝜃) ∼ 𝒩 (𝑦(𝜃), 𝜖2𝑦) does not have to reflect the same level of noise w(𝑡)

in (5.1). Even if w(𝑡) is a Gaussian distribution with w(𝑡) ∼ 𝒩 (w̄, 𝜖2𝑤), nonlinearities

in the closed-loop dynamics could lead to a completely different distribution for 𝑦(𝜃).

Frequently, the variance levels may be different (𝜖𝑤 ̸= 𝜖𝑦) due to control saturation

or output feedback controllers.

It is important to highlight that Assumption 5.3 does restrict the set of stochas-

tic systems considered in this chapter. Not only is the distribution assumed to be

Gaussian, but the variance 𝜖2𝑦 must also remain constant across all 𝜃 ∈ Θ. Although

this assumption limits the wider applicability of the data-driven verification proce-

142

dures, the Gaussian distribution still captures all the important aspects of stochastic

verification and simplifies the problem for better clarity. Later extensions in Sec-

tion 5.4 will relax this assumption and allow 𝜖2𝑦 to vary across Θ and even consider

non-Gaussian distributions for 𝑦(𝜃), but ultimately build upon this initial work.

5.1.2 Satisfaction Probability Function

The stochasticity in the trajectories also modifies the verification objective since the

disjoint regions of satisfaction and failure in Definitions 4.3 and 4.4 no longer exist.

Given two different trajectories at the same 𝜃 ∈ Θ, one trajectory may satisfy the

performance requirement while the second may not. The likelihood an arbitrary

simulation or experimental test will satisfy the requirement is defined by a Bernoulli

distribution with probability parameter 𝑝𝑠𝑎𝑡. This probability parameter is a function

of 𝜃 and is labeled the satisfaction probability function.

Definition 5.4. The satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1] defines the

likelihood an arbitrary simulation or experimental test initialized at 𝜃 will satisfy the

performance requirement. In this problem with continuous robustness measurements,

P(𝑦(𝜃) > 0) = 𝑝𝑠𝑎𝑡(𝜃).

As indicated in Definition 5.4, the satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) is the

cumulative distribution of the Gaussian probability density function for robustness

measurements 𝑦(𝜃),

𝑝𝑠𝑎𝑡(𝜃) = P(𝑦(𝜃) > 0) =
1

2
+

1

2
erf

(︂
𝑦(𝜃)√︀

2𝜖2𝑦

)︂
. (5.4)

For instance, consider the cumulative distribution pictured in Figure 5-3 taken from

the Gaussian PDF in Figure 5-2(b). As was seen in the trajectory rollouts in Figure 5-

2(a), the likelihood that 𝑦(𝜃) > 0 (and the trajectory satisfies the requirement) is

high according to the PDF. The cumulative probability under this distribution is

then 𝑝𝑠𝑎𝑡(𝜃) = 0.934. For different values of 𝜃, the center of the distribution 𝑦(𝜃) will

change and therefore the cumulative probability for 𝑝𝑠𝑎𝑡(𝜃) will vary accordingly.

143

-0.5 0 0.5 1

y()

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

P
ro

b
ab

ili
ty

PDF of y() values
CDF for y()>0

Figure 5-3: The satisfaction probability function is the cumulative distribution of the Gaus-
sian PDF defining the likelihood of robustness measurements 𝑦(𝜃). This example uses the
same Gaussian PDF 𝒩 (0.212, 0.145) constructed from the histogram in Figure 5-2(b). The
cumulative distribution is 𝑝𝑠𝑎𝑡(𝜃) = 0.934.

Although the cumulative distribution (5.4) resembles the prediction confidence

(4.9) from Section 4.2.2, these two Gaussian CDFs quantify different likelihoods. For

one, the CDF in (4.9) does not measure the true satisfaction probability function, but

rather the predictive uncertainty given the GP predictive mean and covariance. In

the binary verification problem, the true satisfaction probability function is actually

𝑝𝑠𝑎𝑡(𝜃) ∈ {0, 1} since the trajectory will only produce one of two options. With the

stochastic verification problem, even if the system’s performance is perfectly modeled,

the stochastic dynamics will result in a Bernoulli distribution with 𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1].

Therefore, (4.9) and (5.4) both compute P(𝑦(𝜃) > 0), but address completely different

circumstances.

While the satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) defines the true likelihood a

trajectory will satisfy the requirements, this function will generally be unknown in

advance. Without any historical information, it is not clear whether an arbitrary

𝜃 ∈ Θ maps to a region of high probability of satisfaction or not. Therefore, the new

verification goal is to predict 𝑝𝑠𝑎𝑡(𝜃) for all possible conditions in Θ.

Problem 5.1. Given the stochastic closed-loop system (5.1), compute an esti-

mated satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃).

144

Unlike the deterministic verification objective in Problem 3.1, the stochastic verifi-

cation objective in Problem 5.1 cannot be viewed as a binary classification problem.

Later work in Chapter 7 will introduce a secondary stochastic verification problem

that resembles the binary classification problem in Prob. 3.1 in order to separate Θ

into two regions with 𝑝𝑠𝑎𝑡(𝜃) ≥ 𝑝𝑚𝑖𝑛 and 𝑝𝑠𝑎𝑡(𝜃) < 𝑝𝑚𝑖𝑛, where 𝑝𝑚𝑖𝑛 ∈ (0, 1) is some

minimum acceptable probability of success.

5.2 Regression-based Stochastic Verification

Given continuous measurements of trajectory robustness, regression-based approaches

can be used to estimate ̂︀𝑝𝑠𝑎𝑡(𝜃) from a finite collection of trajectories. Various re-

gression techniques such as SVM regression models [81] or relevance vector machines

(RVMs) [110] are possible, but this work uses Gaussian process regression models [85]

for Bayesian estimation. Although most of the structure is the same as for the de-

terministic GPs in Section 4.2, the stochastic GP models include additional terms

to capture the effect of 𝜖𝑦 in the measurements. The change in focus from binary

sets ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 to satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) also requires a differ-

ent approach than Section 4.2.2 to quantify expected prediction accuracy. Section

5.2.2 introduces a new approach to quantify the uncertainty with the variance of the

Gaussian CDF.

5.2.1 Gaussian Process Regression Model

The Gaussian process regression model used to compute ̂︀𝑝𝑠𝑎𝑡(𝜃) follows the same

training procedure discussed earlier in Section 2.2 and closely parallels the pro-

cess from Section 4.2.1. Given a finite collection of observed trajectories, a trained

GP model defines a distribution over possible 𝑦(𝜃) measurements at all 𝜃 ∈ Θ.

This collection of observed trajectories forms a training dataset ℒ consisting of per-

turbation conditions 𝒟 = {𝜃1,𝜃2, . . . ,𝜃𝑁} and corresponding measurements y =

[𝑦(𝜃1), 𝑦(𝜃2), . . . , 𝑦(𝜃𝑁)]𝑇 . Unlike Section 4.2.1, the elements of vector y are noisy

measurements.

145

Instead of learning the distribution directly, the Gaussian process regression model

predicts the latent mean 𝑦(𝜃) and couples it with standard deviation 𝜖𝑦 to define the

distribution over 𝑦(𝜃). The standard deviation 𝜖𝑦 may or may not be known in

advance. In the latter case, the Gaussian process model does not estimate 𝜖𝑦 itself,

but instead relies upon numerical approximation or hyperparameter optimization to

determine 𝜖𝑦. Once this information has been provided, the GP regression model

relies upon Bayesian inference to construct the predictions for 𝑦(𝜃).

The prior probability distribution encapsulates all prior information about the

latent mean. Gaussian process regression models assume this prior distribution is

a joint multivariate Gaussian distribution between all the training points in set ℒ.

This chapter’s work assumes nothing is known about the shape of 𝑦(𝜃) in advance;

therefore, the prior distribution initializes with a zero mean to avoid biases in the

predictions. This prior probability distribution is written as

P(ȳ|𝒟, 𝜓) = 𝒩 (ȳ|0,K), (5.5)

where K is the covariance matrix with K𝑖𝑗 = 𝜅(𝜃𝑖,𝜃𝑗) and ȳ is the 𝑁 × 1 vector for

the values of the latent mean function corresponding to the noisy measurements in

y. This approach also uses the common squared exponential kernel with automatic

relevance determination detailed in (2.14). The hyperparameters for the kernels are

given by 𝜓.

While the Gaussian process models the latent mean 𝑦(𝜃), these values are not

directly available and the GP can only base its predictions upon noisy measurements

y. The GP training process explicitly incorporates the fact that the available mea-

surements are noisy representations of ȳ with a likelihood model P(y|ȳ, 𝜗). This

likelihood model introduces a second set of hyperparameters, set 𝜗, which represents

the standard deviation 𝜖𝑦, i.e. 𝜗 = 𝜖𝑦. Conveniently, the likelihood model can be

factorized amongst the 𝑁 training points with

P(y|ȳ, 𝜗) =
𝑁∏︁
𝑖=1

P(𝑦(𝜃𝑖)|𝑦(𝜃𝑖), 𝜗) = 𝒩 (y|ȳ, 𝜖2𝑦I). (5.6)

146

Previously in Chapter 4, the measurements were noise-free observations. The likeli-

hood model for those noise-free measurements was a Dirac delta distribution, which

can be viewed similar to a Gaussian distribution with variance 0. As the standard

deviation 𝜖𝑦 of the noisy measurements shrinks, the likelihood model (5.6) begins to

more closely approximate the Dirac delta distribution as noisy observations are more

tightly clustered around their latent 𝑦(𝜃) values.

The end result of the training process is a posterior distribution P(ȳ|ℒ, 𝜓, 𝜗) for the

latent mean ȳ corresponding to each of the training measurements. The real power of

the GP regression model is its ability to compute the posterior predictive distribution

for 𝑦(𝜃) at unobserved locations in Θ. This posterior predictive distribution at an

arbitrary location 𝜃* ∈ Θ is a Gaussian distribution

P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) = 𝒩
(︀
𝜇(𝜃*),Σ(𝜃*)

)︀
(5.7)

with posterior predictive mean 𝜇(𝜃*) and covariance Σ(𝜃*). These two terms are

computed by

𝜇(𝜃*) = K𝑇
* (K + 𝜖2𝑦I)

−1y

Σ(𝜃*) = K** −K𝑇
* (K + 𝜖2𝑦I)

−1K*

(5.8)

where scalar K** = 𝜅(𝜃*,𝜃*) and K* is the 𝑁 × 1 vector of kernel function 𝜅(𝜃*,𝜃𝑖)

for 𝑖 = 1, . . . , 𝑁 . Note that (5.8) appears very similar to (4.5) except for the inclusion

of 𝜖2𝑦I from the likelihood model to reflect noisy y.

For stochastic verification, the predictions for 𝑦(𝜃) are really only one step in

the process to estimate the CDF for P(𝑦(𝜃) > 0). Next, the posterior predictive

distribution for arbitrary 𝑦(𝜃*) is obtained by augmenting (5.7) with 𝜖𝑦,

P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) = 𝒩
(︀
𝜇(𝜃*),Σ(𝜃*) + 𝜖2𝑦

)︀
. (5.9)

Just as the PDF of 𝑦(𝜃) defines 𝑝𝑠𝑎𝑡(𝜃), the PDF for 𝑦(𝜃) in (5.9) leads to the following

147

posterior predictive CDF to estimate 𝑝𝑠𝑎𝑡(𝜃*),

̂︀𝑝𝑠𝑎𝑡(𝜃*) = P(𝑦(𝜃*) > 0|ℒ,𝜃*, 𝜓, 𝜗) =
1

2
+

1

2
erf
(︁ 𝜇(𝜃*)√︁

2(Σ(𝜃*) + 𝜖2𝑦)

)︁
. (5.10)

Definition 5.5. The predicted satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1]

predicts the likelihood an arbitrary simulation or experimental test initialized at 𝜃 will

satisfy the performance requirement given the evidence provided by training dataset

ℒ.

Although (5.10) is similar in appearance to (5.4), the CDF also includes Σ(𝜃) due

to the uncertainty over the true value of 𝑦(𝜃). This presents an equivalent, alternative

perspective for the predicted satisfaction probability function in (5.10).

Remark 5.6. The posterior predictive CDF in (5.10) is the expected value of

(5.4) over different possible CDFs given the current observations in ℒ.

This can be seen through the CDF in (5.4) marginalized over different possible values

of 𝑦(𝜃*):

̂︀𝑝𝑠𝑎𝑡(𝜃*) = E𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁
(5.11)

=

∫︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗) P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) 𝑑𝑦(𝜃*) (5.12)

=

∫︁ (︂
1

2
+

1

2
erf
(︁𝑦(𝜃*)√︀

2𝜖2𝑦

)︁)︂
𝒩
(︀
𝑦(𝜃*)|𝜇(𝜃*),Σ(𝜃*)

)︀
𝑑𝑦(𝜃*) (5.13)

=
1

2
+

1

2

∫︁
erf
(︁𝑦(𝜃*)√︀

2𝜖2𝑦

)︁
𝒩
(︀
𝑦(𝜃*)|𝜇(𝜃*),Σ(𝜃*)

)︀
𝑑𝑦(𝜃*). (5.14)

The solution to the final integral in (5.14) has been shown in the table of integrals in

Section 2.5.2 of [139] and ultimately reduces to (5.10).

Selection of Hyperparameters

The choice of kernel hyperparameters 𝜓 still has a substantial effect upon the GP

predictions and the resulting ̂︀𝑝𝑠𝑎𝑡(𝜃). In most applications, the true or “ideal” hyper-

148

paramters that replicate the true shape of 𝑦(𝜃) are unknown and must be estimated

online from training dataset ℒ. Same as before, this work uses maximum likelihood

estimation (Section 2.2.3) for efficient computation of locally-optimum hyperparam-

eters 𝜓*.

While set 𝜓 defines the hyperparameters for the kernel function 𝜅(𝜃𝑖,𝜃𝑗), stochas-

ticity introduces a second set of hyperparameters 𝜗 for the likelihood model in (5.6).

For Gaussian distributions, Assumption 5.3 means the hyperparameters 𝜗 only need

to estimate constant 𝜖𝑦. In the simplest case, this variance is already known and

𝜗 = 𝜖𝑦; however, this will not always be true. When 𝜖𝑦 is unknown, it can be es-

timated through a number of methods. For one, the noise hyperparameter 𝜗 can

be included in the hyperparameter optimization procedure in Section 2.2.3. The re-

sulting locally-optimum 𝜗* then approximates 𝜖𝑦 given the current training data ℒ.

Another straightforward option is to obtain a number of repeated trajectories at the

same 𝜃 and compute the sample variance.

5.2.2 Measuring Prediction Accuracy

While (5.9) computes the expected satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃), there

will likely be some level of prediction error ̃︀𝑝𝑠𝑎𝑡(𝜃) between the predicted ̂︀𝑝𝑠𝑎𝑡(𝜃)

and the true (but unknown) function 𝑝𝑠𝑎𝑡(𝜃), defined as ̃︀𝑝𝑠𝑎𝑡(𝜃) = 𝑝𝑠𝑎𝑡(𝜃) − ̂︀𝑝𝑠𝑎𝑡(𝜃).

Unfortunately, the prediction confidence from (4.9) will no longer measure the pre-

diction error/confidence due to stochastic measurements. The prediction confidence

in (4.9) assumed the true satisfaction probability function had only two options,

𝑝𝑠𝑎𝑡(𝜃) ∈ {0, 1}, and therefore a P(𝑦(𝜃) > 0) ̸= 0 or 1 signified uncertainty in the

predictions. Now, the true 𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1] and the same reasoning will not apply. For

instance, consider the GP prediction output and resulting ̂︀𝑝𝑠𝑎𝑡(𝜃) in Figure 5-4. The

predictions near the training point 𝜃 = 0 compute ̂︀𝑝𝑠𝑎𝑡(𝜃 = 0) = 0.5. According to

the prediction confidence in (4.9), this point would have low confidence in the accu-

racy of the predictions; however, this point is actually the most accurate prediction.

This discrepancy identifies the need for a new metric to quantify prediction accuracy

or at least indicate where prediction errors are likely to occur.

149

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) GP output

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

 y
(

)>
0

Expected Value
True p

sat
()

(b) Predicted P(𝑦(𝜃) > 0)

Figure 5-4: Illustration of prediction error resulting from uncertainties in 𝑦(𝜃). The GP
prediction mean 𝜇(𝜃) and 1𝜎 variance Σ(𝜃) bounds (blue) are shown against the true 𝑦(𝜃)
(black). The corresponding expected value ̂︀𝑝𝑠𝑎𝑡(𝜃) and true 𝑝𝑠𝑎𝑡(𝜃) are shown on the right.
Since the mean is a constant 𝜇(𝜃) = 0, the expected value is also a constant ̂︀𝑝𝑠𝑎𝑡(𝜃) = 0.5.

Probabilistic inequalities provide theoretically-justified methods to bound the pre-

diction error. In particular, Chebyshev’s inequality bounds the probability the pre-

diction error ̃︀𝑝𝑠𝑎𝑡(𝜃) will be greater than some value when the stochastic verifica-

tion problem is viewed from a Bayesian perspective [140]. In this Bayesian per-

spective, Chebyshev’s inequality states the probability the absolute error between

𝑝𝑠𝑎𝑡(𝜃*) and the expected value of the distribution, E𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁
, is

greater than a constant 𝑎 > 0 will be bounded by the variance of the distribution,

V𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁
, and the constant 𝑎 [140],

P
(︁⃒⃒
𝑝𝑠𝑎𝑡(𝜃*)− E𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁⃒⃒
≥ 𝑎
)︁
≤

V𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁
𝑎2

.

(5.15)

Note that the predicted probability of satisfaction ̂︀𝑝𝑠𝑎𝑡(𝜃*) was already shown to be

the expected value E𝑦(𝜃*)

[︁
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︁
in (5.14). In other words, Cheby-

shev’s inequality produces a prediction interval for the difference between true 𝑝𝑠𝑎𝑡(𝜃*)

and estimate ̂︀𝑝𝑠𝑎𝑡(𝜃*). Lower variance will translate to a lower probability the error̃︀𝑝𝑠𝑎𝑡(𝜃*) will be large and means a higher confidence in the accuracy of ̂︀𝑝𝑠𝑎𝑡(𝜃*). The

key assumption with this probability bound is that the variance is explicitly known.

150

The main issue with the Chebyshev inequality (5.15) and its application to the

stochastic verification problem is the lack of a closed-form solution for the variance of a

Gaussian CDF. Therefore, the true CDF variance is not explicitly known. Instead, the

variance can be approximated using a 1st or 2nd order Taylor series expansion [141]

centered around the expected value for P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗), estimate ̂︀𝑝𝑠𝑎𝑡(𝜃*). For

an arbitrary nonlinear random function 𝑌 = 𝑔(𝑋), the 1st order Taylor approximation

is

V[𝑌] ≈ V[𝑋]
(︀ 𝜕𝑔
𝜕𝑋

)︀2
, (5.16)

while the 2nd order expansion is

V[𝑌] ≈V[𝑋]
(︀ 𝜕𝑔
𝜕𝑋

)︀2 − 1

4

[︁
V[𝑋]

]︁2(︀ 𝜕2𝑔
𝜕𝑋2

)︀2
+ E

[︁(︀
𝑋 − E[𝑋]

)︀3]︁ 𝜕𝑔
𝜕𝑋

𝜕2𝑔

𝜕𝑋2

+
1

4
E
[︁(︀
𝑋 − E[𝑋]

)︀4]︁(︀ 𝜕2𝑔
𝜕𝑋2

)︀2
.

(5.17)

Conveniently, E
[︀(︀
𝑋 − E[𝑋]

)︀3]︀
= 0 and E

[︀(︀
𝑋 − E[𝑋]

)︀4]︀
= 0 when 𝑋 is a Gaussian

random variable so the last two terms in (5.17) drop out. The 1st and 2nd order

approximations for the variance V𝑦(𝜃*)

[︀
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︀
are then written as

V𝑦(𝜃*)

[︀
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︀
≈ 1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*), (5.18)

and

V𝑦(𝜃*)

[︀
P(𝑦(𝜃*) > 0|𝑦(𝜃*), 𝜗)

]︀
≈ 1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*)−

1

2𝜋𝜖6𝑦
𝜇(𝜃*)

2𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*)
2.

(5.19)

For simplicity and ease of writing, (5.18) will be used in place of (5.19) for the

remainder of this chapter.

Although (5.18) approximates the true CDF variance, the accuracy of a Taylor

series approximation of a nonlinear function is limited. More importantly, the lack of

the exact value for the CDF variance violates the key assumption of the Chebyshev

inequality. Therefore, the use of (5.18) for the probabilistic bounds in (5.15) is not

advisable and it is not possible to quantify the prediction accuracy in the same manner

151

-1 -0.5 0 0.5 1
0

5

10

15

20

V
ar

ia
n

ce

Figure 5-5: 1st order approximation of the CDF variance in the example from Figure 5-4.
Note that regions of high variance around 𝜃 = ±1 correspond to the areas of high prediction
error in Figure 5-4(b).

as (4.9). While it’s not accurate enough for use in (5.15) to explicitly quantify the

prediction accuracy, approximate CDF variance (5.18) is still a perfect metric for

qualifying the prediction accuracy and identifying regions of Θ where the accuracy

of ̂︀𝑝𝑠𝑎𝑡(𝜃) is likely to suffer. Figure 5-5 displays the 1st order approximation of CDF

variance for the previous example in Figure 5-4. The magnitude of the approximate

CDF variance is unrealistically high, but it does correctly identify the regions in Θ

where the prediction error is high. For instance, the prediction error ̃︀𝑝𝑠𝑎𝑡(𝜃) was

highest near points 𝜃 = ±1 and lowest around 𝜃 = 0. Figure 5-5 displays the exact

same behavior, demonstrating that the approximate CDF variance is a useful metric

for at least identifying likely areas of prediction error, if not actually bounding the

error itself. The approximate variance will be used extensively in the next section to

rederive a closed-loop verification framework for stochastic systems.

5.3 Closed-Loop Statistical Verification

The changes to the Gaussian process regression model and the quantification of pre-

diction confidence also motivate new changes to the closed-loop verification framework

to adapt it to stochastic systems. The base of the framework remains almost entirely

152

unchanged. Although the predictions have shifted from ̂︀Θ𝑠𝑎𝑡 and ̂︀Θ𝑓𝑎𝑖𝑙 to ̂︀𝑝𝑠𝑎𝑡(𝜃), the

high level goal is still to provide the most accurate predictions given a finite sampling

budget of 𝑁𝑙𝑖𝑚 trajectories. The main change is a set of new sample selection metrics

specifically tailored to the stochastic verification problem. Section 5.2.2 already pre-

viewed the limitations of the previous metrics from Section 4.3 in the discussion of

the unsuitability of (4.9) to quantify prediction confidence in stochastic systems. The

new metrics will redevelop their deterministic equivalents from Section 4.3 in order

to replicate their advantages and improvements in prediction accuracy.

5.3.1 Sample-Selection Criteria

As before, active learning [117] forms the basis of closed-loop, stochastic verification

procedures. The center of all active learning procedures is the sample selection criteria

used to define the “best” future sample location for the improvement of the predic-

tions. Not surprisingly, there exists a number of different possible selection criteria

to guide the choice of sample locations and the evolution of the GP-based prediction

model. Section 4.3 already described many of these possible selection metrics, but

the following paragraphs will briefly repeat the most relevant techniques for the sake

of clarity and to highlight their strengths and limitations.

Existing Approaches

Existing selection criteria decomposes into two general groups either focused on the

PDF’s predictive mean 𝜇(𝜃) or covariance Σ(𝜃). The former is an extension of the

earlier SVM-based procedures in Chapter 3. The objective is to rank points according

to their proximity to 𝜇(𝜃) = 0,

𝜃 = argmin |𝜇(𝜃)|. (5.20)

Although the original motivation for these approaches in Section 3.4 no longer applies,

discussions later in this chapter will highlight how this metric inadvertently captures

one of the two major influences upon prediction accuracy in stochastic verification.

153

The latter group focused on PDF variance Σ(𝜃) captures the second of the two major

influences. These PDF variance-based approaches [92,94,117,125] are by far the most

common technique and have been shown to work for stochastic systems [92, 94, 125].

Their goal is to select the sample location with the highest variance (or some subset

of) to most improve the mutual information of the training set,

𝜃 = argmax Σ(𝜃). (5.21)

Various extensions of these two general groupings exist [93, 117], but none of them

explicitly address the stochastic verification problem.

Limitation of Binary Classification Entropy

Not surprisingly, a third set of sample selection criteria to discuss are the binary

classification entropy approaches from Chapter 4. The results in Section 4.4 clearly

demonstrated the value of binary classification entropy-based selection criteria in

deterministic verification; however, this does not necessarily translate to stochastic

systems. The binary classification entropy criterion in (4.12) is a nonlinear function

that emphasizes locations with P(𝑦(𝜃) > 0|ℒ, 𝜓, 𝜗) ≈ 0.5 and deemphasizes those with

P(𝑦(𝜃) > 0|ℒ, 𝜓, 𝜗) ≈ 0 or 1. This criterion worked well for deterministic systems

since the true P(𝑦(𝜃) > 0) was either 0 or 1 and thus P(𝑦(𝜃) > 0|ℒ, 𝜓, 𝜗) = 0.5

indicated high uncertainty. Now with true 𝑝𝑠𝑎𝑡(𝜃) falling anywhere between 0 and 1,

including 𝑝𝑠𝑎𝑡(𝜃) = 0.5, binary classification entropy no longer necessarily indicates

uncertainty in the predictions.

The change in suitability of 𝐸(𝜃|ℒ, 𝜓, 𝜗) is visible in the example from Figure 5-

4. All the 𝜃 points in the figure have an expected P(𝑦(𝜃) > 0ℒ, 𝜓, 𝜗) = 0.5 and

will therefore have the same binary classification entropy, but future training samples

at all these points would not have an equal effect upon posterior predictions. If an

additional simulation is performed at 𝜃 = 0, the resulting posterior GP model would

have zero change in the predictions and prediction error, as seen in Figures 5-6(a)

and (b). The lack of change is not surprising as there was already a sample at 𝜃 = 0,

154

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) GP output after a simulation test at 𝜃 = 0

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

 y
(

)>
0

Expected Value
True p

sat
()

Selected pt

(b) Predicted P(𝑦(𝜃) > 0) after a simulation test
at 𝜃 = 0

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c) GP output after a simulation test at 𝜃 = −1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

 y
(

)>
0

Expected Value
True p

sat
()

Selected pt

(d) Predicted P(𝑦(𝜃) > 0) after a simulation test
at 𝜃 = −1

Figure 5-6: Binary classification entropy fails to quantify prediction uncertainty in stochastic
systems. All the points along 𝜃 : [−1, 1] possess the same ̂︀𝑝𝑠𝑎𝑡(𝜃) = 0.5 and therefore would
have the same binary classification entropy. According to the algorithms from Chapter 4, all
these points would have the same ranking. However, a sample at 𝜃 = −1 (and also 𝜃 = +1)
would produce a drastically different effect upon ̂︀𝑝𝑠𝑎𝑡(𝜃) than a test at 𝜃 = 0, suggesting the
binary entropy-based approaches from Chapter 4 are not perfectly suited to the stochastic
verification problem.

but this fact is not reflected in the entropy. Instead, if a simulation is performed at

𝜃 = −1, which has the same entropy as 𝜃 = 0, the change in the posterior model

in Figures 5-6(c) and (d) is much more apparent. The fact that two points with

the same value of binary classification entropy produce very different results points

to the limitation of binary classification entropy for selection criteria in stochastic

closed-loop verification.

155

Reduction in Cumulative Distribution Function Variance

In place of binary classification entropy, this section presents new selection criteria

based upon the variance of the cumulative distribution function.For ease of viewing,

the CDF variance V𝑦(𝜃)

[︀
P(𝑦(𝜃) > 0|𝑦(𝜃), 𝜗)

]︀
will be written as 𝑉 (𝜃|ℒ, 𝜓, 𝜗). Al-

though CDF variance replaces binary entropy 𝐸(𝜃|ℒ, 𝜓, 𝜗) in the selection criteria

of interest, it borrows many of the same concepts and motivations from Section 4.3.

Additionally, the examination of the new selection criteria will also highlight that

although binary classification entropy will sometimes fail to correctly delineate be-

tween certain sample locations as in Figure 5-6, it will inadvertently agree with the

new CDF variance-based criteria in many instances. Since the GP prediction model is

dependent upon the hyperparameters 𝜓 and 𝜗, the CDF variance will also vary with

the hyperparameters. The true CDF variance is determined by marginalizing over

the distribution of possible hyperparameters, but this is computationally intractable.

Instead, the CDF variance uses the MLE hyperparameters 𝜓* and 𝜗*.

According to (5.15), the likelihood of high prediction error is coupled to the CDF

variance. Therefore, the overall goal of closed-loop verification is to minimize variance

𝑉 (𝜃|ℒ, 𝜓, 𝜗) in order to reduce the probabilistic bounds on prediction error. In an

ideal scenario, the best sample 𝜃 would either minimize the cumulative posterior CDF

variance

𝜃 = argmin
𝜃*

𝑉 (Θ𝑑|ℒ+, 𝜓, 𝜗), (5.22)

or minimize the maximum level of posterior CDF variance

𝜃 = argmin
𝜃*

(︁
max

𝜃
𝑉 (𝜃|ℒ+, 𝜓, 𝜗)

)︁
, (5.23)

where ℒ+ is the posterior training set ℒ+ = ℒ ∪ {𝜃*, 𝑦(𝜃*)} after a simulation or

experiment at 𝜃* has been performed and measurement 𝑦(𝜃*) obtained. Just as

before, a large, finite sampling set Θ𝑑 approximates the uncountable set Θ with a fine

discretization. All the calculations are performed on this set as a replica of Θ and

samples are chosen from the remaining available locations 𝒰 = Θ𝑑 ∖ 𝒟.

156

Unfortunately, the posterior CDF variance 𝑉 (𝜃|ℒ+, 𝜓, 𝜗) is unavailable since ℒ+

requires measurements 𝑦(𝜃*) to be known before a trajectory has been performed

at that parameter setting. Instead, the infeasible posterior variance 𝑉 (𝜃|ℒ+, 𝜓, 𝜗)

in (5.22) and (5.23) can be replaced with the expected posterior CDF variance,̂︀𝑉 (𝜃| ̂︀ℒ+, 𝜓, 𝜗), computed with the estimated posterior training dataset ̂︀ℒ+ = ℒ ∪

{𝜃*, 𝜇(𝜃*)} since E[𝑦(𝜃*)] = 𝜇(𝜃*).

Even though the approximate forms of (5.22) and (5.23) are feasible since they

replace ℒ+ with ̂︀ℒ+, these selection metrics are computationally intractable for most

verification problems with large Θ𝑑. The expected posterior CDF variance requires

the GP regression model to be retrained for every prospective sample location in Θ𝑑 in

order to correctly compute the expected change in 𝜇(𝜃) and Σ(𝜃). As the inversion

of the resulting (𝑁 + 1) × (𝑁 + 1) kernel matrix K is a 𝒪((𝑁 + 1)3) operation,

𝒪((𝑁 + 1)2) at best, it is very computationally demanding to re-invert the matrix for

every prospective 𝜃 ∈ Θ𝑑.

A more computationally tractable approach is to maximize the local improvement

in CDF variance,

𝜃 = argmax
𝜃*

̃︀𝑉 (𝜃*|ℒ, 𝜓, 𝜗), (5.24)

where ̃︀𝑉 (𝜃*|ℒ, 𝜓, 𝜗) = 𝑉 (𝜃*|ℒ, 𝜓, 𝜗)− ̂︀𝑉 (𝜃*| ̂︀ℒ+, 𝜓, 𝜗). (5.25)

In general, measurements at arbitrary location 𝜃* will drastically decrease the result-

ing posterior variance, but (5.24) ensures samples with large prior variance 𝑉 (𝜃*|ℒ, 𝜓, 𝜗)

are ranked higher since they will see the larger amount of variance reduction. Ad-

ditionally, the local decrease in CDF variance can be efficiently computed without

actually having to recompute ̂︀𝑉 (𝜃*| ̂︀ℒ+, 𝜓, 𝜗) at each prospective sample location.

Assume the posterior GP predictive distribution at 𝜃* after a measurement there is

given by

P(𝑦(𝜃*)|ℒ+, 𝜓, 𝜗) = 𝒩 (𝜇(𝜃*)
+,Σ(𝜃*)

+ + 𝜖2𝑦). (5.26)

Using the same nomenclature from (5.8), the posterior predictive mean and covariance

157

after the measurement are

𝜇(𝜃*)
+ =

[︁
K𝑇

* K**

]︁⎡⎣K + 𝜖2𝑦I K*

K𝑇
* K** + 𝜖2𝑦

⎤⎦−1 ⎡⎣ y

𝑦(𝜃*)

⎤⎦ (5.27)

Σ(𝜃*)
+ = K** −

[︁
K𝑇

* K**

]︁⎡⎣K + 𝜖2𝑦I K*

K𝑇
* K** + 𝜖2𝑦

⎤⎦−1 ⎡⎣K*

K**

⎤⎦ (5.28)

While (5.27) and (5.28) appear unwieldy, the Woodbury matrix inversion identity

[126] reduces (5.27) to

𝜇(𝜃*)
+ = K𝑇

* (K + 𝜖2𝑦I)
−1y +

[︁
K𝑇

* (K + 𝜖2𝑦I)
−1K* −K**

]︁
[︁
K** + 𝜖2𝑦 −K𝑇

* (K + 𝜖2𝑦I)
−1K*

]︁−1 (︁
K𝑇

* (K + 𝜖2𝑦I)
−1y − 𝑦(𝜃*)

)︁
.

