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C*>* SCALING ASYMPTOTICS FOR THE SPECTRAL PROJECTOR
OF THE LAPLACIAN

YAIZA CANZANI AND BORIS HANIN

ABSTRACT. This article concerns new off-diagonal estimates on the remainder and
its derivatives in the pointwise Weyl law on a compact n-dimensional Riemannian
manifold. As an application, we prove that near any non self-focal point, the scaling
limit of the spectral projector of the Laplacian onto frequency windows of constant
size is a normalized Bessel function depending only on n.

0. INTRODUCTION

Let (M,g) be a compact, smooth, Riemannian manifold without boundary. We
assume throughout that the dimension of M is n > 2 and write A, for the non-negative
Laplace-Beltrami operator. Denote the spectrum of A, by

0=X<M<AN<--- /oo
This article concerns the behavior of the Schwarz kernel of the projection operators
Ep: L*(M) — @ ker(Ag — )\?),
A€l
where I C [0,00). Given an orthonormal basis {¢;}72; of L?(M,g) consisting of
real-valued eigenfunctions,
Dgpj=Np;  and sl =1, (1)
the Schwarz kernel of Ej is
Er(zy) =Y ¢i(@)p;(1). (2)
)\j el

The study of Ejg y(7,y) as A — oo has a long history, especially when x = y. For
instance, it has been studied notably in [7, 8, 9, 10] for its close relation to the asymp-
totics of the spectral counting function

£ N <} = /M Eioux (@ 2)dvg(2), (3)

where dv, is the Riemannian volume form. An important result, going back to
Hormander [8, Thm 4.4], is the pointwise Weyl law (see also [4, 18]), which says
that there exists € > 0 so that if the Riemannian distance dy(x,y) between = and y is
less than ¢, then

1 o1 d&
E x,y) = n/ eilexpy " (@),8) "5 4 p T,Y, A). 4
[0,)\]( ) (27_(_) \§|g - \/@ ( ) ( )
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2 Y. CANZANI AND B. HANIN

The integral in (4) is over the cotangent fiber T,y M and the integration measure is the
quotient of the symplectic form d§ Ady by the Riemannian volume form dv, = \/|gy|dy.
In Hérmander’s original theorem, the phase function (exp, L(z), &) is replaced by any
so-called adapted phase function and one still obtains that

sup | VAV R(z,,A)| = O~ HHH) (5)

dg(z,y)<e

as A — oo, where V denotes covariant differentiation. The estimate (5) for j =k =0
is already in [8, Thm 4.4], while the general case follows from the wave kernel method
(e.g. as in §4 of [16] see also [3, Thm 3.1]).

Our main technical result, Theorem 2, shows that the remainder estimate (5) for
R(z,y,\) can be improved from O(A"~117+k) to o(A"~1+7+%) ynder the assumption
that = and y are near a non self-focal point (defined below). This paper is a continu-
ation of [4] where the authors proved Theorem 2 for j = k = 0. An application of our
improved remainder estimates is Theorem 1, which shows that we can compute the
scaling limit of By xy1] (z,y) and its derivatives near a non self-focal point as A — oo.

Definition 1. A point z € M is non self-focal if the loopset
Ly:={{e€ S;M: 3t >0with exp,(t§) =z}

has measure 0 with respect to the natural measure on 77 M induced by g. Note that
L, can be dense in S¥M while still having measure 0 (e.g. for points on a flat torus).

Theorem 1. Let (M,g) be a compact, smooth, Riemannian manifold of dimension
n > 2, with no boundary. Suppose xg € M is a non self-focal point and consider a
non-negative function ry satisfying ry = o(\) as A — oo. Define the rescaled kernel

E&,AH} (u,v) := A_(”_l)E()\)\_H] (exp:CO (;) , XDy, (%)) )
Then, for all k,j > 0,

. 1 .
J Ak 0 _ i{u—v,w) _
auav (E()W\-‘rl} (ua U) (27’()” /Sv';OM € dw) ‘ 0(1)

as A — o00. The inner product in the integral over the unit sphere Sy M is with respect
to the flat metric g(xo) and dw is the hypersurface measure on Sy M induced by g(xo).

sup
|ul,Jv[<rx

Remark 1. Theorem 1 holds for IT 515 with arbitrary fixed § > 0. The difference is
that the limiting kernel is multiplied by § and the rate of convergence in the o(1) term
depends on 9.