(5.29)

This further simplifies to a function of the current posterior predictive distribution,

𝜇(𝜃*)
+ = 𝜇(𝜃*)− Σ(𝜃*)

(︁
Σ(𝜃*) + 𝜖2𝑦

)︁−1(︀
𝜇(𝜃*)− 𝑦(𝜃*)

)︀
. (5.30)

Meanwhile, the the same matrix inversion steps that produced (5.30) reduce covari-

ance Σ(𝜃*)
+ to

Σ(𝜃*)
+ = Σ(𝜃*)− Σ(𝜃*)

(︁
Σ(𝜃*) + 𝜖2𝑦

)︁−1

Σ(𝜃*) (5.31)

= Σ(𝜃*)
(︁

1− Σ(𝜃*)

Σ(𝜃*) + 𝜖2𝑦

)︁
. (5.32)

The end result is the posterior CDF variance can be approximated by

𝑉 (𝜃*|ℒ+, 𝜓, 𝜗) =
1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)+

2
/𝜖2𝑦 Σ(𝜃*)

+, (5.33)

and the expected posterior CDF variance is simply

̂︀𝑉 (𝜃*| ̂︀ℒ+, 𝜓, 𝜗) = E𝑦(𝜃*)

[︁
𝑉 (𝜃*|ℒ+, 𝜓, 𝜗)

]︁
(5.34)

=
1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*)

(︁
1− Σ(𝜃*)

Σ(𝜃*) + 𝜖2𝑦

)︁
(5.35)

158

since E[𝑦(𝜃*)] = 𝜇(𝜃*). Ultimately, the local change in posterior CDF variance (5.24)

can be written purely in terms of current CDF variance and GP output as

̃︀𝑉 (𝜃*|ℒ, 𝜓, 𝜗) =
1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*)

(︂
Σ(𝜃*)

Σ(𝜃*) + 𝜖2𝑦

)︂
, (5.36)

meaning (5.24) can be written as

𝜃 = argmax
𝜃*

(︁ 1

2𝜋𝜖2𝑦
𝑒−𝜇(𝜃*)2/𝜖2𝑦 Σ(𝜃*)

(︂
Σ(𝜃*)

Σ(𝜃*) + 𝜖2𝑦

)︂)︁
. (5.37)

An examination of the new, theoretically-motivated selection metric (5.37) high-

lights the sensitivity of the selection criterion to the predictive mean and covariance

and also provides insights into the suitability of the other existing selection met-

rics. From the approximation in (5.37), the selection criterion ranks points with both

|𝜇(𝜃)| ≈ 0 and Σ(𝜃) ≫ 0 as the ones with the highest uncertainty. Locations with

|𝜇(𝜃)| ≈ 0 ensures the term 𝑒−𝜇(𝜃)
2/𝜖2𝑦 is maximized while Σ(𝜃) multiplies with this

term. Large variances Σ(𝜃)≫ 0 will have the dual effect of multiplying 𝑒−𝜇(𝜃)
2/𝜖2𝑦 by

a larger number as well as maximizing Σ(𝜃*)
Σ(𝜃*)+𝜖2𝑦

→ 1, assuming Σ(𝜃)≫ 𝜖2𝑦.

The selection criteria in (5.37) also explains the limitations of the existing active

sampling approaches when applied to the stochastic verification problem. The selec-

tion metric in (5.20) derived from the earlier expected model change (EMC) metric

in Chapters 3 and 4 focuses on minimizing the mean of the PDF, 𝜇(𝜃). This selec-

tion metric emphasizes points with |𝜇(𝜃)| ≈ 0, which is one of the two trends that

maximizes the local reduction in CDF variance. Therefore, even though the theoret-

ical motivation for the PDF mean-focused metric in (5.20) from Chapter 3 no longer

applies, it inadvertently captures one of the two main sources of CDF variance re-

duction. Likewise, the PDF variance-focused metric in (5.21) captures the second of

the two trends, Σ(𝜃)≫ 0. While they each independently emphasize one of the two

trends that lead to large reductions in CDF variance, they will also accidentally select

uninformative samples due to incomplete information. For instance, the PDF mean-

focused metric in (5.20) will rank points with low Σ(𝜃) as “informative” as long as

159

their 𝜇(𝜃) ≈ 0. Similarly, PDF variance from (5.21) will also incorrectly label points

with |𝜇(𝜃)| ≫ 0 as “informative” as long as the corresponding covariance Σ(𝜃) ≫ 0.

Both of these metrics lack the full picture and may fall into avoidable traps, but

can still produce favorable results since they do emphasize one of the two important

trends.

Lastly, the binary classification entropy metric from (4.12) combines aspects from

both the PDF mean- and variance-based selection metrics in (5.20) and (5.21). As

such, binary classification entropy does heavily weight points with 𝜇(𝜃) ≈ 0, but also

incorrectly emphasizes points further away from 𝜇(𝜃) ≈ 0 if they have large Σ(𝜃).

The example in Figure 5-6 has already highlighted the limitations and pitfalls of

binary classification entropy for selection criteria in stochastic verification problems.

5.3.2 Sampling Algorithms

The new CDF variance reduction metric in (5.37) forms the basis of new closed-

loop sampling algorithms. All versions of the closed-loop framework first require an

initial training dataset ℒ of passively-selected 𝜃 locations and measurements from the

resulting trajectories. Various open-loop, passive procedures like design of experiment

techniques [73,74] will generally produce a training dataset of adequate diversity and

informativeness. This initial training dataset of size |ℒ| = 𝑁0 will then produce an

initial GP regression model to enable the start of active sampling. The active sampling

procedures will operate until the limit on the number of simulation or experimental

tests, 𝑁𝑙𝑖𝑚, has been reached.

Sequential Sampling

The simplest closed-loop verification framework is the sequential procedure in Al-

gorithm 7 which selects one sample at a time between GP retraining steps. Aside

from the new selection criterion, the overall process remains almost unchanged from

Algorithm 3. Given the initial GP regression model and required inputs (Steps 1

and 2), the procedure choses a sample location 𝜃 from the set of available locations

160

𝒰 = Θ𝑑 ∖ 𝒟 according to the selection metric (5.37) (Step 4). Once the algorithm

performs a simulation or experiment at this location (Step 5), the procedure adds

the noisy measurement 𝑦(𝜃) to the training dataset, removes 𝜃 from 𝒰 (Step 6), and

updates the GP regression model (Step 7). The process repeats until the number of

trajectories reaches the cap of 𝑇 = 𝑁𝑙𝑖𝑚 − 𝑁0 additional trajectories. Once it has

reached this budget, the procedure terminates and returns the expected satisfaction

probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and variance 𝑉 (𝜃|ℒ, 𝜓, 𝜗) for all 𝜃 ∈ Θ𝑑 (Step 9). In

the competing PDF mean- and variance-based approaches, Step 4 is replaced by the

respective sample selection metric of choice, but the rest of the algorithm remains

the same. The total computational complexity is the same as for the deterministic

framework in Algorithm 3.

Algorithm 7 Sequential closed-loop stochastic verification framework using GP re-
gression models

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , max # of
additional samples 𝑇

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Select 𝜃 = argmax
𝜃∈𝒰

̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗)

5: Perform test at 𝜃, obtain measurement 𝑦(𝜃)
6: Add {𝜃, 𝑦(𝜃)} to training set ℒ, remove 𝜃 from 𝒰
7: Retrain model with updated ℒ
8: end for

9: Return: expected value of the satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and cor-
responding variance 𝑉

(︀
𝜃|ℒ, 𝜓, 𝜗

)︀

Batch Sampling

In many verification problems, it is advantageous to select batches of samples between

retraining steps. Batch sampling lowers the computational cost by reducing the num-

ber of retraining steps (for the same 𝑁𝑙𝑖𝑚) and is also better suited to applications

with the ability to perform multiple trajectories in parallel. Again, the main challenge

associated with batch sampling strategies is to encourage adequate diversity amongst

the points in each batch in order to avoid redundancy.

161

Section 4.3.3 introduced importance-weighted probability distributions and deter-

minantal point processes (DPPs) [130, 131] as practical methods for batch sampling

with low computational overhead. In particular, the latter approach combines ef-

ficient importance sampling Monte Carlo methods [59, 127, 128] with a correlation

matrix to discourage similarities among the points selected for each batch. In com-

parison to baseline importance-weighted random sampling, sampling with k-DPPs

still steers the selection of points towards regions of high probability/informativeness,

but also avoids clustering the points of the batch in close proximity to one another.

As a result, the strategy more evenly distributes training points across regions of high

informativeness, as was seen in Figure 4-5. This same approach is easily adopted for

the stochastic verification problem as well.

One of the main aspects of the k-DPP approach is the probability distribution used

to weight the informativeness of points. This work uses the CDF variance reduction

selection criteria from (5.24) to form a probability distribution

P𝑉 (𝜃) =
1

𝑍𝑉
̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗), (5.38)

where 𝑍𝑉 =
∑︀|Θ𝑑|

𝑖=1
̃︀𝑉 (𝜃𝑖|ℒ, 𝜓, 𝜗). Parameter settings with a large reduction ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗)

will have a higher likelihood than those with low ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗). The k-DPP utilizes

this probability distribution to construct a correlation matrix to encourage spatial

dispersion in the 𝑀 points selected for the batch set 𝒮.

Algorithm 8 details the new batch sampling algorithm for stochastic closed-loop

verification. Note that this algorithm closely resembles the DPP-based procedure for

deterministic systems shown earlier in Algorithm 6. Once the initial GP regression

model has been obtained in Step 2, the batch selection process (Steps 3-11) actively

choses the remaining 𝑁𝑙𝑖𝑚−𝑁0 trajectories. Step 5 transforms the variance reduction

into the modified probability distribution P𝑉 (𝜃) needed to construct the k-DPP in

Step 6. The resulting k-DPP will produce a set 𝒮 of 𝑀 points for the next batch

of tests (Step 7). Once these simulations or experiments have completed (Step 8),

the algorithm incorporates their robustness measurements into the training dataset

162

Algorithm 8 Batch closed-loop stochastic verification framework using determinan-
tal point processes

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀

2: Initialize: train GP regression model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: Transform ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗) into probability distribution 𝑃𝑉 (𝜃)
6: Generate 𝑀𝑇 random samples from 𝑃𝑉 (𝜃), construct k-DPP
7: Generate 𝑀 random samples from k-DPP, add to 𝒮
8: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
9: Add {𝒮,y𝒮} to training set ℒ
10: Retrain model with updated ℒ
11: end for

12: Return: expected value of the satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and cor-
responding variance 𝑉

(︀
𝜃|ℒ, 𝜓, 𝜗

)︀
ℒ (Step 9), retrains the GP model (Step 10), and repeats the iterative process. At

the conclusion of 𝑇 iterations, the new procedure returns the predicted satisfaction

probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) (Step 12). It also provides the CDF variance 𝑉 (𝜃|ℒ, 𝜓, 𝜗)

to indicate regions where the accuracy of these predictions is likely to suffer. The total

computational complexity is the same as Algorithm 6.

5.4 Extension: Heteroscedastic Gaussian Distribu-

tions

The earlier sections in this chapter addressed Gaussian distributions of 𝑦(𝜃) and

introduced the data-driven stochastic verification framework as it applied to these

problems. In practice, Assumption 5.3 will not hold for all systems, which restricts

the applicability of the techniques in Sections 5.2 and 5.3. The following section

will extend the stochastic verification framework and slightly modify the approach to

include a wider class of systems with spatially-varying Gaussian noise. Later work in

Section 5.5 will propose further modifications to the framework in order to address

non-Gaussian distributions.

163

The major change in this extension is the relaxation of Assumption 5.3 to in-

clude heteroscedastic Gaussian distributions. In this new version of the stochastic

verification problem, the true distribution of continuous measurements 𝑦(𝜃) is still a

Gaussian distribution, but the width of the distribution is allowed to vary with the

parameters 𝜃. This is formally defined in the following assumption which replaces

Assumption 5.3.

Assumption 5.7. The distribution of continuous measurements 𝑦(𝜃) at every 𝜃

is a Gaussian distribution 𝑦(𝜃) ∼ 𝒩 (𝑦(𝜃), 𝜖2𝑦(𝜃)) with spatially-dependent mean 𝑦(𝜃)

and spatially-dependent variance 𝜖2𝑦(𝜃).

Assumption 5.3 restricted the distribution of 𝑦(𝜃) to homoscedastic Gaussian dis-

tributions, where 𝜖𝑦 was independent of 𝜃. Now, Assumption 5.7 expands the set

of allowable distributions to include heteroscedastic Gaussians [138], where 𝜖𝑦(𝜃) is

an explicit function of parameters 𝜃. Such distributions are possible in many non-

linear systems. For instance, stochastic wind turbulence models like the common

Dryden wind field model [15] are highly nonlinear functions of multiple parameters

like altitude and wind-shear intensity and the resulting effect of the stochastic wind

disturbance will vary with those parameters. An initial exploration of a stochastic ver-

sion of the previous lateral-directional autopilot example combined with the Dryden

wind field model has empirically observed the resulting performance measurements

𝑦(𝜃) are distributed as heteroscedastic Gaussians. This example demonstrates that

spatially-varying Gaussian distributions are present in complex nonlinear systems and

are a relevant extension to consider.

A comparison of homoscedastic and heteroscedastic Gaussian distributions is shown

in Figure 5-7. The left-hand plot pictures two Gaussian distributions centered at

𝑦(𝜃1) = −2 and 𝑦(𝜃2) = 2 with variances 𝜖2𝑦(𝜃1) = 0.5 and 𝜖2𝑦(𝜃2) = 1.5. From the

figure, it is clear the second distribution 𝒩 (𝑦(𝜃2), 𝜖
2
𝑦(𝜃2)) has a much larger width

and the first distribution 𝒩 (𝑦(𝜃1), 𝜖
2
𝑦(𝜃1)) has virtually no probability of satisfactory

performance, i.e. P(𝑦(𝜃2) > 0) ≈ 0. However, when both of these distributions are

approximated with homoscedastic distributions in Figure 5-7(b), the approximate dis-

164

-5 0 5

y()

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

ro
b

ab
ili

ty
Distribution at

1

Distribution at
2

(a) Heteroscedastic Gaussian distributions

-5 0 5

y()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

Distribution at
1

Distribution at
2

(b) Approximation as homoscedastic Gaussians

Figure 5-7: Comparison of heteroscedastic Gaussian distributions against approximations
using homoscedastic Gaussians. In the right-hand plot, both approximations overestimate
the probability of 𝑦(𝜃) > 0, which is dangerous in verification applications.

tributions clearly fail to replicate the true distributions. Here, the homoscedastic vari-

ance is the average between the two heteroscedastic variances, 𝜖2𝑦(𝜃1) = 𝜖2𝑦(𝜃2) = 1.

More importantly, the homoscedastic approximations in Figure 5-7(b) misrep-

resent the true satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃). When the variance is an

explicit function of 𝜃, the satisfaction probability function from (5.4) requires a slight

modification,

𝑝𝑠𝑎𝑡(𝜃) = P(𝑦(𝜃) > 0) =
1

2
+

1

2
erf

(︂
𝑦(𝜃)√︁
2𝜖2𝑦(𝜃)

)︂
. (5.39)

If the true heteroscedastic distributions are approximated with homoscedastic Gaus-

sians, this will have a corresponding effect upon 𝑝𝑠𝑎𝑡(𝜃). As mentioned earlier, the true

distribution for 𝑦(𝜃1) has virtually no likelihood of satisfactory performance. This no

longer holds for the homoscedastic approximation in the right-hand plot and it pre-

dicts a nonzero likelihood of success. The same overapproximation of P(𝑦(𝜃2) > 0)

occurs for the second distribution. From a verification prospective, these overap-

proximations are unsafe since they predict a higher likelihood of success than reality,

and could have easily been avoided by modeling the distributions as heteroscedastic

Gaussians.

165

5.4.1 Heteroscedastic Gaussian Process Regression Model

When the variance 𝜖2𝑦(𝜃) varies wildly across Θ, not only will the approximations

of P(𝑦(𝜃)) and 𝑝𝑠𝑎𝑡(𝜃) suffer, but the underlying non-homoscedastic Gaussian dis-

tribution behind noisy measurements 𝑦(𝜃) will also corrupt a standard GP regres-

sion model from (5.7) trained on this data. Luckily, heteroscedastic Gaussian pro-

cesses (HGPs) [138, 142–144] were specifically developed to avoid these problems

and model Gaussian distributions with spatially-dependent variance. The overall

structure of these HGPs is almost entirely the same as before. For simplicity, say

the spatially-dependent variance is a nonlinear function 𝜖2𝑦(𝜃) = 𝑟(𝜃). Given the

function for 𝑟(𝜃), the posterior predictive distribution for 𝑦(𝜃*) at arbitrary 𝜃* is

P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) = 𝒩 (𝜇(𝜃*),Σ(𝜃*) + 𝑟(𝜃*)), where

𝜇(𝜃*) = K𝑇
* (K + R)−1y

Σ(𝜃*) = K** −K𝑇
* (K + R)−1K*

(5.40)

and R is a diagonal matrix of 𝑟(𝜃) values at each of the training points. The problem

is that 𝑟(𝜃) is typically not known in advance and thus it will be impossible to

actually compute P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) according to (5.40). Even if the matrix R were

available by repeating simulations or experiments at each of the training locations,

the predicted variance 𝑟(𝜃*) at unobserved locations is still completely unknown. The

unknown shape of 𝑟(𝜃) is a major implementation challenge.

Heteroscedastic Gaussian process models introduce a second GP specifically for

the purpose of modeling the unknown variance function 𝑟(𝜃). Rather than model

𝑟(𝜃) directly since 𝑟(𝜃) > 0, the second GP models its logarithm, 𝑠(𝜃) = 𝑙𝑜𝑔(𝑟(𝜃)).

The two GP models will be trained in parallel: one for latent mean 𝑦(𝜃) and one for

the variance logarithm 𝑠(𝜃). Both of these GPs are given suitable Gaussian priors,

𝑦(𝜃) ∼ 𝒩
(︀
0, 𝜅𝑦(𝜃,𝜃

′)
)︀

(5.41)

166

for 𝑦(𝜃) and

𝑠(𝜃) ∼ 𝒩
(︀
𝜇0, 𝜅𝑠(𝜃,𝜃

′)
)︀

(5.42)

for 𝑠(𝜃). The two GPs both employ squared exponential kernels, with 𝜅𝑦(𝜃,𝜃
′) and

𝜅𝑠(𝜃,𝜃
′) delineating between the two in order to avoid confusion. Each kernel function

also requires a different set of hyperparameters. Set 𝜓 still refers to the hyperparam-

eters for the kernel function for 𝑦(𝜃), 𝜅𝑦(𝜃,𝜃
′). However, since the likelihood model

from (5.6) is replaced with the second GP for 𝑠(𝜃), hyperparameters 𝜗 now refer to

the set of hyperparameters for 𝜅𝑠(𝜃,𝜃
′) plus the additional nonzero-mean prior 𝜇0.

At the conclusion of the training process, the posterior predictive distribution for

measurement 𝑦(𝜃) is given by the integral

P(𝑦(𝜃*)|ℒ,𝜃*, 𝜓, 𝜗) =

∫︁ ∫︁
P(𝑦(𝜃*)|ℒ,𝜃*, s, 𝑠(𝜃*), 𝜓) P(s, 𝑠(𝜃*)|ℒ,𝜃*, 𝜗) 𝑑s 𝑑𝑠(𝜃*),

(5.43)

where P(s, 𝑠(𝜃*)|ℒ,𝜃*, 𝜗) is the second GP’s output for the joint distribution of log-

arithmic variance at each of the training points (vector s) and query location 𝜃*.

Variational Heteroscedastic GP Regression

Although (5.43) is the true distribution for 𝑦(𝜃), the integral cannot be solved an-

alytically and the HGP approaches approximate this result. The main difference

between the various HGP approaches is their handling of an approximate solution

to (5.43). Early work [144] treated the integral with a fully Bayesian, Markov chain

Monte Carlo (MCMC) approximation which proved to be quite computationally de-

manding. Later work [143] instead took a maximum a posteriori (MAP) approach to

reduce the computational overhead, but was susceptible to overfitting. The work in

this extension utilizes one of the most recent techniques, variational heteroscedastic

Gaussian processes (VHGPs) [138,142], which exploits variational inference to lower

bound the marginal likelihood and produce an approximation that is both accurate

and efficient.

A more detailed description of the VHGP process is found in its source mate-

167

rial [138], but the central ideal is to lower bound the marginal log-likelihood (model

evidence) of the HGP with analytically tractable variational approximations. The fol-

lowing function 𝐹 lower bounds the marginal log-likelihood (log P(y)) for any choice

of variational PDFs 𝑞(ȳ) and 𝑞(s),

𝐹
(︀
𝑞(ȳ), 𝑞(s)

)︀
= log P(y)−𝐾𝐿

(︀
𝑞(ȳ), 𝑞(s)||P(ȳ, s|y)

)︀
. (5.44)

The training process is more complex than for a standard homoscedastic GP regres-

sion model, but the posterior predictive output of the VHGP approach is still defined

by Gaussian distributions. At an arbitrary location 𝜃*, the predictive distribution for

log variance 𝑠(𝜃*) is

𝑞(𝑠(𝜃*)) = 𝒩
(︀
𝑠(𝜃*)|𝜇𝑠(𝜃*),Σ𝑠(𝜃*)

)︀
, (5.45)

while the predictive distribution for 𝑦(𝜃*) is

𝑞(𝑦(𝜃*)) = 𝒩
(︀
𝑦(𝜃*)|𝜇𝑦(𝜃*),Σ𝑦(𝜃*)

)︀
. (5.46)

However, the computation of the posterior predictive mean and covariance of 𝑠(𝜃*) is

noticeably different due to the variational parameters, diagonal matrix Λ and scalar

𝜇0,

𝜇𝑠(𝜃*) = K𝑇
𝑠*(Λ− 0.5I)1 + 𝜇0

Σ𝑠(𝜃*) = K𝑠** −K𝑇
𝑠*(K𝑠 + Λ−1)−1K𝑠* ,

(5.47)

where scalar K𝑠** = 𝜅𝑠(𝜃*,𝜃*), vector K𝑠* = 𝜅𝑠(𝜃*,𝜃𝑖) for 𝑖 = 1, . . . , 𝑁 , and K𝑠 is

the 𝑁 × 𝑁 matrix of 𝜅𝑠 evaluated across all 𝑁 training locations. The variational

parameters Λ, as well as the kernel hyperparameters 𝜓 and 𝜗, are determined through

maximum likelihood estimation of the variational bound 𝐹 . Once the distribution

for 𝑞(𝑠(𝜃*)) has been obtained, the computation for 𝑞(𝑦(𝜃*)) follows the standard

168

(non-variational) GP format with

𝜇𝑦(𝜃*) = K𝑇
𝑦*(K𝑦 + R)−1y

Σ𝑦(𝜃*) = K𝑦** −K𝑇
𝑦*(K𝑦 + R)−1K𝑦* ,

(5.48)

where R is a diagonal matrix with [R]𝑖𝑖 = 𝑒[𝜇𝑠]𝑖−0.5[Σ𝑠]𝑖𝑖 . Ultimately, the variational

approximation of the posterior predictive distribution for noisy measurement 𝑦(𝜃*) is

𝑞(𝑦(𝜃*)) =

∫︁ ∫︁
P
(︀
𝑦(𝜃*)|𝑦(𝜃*), 𝑠(𝜃*)

)︀
𝑞(𝑦(𝜃*)) 𝑞(𝑠(𝜃*)) 𝑑𝑦(𝜃*) 𝑑𝑠(𝜃*) (5.49)

=

∫︁
𝒩
(︀
𝑦(𝜃*)|𝜇𝑦(𝜃*),Σ𝑦(𝜃*) + 𝑒𝑠(𝜃*)

)︀
𝒩
(︀
𝑠(𝜃*)|𝜇𝑠(𝜃*),Σ𝑠(𝜃*)

)︀
𝑑𝑠(𝜃*).

(5.50)

Although the two GPs both produce Gaussian distributions, the resulting predictive

distribution 𝑞(𝑦(𝜃*)) is not Gaussian and the integral in (5.50) is not analytically

tractable. Fortunately, the mean and variance of 𝑞(𝑦(𝜃*)) can be computed analyti-

cally as

E[𝑞(𝑦(𝜃*))] = 𝜇𝑦(𝜃*) and V[𝑞(𝑦(𝜃*))] = Σ𝑦(𝜃*) + 𝑒𝜇𝑠(𝜃*)+0.5Σ𝑠(𝜃*). (5.51)

5.4.2 Modifications to the Stochastic Verification Framework

The stochastic verification framework incorporates the VHGP regression model in

the same manner as the standard GP model. Unlike the previous VHGP applications

[138, 142] which focused on the posterior predictive distribution for 𝑦(𝜃), stochastic

verification needs the cumulative distribution for P(𝑦(𝜃) > 0) rather than the PDF

of 𝑦(𝜃). Redevelopments of the closed-loop verification algorithms require both the

expected value and variance of this cumulative distribution. Since the integral in

(5.50) is not analytical and the distribution is non-Gaussian, no closed-form solution

for the cumulative distribution for P(𝑦(𝜃*) > 0) exists. Instead, the expected value of

the cumulative distribution in (5.39) can be approximated as a Gaussian CDF from

169

E[𝑞(𝑦(𝜃*))] and V[𝑞(𝑦(𝜃*))]. The resulting expected value of 𝑝𝑠𝑎𝑡(𝜃) is

̂︀𝑝𝑠𝑎𝑡(𝜃) = E
[︁
P(𝑦(𝜃*) > 0|ℒ,𝜃*, 𝜓, 𝜗)

]︁
(5.52)

=
1

2
+

1

2
erf
(︁ 𝜇(𝜃*)√︀

2(Σ(𝜃*) + 𝑒𝜇𝑠(𝜃*)+0.5Σ𝑠(𝜃*))

)︁
, (5.53)

which closely parallels the the original homoscedastic predictions in (5.10).

Likewise, closed-loop verification algorithms need the variance of the cumulative

distribution for the selection criteria. This variance had no closed-form solution with

homoscedastic Gaussian distributions and will not have one now. The same Taylor

series approximate [141] from (5.18) will be used to compute the variance of the pre-

dictions for (5.39). Due to the addition of the second GP for 𝑠(𝜃), the approximation

is slightly more complicated; however, the distributions of 𝑞(𝑠(𝜃*)) and 𝑞(𝑦(𝜃*)) can

be treated as independent random variables. The first-order Taylor expansion of an

arbitrary nonlinear random function 𝑌 = 𝑔(𝑋1, 𝑋2) is then

V[𝑌] ≈
2∑︁
𝑖=1

(︁ 𝜕𝑔
𝜕𝑋𝑖

)︁2 ⃒⃒⃒⃒
𝐸[𝑋1],𝐸[𝑋2]

V[𝑋𝑖]. (5.54)

Given the partial derivatives of (5.39) with respect to 𝑦(𝜃*) and 𝑠(𝜃*) are

𝜕P(𝑦(𝜃*)|𝑦(𝜃*), 𝑠(𝜃*)

𝜕𝑦(𝜃*)
=

𝜕

𝜕𝑦(𝜃*)

(︂
1

2
+

1

2
erf

(︂
𝑦(𝜃*)√︀
2𝑠(𝜃*)

)︂)︂
(5.55)

=
1√
2𝜋

1√
𝑒𝑠(𝜃*)

𝑒−0.5𝑒−𝑠(𝜃*)𝑦(𝜃*)2 (5.56)

and

𝜕P(𝑦(𝜃*)|𝑦(𝜃*), 𝑠(𝜃*)

𝜕𝑠(𝜃*)
=

𝜕

𝜕𝑠(𝜃*)

(︂
1

2
+

1

2
erf

(︂
𝑦(𝜃*)√︀
2𝑠(𝜃*)

)︂)︂
(5.57)

=
−1

2
√

2𝜋

𝑦(𝜃*)√
𝑒𝑠(𝜃*)

𝑒−0.5𝑒−𝑠(𝜃*)𝑦(𝜃*)2 , (5.58)

170

the first-order Taylor series approximation of the CDF variance is

V
[︁
P(𝑦(𝜃*) > 0|ℒ,𝜃*, 𝜓, 𝜗)

]︁
=

1

2𝜋
𝑒−𝜇𝑦(𝜃*)2𝑒−𝜇𝑠(𝜃*)−𝜇𝑦Σ𝑦(𝜃*)

+
1

8𝜋
𝜇𝑦(𝜃*)

2𝑒−𝜇𝑦(𝜃*)2𝑒−𝜇𝑠(𝜃*)−𝜇𝑦Σ𝑠(𝜃*).
(5.59)

A second-order Taylor expansion can also be used in place of the first-order ap-

proximation in (5.59). For closed-loop verification with heteroscedastic distributions,

the expected value (5.53) and variance (5.59) equations directly replace their ho-

moscedastic equivalents in the closed-loop algorithms from Section 5.3 and no further

modifications are required. The final example in Section 5.6 will examine closed-loop

verification with VHGPs.

5.5 Discussion: Non-Gaussian Distributions

Although the extension in Section 5.4 expands the class of systems considered by the

data-driven, stochastic verification approaches presented in this chapter, there still

exists a class of relevant systems that have not been addressed yet. Both Assumptions

5.3 and 5.7 restrict the class of applicable systems to those with Gaussian likelihoods

for the distribution of noisy measurements 𝑦(𝜃), i.e.

𝑦(𝜃) = 𝑦(𝜃) + 𝑤𝑦 𝑤𝑦 ∼ 𝒩 (0, 𝜖2𝑦); (5.60)

however, the distribution of 𝑦(𝜃) is non-Gaussian in many applications. For instance,

nonlinearities in the closed-loop dynamics might produce a multi-modal distribu-

tion for 𝑦(𝜃). This non-Gaussian likelihood model for 𝑦(𝜃) greatly complicates the

implementation of Gaussian process regression for predictive inference and the non-

Gaussian distribution of measurements can lead standard GP methods to become

sensitive to outliers [145].

A variety of regression techniques have been developed for modeling and infer-

ence with non-Gaussian likelihoods [145–149]. The vast majority of these approaches

[145–147] are concerned with regression in the presence of Student’s t-distributions,

171

which produce similar distributions to Gaussian likelihood models, but with heavier

tails. One of the more recent techniques for regression with non-Gaussian likeli-

hood models is Meta-GPs [149], which uses mixtures of Gaussians to capture non-

Gaussian distributions. This mixture enables Meta-GPs to consider not just Student’s

t-distribution, but other relevant distributions such as multi-modal distributions, and

do so without extra modification.

The central assumption of Meta-GPs is that the non-Gaussian likelihood can be

accurately modeled as a mixture of Gaussians. Where previously a standard GP

assumed

P(𝑦(𝜃)|𝑦(𝜃)) = 𝒩 (𝑦(𝜃)|𝑦(𝜃), 𝜖2𝑦), (5.61)

now the Meta-GP assumes

P(𝑦(𝜃)|𝑦(𝜃)) =
𝐾∑︁
𝑖=1

𝜋𝑖𝒩 (𝜇𝑖 + 𝑦(𝜃), 𝜎2
𝐿), (5.62)

where 𝜋𝑖 is the weighting term associated with each Gaussian distribution centered at

𝜇𝑖 + 𝑦(𝜃) with bandwidth 𝜎𝐿. Given a mixture of 𝐾 Gaussians, the sum will be able

to approximate nearly any possible likelihood model. The Meta-GP approach in its

current form relies upon the sparse-GP [150] representation with a fixed cap on the

number of training points, but can be rewritten to instead incorporate the baseline,

non-sparse GP regression model representations used in this thesis.

One important limitation of Meta-GPs, and all the surveyed methods for non-

Gaussian likelihoods, is that they do not consider spatially-varying likelihood dis-

tributions. Just as homoscedastic GPs assume the variance 𝜖𝑦 remains constant,

Meta-GPs assume the mixture of Gaussians is also independent of 𝜃. Non-Gaussian

regression techniques lack an equivalent to heteroscedastic GP regression. Data-

driven stochastic verification would benefit immensely from a comprehensive method

for regression in the presence of spatially-varying non-Gaussian likelihood models,

particularly one with the wide applicability of Meta-GPs. However, such a technique

does not exist currently. Once one becomes available, the open- and closed-loop

stochastic verification frameworks should be modified to exploit that technique as it

172

would enable the verification procedures to handle virtually any possible distribution

for noisy, continuous measurements.

Due to the relative infancy of practical non-Gaussian regression techniques, namely

Meta-GPs [149], this thesis does not delve any further into the implementation of

those techniques nor apply them to example problems. Future work in Chapter 8

discusses application of these new techniques to versions of the stochastic systems

shown in the next section. This section was included to provide background on an

obvious limitation of the GP-based methods presented in this chapter and identify a

clear roadmap towards addressing that limitation.

5.6 Simulation Results

The closed-loop verification algorithms are demonstrated on various systems with

stochastic dynamics. The first example is a stochastic variant of the example from

Section 4.4.1 and will be used as the primary case study to highlight the various

aspects of stochastic verification. The subsequent examples will reaffirm the observa-

tions and discussions from the first example.

5.6.1 Concurrent Learning Model Reference Adaptive Con-

troller

The first example is the same concurrent learning model reference adaptive control

(CL-MRAC) system from Section 4.4.1 and 3.5.2. An uncertain linear system is

subject to two uncertain parameters 𝜃 = [𝜃1, 𝜃2]
𝑇 which are estimated by the CL-

MRAC adaptive law. However, unlike those previous two systems, the open-loop

dynamics are corrupted by an additive process noise term w(𝑡),

⎡⎣𝑥̇1
𝑥̇2

⎤⎦ =

⎡⎣ 0 1

−0.2 + 𝜃1 −0.2 + 𝜃2

⎤⎦⎡⎣𝑥1
𝑥2

⎤⎦+

⎡⎣0

1

⎤⎦𝑢(𝑡) + w(𝑡) . (5.63)

173

-0.3 -0.2 -0.1 0 0.1

y()

0

10

20

30

40

50

60

70

H
is

to
g

ra
m

Figure 5-8: [Example 5.6.1] Histogram of robustness measurements from 500 repeated trajec-
tories at arbitrary location 𝜃 = [6, 1.8]𝑇 . The distribution of the robustness measurements
is roughly Gaussian as a Gaussian fit (red line) to the distribution closely matches the
histogram data.

This process noise is a zero-mean Gaussian w(𝑡) ∼ 𝒩 (0,Σ𝑤) with covariance matrix

Σ𝑤 = diag([5, 5]). This process noise is the sole source of stochasticity in the closed-

loop system dynamics.

The performance requirement and measurement techniques are also the same as

Section 4.4.1. The performance requirement states the actual state 𝑥1(𝑡) must re-

main within a unit ball of reference state 𝑥𝑚1(𝑡) along the entire trajectory. This

requirement is naturally expressed in signal temporal logic (STL) format, as shown

previously in (4.23), and the corresponding trajectory robustness is measured with the

STL robustness degree 𝜌𝜙(𝜃). Unlike the deterministic example, stochasticity leads

to a distribution of possible robustness degrees at an arbitrary 𝜃 location, illustrated

in Figure 5-8. In this figure, 500 trajectories are performed at the same arbitrary

location 𝜃 = [6, 1.8]𝑇 to demonstrate the effect of stochasticity upon the robustness

measurements 𝑦(𝜃). Note that the distribution of measurements is roughly Gaussian,

with the fitted Gaussian (red line) closely matching the histogram data.

This example assumes the 𝑦(𝜃) measurements follow a homoscedastic Gaussian

distribution with a constant standard deviation of 𝜖𝑦 = 0.0682. This standard devia-

tion 𝜖𝑦 was empirically computed from a “ground truth” dataset of 50 trajectories per-

174

formed at each of the locations in Θ𝑑. In order to avoid any potential heteroscedastic

distributions in this example, the standard deviations at each location were averaged

to produce 𝜖𝑦. Likewise, the distribution mean 𝑦(𝜃) is simply the average of the 50

distributions at each 𝜃 ∈ Θ𝑑. This true mean 𝑦(𝜃) and resulting cumulative distribu-

tion 𝑝𝑠𝑎𝑡(𝜃) are displayed in Figure 5-9. Interestingly enough, the mean 𝑦(𝜃) does not

necessarily equal the deterministic measurement value for (deterministic) 𝑦(𝜃) from

Section 4.4.1. These deterministic measurement values are redisplayed in Figure 5-10

and highlight that the stochastic mean 𝑦(𝜃) is different than the deterministic values.

This disagreement can be due to a number of factors, including the nonlinearity of

the adaptive law making the closed-loop system particularly susceptible to random

noise. Later work in Chapter 7 will revisit this disagreement between deterministic

and stochastic data, but the main takeaway from Figure 5-10 is to show that 𝑦(𝜃)

does not have to match the output from a deterministic system. It would be unwise

to blindly assume the stochastic mean equals the deterministic measurement without

actually running simulations or experiments of the closed-loop system.

The statistical verification algorithms select training sample locations 𝜃 from a

discrete sampling set Θ𝑑 of 40,401 locations between |𝜃1| ≤ 10 and |𝜃2| ≤ 10. Each

algorithm starts with an initial training set of 50 randomly chosen trajectories and

then selects additional training locations until a budget of 450 total trajectories is

reached. Figure 5-11 displays one of the initial training datasets and the resulting GP

regression model and predictions. The initial GP model roughly approximates the

true 𝑦(𝜃) and 𝑝𝑠𝑎𝑡(𝜃), but would obviously improve with additional trajectory data.

This example examines two versions of Algorithm 8 with batch sizes 𝑀 = 5

and 𝑀 = 10. Figure 5-12(a) plots the selection criterion, CDF variance reductioñ︀𝑉 (𝜃|ℒ, 𝜓, 𝜗), and the selected batch 𝒮 of 5 points produced by the k-DPP in Algo-

rithm 8. These samples are spread out across areas of large perceived reductions in

CDF variance and are mostly concentrated in regions where ̂︀𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5, as shown

in Figure 5-12(b). Figures 5-12(c) and (d) also compare the sample set 𝒮 and CDF

variance reduction ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗) against the PDF predictive mean 𝑦(𝜃) and covari-

ance Σ(𝜃). These two plots illustrate the earlier insights in Section 5.3 that CDF

175

(a) Mean 𝑦(𝜃) (b) Satisfaction probability 𝑝𝑠𝑎𝑡(𝜃)

Figure 5-9: [Example 5.6.1] True mean 𝑦(𝜃) and satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) for
the stochastic CL-MRAC system.

Figure 5-10: [Example 5.6.1] Deterministic measurements from Example 4.4.1 for compari-
son to the mean 𝑦(𝜃) of the noisy measurements in this stochastic variation of the problem.
Notice that the deterministic measurements do not necessarily equal the stochastic mean
𝑦(𝜃).

variance reduction (and CDF variance itself) is a function of both 𝜇(𝜃) and Σ(𝜃).

The expected CDF variance reduction is high in regions with 𝜇(𝜃) ≈ 0, but not all

areas with 𝜇(𝜃) = 0 are weighted equally. Likewise, all the areas of high ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗)

correspond to regions of moderate-to-high PDF variance Σ(𝜃), but not all points with

high Σ(𝜃) have a large expected reduction in CDF variance.

The sampling process will continue to select parameter settings for future trajec-

tories until the sampling budget is reached. An intermediate result halfway through

the process after 250 samples is shown in Figure 5-13. The GP prediction for mean

176

(a) Predicted mean 𝜇(𝜃) (b) Predicted satisfaction probability ̂︀𝑝𝑠𝑎𝑡(𝜃)
Figure 5-11: [Example 5.6.1] Predicted satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) for the CL-
MRAC systems at the initial training step.

𝑦(𝜃) and the estimated ̂︀𝑝𝑠𝑎𝑡(𝜃) are already fairly accurate approximations of the true

values from Figure 5-9. The chosen training samples (red and green dots) are clumped

in close proximity to the region of ̂︀𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5 as this is where the predictions are

expected to change the most. The final prediction model after all 450 trajectories

have been selected is shown in Figure 5-14 and is almost identical to the intermediate

prediction model in Figure 5-13.

Figure 5-15 compares the performance of Algorithm 8 (labeled “CDF Variance”)

against competing active sampling strategies using the PDF mean-focused selection

metric (5.20) and PDF variance-focused metric (5.21), as well as an open-loop strategy

using random sampling. Unlike the earlier figures in Chapters 3 and 4, these figures

measure the prediction accuracy with mean absolute error (MAE) between predicted̂︀𝑝𝑠𝑎𝑡(𝜃) and true 𝑝𝑠𝑎𝑡(𝜃) over all 𝜃 ∈ Θ𝑑. The figure displays the mean and 0.5𝜎

error bounds for MAE over 100 random initializations of each algorithm. At the

conclusion of the process after 450 simulations have been performed, Algorithm 8

with batch size 𝑀 = 5 demonstrates a 23% improvement in average MAE over

the closest competitor (PDF mean), a 24% improvement over PDF variance-based

sampling, and 27% improvement over open-loop, random sampling. Similar results

are seen for the larger batch size 𝑀 = 10.

Additionally, Algorithm 8 still outperforms the other algorithms when the true hy-

177

(a) CDF variance reduction ̃︀𝑉 (𝜃|ℒ, 𝜓, 𝜗) (b) Predicted ̂︀𝑝𝑠𝑎𝑡(𝜃)

(c) PDF mean 𝜇(𝜃) (d) PDF variance Σ(𝜃)

Figure 5-12: [Example 5.6.1] Illustration of the CDF variance selection criterion and the
chosen set of future training locations. For comparison to other selection metrics, the selected
points are overlayed on top of 𝑦(𝜃), ̂︀𝑝𝑠𝑎𝑡(𝜃), and Σ(𝜃).

perparameters were already known. The results in Figure 5-15 considered the usual

case where the true hyperparameters are not known and (𝜓, 𝜗) are estimated online

using hyperparameter optimization. Figure 5-16 considers the same verification algo-

rithms, but assumes the true hyperparameters are known in advance and (𝜓, 𝜗) are

fixed to those values. Even with this advanced knowledge, Algorithm 8 demonstrates

a comparable level of improvement over the existing sampling strategies.

Although Figures 5-15 and 5-16 illustrated a 20-27% improvement in average MAE

rate over existing sampling strategies, there is still a distribution associated with the

MAE convergence. There is no guarantee Algorithm 8 and the other approaches will

178

(a) Predicted mean 𝜇(𝜃) (b) Predicted satisfaction probability ̂︀𝑝𝑠𝑎𝑡(𝜃)
Figure 5-13: [Example 5.6.1] Predicted satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) halfway
through the verification process after 250 trajectories have been selected.

(a) Predicted mean 𝜇(𝜃) (b) Predicted satisfaction probability ̂︀𝑝𝑠𝑎𝑡(𝜃)
Figure 5-14: [Example 5.6.1] Predicted satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) at the end
of the verification process after all 450 trajectories have been selected.

always achieve that level of MAE, particularly since the closed-loop system is inher-

ently random. In order to address whether Algorithm 8 is consistently better than the

existing approaches, the four sampling procedures are started from the same random

initialization and with the same noisy measurements for each of the 100 repeated test

runs. This allows for the approaches to be directly compared against one another as

they all have the same exact initial ℒ and noisy data. Figure 5-17 demonstrates that

at the completion of the 450 trajectory samples, Algorithm 8 directly outperforms

or matches the MAE rate of all the competing approaches roughly 92-100% of the

179

100 200 300 400

Samples

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Batch size 𝑀 = 5

100 200 300 400

Samples

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(b) Batch size 𝑀 = 10

Figure 5-15: [Example 5.6.1] Mean absolute error (MAE) convergence of Algorithm 8 in
comparison to the other sampling strategies. In this case, the hyperparameters are dy-
namically updated with hyperparameter optimization after each iteration. The standard
deviation intervals around the mean (solid lines) are given by the 0.5𝜎 bound.

100 200 300 400

Samples

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Batch size 𝑀 = 5

100 200 300 400

Samples

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(b) Batch size 𝑀 = 10

Figure 5-16: [Example 5.6.1] Mean absolute error (MAE) convergence for the different sam-
pling strategies with known (static) hyperparameters. The standard deviation intervals
around the mean (solid lines) are given by the 0.5𝜎 bound.

time, regardless of the batch size and whether the true hyperparameters are known or

not. Therefore, Algorithm 8 consistently produces the lowest rate of mean absolute

prediction error.

180

100 200 300 400

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(a) Hyperparameter opt., 𝑀 = 5

100 200 300 400

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Hyperparameter opt., 𝑀 = 10

100 200 300 400

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(c) Static hyperparameters, 𝑀 = 5

100 200 300 400

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(d) Static hyperparameters, 𝑀 = 10

Figure 5-17: [Example 5.6.1] Ratio of runs where Algorithm 8 directly outperforms or
matches the mean absolute error rate of the competing sampling strategies. All strate-
gies start with the same initial training set and noisy measurements and thus each approach
can be directly compared to the others with the same initialization.

CDF Variance to Identify Regions of High Prediction Error

While Figures 5-15 and 5-16 examine the mean absolute prediction error for the

various sampling strategies, these values are not known during the actual verification

process because 𝑝𝑠𝑎𝑡(𝜃) is unknown. In order to address this limitation, Section

5.2.2 presented a novel method for online quantification of prediction accuracy using

CDF variance. CDF variance bounds the Chebyshev inequality, but more practically,

identifies regions in Θ where new training samples could possibly induce a large

change in ̂︀𝑝𝑠𝑎𝑡(𝜃). Although the true CDF variance has no closed-form solution, the

181

approximations in (5.18) and (5.19) are still useful tools for indicating where CDF

variance is high and therefore where confidence in the predicted ̂︀𝑝𝑠𝑎𝑡(𝜃) is low.

Figures 5-18 and 5-19 demonstrate the use of CDF variance to identify areas of

likely prediction error. Additionally, these results show CDF variance will correctly

identify these areas independent of the actual sampling strategy. It does not matter

whether trajectories are selected using Algorithm 8 or the other three strategies. In

each of the four strategies, all 𝜃 ∈ Θ𝑑 are sorted according to their approximate CDF

variance from (5.18) and the points with the top 1% and 5% of CDF variance are

removed. Figures 5-18 and 5-19 then show the recomputed MAE values for all four

sampling strategies with batch size 𝑀 = 10 and static hyperparameters after the top

1% and 5% have been removed. In comparison to the original plot in Figure 5-16(b),

the average MAE reduces by up to 14-20% when the top 5% of points are removed,

illustrating the concentration of points with high prediction error within those points

with the top 5% of CDF variance. Although it does not explicitly quantify prediction

error as (4.9) did in Chapter 4, approximate CDF variance (5.18) does identify regions

where large prediction error ̃︀𝑝𝑠𝑎𝑡(𝜃) is likely to occur.

Effect of Changes in the Distribution of 𝑦(𝜃)

Lastly, Figures 5-20, 5-21, and 5-22 examine the performance of the sampling algo-

rithms after changes in the distribution of 𝑦(𝜃). These figures consider changes in the

process noise w(𝑡) of the stochastic dynamics, which ultimately manifest as changes

in the distribution of noisy robustness measurements 𝑦(𝜃). When the process noise

covariance matrix Σ𝑤 increases or decreases, the distribution of measurements and the

resulting satisfaction probability 𝑝𝑠𝑎𝑡(𝜃) will vary. Figure 5-20 depicts the changes

to the shape of the true 𝑝𝑠𝑎𝑡(𝜃) surface as a result of varying the level of process

noise. When the process noise decreases, the average 𝑦(𝜃) remains roughly the same,

but the standard deviation 𝜖𝑦 decreases and causes a sharper gradient in 𝑝𝑠𝑎𝑡(𝜃) at

points near 𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5. Likewise, when the process noise is increased, the standard

deviation also increases and leads to a more gradual slope in Figure 5-20(b). These

changes in 𝑝𝑠𝑎𝑡(𝜃) will affect the performance of the sampling approaches.

182

100 200 300 400

Samples

0

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE without points in the top 1% of CDF
variance

100 200 300 400

Samples

2

3

4

5

6

7

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
) Open-Loop (Random)

PDF Mean
PDF Variance
CDF Variance

(b) Percent reduction vs Figure 5-16(b)

Figure 5-18: [Example 5.6.1] Concentration of prediction error in points with the top 1% of
CDF variance. These plots illustrate the reduction in MAE after the points with the top
1% of CDF variance have been removed.

100 200 300 400

Samples

0

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE without points in the top 5% of CDF
variance

100 200 300 400

Samples

10

12

14

16

18

20

22

24

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
) Open-Loop (Random)

PDF Mean
PDF Variance
CDF Variance

(b) Percent reduction vs Figure 5-16(b)

Figure 5-19: [Example 5.6.1] Concentration of prediction error in points with the top 5% of
CDF variance. These plots illustrate the reduction in MAE after the points with the top
5% of CDF variance have been removed.

When the process noise decreases and 𝜖𝑦 shrinks, the distribution of 𝑦(𝜃) across Θ

resembles a binary problem with large areas where 𝑝𝑠𝑎𝑡(𝜃) ≈ 0 or 𝑝𝑠𝑎𝑡(𝜃) ≈ 1 and very

few points where 𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5. Figure 5-21 plots the average MAE convergence of

the four sampling algorithms for this new level of 𝜖𝑦. The performance of each of the

algorithms is roughly the same as it was for the nominal problem in Figures 5-15(b)

and 5-16(b). Algorithm 8 outperforms the other approaches with between a 29-35%

183

(a) True 𝑝𝑠𝑎𝑡(𝜃) with low 𝜖𝑦 (b) True 𝑝𝑠𝑎𝑡(𝜃) with high 𝜖𝑦

Figure 5-20: [Example 5.6.1] Changes in 𝑝𝑠𝑎𝑡(𝜃) associated with increases and decreases in
process noise. The change in process noise ultimately results in changes to the distribution
of 𝑦(𝜃) which defines 𝑝𝑠𝑎𝑡(𝜃).

improvement in average MAE for the case with online hyperparameter optimization

and a 22-32% improvement for the case with static hyperparameters.

As the process noise increases and standard deviation 𝜖𝑦 grows, the distribution

is much wider and the gradient of 𝑝𝑠𝑎𝑡(𝜃) is much lower. This wider distribution

means a higher ratio of points in Θ will be located in the regions around 𝑝𝑠𝑎𝑡(𝜃) ≈

0.5 where prediction error is likely to be high. In Figure 5-22, the average MAE

starts higher than before in Figure 5-21 due to the difficulty in modeling 𝑝𝑠𝑎𝑡(𝜃). In

these plots, the PDF mean-focused sampling strategy has noticeable difficulty with̃︀𝑝𝑠𝑎𝑡(𝜃) and its average MAE converges much more slowly than it did before. This

degraded performance is due to the effect of larger 𝜖𝑦 on the cumulative distribution

for P(𝑦(𝜃) > 0). Points further away from 𝑦(𝜃) will have more sizable cumulative

distributions for P(𝑦(𝜃) > 0) and therefore clumping samples around 𝜇(𝜃) ≈ 0 will

have less of a positive effect as it did when 𝜖𝑦 was small. Likewise, the large 𝜖𝑦 term also

causes the information gain associated with each additional sample to decrease and

explains the similarity in performance between PDF variance, open-loop sampling,

and Algorithm 8. Due to the high standard deviation 𝜖𝑦, the 𝜖
2
𝑦I term in the inverted

matrix from (5.8) will lessen the impact of each update. As each additional sample

will have a significantly reduced effect upon the predictions, Σ(𝜃) will not decrease

184

100 200 300 400

Samples

0

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Hyperparameter opt.

100 200 300 400

Samples

0

2

4

6

8

10

12

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(b) Static hyperparameters

Figure 5-21: [Example 5.6.1] Mean absolute error convergence of the four sampling strategies
(𝑀 = 10) when the process noise has been reduced to Σ𝑤 = diag([1, 1]).

100 200 300 400

Samples

4

6

8

10

12

14

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Hyperparameter opt.

100 200 300 400

Samples

4

6

8

10

12

14
M

ea
n

 A
b

so
lu

te
 E

rr
o

r
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(b) Static hyperparameters

Figure 5-22: [Example 5.6.1] Mean absolute error convergence of the four sampling strategies
(𝑀 = 10) when the process noise has been increased to Σ𝑤 = diag([7, 7]).

as much and the variance will be comparable across large portions of Θ - almost like

a uniform random distribution. This decrease in the posterior change of Σ(𝜃) with

each additional sample will also lessen the expected posterior CDF variance reduction

and degrades Algorithm 8’s edge over the other approaches. The main takeaway from

Figures 5-21 and 5-22 is that Algorithm 8 will often outperform the existing sampling

strategies, but will do no less in worst-case scenarios. This emphasizes the better

all-around performance of Algorithm 8 for stochastic verification purposes.

185

5.6.2 Robust Multi-Agent Task Allocation

The second example examines the same robust multi-agent task allocation problem

from Section 4.4.2 subjected to additional stochasticity. In this stochastic version of

the problem, the time it takes a UAV to complete a surveillance task is still a nonlinear

functions of wind parameters 𝜃 = [𝜃1, 𝜃2]
𝑇 , but the task duration is also corrupted

by zero-mean Gaussian noise which may cause a task to take longer or shorter than

planned even if wind parameters 𝜃 are known. The uncertainty and stochasticity in

the task durations will have a cumulative effect upon the realized mission score as

longer-than-planned task durations will cause the UAVs to miss the completion of

tasks within their assigned window and performance worse than expected.

As before, the verification goal is to determine whether multi-agent system will

reach a minimum score threshold across all the possible wind conditions given the

assigned control policy, the ordered list of tasks assigned to each UAV. The set of

feasible wind conditions, 𝜃1 : [0∘, 359∘] and 𝜃2 : [0, 40] (km/hr), is covered with a lattice

Θ𝑑 of 16,641 possible parameter settings for the trajectories. Each training point

consists of a trajectory rollout of the multi-agent system in the forest fire simulation

model at the given wind conditions and the trajectory rollout’s realized mission score.

Just like the previous example, the simulation results will also explore the effect of

different levels of Gaussian noise in the system.

Figures 5-23 and 5-24 compare the sequential active sampling approach (Algorithm

7) against the other sampling strategies over 250 random initializations. In both

figures, Algorithm 7 performs as well as, if not better than, the other algorithms the

vast majority of the time. As was seen in Example 5.6.1, Algorithm 7’s improvement

over the other strategies is higher when the standard deviation 𝜖𝑦 is lower, but is still

fine when 𝜖𝑦 increases. Ultimately the CDF variance reduction procedure in Algorithm

7 consistently performs well whereas the other algorithms’ rate of prediction error

shifts depending on the distribution. Since the standard deviation of the distribution

will generally be unknown in advance, these results reinforce the notion that CDF

variance-based selection criteria presents the best all-around option for closed-loop

186

20 30 40 50 60 70 80 90

Samples

5

10

15

20

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE convergence

20 30 40 50 60 70 80 90

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Ratio of tests where Algorithm 7 outperforms
or matches existing sampling strategies

Figure 5-23: [Example 5.6.2] Comparison of mean absolute error (MAE) performance with
low measurement variance 𝜖2𝑦 over 250 random initializations of the sampling strategies.
The right-hand plot displays the ratio of these randomly-initialized runs where Algorithm 7
directly outperforms or matches the other sampling strategies.

20 30 40 50 60 70 80 90

Samples

5

10

15

20

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE convergence

20 30 40 50 60 70 80 90

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Ratio of tests where Algorithm 7 outperforms
or matches existing sampling strategies

Figure 5-24: [Example 5.6.2] Comparison of mean absolute error (MAE) performance with
high measurement variance 𝜖2𝑦 over 250 random initializations of the sampling strategies.
The right-hand plot displays the ratio of these randomly-initialized runs where Algorithm 7
directly outperforms or matches the other sampling strategies.

statistical verification.

Lastly, Figures 5-25 and 5-26 examine the use of CDF variance to identify regions

of likely prediction error. Both figures consider the low-variance case from Figure 5-23

and recompute the MAE after points with high CDF variance have been removed. In

187

20 30 40 50 60 70 80 90

Samples

1

1.5

2

2.5

3

3.5

4

4.5

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Percent reduction vs Figure 5-23(a)

20 30 40 50 60 70 80 90

Samples

0

0.5

1

1.5

2

2.5

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(b) Percent reduction vs Figure 5-24(a)

Figure 5-25: [Example 5.6.2] Concentration of prediction error in points with the top 1% of
CDF variance. These plots illustrate the reduction in MAE after the points with the top
1% of CDF variance have been removed.

20 30 40 50 60 70 80 90

Samples

4

6

8

10

12

14

16

18

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) Percent reduction vs Figure 5-23(a)

20 30 40 50 60 70 80 90

Samples

2

4

6

8

10

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
) Open-Loop (Random)

PDF Mean
PDF Variance
CDF Variance

(b) Percent reduction vs Figure 5-24(a)

Figure 5-26: [Example 5.6.2] Concentration of prediction error in points with the top 5% of
CDF variance. These plots illustrate the reduction in MAE after the points with the top
5% of CDF variance have been removed.

Figure 5-25 after the points with the top 1% of CDF variance have been removed, the

MAE drops by 1-2% and even further by 4-7% in Figure 5-26 after the top 5% have

been removed. These reductions in MAE again demonstrate the value of approximate

CDF variance (5.18) for online identification of points with likely high prediction error,

irrespective of the exact sampling strategy.

188

5.6.3 Lateral-Directional Autopilot

The last example adds a stochastic wind field to the lateral-directional autopilot from

Section 4.4.4. In particular, the open-loop aircraft dynamics include a stochastic

Dryden wind field model [15], an aerospace standard for modeling random wind tur-

bulence. The wind turbulence model was initialized with a turbulence scale length of

533.4 meters and a high-altitude intensity exceedance probability of 10−1, common

settings for low-altitude, light wind turbulence. The rest of the aircraft simulation

model and control system remain unchanged.

The dominating performance requirement for the heading-hold autopilot is still

the altitude-hold requirement and the nominal specification remains unchanged: the

aircraft’s altitude must remain within 35 feet of the initial altitude at every point

along the trajectory [133,134]. Unlike Example 4.4.4, this stochastic example will also

explore the effect of loosening the 35 foot window as it drastically changes the 𝑝𝑠𝑎𝑡(𝜃)

function and the performance of the active sampling strategies. The satisfaction of

the altitude-hold performance requirement is tested against the four uncertain initial

conditions 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]
𝑇 corresponding to the Euler angles for roll, pitch, and

yaw and the longitudinal moment of inertia 𝐼𝑦𝑦. The sampling grid Θ𝑑 consists of

937,692 points that span 𝜃1 : [−60∘, 60∘], 𝜃2 : [4∘, 19∘], heading 𝜃3 : [75∘, 145∘], and

inertia 𝜃4 : [5430, 8430](𝑘𝑔 ·𝑚2), with a desired heading angle of 112∘.

The first part of this example assumes the STL robustness measurements 𝑦(𝜃)

follow a homoscedastic Gaussian distribution with a constant standard deviation 𝜖𝑦.

Each sample location in Θ𝑑 was tested offline 200 times to determine the empirical

mean 𝑦(𝜃) and standard deviation 𝜖𝑦(𝜃) of a Gaussian distribution fit to that data.

For the homoscedastic problem, the spatially-independent 𝜖𝑦 was created by averaging

𝜖𝑦(𝜃) across all 𝜃 ∈ Θ𝑑. This will be relaxed to heteroscedastic distributions during

the second portion of the example.

Figures 5-27 to 5-29 compare the four sampling strategies for different distribu-

tions of trajectory robustness measurements over 100 random initializations. First,

Figure 5-27 demonstrates the performance of Algorithm 8 on the standard problem

189

100 200 300 400 500

Samples

6

8

10

12

14

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE convergence

100 200 300 400 500

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Ratio of tests where Algorithm 8 outperforms
or matches existing sampling strategies

Figure 5-27: [Example 5.6.3] Comparison of mean absolute error (MAE) convergence of the
four sampling strategies assuming the standard measurement distribution.

with the original performance requirement. Although Figure 5-27(b) indicates that

Algorithm 8 meets or exceeds the performance of the competing active sampling algo-

rithms at least 80% of the time, the actual percent improvement is rather low (7-9%).

If the altitude-hold requirement is relaxed by 10 feet, the mean 𝑦(𝜃) is shifted and Al-

gorithm 8’s improvement over the other three approaches becomes more pronounced,

now up to 10-12% at the conclusion of the procedure. If this altitude requirement

is relaxed even further to 20 feet, the distribution of 𝑦(𝜃) has changed rather drasti-

cally and Algorithm 8 demonstrates a clear 26% improvement over random and PDF

variance-based sampling and 8% boost over the PDF mean-focused metric. While the

merits of changing the requirement are debatable, this study is meant to highlight

the changes in algorithm performance due to the underlying distribution of the data.

As was seen in the last two examples, Algorithm 8 is consistently the best sampling

strategy regardless of the actual distribution of the data. This is particularly im-

portant when nothing is known in advance about the performance of the stochastic

nonlinear system.

Figure 5-30 further reiterates the use of CDF variance as a tool for online identi-

fication of areas of high prediction error. Since the actual MAE is unknown during

an actual testing scenario, the CDF variance is the only practical method to rank

190

100 200 300 400 500

Samples

6

8

10

12

14

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE convergence

100 200 300 400 500

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Ratio of tests where Algorithm 8 outperforms
or matches existing sampling strategies

Figure 5-28: [Example 5.6.3] Comparison of mean absolute error (MAE) convergence of the
four sampling strategies after the requirement is loosened by 10 feet.

100 200 300 400 500

Samples

4

6

8

10

12

14

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

(a) MAE convergence

100 200 300 400 500

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
PDF Mean
PDF Variance

(b) Ratio of tests where Algorithm 8 outperforms
or matches existing sampling strategies

Figure 5-29: [Example 5.6.3] Comparison of mean absolute error (MAE) convergence of the
four sampling strategies after the requirement is loosened by 20 feet.

191

100 200 300 400 500

Samples

0.5

1

1.5

2

2.5

3

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
) Open-Loop (Random)

PDF Mean
PDF Variance
CDF Variance

(a) Percent reduction after top 1% removed

100 200 300 400 500

Samples

3

4

5

6

7

8

9

P
er

ec
en

t
Im

p
ro

ve
m

en
t

(%
) Open-Loop (Random)

PDF Mean
PDF Variance
CDF Variance

(b) Percent reduction after top 5% removed

Figure 5-30: [Example 5.6.3] Concentration of prediction error in points with the top 1-5%
of CDF variance. These plots illustrate the reduction in MAE after the points with the top
1-5% of CDF variance have been removed.

regions in Θ𝑑 where confidence in the prediction accuracy is low. The two plots in

this figure demonstrate the same exact observations as before; when the points with

the top 1% and 5% of CDF variance are removed, the recomputed MAE experiences

a noticeable improvement in prediction accuracy, meaning most of the points with

high prediction error were removed.

Effects of Heteroscedastic Distributions

The stochastic lateral-directional autopilot is also a good example to highlight the

effects of heteroscedastic distributions with spatially-varying 𝜖𝑦(𝜃). The previous

figures averaged standard deviation 𝜖𝑦 over all 𝜃 ∈ Θ𝑑; however, the true 𝜖𝑦 will

vary across Θ𝑑. Figure 5-31 demonstrates the large changes in variance 𝜖2𝑦(𝜃) given

different parametric uncertainties. These variance levels correspond to the original

requirement with the 35 foot altitude window.

The real danger of the large changes in variance is how they will impact the

predictions if 𝜖𝑦 is assumed to be constant across Θ𝑑. At least in this example, het-

eroscedastic noise will not cause the baseline Gaussian process prediction model to

completely breakdown and fail to return any predictions, but it will negatively affect

the predictions. Figure 5-32 illustrates the increase in mean absolute error when the

192

5 10 15

Pitch (deg)

80

90

100

110

120

130

140
Y

aw
 (

d
eg

)

10

20

30

40

50

60

V
ar

ia
n

ce

(a) 2D snapshot of variance at roll(0) = -60∘,
𝐼𝑦𝑦 = 6930(𝑘𝑔 ·𝑚2)

5 10 15

Pitch (deg)

80

90

100

110

120

130

140

Y
aw

 (
d

eg
)

10

20

30

40

50

60

V
ar

ia
n

ce

(b) 2D snapshot of variance at roll(0) = +24∘,
𝐼𝑦𝑦 = 6930(𝑘𝑔 ·𝑚2)

Figure 5-31: [Example 5.6.3] Changes in variance 𝜖2𝑦(𝜃) across Θ𝑑 as the result of a het-
eroscedastic Gaussian distribution. As initial roll angle varies, the variance 𝜖2𝑦(𝜃) also
changes. These two figures are only snapshots of the changes across Θ𝑑, but highlight
the largest disparity in the values.

baseline homoscedastic GP from (5.8) is inadvertently applied to heteroscedastic dis-

tributions. In comparison to the homoscedastic version of the problem in Figure 5-27,

the four sampling algorithms have a noticeable increase in MAE levels. For the CDF

variance- and PDF mean-focused sampling procedures, the new values correspond to

a 44% and 46% increase over the results in Figure 5-27. The increase in MAE is even

higher for the passive and PDF variance-based procedures; they have a 93% and 113%

increase over the MAE levels in the homoscedastic problem. These results highlight

the need for careful consideration of whether Assumption 5.3 and the standard GP

(5.8) applies or whether the heteroscedastic GP discussed in Section 5.4 should be

used instead.

The use of heteroscedastic GP prediction models drastically improves some of the

prediction errors. Unfortunately, the variational HGP prediction method [138, 142]

presented in Section 5.4.1 is both very sensitive and expensive to train. In fact, the

heteroscedastic Gaussian process model will not work at all for random sampling al-

gorithms and the PDF mean-focused active sampling process. It will only return a

numerically stable result when training data is collected with the PDF variance-based

selection criteria or the new CDF variance-based criteria. These numerical instabili-

193

100 150 200 250 300 350 400 450 500

Samples

5

10

15

20

25

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
PDF Mean
PDF Variance
CDF Variance

Figure 5-32: [Example 5.6.3] Degradation in mean absolute error if the baseline homoscedas-
tic GP from (5.8) is applied to a heteroscedastic distribution.

ties highlight the need for more effective and numerically stable inference methods for

spatially-varying 𝜖𝑦, but that is beyond the scope of this thesis. Despite the trouble

with numerical stability, the results that did complete do indicate the potential of

heteroscedastic GPs to improve prediction errors. More specifically, closed-loop veri-

fication with heteroscedastic GPs drastically improves the MAE convergence for the

PDF variance-based approach. Figure 5-33 demonstrates a 41% reduction in mean

absolute error when closed-loop verification uses a heteroscedastic GP model versus a

homoscedastic GP regression model. Although numerical instabilities and sensitivi-

ties prevent a full comparison of the various approaches, this discussion does indicate

the challenges posed by spatially-varying 𝜖𝑦(𝜃) and modeling those distributions. Fu-

ture work should more carefully examine different modeling techniques for improved

inference given non-uniform Gaussian distributions.

5.7 Summary

This chapter developed stochastic extensions of the statistical verification approaches

in Chapter 4 to address the open problem of verification in stochastic nonlinear sys-

tems. The chapter presented three main contributions for stochastic verification.

First, Section 5.2.1 modified GP-based prediction models to handle noisy measure-

ments and predict the satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) at all points in Θ.

194

100 150 200 250 300 350 400 450 500

Samples

8

10

12

14

16

18

20

22

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Homoscedastic GP
Heteroscedastic GP

Figure 5-33: [Example 5.6.3] Comparison of mean absolute error (MAE) convergence for
the PDF variance-based active sampling procedure using homoscedastic vs. heteroscedastic
GP models. As the true likelihood model has heteroscedastic noise, the heteroscedastic
GP should outperform the homoscedastic GP model, but the results indicate a significant
reduction in MAE.