Remark 2. One can replace the shrinking ball B(x, 7)) in Theorem 1 by a compact
set S C M in which for any x,y € S the measure of the set of geodesics joining x and
y is zero (see Remark 3 after Theorem 2).

Theorem 1 follows from Theorem 2 by combining (9) with the relation £y Al =
Ejo 1) — Ejp,n- In normal coordinates at zo, Theorem 1 shows that the scaling limit
of Eg”f A1) 0 the C*° topology is

n 1 ;
E]R _ z(u—v,w)d
p o) = G /Snle “
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which is the kernel of the frequency 1 spectral projector for the flat Laplacian on R".
Theorem 1 can therefore be applied to studying the local behavior of random waves
on (M, g). More precisely, a frequency A monochromatic random wave @y on (M, g) is
a Gaussian random linear combination

oy = Z a;p; a; ~N(0,1) iid,
AjENA+1]

of eigenfunctions with frequencies in A\; € (A, A + 1]. In this context, random waves
were first introduced by Zelditch in [20]. Since the Gaussian field ¢) is centered, its
law is determined by its covariance function, which is precisely E(y y41)(z,y). In the
language of Nazarov-Sodin [11] (cf [6, 14]), the estimate (6) means that frenquency A
monochromatic random waves on (M, g) have frequeny 1 random waves on R™ as their
translation invariant local limits at every non self-focal point. This point of view is
taken up in the forthcoming article [5].

Theorem 2. Let (M,g) be a compact, smooth, Riemannian manifold of dimension
n > 2, with no boundary. Let K C M be the set of all non self-focal points in M. Then
for allk,j > 0 and all e > 0 there is a neighborhood U = U (e, k,j) of K and constants
A= A(e,k,j) and C = C(e,k, j) for which

||R(1"7 Y, )\) < 5)\n71+]’+k + C)\n*2+j+k (6)

leseoxeg
for all X\ > A. Hence, if vy € K and Uy is any sequence of sets containing xo with
diameter tending to 0 as X\ — oo, then

IRz, y, A) AT, (7)

‘|C§(UA)XC§(UA) = of
Remark 3. One can consider more generally any compact S C M such that all
x,y € S are mutually non-focal, whic means

Lyy:={6 € S;M: 3t >0 with exp,(t§) =y}

has measure zero. Then, combining [12, Thm 3.3] with Theorem 2, for every ¢ > 0,
there exists a neighborhood U = U(e,j) of S and constants A = A(e, j,S) and C =
C(e,4,S) such that

sup |VIVI R(x,y, A)| < eX"™ 12 4 A2

z,yeS
We believe that this statement is true even when the number of derivatives in x, ¥ is
not the same but do no take this issue up here.

Our proof of Theorem 2 relies heavily on the argument for Theorem 1 in [4], which
treated the case j = k = 0. That result was in turn was based on the work of Sogge-
Zelditch [18, 19], who studied j = k = 0 and = = y. This last situation was also studied
(independently and significantly before [4, 18, 19]) by Safarov in [12] (cf [13]) using a
somewhat different method. The case j = k = 1 and x = y is essentially Proposition
2.3 in [20]. We refer the reader to the introduction of [4] for more bground on estimates

like (6).
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1. PROOF OF THEOREM 2

Let xg be a non-self focal point. Let I, J be multi-indices and set

Q:=|I|+|J]|.
We abbreviate
E)\ = E[O,/\]-
Using that
/ e ) duy = (2m)"? T s (Jul)ul T (8)
Sn—l 2

for all u € R™, we have

1 i(expy H(x), &) df o A :UJn_l JnT_2 ('udg(x’ y))
SYRD € Y = [ 2 dp. 9)
(2m)" Jie,, <x Vgl Jo 2m)2 \ (udy(x,y))"
Choose coordinates around zg. We seek to show that there exists a constant ¢ > 0 so

that for every € > 0 there is an open neighborhood U. of xg and a constant c. so that
we have

Al Jn—2 (ndg(z,y))
oo Ear) — [ ot (2D ) < conan ez
z,yeU: 0 (27T) 2 (ﬂdg (.’L‘, y))T
(10)
Let p € S(R) satisfy supp (p) C (—inj(M, g),inj(M, g)) and
p(t)y =1 for all It| < $inj(M, g). (11)

We prove (10) by first showing that it holds for the convolved measure p*@ﬁaj Ex(z,y)
and then estimating the difference |p x 010, Ex(x,y) — 010, Ex(x,y)| in the following
two propositions.