Second, the chapter introduced CDF variance in Section 5.2.2 as an efficient method

for online quantification of prediction accuracy. Although the lack of an analytical

solution for CDF variance prevents it from explicitly measuring the accuracy, the ap-

proximation is still extremely useful for identification of regions with low prediction

confidence. Results in Section 5.6 repeatedly demonstrate this metric’s ability to cor-

rectly identify regions of high prediction error without external validation methods.

Lastly, the chapter developed new active sampling criteria for closed-loop verifica-

tion of stochastic systems. The new CDF variance-based algorithms were able to

consistently match or outperform the existing sampling strategies regardless of the

underlying distribution of the robustness measurements.

195

196

Chapter 6

Extension: Stochastic Verification

with Bernoulli Evaluations of

Performance

Although Sections 5.4 and 5.5 discussed extensions to Algorithms 7 and 8 which enable

them to address a wider class of problems, the Gaussian process-based verification ap-

proach in Chapter 5 does not address all types of stochastic verification problems. In

particular, not all systems are able to provide real-valued measurements of trajectory

robustness. This chapter presents the more general form of stochastic verification

that encompasses a significantly wider class of possible problems. Rather than scalar

robustness measurements, this approach relies upon Bernoulli distributions of binary

evaluations of performance satisfaction to construct predictions models. As it re-

lies upon binary evaluations for feedback on trajectory robustness, this work can be

viewed as the stochastic equivalent of Chapter 3.

Despite the change to Bernoulli distributions, the chapter will follow roughly the

same structure as Chapter 5. The first section will rewrite the problem from Section

5.1 in terms of Bernoulli distributions of binary measurements. The next section will

introduce expectation propagation Gaussian process models as the new modeling and

inference method for predictions of the probability of satisfaction at different oper-

ating conditions. Given this prediction model, Section 6.2.2 will rederive closed-loop

197

statistical verification to match the new inference method. Although the implemen-

tation details have changed, Section 6.2.2 will also show that the underlying selection

criteria is the same as in Section 5.3: reduce the variance of the cumulative distribu-

tion function. The last section will demonstrate the new verification procedures on

two relevant systems.

6.1 Problem Description

Consider the same exact form of stochastic closed-loop system from (5.1). In these

systems, the state dynamics are affected not by just deterministic parametric un-

certainties 𝜃, but also stochastic noise w(𝑡). The stochastic noise may come from a

variety of different sources, such as process and measurement noise, and is assumed to

be the sole source of randomness in the closed-loop system. Regardless of the source,

the end result of stochastic noise in the dynamics is the same: no two trajectories

will be the same.

Unlike Chapter 5, this work reverts back to the original type of performance

satisfaction measurements from Chapter 3.

Assumption 6.1. A certification oracle or expert provides deterministic Boolean

evaluations on whether a specific trajectory Φ(x(𝑡)|x0,𝜃) satisfied the performance

requirements. The Boolean evaluations are output as binary measurements where

𝑦 = +1 corresponds to “satisfactory” performance, while 𝑦 = −1 corresponds to

“unsatisfactory” performance.

The certification authority will return a single binary measurement for each trajectory.

Although the system dynamics are stochastic, the binary measurements themselves

are deterministic with respect to a given trajectory.

Remark 6.2. As was mentioned in Chapter 5, the measurements are assumed to

be deterministic with respect to the exact trajectory Φ(x(𝑡)|x0,𝜃).

Deterministic evaluations with respect to trajectory Φ(x(𝑡)|x0,𝜃) means that, given

the same exact sequence of states {x(𝑡 = 0), . . . ,x(𝑡), . . . ,x(𝑡 = 𝑇𝑓𝑖𝑛𝑎𝑙)}, the certifica-

198

tion authority will always return the same measurement 𝑦 = {+1,−1}. Stochasticity

will cause any repeated simulations or experiments at the same (x0,𝜃) to produce

completely new sequences of states, but the binary measurements themselves are not

stochastic.

While binary evaluations 𝑦 = {+1,−1} are not as informative as non-binary

measurements with 𝑦 ∈ R, both types of measurements still indicate the same fun-

damental result: whether the trajectory satisfied the performance requirement. This

fact is an important observation as non-binary measurements 𝑦 ∈ R are not always

available, but binary evaluations are since the trajectory will either satisfy the re-

quirement or not. In many problems, the oracle/expert is only able to provide crude

Boolean evaluations of trajectory robustness rather than more informative STL ro-

bustness degrees or equivalents. For instance, if trajectories were rated by human

experts, it would be difficult and time consuming to have the human experts provide

non-discrete evaluations. In general, the most they would be expected to provide is a

score from a small discrete set of options, such as integers between 1− 10. Addition-

ally, the set of performance requirements themselves may not be in a form suitable for

STL or similar metrics. For example, inverse reinforcement learning (IRL) [151–153]

considers the problem of replicating the unknown, underlying reward function that

motivates a (human) expert’s actions. Verification problems with human certification

experts/oracles can easily be viewed as an IRL problem because the logic used by

the human expert is typically not known and hard to quantify. Therefore, it would

extremely difficult to compute a function that replicates the latent, underyling deci-

sion making process, but rather straightforward to simply query the expert for binary

evaluations and reproduce the shape. Essentially any verification problem will be able

to output binary measurements for trajectory robustness.

Despite the difference in measurement types, the verification problem remains the

same.

Definition 6.3. There exists a satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1]

which defines the likelihood an arbitrary simulation or experimental test initialized at

𝜃 ∈ Θ will satisfy the performance requirement.

199

The only difference between Definitions 5.4 and 6.3 is that P(𝑦(𝜃) > 0) = P(𝑦(𝜃) =

+1) for stochastic systems with binary measurements. In fact, the satisfaction proba-

bility function is actually the expected value of a Bernoulli distribution at parameter

setting 𝜃. Each trajectory initialized at 𝜃 can be viewed as a Bernoulli trial with

only two options - the corresponding binary measurement. Here, the two outcomes

are {−1,+1} rather than the customary {0, 1} in Bernoulli trials. The objective of

statistical verification is to compute an estimated satisfaction probability function̂︀𝑝𝑠𝑎𝑡(𝜃) to predict the likelihood of success at all operating conditions in Θ (the same

objective as Prob. 5.1).

The primary challenge with binary measurements in stochastic systems is that the

single binary measurement associated with each trajectory does not provide adequate

information about the likelihood of satisfaction by itself. Previously in Chapter 5,

one noisy measurement was suitable to estimate the entire distribution of 𝑦(𝜃) at that

parameter vector. Now, multiple measurements will need to be taken at the same 𝜃 lo-

cation in order for anything to be inferred about the probability P(𝑦(𝜃) = +1). These

multiple measurements define a binomial distribution at 𝜃, which is a finite sequence

of independent Bernoulli trials that are drawn from the same distribution. This bino-

mial distribution can be used to empirically estimate the underlying expected valuê︀𝑝𝑠𝑎𝑡(𝜃), but may require a substantial number of trajectories for ̂︀𝑝𝑠𝑎𝑡(𝜃) −→ 𝑝𝑠𝑎𝑡(𝜃).

Figure 6-1 demonstrates this slow convergence on a repeat of the example from Fig-

ure 5-2. A number of simulations are performed at the same parameter setting 𝜃, with

the resulting trajectories shown in Figure 6-1(a). Given a finite number of trajecto-

ries and corresponding measurements, the empirical estimate ̂︀𝑝𝑠𝑎𝑡(𝜃) in Figure 6-1(b)

only begins to approach the true 𝑝𝑠𝑎𝑡(𝜃) = 0.844 as the number of repetitions grows

larger than 20. From the perspective of predicting 𝑝𝑠𝑎𝑡(𝜃) at all 𝜃 ∈ Θ, 20 samples

is an intractably large number, as it would require 20 simulations or experiments at

each 𝜃 ∈ Θ. This issue will have to be addressed by the inference technique in order

for statistical verification to be a viable method.

200

(a) 20 trajectories with the same initialization

5 10 15 20 25 30

Number of repeated trajectories

0.5

0.6

0.7

0.8

0.9

1

C
o

m
p

u
te

d
 P

(y
>0

)

(b) Binomial estimate for ̂︀𝑝𝑠𝑎𝑡(𝜃)
Figure 6-1: Binomial distributions for empirical computation of ̂︀𝑝𝑠𝑎𝑡(𝜃). The left-hand plot
displays 20 trajectories with the same initialization. The right-hand plot shows the change
in the empirical average for ̂︀𝑝𝑠𝑎𝑡(𝜃) as additional simulations are performed.

6.2 Probabilistic Classifiers for Stochastic Verifica-

tion

The fact that each simulation or experiment can only be regarded as a single, uninfor-

mative Bernoulli trial adds further complication to the statistical prediction model.

The model must still infer the change in 𝑝𝑠𝑎𝑡(𝜃) across Θ, but a single measurement

𝑦 can no longer define a distribution by itself as it did in Chapter 5. Instead, it is

necessary to obtain multiple trajectories at each training location in order to compute

an estimate for 𝑝𝑠𝑎𝑡(𝜃) at each training location,

̂︀𝑝𝑠𝑎𝑡(𝜃) =
1

𝑁𝐵

𝑁𝐵∑︁
𝑖=1

𝑦𝑖(𝜃) ∀𝜃 ∈ 𝒟 . (6.1)

This requirement for multiple measurements at each training location 𝜃 ∈ 𝒟 intro-

duces a second source of prediction error: the binomial confidence interval which

places bounds on |̂︀𝑝𝑠𝑎𝑡(𝜃) − 𝑝𝑠𝑎𝑡(𝜃)| according to ̂︀𝑝𝑠𝑎𝑡(𝜃) and the number of samples

at each training location 𝑁𝐵. As 𝑁𝐵 −→ ∞, the confidence interval around the

empirical estimate will shrink and therefore the impact of the value of 𝑁𝐵 at each

𝜃 ∈ 𝒟 should be directly incorporated into predictions.

201

Various inference techniques for modeling a spatially-varying Bernoulli satisfaction

function already exist, but most use a variation of Gaussian processes [85, 154–156].

One approach of note is the beta-binomial Gaussian process model [154] that exploits

the fact beta distributions are conjugate priors for binomial distributions to perform

Bayesian inference on the binomial distribution at each training location. It augments

the standard GP model with an additional covariance term for the binomial sample

variance produced by beta-binomial inference. A similar and more common approach

is expectation propagation Gaussian process (EP-GP) regression [85, 155, 156] for

probabilistic classification with noisy binary outputs. Rather than operate on the

binary measurements directly, EP-GPs transform the outputs from the current prob-

lem’s [0, 1] domain to a GP’s (−∞,+∞) domain with a nonlinear transformation.

Ultimately, both approaches are very similar as they both predict 𝑝𝑠𝑎𝑡(𝜃), but this

chapter utilizes the EP-GP technique. The same underlying concepts can be readily

applied to beta-binomial GP models with only slight modifications.

6.2.1 Expectation Propagation Gaussian Process Models

The main difference between EP-GP models and the standard GPs presented in

Chapter 5 is that the new EP-GP regression models estimate 𝑝𝑠𝑎𝑡(𝜃) directly rather

than through the intermediary PDF for 𝑦(𝜃). While operations on 𝑝𝑠𝑎𝑡(𝜃) instead of

intermediary 𝑦(𝜃) seem more straightforward, Bernoulli-distributed trajectory mea-

surements complicate the construction of the Gaussian process prediction model. For

one, the GP output for ̂︀𝑝𝑠𝑎𝑡(𝜃) falls within the range [0, 1], but Gaussian processes tra-

ditionally operate in the (−∞,+∞) domain. Likewise, the binary trajectory robust-

ness observations (𝑦(𝜃) = {−1, 1}) are no longer Gaussian distributed and therefore

require a new likelihood model.

Both of these complications are addressed by the inverse probit transformation.

The inverse probit transformation [85,155] maps a real-valued latent function ℎ(𝜃) ∈

202

R to 𝑝𝑠𝑎𝑡(𝜃) using the cumulative distribution of a standard Gaussian,

𝑝𝑠𝑎𝑡(𝜃) =

∫︁ ℎ(𝜃)

+∞
𝒩 (0, 1) =

1

2
+

1

2
erf

(︂
ℎ(𝜃)√

2

)︂
, (6.2)

or conversely

ℎ(𝜃) =
√

2 erf−1

(︂
2
(︁
𝑝𝑠𝑎𝑡(𝜃)− 1

2

)︁)︂
. (6.3)

To highlight the importance of the latent function during the computation of 𝑝𝑠𝑎𝑡(𝜃),

the inverse probit transformation will be written as 𝑝𝑠𝑎𝑡(𝜃) = Ψ(ℎ(𝜃)). Using the

probit model, the likelihood for a stochastic binary measurement becomes

P
(︁
𝑦(𝜃) = 1|ℎ(𝜃)

)︁
= Ψ(ℎ(𝜃))0.5𝑦(𝜃)+0.5 +

(︀
1−Ψ(ℎ(𝜃))

)︀0.5𝑦(𝜃)−0.5

= Ψ
(︁
ℎ(𝜃) · 𝑦(𝜃)

)︁ (6.4)

since Ψ(ℎ(𝜃)) is symmetric. Additionally, as each measurement 𝑦(𝜃) is an indepen-

dent Bernoulli trial, the joint likelihood conveniently factorizes to

P(y|h) =

𝑁𝐵∏︁
𝑗=1

𝑁∏︁
𝑖=1

P(𝑦𝑖,𝑗|ℎ(𝜃𝑖)), (6.5)

assuming 𝑁 training locations and 𝑁𝐵 multiple measurements at each training loca-

tion. As before, the posterior distribution for the latent function h can be computed

by Bayes’ rule,

P(h|ℒ, 𝜓) ∝ P(y|h) P(h|𝒟, 𝜓), (6.6)

where P(h|𝒟, 𝜓) is the prior distribution. Despite the change in the likelihood model,

the prior distribution is still a multivariate Gaussian 𝒩 (h|m,K) with kernel function

𝜅, kernel hyperparameters 𝜓, and meanm. This chapter uses the squared exponential

kernel. In the absence of any prior knowledge about 𝑝𝑠𝑎𝑡(𝜃), the prior mean m is set

to E[ℎ(𝜃)] = 0, which corresponds to 𝑝𝑠𝑎𝑡(𝜃) = 0.5.

Due to the probit likelihood function, the posterior in (6.6) cannot be computed

analytically. Instead, the EP-GP model uses expectation propagation [85, 86] to

approximate the likelihood with a local likelihood approximation in the form of an

203

unnormalized Gaussian,

P(𝑦(𝜃𝑖) = 1|ℎ(𝜃𝑖)) ≈ ̃︀𝑍𝑖𝒩 (ℎ(𝜃𝑖)|̃︀𝜇𝑖, ̃︀𝜎2
𝑖), (6.7)

where ̃︀𝑍𝑖, ̃︀𝜇𝑖, ̃︀𝜎𝑖 are the site parameters. The EP-GP training process is quite involved,

but sequentially adjusts the site parameters to approximate the likelihood model best

supported by the observed training dataset. The training process will repeatedly

update these local approximations until the solution converges or it has run out

of allowable iterations. For a significantly more detailed description of the EP-GP

training process, see Chapter 3 in Rasmussen and Williams’ book [85].

The output of the training process is a Gaussian distribution𝒩
(︀
ℎ(𝜃*)|𝜇ℎ(𝜃*),Σℎ(𝜃*)

)︀
that provides an approximate posterior predictive distribution for the latent function

ℎ(𝜃*) at arbitrary parameter vector 𝜃*. This predictive distribution for ℎ(𝜃*) defines

the expected probability of satisfaction,

̂︀𝑝𝑠𝑎𝑡(𝜃*) =

∫︁
Ψ
(︀
ℎ(𝜃*)

)︀
𝒩
(︀
ℎ(𝜃*)|𝜇ℎ(𝜃*),Σℎ(𝜃*)

)︀
𝑑(ℎ(𝜃*))

=
1

2
+

1

2
erf

(︂
𝜇ℎ(𝜃*)√︀

1 + Σℎ(𝜃*)

)︂
.

(6.8)

Note that this final approximation is very similar to the Gaussian CDF from (5.14).

The variance of the predictions for 𝑝𝑠𝑎𝑡(𝜃), labeled 𝑉 (𝜃|ℒ, 𝜓) like it was in Chapter 5,

can be determined two different ways. First, it is possible to compute the variance us-

ing the predictive distribution for ℎ(𝜃*) and the inverse probit function. The resulting

approximate variance resembles (5.18) with 𝜖𝑦 = 1 since the inverse probit function

uses the standard Gaussian PDF. The second approach is to compute the variance of

the predictions as the variance of the Bernoulli distribution defined by ̂︀𝑝𝑠𝑎𝑡(𝜃). Both

approaches are explored in the upcoming closed-loop verification procedures and they

demonstrate very similar results.

Ultimately, the EP-GP model enables the verification framework to translate

stochastic binary data into predicted probability of requirement satisfaction at all

potential parametric uncertainties. The main downside of EP-GPs and all stochas-

204

tic Bernoulli approaches is the additional computational cost associated with the

more complicated training process. The new site parameters add more variables that

must be optimized during the hyperparameter optimization process, which takes ad-

ditional computations and lengthens the training process in comparison to Chapter 5.

Likewise, multiple measurements are typically required at each training location and

therefore the training sets ℒ will have more datapoints, requiring more computational

resources and time to first perform the simulations or experiments and then compute

the predictions with the larger ℒ.

6.2.2 Closed-Loop Statistical Verification

Despite the change in measurements and prediction models, closed-loop statistical

verification with Bernoulli trials uses the same sampling procedures from Chapter 5

with only minor modifications. Algorithms 9-11 detail these new techniques. The

biggest differences between Algorithms 9-11 and the algorithms in Chapter 5 are

multiple simulations/experiments performed at each training location and a slight

change to the selection criteria.

Rather than select training locations based upon posterior CDF variance reduction

as in Section 5.3, these new variants will only select training locations with the highest

current CDF variance. There is no analytical method for computing posterior CDF

variance at a particular training location like there was for Gaussian-distributed mea-

surements. However, the analysis in Section 5.3 did identify the posterior reduction

in CDF variance was generally highest at 𝜃 locations with large CDF variance. Thus,

the three active sampling algorithms for Bernoulli distributions examine current CDF

variance in place of the unknown posterior CDF variance reduction.

The use of multiple measurements at each training location adds an additional

for-loop. For example, in Algorithm 9 after the best training location 𝜃 has been

selected, the algorithm performs 𝑁𝐵 simulations or experiments at 𝜃. All 𝑁𝐵 of the

corresponding measurements are then added to y instead of a single scalar value.

Algorithms 10 and 11 have a similar modification so that ultimately 𝑁𝐵 trajectories

are obtained for each of the 𝑀 training locations in the batch 𝒮. Because the CDF

205

Algorithm 9 Sequential closed-loop stochastic verification framework

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , # of simulations at each location 𝑁𝐵

2: Initialize: train EP-GP prediction model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Select 𝜃 = argmax
𝜃∈𝒰

𝑉 (𝜃|ℒ, 𝜓)

5: for 𝑗 = 1, 2, . . . , 𝑁𝐵 do

6: Perform test at 𝜃, obtain measurements 𝑦(𝜃)
7: Add {𝜃, 𝑦(𝜃)} to training set ℒ
8: end for

9: Retrain EP-GP model with updated ℒ
10: end for

11: Return: expected value of the satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and cor-
responding variance 𝑉

(︀
𝜃|ℒ, 𝜓

)︀
variance will be more sensitive in regions where ̂︀𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5, it may be advantageous

to obtain more trajectory data at parameter settings with ̂︀𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5 than at points

where ̂︀𝑝𝑠𝑎𝑡(𝜃) is close to 0 or 1. Therefore, the algorithms do not remove sampled

locations from the list of available training locations, meaning 𝒰 = Θ𝑑. This allows the

algorithm to ultimately select more than 𝑁𝐵 measurements at a particular parameter

setting if the selection criterion expects these additional measurements will improve

the predictions.

6.3 Simulation Results

In order to highlight the benefits and limitations of closed-loop statistical verification

with Bernoulli measurements, Algorithms 10 and 11 are demonstrated on two stochas-

tic versions of systems from earlier chapters. The first example examines the same

problem from Section 5.6.1 in the last chapter, while the second example considers a

stochastic version of the Van der Pol oscillator from Section 3.5.1. This last example

will also identify cases where the new CDF variance-based active sampling algorithms

will not demonstrate significant improvements over other sampling strategies.

206

Algorithm 10 Batch closed-loop stochastic verification framework using importance-
weighted random sampling

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀 , # of simulations at each location 𝑁𝐵

2: Initialize: train EP-GP prediction model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: Transform 𝑉 (𝜃|ℒ, 𝜓) into probability distribution 𝑃𝑉 (𝜃)
6: Generate 𝑀 random samples from 𝑃𝑉 (𝜃), add to 𝒮
7: for 𝑗 = 1, 2, . . . , 𝑁𝐵 do

8: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
9: Add {𝒮,y𝒮} to training set ℒ
10: end for

11: Retrain EP-GP model with updated ℒ
12: end for

13: Return: expected value of the satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and cor-
responding variance 𝑉

(︀
𝜃|ℒ, 𝜓

)︀

Algorithm 11 Batch closed-loop stochastic verification framework using determi-
nantal point processes

1: Input: initial training set ℒ = {𝒟,y}, available sample locations 𝒰 , # of itera-
tions 𝑇 , batch size 𝑀 , # of simulations at each location 𝑁𝐵

2: Initialize: train EP-GP prediction model
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Initialize: 𝒮 = ∅
5: Transform 𝑉 (𝜃|ℒ, 𝜓) into probability distribution 𝑃𝑉 (𝜃)
6: Generate 𝑀𝑇 random samples from 𝑃𝑉 (𝜃), construct k-DPP
7: Generate 𝑀 random samples from k-DPP, add to 𝒮
8: for 𝑗 = 1, 2, . . . , 𝑁𝐵 do

9: Perform tests ∀𝜃 ∈ 𝒮, obtain measurements y𝒮
10: Add {𝒮,y𝒮} to training set ℒ
11: end for

12: Retrain EP-GP model with updated ℒ
13: end for

14: Return: expected value of the satisfaction probability function ̂︀𝑝𝑠𝑎𝑡(𝜃) and cor-
responding variance 𝑉

(︀
𝜃|ℒ, 𝜓

)︀

207

6.3.1 Concurrent Learning Model Reference Adaptive Con-

troller

This example considers the same stochastic CL-MRAC system from Section 5.6.1.

The uncertain open-loop system is subject to two parametric uncertainties 𝜃 =

[𝜃1, 𝜃2]
𝑇 and also corrupted by zero-mean Gaussian process noise w(𝑡) ∼ 𝒩 (0,Σ𝑤)

with diagonal covariance matrix Σ𝑤 = diag([5, 5]). The adaptive control system es-

timates the two uncertain parameters and attempts to track the desired reference

trajectory x𝑚(𝑡). The performance requirement states the state variable 𝑥1(𝑡) must

remain within 1 unit of the reference state 𝑥𝑚1(𝑡) over the entire 40 second trajec-

tory for the trajectory’s performance to be considered “satisfactory”, i.e. 𝑦 = +1.

As before, the set of all possible parameter settings (Θ) was approximated with a

finite sampling grid Θ𝑑 of 40,401 possible parameter vectors spanning |𝜃1| ≤ 10 and

|𝜃2| ≤ 10.

The true probability of requirement satisfaction 𝑝𝑠𝑎𝑡(𝜃) is directly taken from the

same dataset used in Section 5.6.1. In order to determine 𝑝𝑠𝑎𝑡(𝜃), 50 simulations

were performed at each of the possible sampling locations in Θ𝑑 and the cumulative

distribution produced 𝑝𝑠𝑎𝑡(𝜃). The true probability of satisfaction is displayed in

Figure 6-2, which is the same exact shape shown earlier in Figure 5-9. Unlike that

previous example, the satisfaction of the requirements is not measured through real-

valued scalar measurements, but rather through binary evaluations 𝑦(𝜃) = {−1, 1}.

This example compares both Algorithms 10 and 11 against one another as well

as a random sampling procedure. Because of the lack of non-binary measurements in

these problems, there are no existing PDF mean- or variance-based active sampling

procedures to compare Algorithms 10 and 11 against. Instead, an active sampling

algorithm that selects 𝜃 vectors with ̂︀𝑝𝑠𝑎𝑡(𝜃) predictions closest to ̂︀𝑝𝑠𝑎𝑡(𝜃) = 0.5

was developed as a rough equivalent to the PDF mean-based procedure from the

preceding chapter. In this example, all of the sampling procedures start with 30

randomly-selected initial training locations with 5 simulations performed at each of

these locations for a total of 150 binary evaluations in ℒ. Figure 6-3(a) displays one

208

Figure 6-2: [Example 6.3.1] True probability of satisfaction 𝑝𝑠𝑎𝑡(𝜃) for the stochastic CL-
MRAC system. Note, this is the same 𝑝𝑠𝑎𝑡(𝜃) from Figure 5-9.

(a) At the initial training step (b) After 20 iterations of Algorithm 11

Figure 6-3: [Example 6.3.1] Predicted satisfaction probability function at the initial training
step and after 20 iterations of Algorithm 11.

of these initial training datasets and the resulting ̂︀𝑝𝑠𝑎𝑡(𝜃). In comparison to the true

shape in Figure 6-2, these predictions fail to adequately replicate the true probability

function 𝑝𝑠𝑎𝑡(𝜃).

The four sampling approaches operate in batches of 𝑀 = 5 training locations

and 𝑁𝐵 = 5 simulations at each of those training locations until a limit of 𝑇 = 20

iterations has been reached. Figure 6-3(b) illustrates the final predictions after 20

iterations of Algorithm 11 have been performed. The resulting predictions are sig-

209

100 200 300 400 500 600

Samples

2

4

6

8

10

12

14

16

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
CDF Mean
CDF Variance (IW)
CDF Variance (DPP)

Figure 6-4: [Example 6.3.1] Comparison of mean absolute error (MAE) convergence for the
different sampling strategies. The results compare both Algorithms 10 (IW) and 11 (DPP)
against the CDF mean-focused and open-loop approaches.

nificantly more accurate estimates of 𝑝𝑠𝑎𝑡(𝜃) from Figure 6-2 than the initial step in

Figure 6-3(a). Indeed, all four sampling approaches are able to noticeably reduce the

mean absolute error (MAE), as seen in Figure 6-4. This figure compares the distri-

bution of mean absolute errors over 150 randomly-initialized test cases. Algorithms

10 and 11 demonstrate extremely similar MAE convergence, with DPP-based Algo-

rithm 11 slightly outperforming the importance-weighted sampling approach. The

improvement in MAE convergence over the competing sampling approaches is shown

in Figure 6-5. Both of the new active sampling algorithms based upon CDF variance

either outperform or match the MAE convergence of the open-loop random sampling

procedure and the active sampling procedure that uses the CDF mean-focused se-

lection criterion. As was seen in Figure 6-4, the DPP-based algorithm is slightly

better than Algorithm 10. All of these results suggest the proposed active sampling

algorithms based upon CDF variance will select informative 𝜃 ∈ Θ𝑑 to improve the

predictions.

210

100 200 300 400 500 600

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
CDF Mean

(a) Algorithm 10: CDF variance (IW)

100 200 300 400 500 600

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
CDF Mean

(b) Algorithm 11: CDF variance (DPP)

Figure 6-5: [Example 6.3.1] Ratio of runs where Algorithms 10 and 11 directly outperform
or match the MAE levels of the other sampling approaches.

6.3.2 Stochastic Van der Pol Oscillator

The second example is a stochastic version of the unstable Van der Pol oscillator

from Section 3.5.1. However, the Van der Pol oscillator is not naturally a stochastic

system, so stochasticity was artificially added to the problem. The dynamics (3.19)

are kept deterministic, but the initial conditions x(0) = [𝑥1(0), 𝑥2(0)]𝑇 are corrupted

by stochastic noise. As was the case in Section 3.5.1, the initial conditions are also

functions of parametric uncertainties 𝜃. In short, the initial conditions x(0) are given

by

x(0) = x0 + 𝜃 + w (6.9)

where x0 = [0, 0]𝑇 , 𝜃 = [𝜃1, 𝜃2]
𝑇 , and w = diag([0.01, 0.01]). These initial conditions

ultimately determine the stability of the nonlinear system.

Due to the stochasticity, a particular 𝜃 vector will no longer deterministically

decide whether the system is stable or not, as was seen in Figure 3-1. Instead, there

will be a probability that the system’s subsequent trajectory is stable. The underlying

probability of satisfaction function 𝑝𝑠𝑎𝑡(𝜃) is shown in Figure 6-6. In comparison to

Figure 3-1(a), the probability of satisfaction is no longer just P(𝑦(𝜃) = 1) ∈ {0, 1},

but covers the whole range of probabilities between 0 and 1. Despite the change

to 𝑝𝑠𝑎𝑡(𝜃) ∈ [0, 1], it is still possible to see the rough outline of the deterministic

211

Figure 6-6: [Example 6.3.2] True probability of satisfaction 𝑝𝑠𝑎𝑡(𝜃) for the stochastic Van
der Pol oscillator.

region-of-attraction from Figure 3-1(a).

The comparison of the active sampling procedures is similar to the preceding CL-

MRAC example. In this example, the four sampling strategies all start from an initial

training dataset of 20 randomly-selected training locations with 5 simulations at each

location for a total of 100 initial training datapoints. These training points are taken

from grid Θ𝑑 of 14,461 possible sample locations covering 𝜃1 : [−3, 3] and 𝜃2 : [−3, 3].

An initial training dataset and the resulting prediction model for ̂︀𝑝𝑠𝑎𝑡(𝜃) is shown

in Figure 6-7(a). The initial predictions do not adequately estimate the true 𝑝𝑠𝑎𝑡(𝜃)

and more samples are needed. The four sampling strategies operate in batches of

𝑀 = 5 training locations with 𝑁𝐵 = 5 simulations at each of those locations. The

procedures will run until a limit of 𝑇 = 20 iterations has been reached. The same

example from Figure 6-7(a) after the completion of the 20 iterations of Algorithm 11

are shown in Figure 6-7(b). While it does not perfectly replicate the true 𝑝𝑠𝑎𝑡(𝜃), the

model’s output for ̂︀𝑝𝑠𝑎𝑡(𝜃) is a closer approximation of 𝑝𝑠𝑎𝑡(𝜃).

Figures 6-8 and 6-9 compare the prediction performance of the various sampling

approaches over 150 randomly-initialized test runs. Just as in Section 6.3.1, Al-

gorithms 10 and 11 demonstrate lower average MAE than the other sampling ap-

proaches. When the results for the CDF mean-based and open-loop, random sam-

212

(a) At the initial training step (b) After 20 iterations of Algorithm 11

Figure 6-7: [Example 6.3.2] Predicted satisfaction probability function at the initial training
step and after 20 iterations of Algorithm 11.

pling procedures are directly compared against the results from Algorithms 10 and

11 in each of the 150 test runs, the CDF variance-based approaches outperform or

match the mean absolute error levels of the other strategies in nearly 100% of the

test run. This favorable MAE performance indicates Algorithms 10 and 11 are the

best active sampling strategies to employ in order to minimize prediction error for

this particular example.

While the new CDF variance-based sampling algorithms clearly outperformed the

other strategies in the VDP example with stochastic noise set tow = diag ([0.01, 0.01]),

their improvement over the competing strategies will diminish as the noise increases.

When the noise is increased to w = I, the true probability of satisfaction 𝑝𝑠𝑎𝑡(𝜃) has

a much lower gradient. This new shape is shown in Figure 6-10. Due to the more

gradual slope, a significantly higher ratio of the datapoints fall between 𝑝𝑠𝑎𝑡(𝜃) = 0

and 1 and a larger portion of those 𝜃 locations have 𝑝𝑠𝑎𝑡(𝜃) ≈ 0.5. In fact, 63% of

Θ𝑑 has a probability of satisfaction between 0.2 and 0.8 and 77% is between 0.1 and

0.9. For the original noise setting with w = diag ([0.01, 0.01]), these percentages were

only 25% and 36%. Since the CDF variance is generally much higher at points with

a probability of satisfaction near 0.5, all those points will have a similar level of CDF

variance and the probability P𝑉 (𝜃) used by both Algorithms 10 and 11 will be closer

to the uniform distribution used by the open-loop, random sampling approach. Like-

213

100 200 300 400 500 600

Samples

4

6

8

10

12

14

16

18

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
CDF Mean
CDF Variance (IW)
CDF Variance (DPP)

Figure 6-8: [Example 6.3.2] Comparison of mean absolute error (MAE) convergence for the
different sampling strategies. The results compare both Algorithms 10 (IW) and 11 (DPP)
against the CDF mean-focused and open-loop approaches.

100 200 300 400 500 600

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
CDF Mean

(a) Algorithm 10: CDF variance (IW)

100 200 300 400 500 600

Samples

0

20

40

60

80

100

O
u

tp
er

fo
rm

s
(%

)

Open-Loop (Random)
CDF Mean

(b) Algorithm 11: CDF variance (DPP)

Figure 6-9: [Example 6.3.2] Ratio of runs where Algorithms 10 and 11 directly outperform
or match the MAE level of the other sampling approaches.

wise, since a larger majority of the points in Θ𝑑 have a probability of satisfaction that

is close to 𝑝𝑠𝑎𝑡(𝜃) = 0.5, the CDF mean-based sampling criterion that selects points

with ̂︀𝑝𝑠𝑎𝑡(𝜃) close to 0.5 will more evenly distribute training locations than it had be-

fore with the higher magnitude gradient in Figure 6-6. Therefore, the different sample

selection criteria weight the different sampling locations similarly and will none will

have a clear advantage over the others. This exact result is seen in Figure 6-11 where

all four of the sampling strategies have roughly the same MAE convergence. For

214

Figure 6-10: [Example 6.3.2] True probability of satisfaction 𝑝𝑠𝑎𝑡(𝜃) for the high variance
case.

100 200 300 400 500 600

Samples

6

8

10

12

14

16

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(%
)

Open-Loop (Random)
CDF Mean
CDF Variance (IW)
CDF Variance (DPP)

Figure 6-11: [Example 6.3.2] Comparison of mean absolute error (MAE) convergence for the
different sampling strategies for the high variance case. The results compare both Algorithms
10 (IW) and 11 (DPP) against the CDF mean-focused and open-loop approaches.

comparison, this same trend was observed in Section 5.6 as the stochastic noise was

increased in the CL-MRAC and autopilot examples. These results don’t necessarily

identify a problem with the CDF variance selection criteria since the MAE perfor-

mance is the same as the other procedures, but definitely highlight the limitations of

Algorithms 10 and 11 when applied to systems with large stochastic noise.

215

6.4 Summary

This chapter redeveloped the stochastic statistical verification frameworks from Chap-

ter 5 for problems that are only able to produce binary measurements of performance

requirement satisfaction. These binary measurements are Bernoulli trials drawn from

the underlying probability function 𝑝𝑠𝑎𝑡(𝜃) that describes the probability of require-

ment satisfaction at every possible parameter setting. Section 6.2 introduced expec-

tation propagation Gaussian processes as the modeling and inference technique for

predicting 𝑝𝑠𝑎𝑡(𝜃) and Section 6.2.2 detailed the necessary changes to the closed-loop

statistical verification methods to accept binary measurements. The two examples

in Section 6.3 demonstrated the effectiveness of the modified statistical verification

frameworks and highlighted their strengths and limits.

In comparison to Chapter 5, this Chapter makes no restrictive assumptions about

the type or distribution of measurements. Due to the binary nature of verification,

every stochastic verification problem can be rederived as a problem with Bernoulli

distributions of binary measurements. As a result, every example from Chapter 5

can actually be written in terms of Bernoulli distributions. While this fact serves as

bridge between the two chapters and explains why they share the same concepts and

general approaches, it does not mean every stochastic verification problem should be

converted into this chapter’s more general representation. The increased complexity

of EP-GP models increases the computational cost of training in comparison to the

the standard Gaussian prediction models in Chapter 5. More importantly, these

procedures also generally require more simulations or experimental runs in order to

converge to a similar level of prediction errors. Therefore, the work presented in this

chapter is an alternative approach to Chapter 5 that can handle a wider class of

problems, but which also sacrifices efficiency and prediction accuracy for this wider

applicability.

216

Chapter 7

Multi-Stage Verification and

Experimental Testing

This chapter addresses implementation challenges that arise during multi-stage veri-

fication and develops new procedures specifically tailored to real-world, experiment-

based scenarios with stringent safety considerations. As discussed in Section 1.2.1 and

displayed in Figure 1-2(b), verification sometimes spans multiple stages of increasing

complexity and fidelity. For instance in aircraft control system design, the closed-

loop performance of the aircraft would first be verified in lower-fidelity simulation

models to weed out wildly undesirable designs, then verified with more realistic sim-

ulations models, before the final design is flight tested on a flying prototype. In order

to speed up the process and improve the efficiency, information from earlier stages

should be passed to later stages in a principled manner. Additionally, a final stage

with actual hardware testing typically imposes a new set of constraints on the verifi-

cation procedure. Particularly when examining safety requirements, the closed-loop

system’s failure to satisfy a requirement might translate into partial or complete loss

of the prototype. As opposed to simulation-based verification where successes and

failures share the same computational cost, the cost of experimental failures greatly

outweighs the cost of satisfactory trajectories, so the verification procedure should

avoid failures. The following chapter both addresses forward transfer of information

between verification stages as well as introduces new procedures to minimize the risk

217

of experimental failures during data-driven verification.

The chapter is organized around four sections. First, Section 7.1 presents a simple,

but theoretically-justified, approach to transfer information from earlier verification

stages to later stages. This approach inputs the predictions from earlier stages as

nonzero-mean priors in order to incorporate their effect without assuming they are

completely accurate in the later stages. Section 7.2 introduces the problem of fail-

ure constraints in experiment-based statistical verification, where the greater cost

of trajectories that fail to satisfy safety requirements motivates the need to avoid

parametric uncertainties associated with a high probability of failure. The failure-

adverse closed-loop statistical verification procedures in Section 7.3 are specifically

developed to minimize the number of failures during the verification process and are

demonstrated in Section 7.4.

7.1 Forward Transfer in Multi-Stage Verification

One of the main challenges in multi-stage verification is the incorporation of predic-

tions from preceding verification stages into the training process of the prediction

model in later stages. This challenge evolves out of a number of different consider-

ations. First, earlier verification stages typically use lower-fidelity models with sim-

plified dynamics while the later stages rely upon more realistic models with higher-

order dynamics and higher-fidelity effects. At the extreme, real-world experiments

are treated as the highest-fidelity “simulator” with unmodeled dynamics. However

slight the differences between lower- and higher-fidelity models, they may be enough

to result in drastically different predictions, which makes it inadvisable to blindly

trust the accuracy of predictions from earlier verification stages in later stages.

Similarly, the various stages could address different verification problems where

the objectives do not completely overlap. For instance, the closed-loop system may be

verified on a deterministic simulation model before it is verified on a stochastic sim-

ulation model. However, the binary classification objective of Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙 in Chapters

3 and 4 is different than the prediction of the satisfaction probability function 𝑝𝑠𝑎𝑡(𝜃)

218

in Chapters 5 and 6. Potential differences in verification objectives will challenge the

transfer of predictions into later stages.

While these issues seem to discourage the transfer of information between stages,

it is also important to highlight the potential improvements in efficiency and accuracy

forward transfer of predictions may provide. As shown in Figure 1-2(b), the initial

verification stages will be used to prune out poorly-performing control system designs

earlier in the process as they will typically rely upon less expensive models. Even if

the information is completely discarded between different stages, the initial stages will

still improve the efficiency of the total process by avoiding wasted time or resources on

those extremely undesirable designs. However, the initial stage’s information could

still be useful to the later stages as it would indicate regions where the system is

expected to have extremely poor performance or vice-versa. Ultimately, multi-stage

verification needs to carefully balance the influence of prior information from earlier

stages with the potential for discrepancies between the different stages’ models.

7.1.1 Forward Transfer with Nonzero Priors

The solution to the challenge of balancing prior information with the potential for

discrepancies between models, at least in Chapters 4-6, is informative priors. The

approaches in all three of those chapters use nonparametric Gaussian processes to

infer the satisfaction of the performance requirements over the full set of possible

uncertainties Θ given a limited amount of training data. During the training pro-

cess, the statistical verification techniques assumed a zero-mean prior 𝒩 (0,K) for

the measurements in order to avoid incorrectly biasing the predictions without any

prior knowledge. This work replaces that zero-mean prior with the predictive output

of the GP in the preceding verification stage as a nonzero-mean prior in order to

explicitly incorporate that GP output as prior knowledge. Related work in multi-

fidelity [10, 28] and inverse [153] reinforcement learning has demonstrated significant

improvements in reinforcement learning policy convergence using nonzero-mean pri-

ors. In those problems, the learned policy’s cost function from the first model enters

as a nonzero-mean prior into the learning of an improved policy on a second model.

219

This section uses the same general concept, but instead passes predictions of the

trajectory robustness measurements in place of reinforcement learning policies.

The key assumption underlying forward transfer in multi-stage verification is that

the system and parametric uncertainties under consideration are the same between

stages.

Assumption 7.1. The verification stages all examine the same dynamical system,

albeit with different levels of model fidelity, and vary the same parameters 𝜃 ∈ Θ.

In short, Assumption 7.1 states that the verification stages must all address the same

problem. It makes little sense to exchange predictions between models with drastically

different dynamics and operating conditions. For instance, a simulation model of a

fixed-wing airplane has extremely little overlap with a simulation model of a car.

Likewise, it makes little sense to exchange predictions between stages if they aren’t

varying the same 𝜃 conditions. The stages need to be relatively similar, although the

exact definition of “similar enough” will likely subjectively change with the specific

application.

It is possible reuse earlier work with a different requirement to aid the analysis of

the system’s robustness to a new requirement. Assuming the relevant state trajectory

data is available and has been saved, it is straightforward to examine the satisfaction

of a new requirement over the course of the past trajectories. However, this reuse

of past trajectory data to analyze a new requirement will only be correct when the

earlier work varied the same parameters of current interest. Again, Assumption 7.1

ensures the earlier work is actually relevant to the current analysis.

Nonzero-Mean Priors

In both the deterministic and stochastic verification frameworks from Chapters 4 and

5, the trained Gaussian process regression model will output a posterior predictive

distribution for the scalar trajectory robustness measurement 𝑦(𝜃*) at an arbitrary

parameter vector 𝜃*. With the earlier verification stage considered as “Stage 1”, the

220

GP output from this stage is labeled

P(𝑦(𝜃*)|ℒ1,𝜃*, 𝜓1) = 𝒩
(︀
𝜇1(𝜃*),Σ1(𝜃*)

)︀
, (7.1)

where ℒ1 is the training dataset in Stage 1, 𝜓1 is the learned kernel hyperparameters,

𝜇1(𝜃*) is the predictive mean at 𝜃*, and Σ1(𝜃*) is the predictive covariance, assuming

a deterministic verification problem from Chapter 4. If the closed-loop system is

stochastic, the predictions would also include likelihood model hyperparameters 𝜗1

and the predictive covariance for 𝑦(𝜃*) would add 𝜖2𝑦 to Σ1(𝜃*) like in (5.9).

Regardless of whether the problem is deterministic or stochastic, the Gaussian

process regression model outputs a posterior predictive mean 𝜇1(𝜃*) for the expected

robustness measurement 𝑦(𝜃*). This predictive mean is directly incorporated into the

prediction of 𝑦(𝜃*) in the subsequent verification stage, “Stage 2”, as a nonzero mean in

the prior distribution 𝒩 (𝜇1,K). This nonzero mean on the prior will carry through

the GP training process and contribute to the posterior predictive distribution for

𝑦(𝜃*) in Stage 2. When Stage 2 is a stochastic verification problem, this posterior

predictive distribution is written as

P(𝑦(𝜃*)|ℒ2,𝜃*, 𝜓2, 𝜗2) = 𝒩
(︀
𝜇2(𝜃*),Σ2(𝜃*) + 𝜖2𝑦

)︀
, (7.2)

where the posterior mean and covariance are given by

𝜇2(𝜃*) = 𝜇1(𝜃*) + K𝑇
* (K + 𝜖2𝑦I)

−1(y2 − 𝜇1)

Σ2(𝜃*) = K** −K𝑇
* (K + 𝜖2𝑦I)

−1K*

(7.3)

and 𝜇1 is 𝜇1(𝜃) evaluated at all the training locations in ℒ2 corresponding to measure-

ments y2. The covariance Σ2(𝜃*) is not affected by the earlier predictions. Whenever

Stage 1’s predictions (𝜇1) disagree with Stage 2’s observations (y2), the GP predic-

tion model will incorporate the difference into the predictions for 𝜇2(𝜃) and correct

for disagreements between the stages. As desired, this balances the influence of Stage

1’s predictions upon the results in Stage 2 with the possibility Stage 1’s predictions

221

-10 -5 0 5 10

1

-10

-5

0

5

10

2

-1

-0.5

0

0.5

P
ri

o
r

(a) Prior with zero mean 𝑦(𝜃) ∼ 𝒩 (0,K) (b) Prior with nonzero mean 𝑦(𝜃) ∼ 𝒩 (𝜇1,K)

Figure 7-1: Illustration of priors on 𝑦(𝜃) with zero and nonzero means. The nonzero-mean
prior in the right-hand plot is taken from the GP output for 𝜇(𝜃) in Figure 5-13(a).

may be incorrect.

Note that Stage 1 was written as a deterministic verification problem while Stage

2 has stochastic measurements. This highlights the fact the predictive mean can be

passed between both types of problems without modification. Additionally, the prob-

lem also labeled the kernel hyperparameters 𝜓1 and 𝜓2 because they do not necessarily

have to agree and the same holds for 𝜗1 and 𝜗2. Given their respective training sets

ℒ1 and ℒ2, the hyperparameter optimization process may choose a different set of

hyperparameters for 𝜓2. However, it may be advantageous to also use 𝜓1 as a prior to

𝜓2 during the hyperparameter optimization process to improve convergence if that is

required. Differences between (𝜓1, 𝜓2) and (𝜗1, 𝜗2) will have no effect on 𝜇1(𝜃) as the

predictive mean 𝜇1(𝜃) is not changed and will be kept constant regardless of (𝜓2, 𝜗2).

Figure 7-1 illustrates the difference between zero- and nonzero-mean priors on

the CL-MRAC example from Section 5.6.1. The zero-mean prior in Figure 7-1(a)

provides no initial information about the values of 𝑦(𝜃) over the compact set Θ. All

the points in Θ have the same value. In comparison, the posterior predictive output

from one of the trained Gaussian processes can be used as a nonzero-mean prior, seen

in Figure 7-1(b). This nonzero mean transfers the first GP’s prediction as the prior

predictive distribution for 𝑦(𝜃), which results in the visible difference between the

two plots.

222

Limitations of Informative Priors

Up to this point, the discussion in this section has only considered the two problems

in Chapters 4 and 5, but the same process can be applied to the problems addressed

in Chapter 6. In those problems, the predictions for the latent function ℎ(𝜃*) would

be passed from Stage 1 to Stage 2. The use of the latent function and binary mea-

surements precludes mixing problems from Chapter 6 with the other two problems,

at least with the current modeling approaches. In general, this does not pose a sig-

nificant restriction since Chapter 6 bases the predictions upon binary measurements

while Chapters 4 and 5 rely upon continuous measurements. Most multi-stage prob-

lems will use a consistent measurement scheme if predictions will be passed between

stages.

Similarly, it is also important to point out that the approach in (7.3) does not in-

clude any contribution from Stage 1’s predictive covariance Σ1(𝜃), only the predictive

mean 𝜇1(𝜃). The absence of Σ1(𝜃) in (7.3) does present a limitation to the indicated

approach and a more complex formulation is necessary to incorporate Σ1(𝜃) directly

into the predictions in Stage 2. The future work section in Chapter 8 describes a

number of recent developments in multi-fidelity reinforcement learning and inference

techniques with the potential to address this limitation; however, they require a sig-

nificantly more complex approach than the straightforward method in (7.3).

Although it is not a solution to the issue, the typical utilization of multi-stage

approaches minimizes the impact of the absence of Σ1(𝜃) in (7.3). The common

motivation behind multi-stage verification is to minimize the reliance upon costly

higher-fidelity models in the later stages and perform more analysis in the earlier

stages with less-expensive models. This preference for lower-fidelity models means

Stage 1 involves significantly more simulations than Stage 2. Although a larger num-

ber of datapoints in Stage 1 does not explicitly guarantee Σ1(𝜃) will be small, an

intelligent dispersion of these datapoints across Θ𝑑 would generally translate to lower

Σ1(𝜃) values. If the concern over Σ1(𝜃) is great enough, Stage 1 could utilize a

different active sampling approach, such as the PDF variance-based procedures, to

223

minimize Σ1(𝜃). Again, these do not explicitly address the absence of Σ1(𝜃) in the

second stage’s predictions, but they do discuss the overall impact of it. The future

work in Chapter 8 identifies extensions to directly solve that issue.

7.2 Impact of Failures in Experimental Testing

In many multi-stage verification problems, the last stage of the process is verification

using real-world prototypes and experimental testing. For example, in unmanned

aerial vehicles this would involve a number of flight tests of the vehicle at different

operating conditions. Due to the time and effort spent to setup and perform just

one experiment, it is desirable to minimize the number of experiments needed to ac-

curately predict whether the closed-loop system satisfies a performance requirement.

This further motivates careful selection of training experiments, to an even greater

extent than in simulation-based verification. However, this section discusses an en-

tirely new set of issues encountered during many real-world experiments that are not

experienced in simulation-based verification.

During verification of safety requirements for physical systems such as aircraft,

cars, or robots, the cost of a trajectory that fails to satisfy the requirement may far

exceed the cost of a trajectory that does. For instance, a simple safety requirement for

an aircraft is Federal Aviation Regulations (FAR) Part 25.333, pictured in Figure 7-

2. This requirement states the aircraft must avoid the maneuvering or never-exceed

speeds in the flight envelope during various maneuvers or else the aircraft risks partial

or total structural failure. In the best case where the aircraft fails to meet FAR 25.333,

the aircraft will only suffer light damage and require either a complete overhaul or

scrapping once the vehicle lands. In the worst case, the aircraft will break apart and

be total destroyed. This unfortunate result is what happened with the NASA Helios

aircraft shown in Figure 1-1 when it exceeded its operating limitations. Regardless of

the specific outcome, the cost of a trajectory that fails to satisfy FAR 25.333 surpasses

the cost of a trajectory that stayed within the maneuvering envelope.

Similarly, experiment-based verification will typically have access only to a limited

224

Figure 7-2: An example of a safety requirement for an aircraft with unequal costs of sat-
isfactory and unsatisfactory trajectories. Federal Aviation Regulations (FAR) Part 25.333
requires an aircraft to avoid maneuvering and never-exceed speeds or else the aircraft will
experience structural damage or failure (orange and red regions). Image source: [157]

number of prototypes or other testing objects. For instance, there may only be a

handful of aircraft, cars, or robots that can be used for the experiments. This becomes

a major limitation when coupled with safety requirements like those discussed in the

previous paragraph. If a vehicle or testing object is damaged, destroyed, or otherwise

unfit-for-use after a trajectory fails to meet the requirement, then it can no longer be

used for further experiments. If multiple experiments fail to meet the requirements

and result in loss of a testing object, then it is possible to completely exhaust the

supply of testing objects and thus stop the experiment-based verification process

altogether.

7.2.1 Region of Safe Operation

The asymmetric cost of unsafe trajectories leads to a new objective for verification.

Assuming there will always be a nonzero probability of failure at some point in set

Θ, the physical system will only operate within the set of parameter values with a

minimum probability of satisfying the requirement. This defines a new set of possible

parameters, the region of safe operation Θ𝑜𝑝.

Definition 7.2. The region of safe operation Θ𝑜𝑝 contains all 𝜃 ∈ Θ for which

an arbitrary experimental test initialized at 𝜃 has a minimum probability of satisfying

225

(a) True 𝑝𝑠𝑎𝑡(𝜃) and Θ𝑜𝑝 (b) Predictions ̂︀𝑝𝑠𝑎𝑡(𝜃) and ̂︀Θ𝑜𝑝

Figure 7-3: Illustration of a true region of safe operation Θ𝑜𝑝 and a data-driven prediction̂︀Θ𝑜𝑝. This figure is derived from the stochastic CL-MRAC example in Section 5.6.1.

the requirement, 𝑝𝑚𝑖𝑛 ∈ (0, 1],

Θ𝑜𝑝 :=
{︁
𝜃 ∈ Θ : 𝑝𝑠𝑎𝑡(𝜃) ≥ 𝑝𝑚𝑖𝑛

}︁
. (7.4)

This region of safe operation applies to both stochastic systems and deterministic sys-

tems, although generally most real-world systems will have some form of stochasticity

present in the dynamics. For example, consider the stochastic CL-MRAC system from

Section 5.6.1. If the minimum probability of success is 𝑝𝑚𝑖𝑛 = 0.95, the resulting Θ𝑜𝑝

is shown in Figure 7-3(a). Notice that the region of safe operation is very similar

to the region of satisfaction Θ𝑠𝑎𝑡 from Chapters 3 and 4. In fact, the region of safe

operation is actually the region of satisfaction, Θ𝑜𝑝 = Θ𝑠𝑎𝑡, in deterministic systems

since the true probability of satisfaction at arbitrary 𝜃 is either 0 or 1.

Regardless of the presence of stochasticity, the physical system will attempt to

remain within Θ𝑜𝑝. This assumes the 𝜃 parameters are known during the experiments

and controllable before and during execution of the trajectory. For example, an

aircraft’s weight and C.G. parameters can be accurately approximated through careful

tracking of the current fuel and payload. Given a particular weight and C.G. setting,

if the aircraft will not fall within Θ𝑜𝑝 for some requirement, then the payload would

be rearranged or the flight would not occur in the first place. Even wind conditions

226

can be measured using meteorological tools.

Just like the other verification problems, the challenge with Θ𝑜𝑝 is that the actual

set is unknown in advance. The region of safe operation must be estimated using a

statistical verification framework and a limited amount of experimental data. This

estimated region of safe operation is labeled ̂︀Θ𝑜𝑝 and is determined by the predicted

probability of satisfaction ̂︀𝑝𝑠𝑎𝑡(𝜃),

̂︀Θ𝑜𝑝 :=
{︁
𝜃 ∈ Θ : ̂︀𝑝𝑠𝑎𝑡(𝜃) ≥ 𝑝𝑚𝑖𝑛

}︁
, (7.5)

shown in Figure 7-3(b). Figure 7-3 also illustrates the root of the verification problem,

prediction error between ̂︀Θ𝑜𝑝 and true Θ𝑜𝑝. The ultimate objective of a closed-loop sta-

tistical verification algorithm is to minimize the prediction error and have ̂︀Θ𝑜𝑝 → Θ𝑜𝑝

while subject to a limit on the number of experiments. However, these systems also

have the restriction on the number of testing objects to consider. This restriction

factors into the verification problem as a constraint on the number of failed experi-

ments. More precisely, given the set of all parameter vectors for the experiments, set

𝒟, subset 𝒟𝑓𝑎𝑖𝑙 ⊂ 𝒟 contains all parameters for which the corresponding trajectory

failed to meet the safety requirement, i.e.

𝒟𝑓𝑎𝑖𝑙 :=
{︁
𝜃 ∈ 𝒟 : 𝑦(𝜃) ≤ 0

}︁
. (7.6)

The failure constraint states the size of 𝒟𝑓𝑎𝑖𝑙 must be strictly less than the maximum

number of allowable failures 𝑁𝑓𝑎𝑖𝑙, meaning |𝒟𝑓𝑎𝑖𝑙| < 𝑁𝑓𝑎𝑖𝑙. As the next section

will discuss, this new failure constraint severely restricts the suitability of the active

sampling algorithms discussed in the previous chapters.

7.2.2 Problem with Trajectory Robustness Measurements

Failures also introduce an additional challenge to statistical verification. While it is

correct to assume safe trajectories which satisfy the safety requirement provide the

minimum level of trajectory robustness as measurement 𝑦(𝜃), unsafe trajectories will

227

not necessarily be able to provide the true minimum level of robustness, as was possi-

ble in simulations. For instance, if the requirement states “ ‘the quadrotor must stay

1 foot away from the obstacle,” safe trajectories will be able to provide the robustness

value corresponding to the minimum distance between the vehicle and the obstacle.

Unsafe trajectories which break this 1 foot window but still avoid the obstacle will

also return the true minimum distance. However, if the quadrotor behaved errati-

cally and actually flew into the obstacle and crashed, then the observed robustness

value for this failed trajectory will be 𝑦(𝜃) = −1, meaning the distance between

the quadrotor and obstacle was 0 ft (a collision). Assuming the quadrotor crashes

with every collision, any trajectory which flies into the obstacle will return this same

𝑦(𝜃) = −1 since the trajectory will stop after the collision and subsequent crash. The

problem is the robustness value of 𝑦(𝜃) = −1 does not indicate the severity of the

collision; it does not delineate between a glancing blow and when the quadrotor flew

full speed straight into the obstacle. In a simulation-based environment, it is possible

to allow the simulator to continue the trajectory after a “collision,” which allows the

simulator and the resulting trajectory robustness measurements to identify the sever-

ity of the failure in unsafe trajectories. This problem with experimental failures and

𝑦(𝜃) will effect any statistical verification problem using non-binary measurements of

trajectory robustness.

Although nothing can be done about the fact trajectory robustness measurements

will stop once the vehicle collides with an obstacle, there are a number of experimental

constraints and workarounds to allow data-driven statistical verification to still take

place. The most obvious solution is to avoid failures altogether. Safe experimental

trajectories which satisfy the requirement still provide the true robustness measure-

ments and place no special considerations on data-driven verification. Therefore, it

is best to avoid failures not just for their asymmetric cost, but also because they

complicate data-driven verification. While it is impossible to know where the fail-

ures exist without any prior knowledge, modifications to the problem like the 1 foot

buffer around obstacles will help avoid total failures, i.e. crashes, since not all unsafe

trajectories correspond to a collision with the obstacle and premature termination of

228

the robustness measurements.

In reality, there will always be a chance of failure, so data-driven statistical veri-

fication requires some workarounds for when the trajectory data stops once a failure

is encountered. One solution is to augment the experimental trajectory data with

simulation data. As mentioned earlier, it is possible in simulation-environments to

continue the trajectory after a failure is encountered in order to compute the severity

of the unsafe trajectory. When an experiment encounters a failure and stops, the

stream of trajectory data up to that failure could be augmented with a continuation

of the trajectory in the simulated world. This hybrid trajectory is not ideal, but does

allow a data-driven statistical framework to incorporate some estimate of the true

severity of a failed trajectory. If this hybrid approach is not practical, then it is still

possible to incorporate the raw 𝑦(𝜃) from the experimental data or replace it with an

artificial estimate of the severity. None of these completely solve the known issue, but

do offer practical workarounds if such considerations are necessary. The next section

will develop failure-adverse statistical verification frameworks which may indirectly

sidestep this issue altogether by avoiding failures, but these workarounds will be used

when failures are encountered.

7.3 Failure-Adverse Closed-Loop Verification

The new region of safe operation Θ𝑜𝑝 and particularly the constrained number of al-

lowable failures 𝑁𝑓𝑎𝑖𝑙 will greatly affect the accuracy of the existing active sampling

procedures discussed in the earlier chapters. When the number of failures is factored

in, the previous algorithms will demonstrate extremely poor prediction accuracy in̂︀Θ𝑜𝑝. This poor performance motivates the development of a related, but distinct,

closed-loop statistical verification framework to compute ̂︀Θ𝑜𝑝 while subject to con-

straint 𝑁𝑙𝑖𝑚. For simplicity and because real-world systems are more likely to be

stochastic, this section uses the stochastic Gaussian process prediction model from

Section 5.2. The deterministic GP-based framework from Section 4.2 can also be used

with minimal modifications. It is technically feasible to implement this work on the

229

stochastic framework from Chapter 6, but the need for multiple binary measurements

at each parameter vector 𝜃 ∈ 𝒟 would quickly drive up the experimental cost with

the large number of trajectories.

Limitations of Previous Methods

The existing sampling procedures discussed in the previous chapters suffer from one

small and one large limitation. First, since the verification objective has shifted to the

maximization of the accuracy of ̂︀Θ𝑜𝑝, the previous algorithms are no longer ideally

suited to the verification objective. This fact is not surprising and the results in

Section 7.4 will show the effect is minimal. The real issue is the large number of

failures those sampling strategies will produce. For instance, consider the training

data in Figure 7-3(b). The red dots indicate trajectories which failed to satisfy the

requirement and these failures constitute roughly half of the training data. If this

training dataset corresponds to experimental data, then the number of failures would

quickly exceed a small 𝑁𝑓𝑎𝑖𝑙. Once the number of failures exceeds 𝑁𝑓𝑎𝑖𝑙, then the

algorithm would prematurely terminate as it ran out of available testing objects.

7.3.1 Forward Transfer of Simulation-Based Predictions

The previous active sampling algorithms in the earlier chapters require an initial

training set of passively-selected training locations to generate an initial GP model.

This fact will only increase the number of failures as many of the resulting trajec-

tories will inevitably fail to satisfy the requirement. A partial solution is to forward

transfer predictions from the preceding verification stage to remove the necessity of

a passively-selected training dataset ℒ. This implicitly assumes experiment-based

verification is the last stage in a multistage verification process, but that will be

typical of any failure-constrained verification problem; it is safe to assume the engi-

neers won’t blindly jump into experimental testing without extensively studying the

closed-loop system in simulation environments. The prior predictions provided by

the simulation-based verification stage(s) identify regions of Θ where the closed-loop

230

system will likely satisfy the requirement.

The simulation predictions will guide the selection of a small initial training set

before any experiments are actually performed. The posterior predictive output from

the preceding simulation-based verification stage is labeled as mean 𝜇𝑠𝑖𝑚(𝜃), covari-

ance Σ𝑠𝑖𝑚(𝜃), and predicted satisfaction probability function ̂︀𝑝𝑠𝑖𝑚(𝜃). Note the drop-

ping of subscript “sat” in the predicted satisfaction probability function due to sizing

and to avoid potential confusion with the experimental function. Similarly, the sub-

script “rw” for “real world” is used to differentiate measurements and predictions in

the experimental verification stage from the simulations. Assuming zero experiments

have been performed, it is unclear at which locations 𝜃 ∈ Θ the first experiments

should be performed. Active sampling cannot be performed since there are no actual

measurements with which to construct a posterior predictive distribution. Therefore,

the only available information is provided by the prior 𝜇𝑠𝑖𝑚(𝜃), Σ𝑠𝑖𝑚(𝜃), and ̂︀𝑝𝑠𝑖𝑚(𝜃).

The obvious choice for the initial training measurements are those points in Θ

with ̂︀𝑝𝑠𝑖𝑚(𝜃) closest to 1. However, since the simulation model might fail to perfectly

capture the real-world dynamics, ̂︀𝑝𝑠𝑖𝑚(𝜃) might not match the true, real-world satis-

faction probability function 𝑝𝑟𝑤(𝜃). In order to minimize the likelihood of failure, the

first experiment should be performed at the most robust parameter vector according

to the simulations. The most robust parameter vector is given by

𝜃 = argmax
𝜃∈Θ

(︁
𝜇𝑠𝑖𝑚(𝜃)− 𝛽𝑧

√︁
Σ𝑠𝑖𝑚(𝜃) + 𝜖2𝑦

)︁
, (7.7)

where 𝛽𝑧 is the z-score associated with the minimum probability of success 𝑝𝑚𝑖𝑛 that

defines Θ𝑜𝑝. The motivation for selection criterion (7.7) in place of ̂︀𝑝𝑠𝑖𝑚(𝜃) directly

is illustrated in Figure 7-4. The cumulative distributions at points 𝜃1 and 𝜃2 are

roughly equivalent, at least to numerical precision, with ̂︀𝑝𝑠𝑖𝑚(𝜃) = 1 for both indicated

probability density functions. However, the cumulative distribution at 𝜃2 is much

more robust to changes in 𝑦(𝜃) than the distribution at 𝜃1. Unmodeled dynamics

and effects present in the real-world system but not the simulation model will manifest

as changes in the distributions, such as an increase or decrease in 𝑦(𝜃). Without any

231

-5 0 5 10 15 20 25

y()

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
ab

ili
ty

Distribution at
1

Distribution at
2

Figure 7-4: Motivation for the selection of the most robust point according to the simulation
predictions. Both 𝜃1 and 𝜃2 have effectively the same ̂︀𝑝𝑠𝑖𝑚(𝜃) = 1 given the indicated prob-
ability density functions. However, the cumulative distribution at 𝜃2 is much less sensitive
to shifts in 𝑦(𝜃) than the distribution at 𝜃1.

prior knowledge, it is impossible to predict the exact difference between the simulation

model and real-world experiments, but (7.7) uses all available information to avoid a

failure during the first experiment. If it is necessary to perform multiple experiments,

then (7.7) can be used as the basis for some batch selection process like importance-

weighted sampling or k-DPPs.

Once the first experiment has been performed, the resulting robustness measure-

ment 𝑦𝑟𝑤(𝜃) can be combined with the simulation priors to compute the posterior

predictive distribution for all 𝜃 ∈ Θ. As in Section 7.1, the simulation-based predic-

tive mean 𝜇𝑠𝑖𝑚(𝜃) will act as an informative, nonzero prior to the experimental-based

predictions. The resulting posterior predictive distribution for experimental measure-

ment 𝑦𝑟𝑤(𝜃*) is then written just like (7.2) and (7.3) with

P(𝑦𝑟𝑤(𝜃*)|ℒ𝑟𝑤,𝜃*, 𝜓, 𝜗) = 𝒩
(︁
𝜇𝑟𝑤(𝜃*),Σ𝑟𝑤(𝜃*) + 𝜖2𝑦

)︁
(7.8)

and

𝜇𝑟𝑤(𝜃*) = 𝜇𝑠𝑖𝑚(𝜃*) + K𝑇
* (K + 𝜖2𝑦I)

−1(y𝑟𝑤 − 𝜇𝑠𝑖𝑚)

Σ𝑟𝑤(𝜃*) = K** −K𝑇
* (K + 𝜖2𝑦I)

−1K* .
(7.9)

The training dataset ℒ𝑟𝑤 contains the initial measurement and the measurements

from any subsequent experiments. At least during the first few experiments, there will

not be enough training data to adequately optimize the hyperparameters, so kernel

and likelihood hyperparameters 𝜓 and 𝜗 should be copied from the simulation-based

232

GP regression model. Once the first experiment has been performed and posterior

predictive distributions are available for all 𝜃 ∈ Θ, active sampling can be used to

simultaneously minimize the number of failures and improve the accuracy of ̂︀Θ𝑜𝑝, all

while still limited to a total number of experiments 𝑁𝑡𝑜𝑡𝑎𝑙.

7.3.2 Selection Criteria

Given the posterior prediction distribution for 𝑦𝑟𝑤(𝜃), active sampling will help mini-

mize the number of failures and maximize the accuracy of the predicted safe operating

region ̂︀Θ𝑜𝑝. The following subsection will first introduce an additional constraint to

minimize the likelihood of failures. This constraint can be applied to any of the pre-

viously discussed active sampling strategies and is not restricted to certain selection

criteria. While this helps avoid failures in the experiments, it does not explicitly help

maximize the accuracy of ̂︀Θ𝑜𝑝 and neither do the previous selection metrics. The

second portion of this subsection will develop new sample selection criteria for active

sampling algorithms that do explicitly attempt to improve ̂︀Θ𝑜𝑝.