Proposition 3. Let xg be a non-self focal point. Let I,J be multi-indices and set
Q = |I| + |J|. There exists a constant ¢ so that for every e > 0 there exist an open
neighborhood U. of xo and a constant c. so that we have

A, n—1 JL% (Nd (l',y))
;w%%&wm—/ “n%%< | dn
0 (2m) (ndy(,9)) "

140 —240
< e\t e N

for all x,y € Us.

Proposition 4. Let xy be a non-self focal point. There exists a constant ¢ so that for
every € > 0 there exist an open neighborhood U: of xg and a constant c. so that for all
multi-indices I, J we have

sup |p 8;81‘/]]5)\(3:, y) — 8£8;E>\(a:, y)| < ceNVTIHE e \nm2H
z,y€U:

The proof of Proposition 4 hinges on the fact that zg is a non self-focal point.
Indeed, for each € > 0, Lemma 15 in [4] (which is a generalization of Lemma 3.1 in
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[18]) yields the existence of a neighborhood O. of xg, a function ¢. € C°(M) and
operators B., C. € WY(M) supported in O, satisfying both:

e supp(1):) C O, and 1. =1 on a neighborhood of zy, (12)
B C. =4 (13)

The operator B is built so that it is microlocally supported on the set of cotangent
directions that generate geodesic loops at xg. Since xg is non self-focal, the construction
can be carried so that the principal symbol by(z,§) satisfies |[bo(z, )|/ L2(psar) < € for
all x € M. The operator C: is built so that U(¢)CZ is a smoothing operator for
5inj(M, g) < |t| < 1. In addition, the principal symbols of B. and C. are real valued
and their sub-principal symbols vanish in a neighborhood of z¢ (when regarded as
operators acting on half-densities).

In what follows we use the construction above to decompose E), up to an O(A™>°)
error, as

Ex(z,y) = ExBZ(x,y) + ExCZ (2, y) (14)

for all x,y sufficiently close to zg. This decomposition is valid since 1. = 1 near zg.

1.1. Proof of Proposition 3. The proof of Proposition 3 consists of writing

A
0+ 010) Bx(2,y) /0 Oyl * 0] () d,

and on finding an estimate for 0,(p * 8;83‘/7 E,(z,y)). Such an estimate is given in
Lemma 5, which is stated for the more general case d,(p * Qﬁ@j E,Q*(z,y)) with
Q € {Id, B.,C.} that is needed in the proof of Proposition 4.

Lemma 5. Let (M,g) be a compact, smooth, Riemannian manifold of dimension
n > 2, with no boundary. Let Q € {Id, B.,C.} have principal symbol DdQ. Consider p
as in (11), and define
Q=1I|+]J]|.
Then, for all x,y € M with dy(z,y) < %inj(M,g), all multi-indices I, J, and all p > 1,
we have
Ou(p * 010 B,Q") (2. )

n—1
_ K 157 ipfexpy ! (x) w) Q 1@ Cdw
= 0,0 / e"H\exPy 9w | DJ(y,w) +p " D*(y,w
(2m)n =7y ( s ( o (¥,w) 1 ( )) ﬁ|gy|
+WI,J(xaya :U‘) (15)

Here, dw is the Euclidean surface measure on SyM, and D?l s a homogeneous symbol
of order —1. The latter satisfy

D%(y,) + D%y, ) =0 VyeO., (16)
where O¢ is as in (12). Moreover, there exists C' > 0 so that for every e > 0

sup
z,y€0;

<Ce. (17)

/ iex0; @0, D2 (4, 1)
Sy M

dw
V ‘gy‘



6 Y. CANZANI AND B. HANIN

Finally, Wy j is a smooth function in (x,y) for which there exists C > 0 such that for
all z,y satisfying dy(z,y) < %inj(M,g) and all ;4 >0

|WI,J($7y7 /’L)’ < C/'Ln_2+ﬂ (dg($ay) + (1 + /’L)_l) : (18)

Remark 4. Note that Lemma 5 does not assume that z,y are near an non self-focal
point.