Restricted Search Area

The first modification to closed-loop statistical verification is the addition of a con-

straint on the set of possible parameter settings for future experiments. Rather than

select 𝜃 from the set of all unseen parameter values 𝒰 , future training locations are

chosen from a subset of 𝒰 whose resulting trajectories are expected have a minimum

level of robustness to the requirement, similar to (7.7). This restriction on 𝒰 says

nothing about actual selection criterion itself and can be applied to any of the existing

sample selection criteria. For instance, the search area restriction applied to the CDF

variance reduction selection criterion from (5.24) will appear as a constraint,

𝜃 = argmax
𝜃∈𝒰

̃︀𝑉 (𝜃|ℒ𝑟𝑤, 𝜓, 𝜗) (7.10)

s.t.
(︁
𝜇𝑟𝑤(𝜃)− ̂︀𝛽𝑧√︁Σ𝑟𝑤(𝜃) + 𝜖2𝑦

)︁
> 𝑦𝑚𝑖𝑛, (7.11)

233

where (7.10) is the original CDF variance reduction selection metric and (7.11) is the

new constraint. Only those 𝜃 ∈ 𝒰 which satisfy (7.11) are eligible for selection for the

next experiment. In order to write (7.10) and (7.11) more concisely, the restricted

search area can be written as set 𝒰𝑠𝑎, where

𝒰𝑠𝑎 :=
{︁
𝜃 ∈ 𝒰 :

(︁
𝜇𝑟𝑤(𝜃)− ̂︀𝛽𝑧√︁Σ𝑟𝑤(𝜃) + 𝜖2𝑦

)︁
> 𝑦𝑚𝑖𝑛

}︁
. (7.12)

Instead of writing the constraint in terms of a minimum probability of satisfaction

like Definition 7.2, the search constraint (7.11) is defined by 𝜇𝑟𝑤(𝜃) and Σ𝑟𝑤(𝜃) and

two new terms 𝑦𝑚𝑖𝑛 and ̂︀𝛽𝑧 to provide more flexibility. Term ̂︀𝛽𝑧 is the z-score for a
desired confidence level while 𝑦𝑚𝑖𝑛 is a minimum acceptable robustness value in the

experiments. These two terms allow the control engineers to set different probabil-

ities and robustness levels for experiment-based verification than the region of safe

operation Θ𝑜𝑝 used by a production-ready system. For instance, experiment-based

verification may accept a greater probability of failure than would be used for Θ𝑜𝑝

and ̂︀𝛽𝑧 would be smaller than 𝛽𝑧 corresponding to 𝑝𝑚𝑖𝑛. Since the restricted search

area does limit the set of possible sample locations, a looser ̂︀𝛽𝑧 would allow the active

sampling algorithm to explore riskier, but potentially more informative, regions. Sim-

ilarly, the engineers may allow a different level of robustness in experiments than the

final product. For example, a safety requirement may again state “the quadrotor must

stay 1 foot away from every obstacle,” but this distance may be relaxed to 6 inches

during the experiments for efficiency or prediction accuracy and hence 𝑦𝑚𝑖𝑛 = −0.5,

assuming 𝑦(𝜃) is given in feet. Section 7.3.3 will explore these concepts further. If

this flexibility is not needed, then ̂︀𝛽𝑧 = 𝛽𝑧 and 𝑦𝑚𝑖𝑛 = 0 will reproduce ̂︀Θ𝑜𝑝 as the

restricted search area.

Expected Model Increase

Given the initial experiment selected by (7.7) and the restricted search area (7.11),

the active sampling process incrementally expands ̂︀Θ𝑜𝑝. As was seen before, existing

selection criteria which are not ideally-suited to the current verification objective

234

may choose uninformative 𝜃 vectors which do little to improve ̂︀Θ𝑜𝑝. In the worst-case

scenario, the selection criteria may inadvertently waste experiments and as a result̂︀Θ𝑜𝑝 will never expand outwards. This motivates the development of a new selection

criterion specifically aimed at maximizing the incremental expansion of ̂︀Θ𝑜𝑝 with each

additional experiment.

The main idea is to maximize the difference in posterior safe operating region

with the new training sample versus the current prediction. More specifically, this

selection metric would select the best location 𝜃 as

𝜃 = argmax
𝜃∈𝒰𝑠𝑎

(︁
|̂︀Θ+

𝑜𝑝| − |̂︀Θ𝑜𝑝|
)︁
, (7.13)

where posterior ̂︀Θ+
𝑜𝑝 is the predicted set after an experiment is performed at location

𝜃 and ℒ+
𝑟𝑤 = ℒ𝑟𝑤 ∪ {𝜃, 𝑦𝑟𝑤(𝜃)}. However, the true robustness of the trajectory is

unknown in advance and thus (7.13) is not feasible. Instead, the expected posterior

set E[̂︀Θ+
𝑜𝑝] replaces the infeasible ̂︀Θ+

𝑜𝑝. The expected posterior set E[̂︀Θ+
𝑜𝑝] is defined

much like (7.5),

E[̂︀Θ+
𝑜𝑝] :=

{︁
𝜃 ∈ Θ : E[̂︀𝑝+𝑠𝑎𝑡(𝜃)] ≥ 𝑝𝑚𝑖𝑛

}︁
, (7.14)

where E[̂︀𝑝+𝑠𝑎𝑡(𝜃)] is the expected posterior for the predicted satisfaction probability

function if a measurement is taken at location 𝜃. This expected satisfaction proba-

bility function is computed by

E[̂︀𝑝+𝑠𝑎𝑡(𝜃)] =
1

2
+

1

2
erf

(︂
E[𝜇(𝜃)+]√︁

2(Σ(𝜃)+ + 𝜖2𝑦)

)︂
. (7.15)

Since the measurement at 𝑦𝑟𝑤(𝜃) is unknown in advance, the expected posterior

mean E[𝜇(𝜃)+] is found by replacing 𝑦(𝜃) with its current predictive mean 𝜇(𝜃) and

recomputing the GP. Fortunately, the covariance Σ(𝜃)+ is independent of the actual

measurement and can be determined in advance. The resulting selection metric is

given by

𝜃 = argmax
𝜃∈𝒰𝑠𝑎

(︁⃒⃒
E[̂︀Θ+

𝑜𝑝]
⃒⃒
− |̂︀Θ𝑜𝑝|

)︁
(7.16)

235

and is referred to as the expected model increase (EMI) criterion since it aims to

maximize the outward expansion of ̂︀Θ𝑜𝑝.

Although (7.16) is tailor-made for the experiment-based verification problem with

predicted ̂︀Θ𝑜𝑝, it does have a number of limitations. Mainly, the selection metric

requires the current GP to be recomputed for every prospective 𝜃 vector in order to

obtain its expected posterior E[̂︀Θ+
𝑜𝑝]. The previous GP-based selection criteria from

Chapters 4 and 5 avoided those types of metrics due to the high computational cost of

retraining the GP at every possible point. However, there are two considerations that

help lessen the impact of the cost of retraining the GP at every prospective sample

location during experimental verification. First, the restricted search area removes a

number of the available sample locations 𝒰 . Unlike the earlier problems where the

selection criteria would select 𝜃 vectors from the entire set 𝒰 , the restricted search

area limits 𝜃 to a subset of 𝒰 . This means the retraining occurs at fewer points and

therefore the total cost is lower than it was in the earlier algorithms. Additionally,

most applications in experiment-based verification will tolerate higher computational

costs in order to maximize the return-on-investment for each trajectory. In general,

the maximum number of experiments will be significantly lower than the number of

simulations in the preceding stages. This means the computational cost of retraining

the GP will be lower since the training dataset ℒ𝑟𝑤 is smaller and also forces the

implicit value of each experiment to increase. Since the monetary and temporal cost

of an experiment is higher than a simulation, it will be imperative to maximize the

informativeness of every experiment. If computational cost is still relatively impor-

tant, then new versions of the earlier sampling algorithms modified with the restricted

search area 𝒰𝑠𝑎 can be used in place of (7.16).

7.3.3 Sampling Algorithms

The restricted search area and the EMI selection metric from (7.16) lead to new active

sampling algorithms for failure-adverse closed-loop statistical verification. This sub-

section will discuss two approaches to active sampling, one with a static parameters

and one that adapts the search area parameters based upon the number of failures

236

encountered.

Static Search Area Parameters

The simplest approach assumes the parameters ̂︀𝛽𝑧 and 𝑦𝑚𝑖𝑛 are fixed and given at the
start of the process. While the predicted ̂︀Θ𝑜𝑝 will change with new measurements,

the search area criteria will not change according to the progress of the experiments.

Algorithm 12 lists the steps in the sequential failure-adverse sampling procedure. The

algorithm assumes the required inputs have been provided by the controls engineer

and simulation priors 𝜇𝑠𝑖𝑚(𝜃) passed from the preceding simulation stage (Step 1).

The algorithm also assumes the initial experiment has been obtained by (7.7) and

uses the single experimental measurement 𝑦𝑟𝑤(𝜃) to construct the initial GP model

for the real-world stage with predictions 𝜇𝑟𝑤(𝜃), Σ𝑟𝑤(𝜃), and ̂︀Θ𝑜𝑝 (Step 2). The

algorithm will then select additional training locations and perform experiments at

those locations until either the sampling budget 𝑇 = 𝑁𝑙𝑖𝑚 − 1 has been met or the

procedure runs out of available testing objects, where 𝑁𝑓𝑎𝑖𝑙 is the number of testing

objects and thus the maximum number of allowable failures.

Steps 3-15 contain the active sampling process. At the start of each iteration, the

procedure constructs the current search area 𝒰𝑠𝑎 based upon the GP model and pro-

vided search parameters (Step 4). In Step 5, the algorithm selects the best prospective

sample location 𝜃 from the restricted search area according to the EMI criterion (7.16)

and then performs an experiment there during Step 6. Steps 7-9 have no bearing on

the actual selection process and merely keep track of the number of failures encoun-

tered. After the experimental test has concluded, the procedure adds the resulting

measurement 𝑦𝑟𝑤(𝜃) to the training set ℒ𝑟𝑤 (Step 10) and retrains the GP regression

model (Step 11). If the process has exhausted its supply of testing objects, then it

immediately terminates (Steps 12-14). Otherwise, the sequential procedure termi-

nates once all 𝑇 experiments have been performed. Regardless of the exact reason

for stopping, the algorithm returns the predicted region of safe operation ̂︀Θ𝑜𝑝 at the

conclusion of the iterative process (Step 16).

237

Algorithm 12 Sequential failure-adverse closed-loop verification framework with
static search area parameters

1: Input: simulation prior 𝜇𝑠𝑖𝑚(𝜃), max # of experiments 𝑇 , safe operating region

parameters 𝑝𝑚𝑖𝑛 and 𝛽𝑧, search area parameters ̂︀𝛽𝑧 and 𝑦𝑚𝑖𝑛, max # of allowable
failures 𝑁𝑓𝑎𝑖𝑙, training dataset ℒ𝑟𝑤, available sample locations 𝒰

2: Initialize: train GP model with 𝜇𝑠𝑖𝑚(𝜃) and ℒ𝑟𝑤, failure count 𝑘𝑓𝑎𝑖𝑙 = 0
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Construct search area 𝒰𝑠𝑎 :=
{︀
𝜃 ∈ 𝒰 :

(︀
𝜇𝑟𝑤(𝜃)− ̂︀𝛽𝑧√︁Σ𝑟𝑤(𝜃) + 𝜖2𝑦

)︀
> 𝑦𝑚𝑖𝑛

}︀
5: Select 𝜃 = argmax

𝜃∈𝒰𝑠𝑎

(︁⃒⃒
E[̂︀Θ+

𝑜𝑝]
⃒⃒
− |̂︀Θ𝑜𝑝|

)︁
6: Run experiment at 𝜃, obtain measurement 𝑦𝑟𝑤(𝜃)
7: if destroyed testing object then
8: Increment 𝑘𝑓𝑎𝑖𝑙 by 1
9: end if

10: Add {𝜃, 𝑦𝑟𝑤(𝜃)} to training set ℒ𝑟𝑤, remove 𝜃 from 𝒰
11: Retrain GP model with 𝜇𝑠𝑖𝑚(𝜃) and updated ℒ𝑟𝑤
12: if 𝑘𝑓𝑎𝑖𝑙 ≥ 𝑁𝑓𝑎𝑖𝑙 then

13: break for loop
14: end if

15: end for

16: Return: predicted region of safe operation ̂︀Θ𝑜𝑝

Adaptive Search Area Parameters

While Algorithm 12 will run until either the maximum number of tests has been

reached or all testing objects have been expended, it does not update the restricted

search area to reflect the number of experiments and testing objects remaining. As-

suming the underlying goal is to complete all 𝑇 experiments allocated to the verifi-

cation procedure, it may be advantageous to adjust the restricted search area based

upon the observed results. For instance, if a number of testing objects were lost early

on in the process, it will generally be advisable for the procedure to tighten the search

area in order to avoid additional failures. On the opposite side of the spectrum, if

there are still a large number of testing objects and only a few experiments remain-

ing, it is possible to loosen the search area and consider riskier parameter settings. A

search area that varies with the number of experiments and testing objects remaining

is called an adaptive search area.

The main idea with an adaptive search area is to update the search area parameter

238

̂︀𝛽𝑧 to reflect the acceptable probability of failure. For instance, given 6 testing objects
(𝑁𝑓𝑎𝑖𝑙 = 6) and 𝑇 = 100 experiments to perform, an acceptable probability of failure

is 5%. While this expects there to be roughly 5 failures per 100 experiments, it also

expects to complete all 100 experiments since there should be 1 object remaining.

Obviously, such a high failure rate is unacceptable in many applications, including

any tests involving human drivers, pilots, etc. However, higher failure rates would

be acceptable in experiments with low-cost unmanned aerial vehicles where a failure

might mean the UAV is damaged or destroyed, but can be easily rebuilt for another

day’s testing.

Algorithm 13 lists the verification procedure with the adaptive search parameter̂︀𝛽𝑧. The only change with respect to Algorithm 12 is the addition of the computation of̂︀𝛽𝑧 in Steps 4-6. These steps use the number of experiments remaining (𝑇𝑟) and testing

objects remaining (𝑁𝑜𝑏𝑗) to compute the acceptable probability of failure 𝑝𝑎𝑐𝑐𝑒𝑝𝑡. In

turn, this acceptable probability of failure defines a new z-score parameter ̂︀𝛽𝑧 that
changes the restricted search area 𝒰𝑠𝑎 in Step 7. More complex functions of 𝑇𝑟,

𝑁𝑜𝑏𝑗, and other relevant variables are possible, but are not considered in this work.

Additionally, during implementation of Algorithm 13, it is advisable to bound 𝑝𝑎𝑐𝑐𝑒𝑝𝑡

by minimum and maximum acceptable probabilities to ensure 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 and ̂︀𝛽𝑧 fall within
reasonable values as 𝑇𝑟 → 1 or 𝑁𝑜𝑏𝑗 → 1.

Both Algorithms 12 and 13 are sequential procedures. The majority of the two

algorithms share the same computational complexity as the equivalent steps shown

previously in Algorithm 3 and 7. However, the EMI search criterion in Step 5 of

Algorithm 12 and Step 8 of Algorithm 13 requires substantially more operations

than the previous metrics. In order to compute E[̂︀Θ+
𝑜𝑝] for each 𝜃 ∈ 𝒰𝑠𝑎, the failure-

adverse algorithms must first retrain an approximate GP using artificial measurementŝ︀𝑦(𝜃) = 𝜇(𝜃) and compute E[𝜇(𝜃)+] and Σ(𝜃)+. Those computations alone require on

the order of 𝒪((𝑁 + 1)2|𝒰𝑠𝑎|) +𝒪((𝑁 + 1)|𝒰𝑠𝑎|) +𝒪((𝑁 + 1)2) +𝒪(𝑁 + 1) operations

for every 𝜃 ∈ 𝒰𝑠𝑎, thus the computational complexity of that single step is actually a

quadratic function of the size of 𝒰𝑠𝑎. For applications with a large Θ𝑑, the complexity

will quickly rise. Batch versions of the failure-adverse algorithms using importance-

239

Algorithm 13 Sequential failure-adverse closed-loop verification framework with
adaptive search area parameter ̂︀𝛽𝑧
1: Input: simulation prior 𝜇𝑠𝑖𝑚(𝜃), max # of experiments 𝑇 , safe operating region

parameters 𝑝𝑚𝑖𝑛 and 𝛽𝑧, search area parameter 𝑦𝑚𝑖𝑛, max # of allowable failures
𝑁𝑓𝑎𝑖𝑙, training dataset ℒ𝑟𝑤, available sample locations 𝒰

2: Initialize: train GP model with 𝜇𝑠𝑖𝑚(𝜃) and ℒ𝑟𝑤, failure count 𝑘𝑓𝑎𝑖𝑙 = 0
3: for 𝑖 = 1, 2, . . . , 𝑇 do

4: Compute number of experiments remaining: 𝑇𝑟 = 𝑇 − (𝑖−1), compute number
of testing objects remaining 𝑁𝑜𝑏𝑗 = 𝑁𝑓𝑎𝑖𝑙 − 𝑘𝑓𝑎𝑖𝑙

5: Determine acceptable probability of failure 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = (𝑁𝑜𝑏𝑗 − 1)/𝑇𝑟
6: Compute z-score ̂︀𝛽𝑧 corresponding to 1− 𝑝𝑎𝑐𝑐𝑒𝑝𝑡
7: Construct search area 𝒰𝑠𝑎 :=

{︀
𝜃 ∈ 𝒰 :

(︀
𝜇𝑟𝑤(𝜃)− ̂︀𝛽𝑧√︁Σ𝑟𝑤(𝜃) + 𝜖2𝑦

)︀
> 𝑦𝑚𝑖𝑛

}︀
8: Select 𝜃 = argmax

𝜃∈𝒰𝑠𝑎

(︁⃒⃒
E[̂︀Θ+

𝑜𝑝]
⃒⃒
− |̂︀Θ𝑜𝑝|

)︁
9: Run experiment at 𝜃, obtain measurement 𝑦𝑟𝑤(𝜃)
10: if Destroyed testing object then
11: Increment 𝑘𝑓𝑎𝑖𝑙 by 1
12: end if

13: Add {𝜃, 𝑦𝑟𝑤(𝜃)} to training set ℒ𝑟𝑤, remove 𝜃 from 𝒰
14: Retrain GP model with 𝜇𝑠𝑖𝑚(𝜃) and updated ℒ𝑟𝑤
15: if 𝑘𝑓𝑎𝑖𝑙 ≥ 𝑁𝑓𝑎𝑖𝑙 then

16: break for loop
17: end if

18: end for

19: Return: predicted region of safe operation ̂︀Θ𝑜𝑝

weighting and k-DPPs can be formed by constructing a probability distribution from

the selection metric (7.16). Unlike the batch algorithms in the earlier chapters, the

samples will only be chosen from within the restricted search area 𝒰𝑠𝑎.

7.4 Demonstration of Failure-Constrained Verifica-

tion

A stochastic variant of the 2D CL-MRAC example demonstrates the effectiveness

of Algorithms 12 and 13 for failure-constrained verification problems. The exam-

ple uses the stochastic CL-MRAC dynamics from Example 5.6.1 as the simulation

model. Figure 7-5 depicts the underlying true 𝑦𝑠𝑖𝑚(𝜃) and 𝑝𝑠𝑖𝑚(𝜃) in the simulation

240

stage. The “real-world” dynamics are given by the high-fidelity stochastic model with

higher-order nonlinear dynamics and actuator saturation from Section 7.1. In order

to produce an even more challenging shape, the true 𝑦𝑟𝑤(𝜃) function is artificially

modified, as seen in Figure 7-6(a). The resulting true 𝑝𝑠𝑎𝑡(𝜃) in Figure 7-6(b) is sub-

stantially different than the true values in the simulation dynamics. Even if 𝑦𝑠𝑖𝑚(𝜃)

and 𝑝𝑠𝑖𝑚(𝜃) were perfectly known and used for the simulation prior, they would be of

limited use to experiment-based verification due to this discrepancy. Lastly, unsafe

trajectories that failed to satisfy the requirements are allowed to continue past the

point of failure. Although this is not a perfect representation of all failure-constrained

problems where the trajectory may stop once a failure is reached, the workarounds

discussed in Section 7.2.2 could be applied. The end goal of this example is not to

demonstrate the impact of failure on the measurements, but rather demonstrate the

effectiveness of the closed-loop algorithms to avoid failures altogether.

The verification objective is to estimate the safe operating region Θ𝑜𝑝 for all 𝜃 ∈ Θ

with a minimum probability of satisfaction of 95% (𝑝𝑚𝑖𝑛 = 0.95). The safe operating

region is shown in Figure 7-6(b). The rest of the problem is mostly unchanged from the

other 2D CL-MRAC examples. The set of all possible parameters Θ is approximated

with a finite grid Θ𝑑 of 40,401 locations between 𝜃1 : [−10, 10] and 𝜃2 : [−10, 10].

Limitations of Earlier Methods

The limitations of the previous active sampling algorithms are demonstrated in Fig-

ures 7-7 and 7-8. These figures examine the prediction accuracy of ̂︀Θ𝑜𝑝 for batch ver-

sions of the CDF variance-based algorithm from Chapter 5 as well as the open-loop,

random sampling procedure and the PDF variance-based approach. Additionally, due

to the similarity of computing ̂︀Θ𝑜𝑝 with the the binary classification problem from

Chapters 3 and 4, the results also display the prediction accuracy of the binary classi-

fication entropy approach from Chapter 4 applied to this example. As all four of these

procedures assume zero prior information, they cannot use (7.7) to select a starting

point and must instead begin with an initial training dataset of 10 randomly-selected

experiments. The procedures will then select samples in batch sizes of 𝑀 = 5 and

241

(a) True 𝑦𝑠𝑖𝑚(𝜃) (b) True 𝑝𝑠𝑖𝑚(𝜃)

Figure 7-5: [Example 7.4] True probability of satisfaction function 𝑝𝑠𝑎𝑡(𝜃) for the simulation
stage. This information is passed as the informative nonzero prior to the experiment-based
verification stage

(a) True 𝑦𝑟𝑤(𝜃) (b) True 𝑝𝑠𝑎𝑡(𝜃) and Θ𝑜𝑝

Figure 7-6: [Example 7.4] True probability of satisfaction function 𝑝𝑠𝑎𝑡(𝜃) and safe operating
region Θ𝑜𝑝 for the real-world dynamics.

perform 20 iterations for a total training dataset of 110 experiments at the completion

of the process.

Figure 7-7(a) displays the prediction error convergence for the four sampling pro-

cedures. All of them demonstrate similar prediction accuracy for ̂︀Θ𝑜𝑝, with the binary

entropy approach from Chapter 4 slightly outperforming the other algorithms even

though it was not originally intended for use with stochastic systems. While the

prediction error reduces with each additional sample, the number of failures in Fig-

242

ure 7-7(b) grows steadily. If the maximum number of allowable failures (𝑁𝑓𝑎𝑖𝑙) is

high, then the roughly 50% failure rate is not an issue. However, when 𝑁𝑓𝑎𝑖𝑙 is small

in comparison to 𝑁𝑙𝑖𝑚, the procedures will be forced to prematurely terminate. Fig-

ure 7-8 illustrates the effect of a small number of allowable failures 𝑁𝑓𝑎𝑖𝑙 = 10 on the

prediction accuracy. As the procedures must terminate once they reach 𝑁𝑓𝑎𝑖𝑙 and run

out of testing objects, there will be no further improvement of ̂︀Θ𝑜𝑝 and the predictions

will fail to converge to Θ𝑜𝑝. These plots highlight the limitations of the previous active

sampling methods when they are directly applied to a failure-constrained verification

problem.

Failure-Adverse Closed-Loop Verification

The failure-adverse closed-loop verification algorithms in Section 7.3 were specifically

developed to avoid those types of issues. Figure 7-9 illustrates the evolution of ̂︀Θ𝑜𝑝

produced by Algorithm 12. The process starts with one experiment selected accord-

ing to (7.7) and computes the predicted probability of satisfaction ̂︀𝑝𝑠𝑎𝑡(𝜃) and safe

operating region ̂︀Θ𝑜𝑝. Figure 7-9(a) also clearly shows the effect of the simulation

prior upon the predictions since ̂︀𝑝𝑠𝑎𝑡(𝜃) has nonuniform predictions in the regions

outside the immediate vicinity of the lone training point. For a zero-mean prior, the

prediction would be ̂︀𝑝𝑠𝑎𝑡(𝜃) = 0.5 over most of Θ. Given the initial GP regression

model and predictions, Algorithm 12 will select additional experiments to perform.

Figures 7-9(b) and 7-9(c) show the outward expansion of ̂︀Θ𝑜𝑝 for the first few iter-

ations. In this problem, the search area is set to the same 95% confidence interval

at Θ𝑜𝑝 with 𝑦𝑚𝑖𝑛 = 0 which causes the search area 𝒰𝑠𝑎 to match ̂︀Θ𝑜𝑝. As the num-

ber of experiments increases, the prediction model begins to learn the approximate

boundaries of Θ𝑜𝑝, as seen in Figure 7-9(d). The training process experiences only 3

failures, all within close proximity to Θ𝑜𝑝, over the course of the 51 experiments.

Figure 7-10 compares the performance of a batch (𝑀 = 5) version of Algorithm

12 against the previous sampling approaches examined in Figures 7-7 and 7-8 over

65 different training datasets and random seeds. If there are an unlimited number of

failures allowed, the prediction error convergence of the EMI approach in Figure 7-

243

20 40 60 80 100

Samples

0

20

40

60

80
M

is
cl

as
si

fi
ca

ti
o

n
 E

rr
o

r
(%

)
Open-Loop
Binary Entropy
PDF Variance
CDF Variance

(a) Misclassification error

20 40 60 80 100

Samples

0

20

40

60

80

o

f
F

ai
lu

re
s

(b) # of failures encountered

Figure 7-7: [Example 7.4] Comparison of prediction error convergence and the number of
failures using the previous active sampling approaches. The standard deviations correspond
to 1𝜎 bounds.

20 40 60 80 100

Samples

0

20

40

60

80

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop
Binary Entropy
PDF Variance
CDF Variance

(a) Mean misclassification error

20 40 60 80 100

Samples

0

20

40

60

80

F

ai
lu

re
s

Open-Loop
Binary Entropy
PDF Variance
CDF Variance

N
fail

 = 10

(b) Mean # of failures encountered

Figure 7-8: [Example 7.4] Illustration of the effects of small number of failures (𝑁𝑓𝑎𝑖𝑙 = 10)
upon the prediction accuracy when using the previous active sampling approaches.

10(a) closely matches the results for the other sampling strategies. However, a large

𝑁𝑓𝑎𝑖𝑙 is unlikely and those previous algorithms from Chapters 4 and 5 will terminate

prematurely for low 𝑁𝑓𝑎𝑖𝑙, as was shown in Figure 7-8(a). In contrast, Figure 7-10(b)

illustrates the EMI procedure achieves the same prediction accuracy without a large

number of failures. At the conclusion of 20 iterations of the batch EMI algorithm

(for |ℒ𝑟𝑤| = 101), the number of failures is between 0 and 6, with an average of 2.

The substantial decrease in the failure rate without a sacrifice in prediction accuracy

244

(a) After the initial experiment (b) After 2 experiments

(c) After 5 experiments (d) After 51 experiments

Figure 7-9: [Example 7.4] Evolution of ̂︀Θ𝑜𝑝 and the search area 𝒰𝑠𝑎 with each additional
experiment. Note that this example uses a static search area with the same parameters aŝ︀Θ𝑜𝑝 and hence 𝒰𝑠𝑎 = ̂︀Θ𝑜𝑝.

clearly highlights the advantages of the expected model increase algorithms over the

previous active sampling methods.

Although Figure 7-10 demonstrated the advantage of the EMI algorithms over the

previous approaches, the higher computational cost of the EMI algorithms may limit

their suitability in certain applications. Instead, the non-EMI sampling approaches

can be modified to include simulation priors and the restricted search area. Figure 7-

11 compares the prediction error convergence of these modified algorithms against

the convergence of the EMI algorithm. While the modified algorithms’ convergence

rates are lower than for the original algorithms in Figure 7-10(a), the failure rates

245

20 40 60 80 100

Samples

0

20

40

60

80
M

is
cl

as
si

fi
ca

ti
o

n
 E

rr
o

r
(%

)
Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(a) Misclassification error

20 40 60 80 100

Samples

0

20

40

60

80

F

ai
lu

re
s

Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(b) # of failures encountered

Figure 7-10: [Example 7.4] Comparison of a batch version of Algorithm 12 against the
previous active sampling approaches. The standard deviation intervals around the means
(solid lines) correspond to 1𝜎 bounds.

are substantially lower. The performance of the CDF variance-based algorithm from

Chapter 5 suffers considerably, but the prediction errors of binary entropy and PDF

variance approaches are only marginally worse. When the modifications are applied to

sequential versions of the sampling algorithms, the same general trends occur. In fact,

the convergence of the sequential PDF variance-based algorithm matches the EMI

algorithm in the results from Figure 7-12(a) with the binary entropy-based procedure

closely behind. The modified versions of those two approaches offer good alternatives

to the EMI algorithms in both sequential and batch scenarios. Regardless of the

exact selection metric, failure-adverse closed-loop verification reduced the number of

failures by 94-99%.

7.5 Summary

This chapter presented a method for transferring predictions between verification

stages and developed a framework for failure-adverse verification during experimen-

tal testing. Simulation-based predictions from a preceding verification stage provide

informative priors to experiment-based verification. These simulation priors help the

closed-loop verification procedures avoid encountering failures during the initial set

246

20 40 60 80 100

Samples

0

20

40

60

80
M

is
cl

as
si

fi
ca

ti
o

n
 E

rr
o

r
(%

)
Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(a) Misclassification error

20 40 60 80 100

Samples

0

2

4

6

8

10

F

ai
lu

re
s

Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(b) # of failures encountered

Figure 7-11: [Example 7.4] Comparison of a batch version of Algorithm 12 against the
previous active sampling approaches modified with a restricted search area. The standard
deviation intervals around the means (solid lines) correspond to 1𝜎 bounds.

10 20 30 40 50

Samples

0

20

40

60

80

M
is

cl
as

si
fi

ca
ti

o
n

 E
rr

o
r

(%
)

Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(a) Misclassification error

10 20 30 40 50

Samples

0

2

4

6

8

10

F

ai
lu

re
s

Open-Loop
Binary Entropy
PDF Variance
CDF Variance
EMI

(b) # of failures encountered

Figure 7-12: [Example 7.4] Comparison of sequential Algorithm 12 against the previous
active sampling approaches modified with a restricted search area. The standard deviation
intervals around the mean (solid lines) correspond to 1𝜎 bounds.

of experiments. Additionally, this framework introduced constraints for the set of

available sampling to restrict the active sampling process to a set of parameters with

a minimum probability of satisfying the requirement. These two modifications form

the basis for new active sampling procedures, but can also be applied to any existing

active sampling procedure. The new failure-adverse closed-loop verification frame-

work drastically reduced the number of failures by 94-99% with minimal influence on

prediction accuracy.

247

248

Chapter 8

Conclusions and Future Work

This thesis developed strategies for efficient statistical verification of complex nonlin-

ear systems subject to parametric uncertainties. Statistical verification of uncertain

nonlinear systems traditionally relies upon exhaustive simulation-based testing of the

closed-loop system under consideration, which limits the speed with which the system

can be verified and reduces suitability in resource-constrained applications. The work

in this thesis combines data-driven statistical learning techniques with control system

verification to maximize the accuracy of predictions while restricted to a computa-

tional budget.

Chapter 3 introduced data-driven verification methods and closed-loop statisti-

cal verification frameworks for deterministic nonlinear systems. Given a small set

of observed trajectories, these data-driven verification methods exploit support vec-

tor machines to learn and predict the satisfaction of performance requirements over

the entire set of possible parametric uncertainties. In contrast to deductive verifi-

cation techniques, this statistical verification approach is not beholden to Lyapunov

function-based analytical certificates or similar analytical methods that restrict the

class of applicable systems. Due to the importance of the set of observed training

data upon the accuracy of the predictions, closed-loop statistical verification was

developed to improve the informativeness of the training dataset. This framework

iteratively selects the next set of simulations or experiments to perform in order to

maximize the expected improvement in the predictions. Simulation results with the

249

closed-loop framework demonstrated up to a 50% improvement in prediction accuracy

over passive statistical verification approaches.

Chapter 4 expanded upon the closed-loop verification framework to improve its

accuracy and suitability within an important subset of the class of problems addressed

in Chapter 3. This chapter developed a new verification framework based upon Gaus-

sian process regression models to exploit the availability of non-binary measurements

of a trajectory’s robustness to the performance requirement. The GP-based predic-

tion model introduced the ability to quantify prediction confidence online without

relying upon external validation datasets that typically require valuable simulation

or experimental data to be siphoned away from the training dataset. The change

from SVMs to GPs and their quantifiable prediction confidence also motivated the

redevelopment of the closed-loop verification procedures. New GP-based closed-loop

procedures maximize the improvement in prediction confidence and their advantage

over competing approaches was demonstrated on numerous simulation examples of

increasing complexity.

Chapters 5 and 6 adapted the procedures from Chapters 3 and 4 to address

stochastic systems. The presence of stochasticity in the dynamics produces distri-

butions of trajectory robustness measurements that challenge the earlier verification

methods which assume single, deterministic measurements. Chapters 5 and 6 intro-

duced stochastic verification frameworks that implement different GP-based predic-

tion models tailored to the various possible distributions. Regardless of whether the

measurements are binary or not, the closed-loop verification procedures rely upon a

new selection metric that reduces the variance of the cumulative distribution in order

to improve the accuracy of the predictions. Results for stochastic versions of the pre-

vious simulation examples demonstrated the consistent effectiveness of the stochastic

closed-loop verification frameworks for various distributions.

Finally, Chapter 7 presented data-driven statistical verification techniques for

multi-stage verification processes which perform verification on different models of

the system with increasing fidelity. In particular, the chapter formulated an ap-

proach to transfer predictions derived from simulators into real-world domains. This

250

forward transfer of information is a key component of an extension of closed-loop

verification called failure-adverse closed-loop verification that adds constraints to the

sample selection process in order to avoid failures during experiments. Failure-adverse

closed-loop statistical verification significantly reduces the number of failures over the

original closed-loop approaches with minimal impact upon prediction accuracy. This

was shown on a redevelopment of earlier examples. In short, the last chapter ties all

the preceding deterministic and stochastic frameworks together as part of a higher-

level process. This work highlighted the ability of data-driven statistical verification

to improve the efficiency of control system verification all the way from low-fidelity

deterministic verification during preliminary control system design to experimental

testing on actual prototypes of the closed-loop system.

8.1 Future Work

The following section describes possible extensions to the work in this thesis. The

first two extensions discuss changes to the implementation details of the statistical

verification frameworks to improve the utility of the approaches in more challenging

applications. The third extension examines the effect of sampling discretization upon

prediction accuracy, while the following two extensions address issues and limitations

of the GP-based regression techniques that were identified earlier in the thesis. The

final extension discusses the use of closed-loop verification alongside recent data-

driven optimization techniques for black-box control system design.

High-Dimensional Systems and Sparse Approximations

The work in Chapters 4 and 5 mainly considered the standard deterministic and

stochastic Gaussian process regression models that are widely-used across many un-

related disciplines. However, the computational complexity associated with the con-

struction of these models limits their tractability as 1) the size of the training dataset,

2) the dimension of 𝜃, and/or 3) the size of Θ𝑑 become large. The following recent

developments in machine learning and statistical inference could help address those

251

three issues in a practical manner.

First, sparse Gaussian process techniques [150] have been developed for regres-

sion and classification problems to cap the number of allowable points in the training

dataset. These sparse GP methods restrict the GP’s training dataset to a fixed num-

ber of points in order to maintain a certain level of computation complexity. After

each additional datapoint or batch of datapoints are obtained, the training process

identifies whether a new datapoint should replace one of the points in the current

training dataset or should be ignored. In this manner, sparse GPs are similar in

concept to support vector machines since they only actually make predictions based

upon a subset of the total set of observed simulation or experimental data. Addi-

tionally, sparse GPs have also been successfully employed in Bayesian nonparametric

adaptive control [88] and reinforcement learning [158]. While they would help reduce

the computational overhead associated with large datasets, sparse GPs do introduce

new challenges with hyperparameter optimization and numerical stability, which is

why they were not used in this thesis.

Second, recent developments in high-dimensional Gaussian process models [123]

would help improve the suitability of the statistical verification frameworks in systems

where the value of 𝑝 in the parametric uncertainties 𝜃 ∈ R𝑝 is large. This new

derivation of the standard GP models finds a sparse approximation of the full GP

model during a more complex training procedure. Similarly, another set of recent

developments [124] decomposes the full sampling set Θ𝑑 into smaller subsets and

trains one Gaussian process model for each of those subsets. In this manner, one

“full” GP trained on the entire set Θ𝑑 is replaced by an array of GPs trained on

less computationally-demanding subsets. This method could be used to address both

high-dimensional 𝜃 and large Θ𝑑.

A third possible modification is an adaptive resolution for Θ𝑑. While this does not

necessarily require any changes to the current implementation of the Gaussian process

model, it would introduce an additional method to increase the discretization of Θ𝑑

in pertinent regions. Due to the similar concept, box thresholding techniques [72]

could be redeveloped as a possible solution. Ultimately, all these possible extensions

252

still exploit the same concepts and frameworks developed in the thesis, but would

introduce more complex statistical inference techniques to address difficult subsets of

the class of relevant problems.

Improved Stochastic Modeling Techniques

Another related potential research direction is the implementation of different stochas-

tic inference techniques. Section 5.5 already briefly introduced recent techniques for

modeling non-Gaussian likelihoods [145–149]. The majority of these were for t-process

regression methods [145–147] which replace Gaussian distributions with Student’s t-

distributions in order to reduce the sensitivity of the regression model to outliers.

While these approaches are still being actively developed and refined, they could im-

prove the robustness and numerical stability of the prediction model with respect to

stochastic measurements. Meta-GP [149] is another new method for modeling non-

Gaussian likelihoods; however, this approach can handle a wider class of distributions

than t-processes, such as multi-modal distributions. Although they are capable of

handling non-Gaussian likelihoods, all of these methods assume the likelihood model

does not vary with 𝜃. The single greatest improvement for the stochastic verifica-

tion framework would be the development of a modeling technique that is capable of

handling spatially-varying non-Gaussian distributions without prior assumptions.

Impact of Sampling Grid Resolution upon Prediction Accuracy

An interesting research direction for both the SVM- and GP-based methods is the

exploration of the impact of the resolution of sample set Θ𝑑 upon the accuracy of

the predictions. Since samples are chosen from Θ𝑑, the resolution of this set directly

controls the ability of the prediction model to reproduce arbitrary shapes for the

Θ𝑠𝑎𝑡/Θ𝑓𝑎𝑖𝑙 boundary or surface 𝑝𝑠𝑎𝑡(𝜃). If Θ𝑑 is a rather coarse discretization of Θ,

then even if measurements are taken at every single location in Θ𝑑, the prediction

model will not be capable of accurately reproducing surfaces with high curvature.

Earlier work in radial basis function (RBF) neural networks, particularly those focused

on adaptive control, demonstrated that the spacing of points in a sampling lattice

253

will restrict the ability of the RBF neural network to reproduce a smooth function

[159–162]. SVMs and GPs are closely related to RBF neural networks and thus the

same conclusions apply with minor modification. Closed-loop verification addresses

an even more complex problem than this previous work because the active selection

of training points typically results in an irregular distribution of points across Θ𝑑.

The earlier work in RBF neural networks could be extended to closed-loop ver-

ification problems to compute guarantees for the minimum accuracy of the predic-

tions. Those earlier methods [159, 160, 162] use Fourier transforms and bandlimited

functions to determine the approximation ability of a RBF network with a regularly-

spaced sampling grid, similar to the Nyquist-Shannon sampling theorem for digital

signal processing. In the simplest case where simulations or experiments are per-

formed at every location in regularly-spaced sample set Θ𝑑, these same approaches

could be used to determine the ability of a SVM or GP to reproduce a surface with a

certain curvature. These techniques could also be used in reverse order to determine

an appropriate discretization for Θ𝑑. Such an analysis would also enhance prediction

confidence and guarantee that the current prediction model is able to reproduce a

certain set of possible surfaces. As the resolution increases, the guaranteed set of

surfaces that the prediction model can reproduce is expected to increase. Later ex-

tensions would explore more relevant problems with irregular grids of points, as would

be expected after closed-loop verification. These extensions would be able to produce

local guarantees of prediction accuracy given the neighboring points in the irregular

distribution.

Systems with Multiple Requirements

As discussed in Sections 4.1 and 4.2, the Gaussian process regression techniques pre-

sented in Chapters 4 and 5 are only able to model a single requirement at a time.

Each Gaussian process corresponds to a single requirement and multiple, parallel GPs

are necessary to model the simultaneous satisfaction of multiple requirements. By it-

self, this does not present a significant obstacle to modeling the satisfaction of the

requirements, and only necessitates a higher computational cost to train the multiple

254

GPs. However, the need for multiple GPs does challenge the closed-loop verification

procedures presented in the earlier chapters.

The main issue faced by closed-loop verification applied to systems with multiple

non-binary requirements is the likely disagreement over the informativeness of partic-

ular operating conditions. Especially in systems with competing requirements, it is

not hard to imagine each of the parallel GPs will rank the expected informativeness

of a simulation at one parameter setting differently. Each parallel GP will have its

own highest-ranked parameter setting or set of conditions for the upcoming simula-

tions. The problem is how to balance the competing suggestions and choose a single

simulation/experiment or set of simulations/experiments.

One possible direction would exploit recent developments in multi-task active

learning [117] to develop new closed-loop verification procedures. Multi-task active

learning techniques combine the selection metrics of different tasks together in a scalar

function to rank prospective sample locations with a single criterion. These functions

could be as simple as the maximum of the parallel scores or a more complex nonlinear

combination of them. Similar ideas from multi-objective optimization [163] could also

be applied. Ideally, the new closed-loop verification procedures would combine aspects

from all of these existing techniques to address the specific challenges associated with

verification.

Multi-Stage Verification with Forward Transfer of Predictive Covariance

Section 7.1 identified the primary limitation of the forward transfer method used in

this thesis: the absence of the prior verification stage’s predictive covariance Σ1(𝜃)

in the later stage’s predictions, 𝜇2(𝜃) and Σ2(𝜃). Without this information, the

second stage has no way of knowing whether the first stage had high confidence

in its predictions when it incorporates those results into its own prediction model.

Recent work in transfer learning for Gaussian process models [164] has the potential

to completely fix that limitation. This new forward transfer method not only includes

the ability to transfer the covariance Σ1(𝜃), but also presents a novel method to use

Stage 1’s predictions to improve the hyperparameter optimization process in Stage 2.

255

The latter aspect would offer significant assistance when the second stage is forced

to rely upon an extremely small training dataset ℒ2. Additionally, an improved

forward transfer method would enable new directions for the research in multi-stage

verification such as more complex procedures that seamlessly switch back and forth

between models of different fidelity.

Black-Box Robust Controller Design and Optimization

A final possible research extension of this work would be the implementation of

closed-loop verification within a black-box controller design and optimization process.

Recent Bayesian optimization techniques applied to controller design and optimiza-

tion [96, 165] have shown potential for black-box control system design or parameter

tuning, but have restricted the measurements to quantifiable metrics obtainable via

a single simulation or experiment. One interesting extension would be the combina-

tion of these Bayesian optimization techniques with closed-loop statistical verification

frameworks to optimize the robustness of a control system. Unlike the existing con-

troller optimization techniques [96,165], this research direction would use closed-loop

verification to predict the robustness of a set of candidate controller parameters. The

Bayesian optimization technique would then utilize these robustness predictions to

adjust the controller parameters and either maximize the robustness of the closed-loop

system or maximize another value while meeting a minimum level of robustness.

256

Appendix A

Concurrent Learning Model

Reference Adaptive Control

This appendix describes two concurrent learning model reference adaptive control

(CL-MRAC) examples used throughout this thesis. The first example considers a two-

state linear system with two sources of parametric uncertainty. The second example

expands upon this system and includes two additional sources of uncertainty as well

as a more complex formulation with control saturation.

Simple CL-MRAC System

For the first example, consider an uncertain, second order linear system⎡⎣𝑥̇1
𝑥̇2

⎤⎦ =

⎡⎣ 0 1

−0.2 + 𝜃1 −0.2 + 𝜃2

⎤⎦⎡⎣𝑥1
𝑥2

⎤⎦+

⎡⎣0

1

⎤⎦𝑢(𝑡) (A.1)

with two uncertain parameters 𝜃 = [𝜃1, 𝜃2]
𝑇 that are not known in advance. The

system is expected to track a desired reference trajectory produced by the following

linear system, ⎡⎣𝑥̇𝑚1

𝑥̇𝑚2

⎤⎦ =

⎡⎣ 0 1

−𝜔2
𝑛 −2𝜁𝑛𝜔𝑛

⎤⎦⎡⎣𝑥𝑚1

𝑥𝑚2

⎤⎦+

⎡⎣ 0

𝜔2
𝑛

⎤⎦ 𝑟𝑐𝑚𝑑(𝑡), (A.2)

257

with 𝜁𝑛 = 0.5 and 𝜔𝑛 = 1. This reference system is excited by step commands

𝑟𝑐𝑚𝑑 = 1 between 𝑡 = 0 and 𝑡 = 2 seconds, 𝑟𝑐𝑚𝑑 = 1.5 between 𝑡 = 10 and 𝑡 = 12

seconds, and 𝑟𝑐𝑚𝑑 = −1.5 between 𝑡 = 20 and 𝑡 = 22 seconds, where 𝑟𝑐𝑚𝑑 = 0 at all

other times. The trajectory length for the simulations is set to 𝑇𝑓 = 40 seconds.

The closed-loop control policy for the system is a function of the actual state x(𝑡),

reference state x𝑚(𝑡), reference command 𝑟𝑐𝑚𝑑(𝑡), and estimated parameters ̂︀𝜃(𝑡).

The scalar control input 𝑢(𝑡) consists of three components: reference input 𝑢𝑟𝑚(𝑡),

feedback input 𝑢𝑝𝑑(𝑡), and adaptive input 𝑢𝑎𝑑(𝑡),

𝑢(𝑡) = 𝑢𝑟𝑚(𝑡) + 𝑢𝑝𝑑(𝑡)− 𝑢𝑎𝑑(𝑡). (A.3)

The reference and feedback inputs are constructed so that in the absence of uncer-

tainties (𝜃 = [0, 0]𝑇), these two inputs are sufficient for ensuring stable, closed-loop

tracking of the reference trajectory. The reference and feedback inputs are given by

𝑢𝑟𝑚(𝑡) = −𝜔2
𝑛𝑥𝑚1 − 2𝜁𝑛𝜔𝑛𝑥𝑚2 + 𝜔2

𝑛𝑟𝑐𝑚𝑑(𝑡) (A.4)

𝑢𝑝𝑑(𝑡) = 𝐾𝑝𝑒1(𝑡) +𝐾𝑑𝑒2(𝑡), (A.5)

where 𝐾𝑝 = 1.5, 𝐾𝑑 = 1.3, and e(𝑡) = x𝑚(𝑡) − x(𝑡) is the tracking error between

the reference and actual states. In the presence of uncertainties, the adaptive input

𝑢𝑎𝑑(𝑡) helps ensure closed-loop tracking,

𝑢𝑎𝑑(𝑡) = ̂︀𝜃1(𝑡)𝑥1(𝑡) + ̂︀𝜃2(𝑡)𝑥2(𝑡), (A.6)

where ̂︀𝜃1(𝑡) and ̂︀𝜃2(𝑡) are the estimated parameters updated online according to the

concurrent learning adaptive law [121].

Unlike the standard MRAC adaptive law, the CL-MRAC adaptive law updates ̂︀𝜃
as a combination of instantaneous and recorded data,

̂̇︀𝜃(𝑡) = −Γx(𝑡)e(𝑡)𝑃𝐵 − Γ𝑐

𝑝𝑚𝑎𝑥∑︁
𝑘=1

x𝑘x
𝑇
𝑘
̃︀𝜃𝑇 , (A.7)

258

with parameter estimation error ̃︀𝜃(𝑡) = ̂︀𝜃(𝑡) − 𝜃. In this example, the adaptive

gains are set to Γ = 2 and Γ𝑐 = 0.2. Vector 𝐵 is the control input matrix from

(A.1). The symmetric positive-definite matrix 𝑃 is determined by the Lyapunov

equation 𝐴𝑇𝑃 +𝑃𝐴 = −𝐼, where 𝐴 is the nominal open-loop plant from (A.1) (with

𝜃 = [0, 0]𝑇).

The crux of the CL-MRAC adaptive law is the time history stack found in (A.7).

The CL-MRAC law actively selects specific datapoints x𝑘 from the observed portion

of the trajectory in order to improve the convergence of the tracking error. These

datapoints are specifically chosen to guarantee matrix
∑︀𝑝𝑚𝑎𝑥

𝑘=1 x𝑘x
𝑇
𝑘 is positive definite.

Once the datapoint budget 𝑝𝑚𝑎𝑥 is reached (here 𝑝𝑚𝑎𝑥 = 20), older datapoints are

only replaced with a new datapoint if the resulting matrix will have a higher minimum

singular value. This process, called singular value maximization [121], guarantees that

new datapoints added to the history stack will strictly improve the rate of tracking

and parameter estimation error convergence.

Although this CL-MRAC approach guarantees asymptotic convergence of the

tracking and parameter estimation errors, the adaptive control law converts the open-

loop linear system into a nonlinear closed-loop system. In particular, the history stack

greatly complicates analysis of the closed-loop response due to its periodic, but non-

uniform, updates of the saved datapoints. The adaptive control inputs can vary

significantly, even at the same state vector x(𝑡), depending upon the current estimate

of the parameters ̂︀𝜃(𝑡).

CL-MRAC System with Control Saturation

The second example is a more complex version of the previous CL-MRAC system.

This example involves the same open-loop plant from (A.1); however, the control input

𝑢(𝑡) is saturated within limits −𝑢𝑚𝑎𝑥 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥, where 𝑢𝑚𝑎𝑥 > 0. For additional

complexity, two more sources of uncertainty are added to the same previous uncertain

parameters (𝜃1, 𝜃2): 𝜃3 captures uncertainty in the initial state 𝑥1(0) and 𝜃4 models

uncertainty in the control saturation limit 𝑢𝑚𝑎𝑥.

Concurrent learning model reference adaptive control (CL-MRAC) is still used,

259

but the presence of control saturation can lead to instabilities in the adaptation if

left unaddressed. In order to counter these issues, pseudo-control hedging (PCH)

[122] augments the baseline CL-MRAC procedure. Pseudo-control hedging creates a

hedge input 𝜈ℎ that measures the distance between the desired control input before

saturation 𝑢𝑑𝑒𝑠(𝑡) and the control input at saturation ±𝑢𝑚𝑎𝑥. Note that the desired

control input before saturation is simply the original formulation for the control input,

𝑢𝑑𝑒𝑠(𝑡) = 𝑢𝑟𝑚(𝑡) + 𝑢𝑝𝑑(𝑡)− 𝑢𝑎𝑑(𝑡), (A.8)

while the new (true) control input is given by

𝑢(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑢𝑚𝑎𝑥 if 𝑢𝑑𝑒𝑠(𝑡) > 𝑢𝑚𝑎𝑥

𝑢𝑑𝑒𝑠(𝑡) otherwise

−𝑢𝑚𝑎𝑥 if 𝑢𝑑𝑒𝑠(𝑡) < −𝑢𝑚𝑎𝑥.

(A.9)

The pseudo control hedge input 𝜈ℎ is simply the difference

𝜈ℎ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑢𝑚𝑎𝑥 − 𝑢𝑑𝑒𝑠(𝑡) if 𝑢𝑑𝑒𝑠(𝑡) > 𝑢𝑚𝑎𝑥

0 otherwise

−𝑢𝑚𝑎𝑥 − 𝑢𝑑𝑒𝑠(𝑡) if 𝑢𝑑𝑒𝑠(𝑡) < −𝑢𝑚𝑎𝑥.

(A.10)

The main issue with control saturation is the controller can no longer perfectly track

the reference trajectory x𝑚(𝑡) when the control input 𝑢(𝑡) is saturated. Even once the

parameter estimates (̂︀𝜃1, ̂︀𝜃2) converge to their true value, the actual state trajectory

may not be able to follow the unconstrained reference trajectory. Instead, the pseudo-

control hedge modifies the reference model to prevent the saturation from negatively

affecting the tracking error e(𝑡) = x𝑚(𝑡) − x(𝑡). Specifically for this example, the

PCH-modified reference model becomes⎡⎣𝑥̇𝑚1

𝑥̇𝑚2

⎤⎦ =

⎡⎣ 0 1

−𝜔2
𝑛 −2𝜁𝑛𝜔𝑛

⎤⎦⎡⎣𝑥𝑚1

𝑥𝑚2

⎤⎦+

⎡⎣ 0

𝜔2
𝑛

⎤⎦ 𝑟𝑐𝑚𝑑(𝑡)−
⎡⎣0

1

⎤⎦ 𝜈ℎ. (A.11)

260

This PCH-modification also changes the Lyapunov function used to verify the closed-

loop stability of the system, discussed with more detail in [122]. This modification to

the Lyapunov function adds to the difficulty in obtaining analytical barrier certificates

or applying other analytical verification methods - see Section 3.2.

261

262

Appendix B

Robust Multi-Agent Task Allocation

for Aerial Forest Firefighting

The following appendix describes the robust multi-agent task allocation example used

in the thesis. In this example, UAV agents are assigned to find, identify, and track the

expansion of forest fires in rough terrain while subject to uncertain wind conditions.

A more complete description of the aerial forest firefighting problem is found in earlier

work [32]. Additional details for the robust task allocation strategy, robust CBBA,

can be found in the seminal work [26].

Wildfires pose a severe environmental and monetary risk around the world. Many

of these fires start in hard-to-reach remote areas due to dry conditions and lightning

strikes or uncontrolled campfires. After the initial blaze, these fires can rapidly grow

in size and eventually burn thousands or even upwards of a million acres of land [166].

One of the primary challenges with these remote wildfires, at least during the initial

stages, is adequate detection and surveying of the fire for subsequent firefighting

efforts [167]. This initial monitoring of the fire is made even more difficult by the

existence of fire spotting, where embers from the original fire are carried aloft by

winds until they ignite a second fire downwind from the first. Unmanned aerial

vehicles, in particular small, backpack-transportable ones, have been proposed as a

potential tool for monitoring wildfires during the initial stages [167].

This example combines robust task allocation with a forest fire simulator to de-

263

velop robust and effective strategies for UAV monitoring of wildfires given uncer-

tainties in the wind conditions. Changes in the wind conditions (wind speed and

direction) will drastically affect the expansion of the fire due to changes in the terrain

and vegetation. For instance, dry grasslands will typically burn faster than rocky

shrubbery and the wind direction pointing towards either type will change the speed

of fire growth. This example utilizes a Matlab-based derivative of commercially-

available wildfire simulators [168, 169] to model the expansion of wildfires given a

set of wind conditions, vegetation map, and initial fire starting location. A robust

task allocation optimization problem will then attempt to assign UAVs in the most

efficient manner to maximize the expected coverage of the fire from the UAVs while

limited to fuel constraints and vehicle dynamics. The verification problem will then

examine a candidate task assignment policy to determine at which wind conditions

the control policy will fail to maintain a desired level of coverage and at which it will.

Ultimately, a higher-level planner will evaluate the verified robustness of different

policies and select the one with the greatest expected performance [32].

Robust Planning under Uncertainty

The task assignment policy is constructed through a robust task allocation framework.

This example uses the robust consensus-based bundle algorithm (CBBA) [26,132,170]

as the task allocation framework. The robust CBBA algorithm produces conflict-free

distributed task assignments in polynomial time and has been demonstrated through

flight tests with UAVs and other hardware scenarios [26].

The basic multi-agent task allocation problem attempts to maximize mission per-

formance given a team of 𝑁𝑎 agents and 𝑁𝑡 tasks to complete. This mission perfor-

mance is defined by a global objective function that captures the costs or rewards

associated with the assignment of particular agents to tasks. This work makes the

common assumption the tasks can only be completed by one agent at a time, allowing

the objective function to be rewritten as the sum of local objective functions for each

agent and their assigned task(s). Additionally, the rewards for completing tasks will

vary explicitly with time. For instance, an agent may be penalized for not completing

264

certain tasks within a set time window. The resulting global task allocation problem

is given by the mixed-integer nonlinear optimization program:

max
x,𝜏

E𝜃

{︁ 𝑁𝑎∑︁
𝑖=1

𝑁𝑡∑︁
𝑗=1

𝑐𝑖𝑗(x, 𝜏 ,𝜃)𝑥𝑖𝑗

}︁
s.t. G(x, 𝜏 ,𝜃) ≤ b

x ∈ 𝒳 𝜏 ∈ 𝒯 .

(B.1)

Design vector x ∈ 𝒳 is the assignment of all agent-task pairings with 𝑥𝑖𝑗 denoting

whether agent 𝑖 is assigned to task 𝑗, i.e. 𝒳 = {0, 1}𝑁𝑎×𝑁𝑡 . Decision variable 𝜏 ∈ 𝒯

is the execution sequence, where scalar term 𝜏𝑖𝑗 denotes the time when agent 𝑖 will

execute the assigned task 𝑗 or 𝜏𝑖𝑗 = ∅ if task 𝑗 is not assigned to agent 𝑖. Vector 𝜃

consists of the planning parameters that may influence the objective cost 𝑐𝑖𝑗. In this

example, the planning parameters correspond to uncertain wind conditions 𝜃1 (wind

speed) and 𝜃2 (wind direction). The cost function maps the cost or reward obtained by

agent 𝑖 for completing task 𝑗 to the set of task assignments x, execution sequence 𝜏 ,

and planning parameters 𝜃. Because the wind conditions are not perfectly known and

may change before execution of the policy, the robust CBBA algorithm maximizes

the expected performance with respect to uncertainties 𝜃. In order to capture the

effects of vehicle dynamics and other limitations, the nonlinear constraints G and b

are placed on the optimization problem.

As it is a distributed algorithm, robust CBBA decomposes (B.1) amongst each

agent and greedily generates a task assignment to maximize each agent’s individual

score. As these will neglect the other agents’ scores, CBBA introduces a bidding

process to eventually arrive at a conflict-free task assignment with a locally optimum

solution. The total expected reward 𝐽 is the cumulative expected reward of each

agent. This example does not directly examine the construction of the task assign-

ment, but instead evaluates the robustness of a task assignment policy after it has

already been obtained through the bidding process.

The robust CBBA planner attempts to assign 4 UAVs to complete 30 fire detection

and monitoring tasks at locations spread across an arbitrary map of varying vegetation

265

0 10 20 30 40

1
 (km/hr)

0

50

100

150

2 (
d

eg
re

es
)

1400

1500

1600

1700

1800

R
ea

liz
ed

 S
co

re

Figure B-1: Illustration of the realized mission score as a function of uncertain wind pa-
rameters 𝜃1 (wind speed) and 𝜃2 (wind direction). Note, the non-dimensional units of the
mission score hold no real-world, physical meaning and simply measure whether the system
successfully completed the assigned tasks.

types and terrain. The agents are broken into two types: 2 fast UAVs and another

2 UAVs that are 25% slower. The fire detection tasks correspond to potential fire

locations. The UAVs must fly to those locations and check the immediate vicinity

for fire hotspots. If one is detected, the UAV will spend more time at that location

to map the approximate fire boundary and study its rate of burn before moving on

to the next one. As mentioned earlier, different wind conditions will cause the fire to

spread in different directions at different rates, meaning some tasks will take longer

given one 𝜃 condition, but significantly less for another. Each task also has a certain

time window for which the UAV is expected to complete that task. Unforeseen delays

may cause a UAV to arrive too late to complete a certain task within its assigned

time window, and thus the UAV will miss the “reward” associated with successful

completion of that task. Given a task assignment optimized for 𝜃1 = 20 (km/hr) and

𝜃2 = 90∘ (Easterly wind), the realized score at different wind conditions is plotted

in Figure B-1. Note, the example actually considers the full 360∘ but Figure B-1

only shows 0 − 180∘. The verification problem then attempts to identify whether a

set of wind conditions 𝜃 will achieve a realized mission score above 1700. For the

stochastic version of the problem, each task duration is multiplied by its own scaling

266

factor 𝑘𝐺. A rough scaling factor ̂︀𝑘𝐺 is taken from a standard Gaussian distribution̂︀𝑘𝐺 ∼ 𝒩 (1.1, 1) centered at 1.1. In order to avoid negative scaling factors, the actual

scaling factor 𝑘𝐺 has a minimum of 0.1, i.e. 𝑘𝐺 = max([0.1,̂︀𝑘𝐺]).

267

268

Appendix C

Lateral-Directional Autopilot Model

The lateral-directional autopilot example considers an autopilot for a de Havilland

DHC-2 Beaver airplane. This airplane is a single-engined propeller aircraft with a

high-wing design and floats for water landings. The autopilot and autopilot require-

ments were provided during a session of the USAF’s S5 conference [133, 134] while

the baseline aircraft model is available in Matlab’s Aerospace Blockset and can be

accessed with the “asbdhc2” command in the command window.

The example’s simulation model replicates the various components of a real-world

flight control system, seen in Figure C-1. The airframe model includes full nonlinear

6 degrees-of-freedom aircraft dynamics, complete with actuator dynamics and satu-

ration for each of the flight control surfaces. These dynamics also include nonlinear

functions for engine spool-up and other noticeable effects. For the stochastic version

of the model, the Dryden wind field model [15] was added to the airframe model to

incorporate realistic effects of wind turbulence upon the aircraft’s trajectory. The

autopilot component of the simulation model contains different controllers for pitch,

roll, and yaw which will adjust outputs and gains according to the particular autopi-

lot mode and commands. These autopilot controllers are not modified for the thesis

work and verification tests the autopilot’s ability to satisfy the given performance

requirements.

This example focuses on the “heading-hold” option of the lateral-directional au-

topilot. The autopilot is expected to turn the aircraft to the desired reference heading

269

Figure C-1: Components of the lateral-directional autopilot and flight control system for
the de Havilland Beaver flight simulation model.

angle and maintain that heading. The desired heading angle is fixed at 112∘, which

is the default value for the aircraft simulation model. The autopilot is expected to

meet various performance requirements as it controls the aircraft during the turn ma-

neuver. The first requirement states the aircraft should achieve a steady-state error

of 1∘ in calm air (no turbulence). The second requirement limits the allowable over-

shoot and states the aircraft’s heading angle should not exceed 10% overshoot in calm

air. These two requirements constitute acceptable heading angle performance for the

autopilot. During an exhaustive search of different initial conditions and possible

parameter settings, the autopilot always met these two heading angle requirements.

Although the autopilot consistently satisfies the heading angle tracking and over-

shoot requirements, the autopilot is not always able to satisfy a third requirement

that places an altitude restriction on the aircraft trajectory during the turn maneuver.

This altitude requirement states the aircraft must remain within 35 feet of the initial

altitude when the heading-hold command was given. As the aircraft turns from the

initial heading angle towards the desired reference heading, the aircraft may gain or

lose altitude based upon the effects of the control surface deflections. An example of

the heading angle and altitude tracking errors during an arbitrary turn maneuver is

shown in Figure C-2. In this trajectory, the autopilot successfully ensures the aircraft

270

0 20 40 60 80 100

Time (s)

-60

-40

-20

0

20

A
lt

it
u

d
e

E
rr

o
r

(f
t)

Height Error
Requirement

(a) Altitude tracking error

0 20 40 60 80 100

Time (s)

-5

0

5

10

H
ea

d
in

g
 E

rr
o

r
(d

eg
)

(b) Heading angle tracking error

Figure C-2: Satisfaction of the heading autopilot’s requirements over an example trajectory.

satisfies the two requirements for heading angle performance, but is not able to satisfy

the altitude restriction. Changes in the initial conditions will affect the satisfaction

of the altitude requirement, but only have minimal impact upon the satisfaction of

the other heading angle requirements (tracking and overshoot). For this reason, the

example problems in this thesis will only examine the satisfaction of the altitude

requirement.

Lastly, the autopilot may be engaged at a wide variety of different aircraft ori-

entations and states. Assuming a pilot will only engage the autopilot during cruise

conditions, the most relevant variations in orientation and state are in the roll, pitch,

and heading angles. These angles represent the aircraft’s angular position with re-

spect to the horizon and magnetic North. Additionally, the aircraft may be loaded

differently between flights as passengers and cargo are added or removed. The air-

271

craft’s weight itself was found to have minimal impact upon the satisfaction of the

requirements during the exhaustive search, but changes in moments of inertia exhib-

ited stronger influence. In particular, the longitudinal moment of inertia (𝐼𝑦𝑦) had a

non-negligible influence upon the satisfaction of the altitude requirement. These four

variables (roll, pitch, heading, and 𝐼𝑦𝑦) are the parametric uncertainties examined

during verification.

272

Appendix D

Determinantal Point Processes for

Sampling

Determinantal Point Processes (DPPs) are useful tools for selecting sets of samples

where diversity in the samples is important [130]. In these approaches, a set of

samples generated according to the underlying probability distribution is used to

construct a DPP, which then can be used to produce a second sample set of the same

size with a higher level of diversity. In many applications, only a small number of

samples is desired; however, the DPP loses its utility when it is constructed from a

small number of initial samples. For these problems, k-DPPs [131] were developed to

produce a small set of samples (of size 𝑘) from a DPP constructed with a significantly

larger initial set of samples. The overall process is deeply rooted in random matrix

theory and an interested reader should examine the seminal work [130, 131] for the

full discussion and details. The following algorithm describes k-DPP sampling as it

relates to the data-driven verification procedures.

The k-DPP sampling approach in Algorithm 14 assumes 𝑀𝑇 samples of 𝜃 have

been generated according to probability distributions P𝐸(𝜃) or P𝑉 (𝜃) determined by

the respective binary classification entropy or CDF variance selection metrics. In

order to have a suitable number of samples to construct the DPP, 𝑀𝑇 = 1000 for the

examples in this thesis. These samples form a matrix 𝐿 that measures correlation

between samples (Step 4). An isotropic squared exponential kernel is used to measure

273

similarity and ensure the components of 𝐿 are bounded (𝐿(𝑖, 𝑗) ≤ 1) and 𝐿 is positive

definite. The term 𝑙 is the lone hyperparameter of the RBF kernel. This term was set

to 𝑙 = 5 for the examples. Next, the eigenvalues 𝜆𝑗 and eigenvectors 𝑣𝑗 of 𝐿 are found

(Step 7). The eigenvalues are also used to compute the corresponding elementary

symmetric polynomials 𝑒𝑚. These elementary polynomials and the eigenvalues weight

the sample locations and are used to randomly select indices from the 𝑀𝑇 samples

in Step 10, adding the selected index to set 𝐽 . Once the loop has selected 𝑀 indices,

a sample 𝑦𝑖 from the set 𝐽 is randomly chosen and added to 𝑌 in Steps 21 and 22.