Remark 5. We note that Lemma 5 is valid for more general operators ). Indeed, if
Q € U*(M) has vanishing subprincipal symbol (when regarded as an operator acting
on half-densities), then (15) holds with D(?(y,w) substituted by ,u,kD,?(y,w) and with
F‘_ID% (y,w) substituted by uk_lD,?il(y,w). Here, D,? is the principal symbol of )
and D,gl is a homogeneous polynomial of degree k — 1. In this setting, the error term
satisfies |Wp j(z,y, p)| < Op =242 (dg(z,y) + (1 + p) 1),

Proof of Lemma 5. We use that

+oo

0l EQ )y ) =5 [ o) V(0@ (o), (19

— 0o

where Q € U(M) is any pseudo-differential operator and U(t) = e~ #V?s is the half-
wave propagator. The argument from here is identical to that of [4, Proposition 12],
which relies on a parametrix for the half-wave propagator for which the kernel can
be controlled to high accuracy when x and y are close to the diagonal. The main
corrections to the proof of [4, Proposition 12] are that 919; gives an O(u"=3+?) error
in equations (54) and (60), and gives an O(u"~1) error in (59). We must also take into
account that 9,0 (z,y)'/? and 9,0 (x,y)"/? are both O(dy(z,y)). O

Proof of Proposition 3. Following the technique for proving [4, Proposition 7], we ob-
tain Proposition 3 by applying Lemma 5 to Q = Id (this gives D{¢ = 1 and D4 =0)
and integrating the expression in (15) from p = 0 to u = A. One needs to choose
U. so that its diameter is smaller than e, since this makes fo)\ Wi (x,y, p)dp =
O(eA" 142 L \n=2+2) a5 needed. One also uses identity (9) to obtain the exact state-
ment in Proposition 3. O

1.2. Proof of Proposition 4. As in (14),
E>\($7 y) = E)\B:(CC, y) + E)\C:(I', y) +0 ()‘_OO)

for all x, y sufficiently close to xg. Proposition 4 therefore reduces to showing that there
exist a constant ¢ independent of e, a constant ¢. = c.(I,J,zp), and a neighborhood
U. of zg such that

sup |8£8@]E>\B:(x, y) — px 8£8@]E>\B:(:c, y)} < eI 4 e A2 (20)
z,y€U:
and
sup |0L0;) ExCZ (x,y) — p* 0L0;) EACZ (z,y)| < ceA™ 1 4 e 724, (21)
z,y€U:

Our proofs of (20) and (21) use that these estimates hold on diagonal when |I| =
|J| = 0 (i.e. no derivatives are involved). This is the content of the following result,
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which was proved in [18] for @ = Id. Its proof extends without modification to general
Q € vO(M).

Lemma 6 (Theorem 1.2 and Proposition 2.2 in [18]). Let Q@ € ¥°(M) have real-
valued principal symbol q. Fix a non-self focal point xo € M and write og,,(QQ*) for
the subprincipal symbol of QQ* (acting on half-densities). Then, there exists ¢ > 0 so
that for every € > 0 there exist a neighborhood O and a constant C. making
QBAQ (@) = 20" [ (@ OF + 0an(@Q)@,)) = + Rol,N),
€]z <X V92|

sup |Rg(z, \)| < ceA™ 4 C A2
xzeU

with

for all A > 1.
We prove relation (20) in Section 1.2.1 and relation (21) in Section 1.2.2.
1.2.1. Proof of relation (20). Define
gra(,y,\) = 8,0 ExBZ(x,y) — p* 8,0, ExBZ(x, y).