The eigenvector corresponding to 𝑦𝑖 is then removed from the set 𝑉 of all remaining

eigenvectors. Steps 21-23 are repeated until𝑀 samples have been chosen, completing

the batch. Note that the values in the output set 𝑌 correspond to indices of 𝜃 terms

in the initial input set of 𝑀𝑇 locations sampled from P𝐸(𝜃) or P𝑉 (𝜃). The actual

sample locations are taken from the original set of 𝑀𝑇 points.

274

Algorithm 14 k-DPP sampling algorithm; adapted from [131].

1: Input: 𝑀𝑇 randomly generated samples of 𝜃, empty set 𝐽 , batch size 𝑀
2: for 𝑖 = 1, 2, . . . ,𝑀𝑇 do

3: for 𝑗 = 1, 2, . . . ,𝑀𝑇 do

4: Compute 𝐿(𝑖, 𝑗) = 𝑒−||𝜃𝑖−𝜃𝑗 ||2/𝑙2

5: end for

6: end for

7: Eigendecomposition of 𝐿 → {𝑣𝑗, 𝜆𝑗}
8: Initialize 𝑚 = 𝑀
9: for 𝑗 = 𝑀𝑇 ,𝑀𝑇 − 1, . . . , 1 do

10: if 𝑢 ∼ Uniform[0, 1] < 𝜆𝑗
𝑒𝑗−1
𝑚−1

𝑒𝑗𝑚
then

11: 𝐽 ← 𝐽 ∪ {𝑗}
12: 𝑚← 𝑚− 1
13: if 𝑚 = 0 then
14: break

15: end if

16: end if

17: end for

18: 𝑉 ← {𝑣𝑗}𝑗 ∈ 𝐽
19: 𝑌 ← ∅
20: while |𝑉 | > 0 do
21: Select 𝑦𝑖 with probability P(𝑦𝑖) = 1

|𝑉 |
∑︀

𝑣∈𝑉 (𝑣𝑇 𝑒𝑖)
2

22: 𝑌 ← 𝑌 ∪ 𝑦𝑖
23: 𝑉 ← 𝑉⊥ (orthonormal basis for subspace of 𝑉 orthogonal to 𝑒𝑖)
24: end while

25: Return: sample set 𝑌 of size 𝑀

275

276

Bibliography

[1] Eugene Lavretsky and Kevin A. Wise. Robust and Adaptive Control. Springer,
2013.

[2] Richard Sutton and Andrew Barto. Reinforcement Learning, an Introduction.
MIT Press, 1998.

[3] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[4] Damien B. Jourdan, Michael D. Piedmonte, Vlad Gavrilets, David W. Vos, and
Jim McCormick. Enhancing uav survivability through damage tolerant control.
In AIAA Guidance, Navigation, and Control Conference, 2010.

[5] Girish Chowdhary, Eric Johnson, M. Scott Kimbrell, Rajeev Chandramohan,
and Anthony Calise. Flight test results of adaptive controllers in presence of
severe structural damage. In AIAA Guidance, Navigation, and Control Con-
ference, 2010.

[6] Girish Chowdhary and Eric Johnson. Theory and flight-test validation of a
concurrent-learning adaptive controller. Journal of Guidance, Control, and Dy-
namics, 34(2):592–607, 2011.

[7] Eric N Johnson and Suresh K. Kannan. Adaptive trajectory control for au-
tonomous helicopters. Journal of Guidance, Control, and Dynamics, 28(3):524–
538, 2005.

[8] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aero-
batics through apprenticeship learning. The International Journal of Robotics
Research, 29(13):1608–1639, 2010.

[9] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An appli-
cation of reinforcement learning to aerobatic helicopter flight. In Conference
on Advances in Neural Information Processing Systems, page 2007. MIT Press,
2007.

[10] Mark Cutler and Jonathan P. How. Autonomous drifting using simulation-
aided reinforcement learning. In IEEE International Conference on Robotics
and Automation, 2016.

277

[11] Christopher Petersen, Morgan Baldwin, and Ilya Kolmanovsky. Model predic-
tive control guidance with extended command governor inner-loop flight control
for hypersonic vehicles. In AIAA Guidance, Navigation, and Control Confer-
ence, Boston, MA, August 2013. American Institute of Aeronautics and Astro-
nautics.

[12] Zheng Qu, Anuradha Annaswamy, and Eugene Lavretsky. An adaptive con-
troller for very flexible aircraft. In AIAA Guidance, Navigation, and Control
Conference, 2013.

[13] Sohrab Haghighat, Hugh H. T. Liu, and Joaquim R. R. A. Martins. Model-
predictive gust load alleviation controller for a highly flexible aircraft. Journal
of Guidance, Control, and Dynamics, 35(6):1751–1766, 2012.

[14] Technology horizons: A vision for air force science and technology during 2010-
2030. Technical report, Office of the US Air Force Chief Scientist, 2011. AF/ST-
TR-10-01-PR.

[15] Department of Defense MIL-HDBK-1797. Flying qualities of piloted aircraft.

[16] Federal Aviation Administration FAR Part 25. Airworthiness standards: Trans-
port categority airplanes.

[17] Jan Roskam. Airplane Flight Dynamics and Automatic Flight Controls. DAR-
corporation, 1995.

[18] Federal Aviation Administration CFR Part 60. Flight simulation training device
initial and continuing qualification and use.

[19] A. Da Ronch, K. J. Badcock, Y. Wang, A. Wynn, and R. Palacios. Nonlin-
ear model reduction for flexible aircraft control design. In AIAA Atmospheric
Flight Mechanics Conference. AIAA Papaer 2012-4404, American Institute of
Aeronautics and Astronautics, 2012.

[20] Xiaohong Li and Ramesh Agarwal. Application of reduced-order models to
robust control of the dynamics of a flexible aircraft. In AIAA Guidance, Navi-
gation, and Control Conference. AIAA Paper 2003-5504, American Institute of
Aeronautics and Astronautics, 2003.

[21] A. Schirrer, M. Kozek, F. Demourant, and G. Ferreres. Feedback Control De-
signs. Springer, 2015.

[22] John Del Frate. Helios prototype vehicle mishap: Technical findings, recom-
mendations, and lessons learned. Technical report, NASA, 2007.

[23] Thomas E. Noll, Stephen D. Ishmael, Bart Henwood, Marla E. Perez-Davis,
Geary C. Tiffany, John Madura, Matthew Gaier, John M. Brown, and Ted
Wierzbanowski. Technical findings, lesson learned, and recommendations re-
sulting from the helios prototype vehicle mishap. Technical report, NASA,
2007.

278

[24] Luca F. Bertuccelli. Robust Decision-Making with Model Uncertainty in
Aerospace Systems. PhD thesis, Massachusetts Institute of Technology, De-
partment of Aeronautics and Astronautics, Cambridge MA, September 2008.

[25] Alborz Geramifard. Practical Reinforcement Learning Using Representation
Learning and Safe Exploration for Large Scale Markov Decision Processes. PhD
thesis, Massachusetts Institute of Technology, Department of Aeronautics and
Astronautics, February 2012.

[26] Sameera S. Ponda. Robust Distributed Planning Strategies for Autonomous
Multi-Agent Teams. PhD thesis, Massachusetts Institute of Technology, De-
partment of Aeronautics and Astronautics, September 2012.

[27] Eric N. Johnson and Sebastien Fontaine. Use of flight simulation to complement
flight testing of low-cost uavs. In AIAA Modeling and Simulation Technologies
Conference, 2001.

[28] Mark J. Cutler. Reinforcement learning for robots through efficient simulator
sampling. PhD thesis, Massachusetts Institute of Technology, 2015.

[29] Anirudha Majumdar, Amir Ali Ahmadi, and Russ Tedrake. Control and verifi-
cation of high-dimensional systems with dsos and sdsos programming. In IEEE
Conference on Decision and Control, 2014.

[30] Edmund M. Clarke and Paolo Zuliani. Statistical model checking for cyber-
physical systems. In International Symposium for Automated Technology for
Verification and Analysis, 2011.

[31] Paolo Zuliani, Andre Platzer, and Edmund M. Clarke. Bayesian statistical
model checking with application to stateflow/simulink verification. Formal
Methods in System Design, 43(2):338–367, 2013.

[32] John F. Quindlen and Jonathan P. How. Machine Learning for Efficient
Sampling-based Algorithms in Robust Multi-Agent Planning under Uncertainty.
In AIAA SciTech Conference, 2017.

[33] Brandon D. Luders. Robust Sampling-based Motion Planning for Autonomous
Vehicles in Uncertain Environments. PhD thesis, Massachusetts Institute of
Technology, Department of Aeronautics and Astronautics, May 2014.

[34] Brandon Luders and Jonathan P. How. Probabilistic feasibility for non-
linear systems with non-Gaussian uncertainty using RRT. In AIAA In-
fotech@Aerospace Conference, St. Louis, MO, March 2011. (AIAA-2011-1589).

[35] Brandon Luders, Sertac Karaman, Emilio Frazzoli, and Jonathan P. How.
Bounds on tracking error using closed-loop rapidly-exploring random trees.
In American Control Conference (ACC), pages 5406–5412, Baltimore, MD,
June/July 2010.

279

[36] Brandon Luders, Ian Sugel, and Jonathan P. How. Robust trajectory planning
for autonomous parafoils under wind uncertainty. In AIAA Infotech@Aerospace
Conference, Boston, MA, August 2013.

[37] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and
Mixing Times. American Mathematical Society, 2008.

[38] Charles Grinstead and J. Laurie Snell. Introduction to Probability. American
Mathematical Society, 2009.

[39] Goran Frehse, Colas Le Guernic, Alexandre Donze, Scott Cotton, Rajarshi Ray,
Oliver Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.
Spaceex: Scalable verification of hybrid systems. In International Conference
on Computered Aided Verification, 2011.

[40] Sadra Sadraddini and Calin Belta. Formal methods for adaptive control of
dynamical systems (preprint), 2017.

[41] Sicun Gao, Soonho Kong, and Edmund Clarke. dreal: An smt solver for non-
linear theories of reals. In International Conference on Automated Deduction,
2013.

[42] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dreach: Delta-
reachability analysis for hybrid systems. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2015.

[43] Fedor Shmarov and Paolo Zuliani. Probreach: Verified probabilistic delta-
reachability for stochastic hybrid systems. In Hybrid Systems Computation
and Control, 2015.

[44] Girish Chowdhary, Tansel Yucelen, Maximilian Muhlegg, and Eric Johnson.
Concurrent learning adaptive control of linear systems with exponentially con-
vergent bounds. International Journal of Adaptive Control and Signal Process-
ing, 27(4):280–301, April 2013.

[45] Stephen Prajna. Optimization-Based Methods for Nonlinear and Hybrid Sys-
tems Verification. PhD thesis, California Institute of Technology, 2005.

[46] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for worst-
case and stochastic safety verification using barrier certificates. IEEE Transac-
tions on Automatic Control, 52(8):1415–1428, August 2007.

[47] James Kapinski, Jyotirmoy Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken
Butts. Simulation-guided approaches for verification of automotive powertrain
control systems. In American Control Conference, 2015.

[48] Joseph Moore and Russ Tedrake. Control synthesis and verification for a perch-
ing UAV using LQR-trees. In IEEE Conference on Decision and Control, 2012.

280

[49] Amir Ali Ahmadi, Anirudha Majumdar, and Russ Tedrake. Complexity of ten
decision problems in continuous time dynamical systems. In American Control
Conference, 2013.

[50] James Kapinski, Jyotirmoy Deshmukh, Sriram Sankaranarayanan, and Nikos
Arechiga. Simulation-guided Lyapunov analysis for hybrid dynamical systems.
In Hybrid Systems: Computation and Control, 2014.

[51] Ufuk Topcu. Quantitative Local Analysis of Nonlinear Systems. PhD thesis,
University of California, Berkeley, 2008.

[52] Ufuk Topcu, Andrew K. Packard, Peter Seiler, and Gary J. Balas. Robust
region-of-attraction estimation. IEEE Transactions on Automatic Control,
55(1):137–142, January 2010.

[53] Ufuk Topcu, Andrew Packard, and Peter Seiler. Local stability analysis using
ssimulation and sum-of-squares programming. Automatica, 44(10):2669–2675,
2008.

[54] Philipp Reist, Pascal V. Preiswerk, and Russ Tedrake. Feedback-motion-
planning with simulation-based LQR-trees. International Journal of Robotics
Research, 35:1393–1416, 2016.

[55] Alexandre Donze. Breach: A toolbox for verification and parameter synthesis of
hybrid systems. In International Conference on Computered Aided Verification,
2010.

[56] Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi, Yoshihiro
Kobayashi, and Georgios Fainekos. Towards formal specification visualization
for testing and monitoring of cyber-physical systems. In International Workshop
on Design and Implementation of Formal Tools and Systems, 2014.

[57] Hengyi Yang, Bardh Hoxha, and Georgios Fainekos. Querying parametric tem-
poral logic properties on embedded systems. In International Conference on
Testing Software and Systems, 2012.

[58] Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivancic,
Aarti Gupta, and George J. Pappas. Monte-carlo techniques for falsification of
temporal properties of non-linear hybrid systems. In International Conference
on Hybrid Systems: Computation and Control, 2010.

[59] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo
Method. Wiley, 2008.

[60] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning. Springer, 2004.

281

[61] Young Joon Kim and Mykel Kochenderfer. Improving aircraft collision risk
estimation using the cross-entropy method. In AIAA Modeling and Simulation
Technologies Conference, 2015.

[62] Houssam Abbas, Bardh Hoxha, Georgios Fainekos, and Koichi Ueda.
Robustness-guided temporal logic testing and verification for stochastic cyber-
physical systems. In IEEE International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems, 2014.

[63] Sriram Sankaranarayanan and Georgios Fainekos. Falsification of temporal
properties of hybrid systems using the cross-entropy method. In Hybrid Sys-
tems: Computation and Control, 2012.

[64] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In International Conference on Computer
Aided Verification, 2011.

[65] Marta Kwiatkowska, Gethin Norman, and David Parker. Advances and chal-
lenges of probabilistic model checking. In Allerton Conference on Communica-
tion, Control, and Computing, 2010.

[66] David Henriques, Joao G. Martins, Paolo Zuliani, Andre Platzer, and Ed-
mund M. Clarke. Statistical model checking for markov decision processes.
In International Conference on Quantitative Evaluation of Systems, 2012.

[67] Paolo Zuliani, Christel Baier, and Edmund M. Clarke. Rare-event verification
for stochastic hybrid systems. In Hybrid Systems: Computation and Control,
2012.

[68] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking
with application to simulink/stateflow verification. In Hybrid Systems: Com-
putation and Control, 2010.

[69] Radu Grosu and Scott A. Smolka. Monte carlo model checking. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis
of Systems, 2005.

[70] Andrew Wendorff, Juan Alonso, and Stefan Bieniawski. Using multiple infor-
mation sources to construct stochastic databases to quantify uncertainty in cer-
tification maneuvers. In AIAA Structures, Structural Dynamics, and Materials
Conference, 2016.

[71] Yu Wang, Nima Roohi, Matthew West, Mahesh Viswanathan, and Geir E.
Dullerud. Statistical verification of dynamical systems using set oriented meth-
ods. In Hybrid Systems: Computation and Control, 2015.

[72] Thao Dang and Noa Shalev. Test coverage estimation using threshold accepting.
In Automated Technology for Verification and Analysis, pages 115–128, Sydney,
Australia, November 2014.

282

[73] Douglas C. Montgomery. Design and Analysis of Experiments. Wiley and Sons,
8th edition, 2013.

[74] C. Devon Lin and Boxin Tang. Latin Hypercubes and Space-Filling Designs,
pages 593–625. CRC Press, 2015.

[75] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause.
Safe model-based reinforcement learning with stability guarantees. In Neural
Information Processing Systems (NIPS), 2017.

[76] Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, and Andreas
Krause. Safe learning of regions of attraction for uncertain, nonlinear systems
with gaussian processes. In IEEE Conference on Decision and Control, 2016.

[77] Bernhard Scholkopf. Statistical learning and kernel methods. Technical report,
Microsoft Research, 2000.

[78] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[79] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[80] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Journal of Machine Learning Research,
46(1):131–159, 2002.

[81] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 1st edition, 2007.

[82] Davide Anguita, Alessandro Ghio, Sandro Ridella, and Dario Sterpi. K-fold
cross validation for error rate estimate in support vector machines. In Interna-
tional Conference on Data Mining (DMIN), 2009.

[83] Zhe Wang and Xiangyang Xue. Multi-class support vector machine. In Yun-
qian Ma and Guodong Guo, editors, Support Vector Machines Applications,
chapter 2, pages 23–48. 2014.

[84] Mohamed Aly. Survey on multiclass classification methods, 2005. Online.

[85] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning. MIT Press, 2006.

[86] M. Kuss. Gaussian Process Models for Robust Regression, Classification, and
Reinforcement Learning. PhD thesis, 2006.

[87] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2012.

283

[88] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela. Bayesian nonpara-
metric adaptive control using gaussian processes. IEEE Transactions on Neural
Networks and Learning Systems, 26(3):537–550, March 2015.

[89] Robert Grande, Girish Chowdhary, and Jonathan P. How. Nonparametric
Adaptive Control using Gaussian Processes with Online Hyperparameter Es-
timation. In IEEE Conference on Decision and Control (CDC). IEEE, 2013.

[90] Marc Peter Deisenroth. Efficient reinforcement learning using gaussian pro-
cesses, volume 9. KIT Scientific Publishing, 2010.

[91] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian
processes for data-efficient learning in robotics and control. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37(2), 2015.

[92] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaus-
sian process optimization in the bandit setting: No regret and experimental
design. In International Conference on Machine Learning, 2010.

[93] Alkis Gotovos, Nathalie Casati, and Gregory Hitz. Active learning for level set
estimation. In International Joint Conference on Artificial Intelligence, pages
1344–1350, 2013.

[94] Yehong Zhang, Trong Nghia Hoang, Kian Hsiang Low, and Mohan Kankanhalli.
Near-optimal active learning of multi-output gaussian processes. In AAAI Con-
ference on Artificial Intelligence, 2016.

[95] Gang Chen, Zachary Sabato, and Zhaodan Kong. Active learning based re-
quirement mining for cyber-physical systems. In IEEE Conference on Decision
and Control, 2016.

[96] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing
exploration-exploitation tradeoffs in gaussian process bandit optimization.
Journal of Machine Learning Research, 15:4053–4103, 2014.

[97] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

[98] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[99] Eric M. Wolff. Control of Dynamical Systems with Temporal Logic Specifica-
tions. PhD thesis, California Institute of Technology, 2014.

[100] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. Receding
horizon temporal logic planning. IEEE Transactions on Automatic Control,
57(11):2817 – 2830, 2012.

284

[101] Xu Chu Ding, Stephen L. Smith, Calin Belta, and Daniela Rus. Ltl control
in uncertain environments with probabilistic satisfaction guarantees. In 18th
World Congress of The International Federation of Automatic Control, 2011.

[102] Oded Maler and Dejan Nickovic. Monitoring Temporal Properties of Continuous
Signals, pages 152–166. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[103] Sadra Sadraddini and Calin Belta. Feasibility envelopes for metric temporal
logic specifications. In IEEE Conference on Decision and Control, 2016.

[104] Sadra Sadraddini and Calin Belta. Robust temporal logic model predictive
control. In Allerton Conference on Communication, Control, and Computing,
2015.

[105] Dorsa Sadigh and Ashish Kapoor. Safe control under uncertainty with prob-
abilistic signal temporal logic. In Robotics: Science and Systems Conference,
June 2016.

[106] Alexandre Donze and Oded Maler. Robust satisfaction of temporal logic over
real-valued signals. In International Conferences on Formal Modeling and Anal-
ysis of Timed Systems, 2010.

[107] Alexandre Donze. On signal temporal logic, 2014. Lecture Notes: EECS 294,
University of California, Berkeley.

[108] James Kapinski and Jyotirmoy Deshmukh. Discovering forward invariant sets
for nonlinear dynamical systems. In International Conference on Applied Math-
ematics, Modeling and Computational Science, 2013.

[109] John F. Quindlen, Ufuk Topcu, Girish Chowdhary, and Jonathan P. How.
Region-of-Convergence Estimation for Learning-Based Adaptive Controllers. In
American Control Conference, 2016.

[110] Michael E. Tipping. Sparse bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1:211–244, June 2001.

[111] Giuseppe Bombara, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka,
and Calin Belta. A decision tree approach to data classification using signal
temporal logic. In International Conference on Hybrid Systems: Computation
and Control, 2016.

[112] John Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers,
pages 61–74, 1999.

[113] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy es-
timation and model selection. In International Joint Conference on Artificial
Intelligence, volume 2, pages 1137–1145, 1995.

285

[114] Alnur Ali, Rich Caruana, and Ashish Kapoor. Active learning with model
selection. In AAAI Conference on Artificatial Intelligence, 2014.

[115] Alexandar Kozarev, John F. Quindlen, Jonathan P. How, and Ufuk Topcu. Case
Studies in Data-Driven Verification of Dynamical Systems. In Hybrid Systems:
Computation and Control, 2016.

[116] Klaus Brinker. Incorporating diversity in active learning with support vector
machines. In International Conference on Machine Learning, 2003.

[117] Burr Settles. Active Learning. Morgan and Claypool, 2012.

[118] Jan Kremer, Kim Steenstrup Pedersen, and Christian Igel. Active learning with
support vector machines. Data Mining and Knowledge Discovery, 4(4):313–326,
July 2014.

[119] Burr Settles and Mark Craven. An analysis of active learning strategies for se-
quence labeling tasks. In Conference on Empirical Methods in Natural Language
Processing, 2008.

[120] Weehong Tan. Nonlinear Control Analysis and Synthesis using Sum-of-Squares
Programming. PhD thesis, University of California, Berkeley, 2006.

[121] Girish V. Chowdhary. Concurrent Learning for Convergence in Adaptive Con-
trol Without Persistency of Excitation. PhD thesis, Georgia Institute of Tech-
nology, December 2010.

[122] Suresh K. Kannan and Eric N. Johnson. Model reference adaptive control with
a constrained linear reference model. In IEEE Conference on Decision and
Control, pages 48–53. IEEE, 2010.

[123] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimen-
sional bayesian optimization and bandits via additive models. In International
Conference on Machine Learning, 2015.

[124] Trong Nghia Hoang, Quang Minh Hoang, and Kian Hsiang Low. A unifying
framework of anytime sparse gaussian process regression models with stochastic
variational inference for big data. In International Conference on Machine
Learning, 2015.

[125] Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor place-
ments in gaussian processes: Theory, efficient algorithms and empirical studies.
Journal of Machine Learning Research, 9:235–284, 2008.

[126] D. J. Tylavsky and G.R.L. Sohie. Generalization of the matrix inversion lemma.
Proceedings of the IEEE, 74:1050–1052, 1986.

[127] James Bucklew. Introduction to Rare Event Simulation. Springer, 2004.

286

[128] Pierre L’Ecuyer, Michel Mandjes, and Bruno Tuffin. Rare Event Simulation
using Monte Carlo Methods, chapter Importance Sampling in Rare Event Sim-
ulation, pages 17–38. Wiley, 2009.

[129] C. K. Wong and M. C. Easton. An efficient method for weighted sampling
without replacement. SIAM Journal on Computing, 1980.

[130] Alex Kulesza and Ben Taskar. Determinantal point processes. Foundations and
Trends in Machine Learning, 5(2-3):123–286, 2012.

[131] Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes.
In International Conference on Machine Learning, 2011.

[132] H.-L. Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions
for robust task allocation. IEEE Transactions on Robotics, 25(4):912–926, Au-
gust 2009.

[133] Christopher Elliott, Gregory Tallant, and Peter Stanfill. On example models
and challenges ahead for the evaluation of complex cyber-physical systems with
state of the art formal methods v&v. In Air Force Research Laboratory Safe
and Secure Systems and Software Symposium (S5) Conference, Dayton, OH,
June 2015.

[134] Christopher Elliott, Gregory Tallant, and Peter Stanfill. An example set of
cyber-physical v&v challenges for s5. In Air Force Research Laboratory Safe
and Secure Systems and Software Symposium (S5) Conference, Dayton, OH,
July 2016.

[135] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Yu Fan Chen, Nazim Ke-
mal Ure, Shih-Yuan Liu, Brett T Lopez, Rajeev Surati, Jonathan P How, and
John Vian. Measurable augmented reality for prototyping cyberphysical sys-
tems: A robotics platform to aid the hardware prototyping and performance
testing of algorithms. volume 36, pages 65–87. IEEE, 2016.

[136] Roberto Galatolo Alberto Calia, Eugenio Denti and Francesco Schettini. Air
data compution using neural networks. Journal of Aircraft, 45(6):2078–2083,
November-December 2008.

[137] Vitezslav Hanzal Tomas Censky Pavel Paces, Karel Draxler and Ondrej Vasko.
A combined angle of attack and angle of sideslip smart probe with twin dif-
ferential sensor modules and doubled output signal. In IEEE Sensors 2010
Conference. Institute of Electrical and Electronics Engineers, 2010.

[138] Miguel Lázaro-Gredilla and Michalis Titsias. Variational heteroscedastic gaus-
sian process regression. In The 28th International Conference on Machine
Learning, Bellevue, Washington, July 2011.

[139] Jagdish K. Patel and Campbell B. Read. Handbook of the Normal Distribution.
Marcel Dekker, 2nd edition, 1996.

287

[140] Everette S. Gardner. A simple method of computing prediction intervals for
time series forecasts. Management Science, 34(4), 1988.

[141] Alfredo H-S. Ang and Wilson H. Tang. Probability Concepts in Engineering.
Wiley, 2nd edition, 2007.

[142] Peng Kou, Deliang Liang, Lin Gao, and Jianyong Lou. Probabilistic electricity
price forecasting with variational heteroscedastic gaussian process and active
learning. Energy Conversion and Management, 89:298–308, 2015.

[143] Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard.
Most likely heteroscedastic gaussian process regression. In International Con-
ference on Machine Learning, 2007.

[144] Paul W. Goldberg, Christopher K. I. Williams, and Christoper M. Bishop.
Regression with input-dependent noise: A gaussian process treatment. In Con-
ference on Advances in Neural Information Processing Systems, 1998.

[145] Arno Solin and Simo Sarkka. State space methods for efficient inference in
student-t process regression. In International Conference on Artificial Intelli-
gence and Statistics, 2015.

[146] Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t pro-
cesses as alternatives to gaussian processes. In International Conference on
Artificial Intelligence and Statistics, 2014.

[147] Pasi Jylanki, Jarno Vanhatalo, and Aki Vehtari. Robust gaussian process re-
gression with a student-t likelihood. Journal of Machine Learning Research,
12:3227–3257, 2011.

[148] Rishit Sheth, Yuyang Wang, and Roni Khardon. Sparse variational inference for
generalized gaussian process models. In International Conference on Machine
Learning, 2015.

[149] David Seiferth, Girish Chowdhary, Maximilian Muhlegg, and Florian Holzapfel.
Online gaussian process regression with non-gaussian likelihood. In American
Control Conference, 2017.

[150] Lehel Csato. Gaussian Processes - Iterative Sparse Approximations. PhD thesis,
Aston University, 2002.

[151] A. Y. Ng and S. Russell. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, 2000.

[152] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine Learning, Banff, Canada,
2004.

288

[153] Duy Nguyen-Tuong and Jan Peters. Using model knowledge for learning inverse
dynamics. In IEEE International Conference on Robotics and Automation,
2010.

[154] Hande Topa, Agnes Jonas, Robert Kofler, Carolin Kosiol, and Antti Honkela.
Gaussian process test for high-throughput sequencing time series: Application
to experimental evolution. Bioinformatics, 31(11):1762–1770, 2015.

[155] Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. Smoothed model
checking for uncertain continuous time markov chains. Information and Com-
putation, 2016.

[156] L. Bortolussi, Dimitrios Milios, and G. Sanguinetti. U-check: Model check-
ing and parameter synthesis under uncertainty. In Quantitative Evaluation of
Systems, 2015.

[157] Aviation Supplies and Academics (ASA). Aerodynamics: Vg diagram.

[158] Miao Liu, Girish Chowdhary, Bruno Castro da Silva, Shih-Yuan Liu, and
Jonathan P. How. Gaussian Processes for Learning and Control: Tutorial with
Examples. IEEE Control Systems, 2017 (submitted).

[159] Hassan A. Kingravi, Girish Chowdhary, Patricio A. Vela, and Eric N. Johnson.
A reproducing kernel hilbert space approach for the online update of radial
bases in neuro-adaptive control. IEEE Transactions on Neural Networks and
Learning Systems, 36(7):1130–1141, July 2012.

[160] Robert M. Sanner and Jean-Jacques E. Slotine. Gaussian networks for direct
adaptive control. IEEE Transactions on Neural Networks, 3(6):837–863, 1992.

[161] Xie Xu, Wenxing Ye, and Alireza Entezari. Bandlimited reconstruction of mul-
tidimensional images from irregular samples. IEEE Transactions on Image
Processing, 22(10):3950–3960, 2013.

[162] J. Park and I. W. Sandberg. Universal approximation using radial-basis-
function networks. Neural Computation, 3:246–257, 1991.

[163] Anas Alfaris, Olivier de Weck, and Karen Willcox. Multiobjective optimization,
2010. Lecture Notes: MIT 16.888, Massachusetts Institute of Technology - Open
Courseware.

[164] Neeti Wagle and Eric W. Frew. Forward adaptive transfer of gaussian process
regression. Journal of Aerospace Information Systems, 14(4):214–231, 2017.

[165] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. Safe conroller op-
timization for quadrotors with gaussian processes. In International Conference
on Robotics and Automation, 2016.

289

[166] United States Department of Agriculture. The rising cost of wildfire operations:
Effects on the forest service’s non-fire work, August 2015.

[167] Javier Perez-Mato, Victor Arana, and Francisco Cabrera-Almeida. Real-time
autonomous wildfire monitoring and georeferencing using rapidly deployable
mobile units. IEEE Aerospace and Electronic Systems Magazine, 31(2):6–15,
2015.

[168] Den Boychuk, W. John Braun, Reg J. Kulperger, Zinovi L. Krougly, and
David A. Stanford. A stochastic forest fire growth model. Environmental and
Ecological Statistics, 16:133–151, 2009.

[169] C. Tymstra, R. W. Bryce, B. M. Wotton, S. W. Taylor, and O.B. Armitage. De-
velopment and Structure of Prometheus: The Canadian Wildland Fire Growth
Simulation Model. Candian Forest Service, 2010.

[170] Sameera S. Ponda, Joshua Redding, Han-Lim Choi, Jonathan P. How, Matt A.
Vavrina, and John Vian. Decentralized planning for complex missions with
dynamic communication constraints. In American Control Conference (ACC),
Baltimore, MD, July 2010.

290

	Introduction
	Motivation
	Problem Statement
	Challenges

	Literature Review
	Analytical Verification Methods
	Statistical Verification Methods

	Summary of Contributions

	Background
	Support Vector Machines
	Linear Classifiers
	Nonlinear Classifiers

	Gaussian Process Regression Models
	Training
	Predictions
	Hyperparameter Optimization

	Temporal Logic

	Deterministic Verification with Binary Evaluations of Performance
	Problem Description
	Discrete Evaluations of Performance Requirement Satisfaction
	Region of Satisfaction

	Deductive Verification Methods
	Limitations

	Statistical Data-Driven Verification
	SVM Classification Models
	Comparison to Simulation-Guided Barrier Certificates

	Closed-Loop Statistical Verification
	Sample-Selection Criteria
	Sequential Sampling
	Batch Sampling

	Simulation Results
	Van der Pol Oscillator
	Concurrent Learning Model Reference Adaptive Controller
	Adaptive System with Control Saturation

	Summary

	Deterministic Verification with Improved Evaluations of Trajectory Robustness
	Problem Description
	Continuous Measurements of Performance Requirement Satisfaction

	Regression-based Binary Verification
	Gaussian Process Regression Model
	Prediction Confidence

	Closed-Loop Statistical Verification
	Sample-Selection Criteria
	Sequential Sampling
	Batch Sampling

	Simulation Results
	Concurrent Learning Model Reference Adaptive Controller
	Robust Multi-Agent Task Allocation
	Adaptive Control with Complex Temporal Specifications
	Lateral-Directional Autopilot

	Summary

	Stochastic Verification with Gaussian Distributions of Trajectory Robustness
	Problem Description
	Distribution of Trajectory Robustness Measurements
	Satisfaction Probability Function

	Regression-based Stochastic Verification
	Gaussian Process Regression Model
	Measuring Prediction Accuracy

	Closed-Loop Statistical Verification
	Sample-Selection Criteria
	Sampling Algorithms

	Extension: Heteroscedastic Gaussian Distributions
	Heteroscedastic Gaussian Process Regression Model
	Modifications to the Stochastic Verification Framework

	Discussion: Non-Gaussian Distributions
	Simulation Results
	Concurrent Learning Model Reference Adaptive Controller
	Robust Multi-Agent Task Allocation
	Lateral-Directional Autopilot

	Summary

	Extension: Stochastic Verification with Bernoulli Evaluations of Performance
	Problem Description
	Probabilistic Classifiers for Stochastic Verification
	Expectation Propagation Gaussian Process Models
	Closed-Loop Statistical Verification

	Simulation Results
	Concurrent Learning Model Reference Adaptive Controller
	Stochastic Van der Pol Oscillator

	Summary

	Multi-Stage Verification and Experimental Testing
	Forward Transfer in Multi-Stage Verification
	Forward Transfer with Nonzero Priors

	Impact of Failures in Experimental Testing
	Region of Safe Operation
	Problem with Trajectory Robustness Measurements

	Failure-Adverse Closed-Loop Verification
	Forward Transfer of Simulation-Based Predictions
	Selection Criteria
	Sampling Algorithms

	Demonstration of Failure-Constrained Verification
	Summary

	Conclusions and Future Work
	Future Work

	Concurrent Learning Model Reference Adaptive Control
	Robust Multi-Agent Task Allocation for Aerial Forest Firefighting
	Lateral-Directional Autopilot Model
	Determinantal Point Processes for Sampling