Note that g7 j(z,vy,) is a piecewise continuous function. We aim to find ¢, ¢, and U
so that xg € U and

sup |g7.7(z,y, \)| < ceA? Y p e Anm2e (22)
T,YEUs

By [4, Lemma 17], which is a Tauberian Theorem for non-monotone functions, relation
(22) reduces to checking the following two conditions:

1
* Facilgr)(.y,1) = 0 for all [t} < 5 inj(M. g). (23)
e sup sup |g7.(z,y, A+ 8) — grr(z,y, )| < ceAT I p e A2 (24)
z,y€U: s€(0,1]

By construction, Fx_(0\gr.7)(z,y,t) = (1 — ﬁ(t))@i@jU(t)B:(:n,y) = 0 for all |t| <
$inj(M, g). Hence, since Fy_(gs,s) is continuous at ¢ = 0, we have (23). To prove
(24) we write

sup |gr,7(x,y, A+ 5) — gr,0(x,y, \)|
s€[0,1]

< sup !6;83‘/]E(>\7)\+S]B:(33,y)‘+ sup ‘p*@i@jE(,\Aﬁ]B:(m,y)‘. (25)
s€[0,1] s€[0,1]

The second term in (25) is bounded above by the right hand side of (24) by Lemma
5. To bound the first term, use Cauchy-Schwartz to get

sup 010, [E(ai5) B2 (z,y)]| = sup ’ > 8£s0j(x)'8jBas0j(y)(
s€[0,1] s€l01] |y O]

< N |[(B0) +10),B) wi(w)]| - [0kes(@)] -
N EAAF]

Write by for the principal symbol of B.. By construction, for all y in a neighborhood
of zg, we have 9,bo(y,§) = 0. Therefore, o7, ([aj,BE]) = i|J|{§J,b0(y,§)} =0 and
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we conclude that [8@], B.] € U172 Thus, by the usual pointwise Weyl Law (e.g. [19,
Equation (2.31)]),

sup (0107 [Boaeg Bl < 30 [Bd]s(u)| - | ()| + O+
56[0,1] )\jE()\,)\‘f‘l}

Next, define for each multi-index K € N the order zero pseudo-differential operator

_ K A—I|K|/2
Py = 0% A K172,
Using Cauchy-Schwarz and that 0% p; = )\LK|PK@]-, we find

S B0 e(y)] - |0kes(2)]

A EAA+H]

< A+ 1)?[(BPy)E ai1)(B=Pr)* (4, y))2 [PrE 1) Pf (7, 7)]2.

[N

Again using the pointwise Weyl Law (see [19, Equation (2.31)]), we have [P; Ey 411 Pf (2, x)ﬁ

is O(AnT_l). Next, since according to the construction of B, we have

sup ||bo(z, )l z2(Bzar) < €
TEU:

and 0,bo(x,§) = 0 for z in a neighborhood U. of xg, we conclude that

sup [ osus(BPy(B:Py)")(z, M2z < e

X Gus

Proposition 6 therefore shows that there exists ¢ > 0 making

n—1

<eeNT . (26)

(VI

sup |(B-P7s)E(a+1](BPr)* (y,9)|
T, y€EU:

This proves (24), which together with (23) allows us to conclude (22).
1.2.2. Proof of relation (21). Write

OLOEACE(x,y) = S A (Proj()) - (C-Proj () + > A (Prooj(x)) - (197, Cli () -
2 <A A <A
(27)

As before, [07,C.] € Ul/1=2 Hence, by the usual pointwise Weyl law, the second term
in (27) and its convolution with p are both O(A\"~?+%}). Hence,

T,yEU: T,y EU:

+ O ()\n+Q72) ’
where we have set

V(z,y, ) = 0" Ex(C.07) (z,y) = D> AT (Proj(x)) - (CPrg;(y)).
A <A
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Define
1
arj(@,y,\) == V(x,y, ) + 3 Z )\? (‘PISDA]- (33)‘2 + |CePye, (y)‘Q) (28)
A <A
1
,BI,J($7Z/7 A) =pox V(Q?,y, )‘) + 5 Z )‘? (}PI@/\]'('%')‘Q + ‘CEPJQO/\j(y)F) . (29>
<A

By construction, a j(z,y, -) is a monotone function of A for x, y fixed, and oy j(z,y, A)—
Brr(z,y,\) =V(z,y,\) — pxV(z,y,A). So we aim to show that
sup ’aI,J(wa Y, A) - ﬁI,J(x7 Y, )\)| < Cg)\n_l—’_ﬂ + CEAH_Q—'—Q- (30)
T,y€U:
We control the difference in (30) applying a Tauberian theorem for monotone functions
[4, Lemma 16]. To apply it we need to show the following:

e There exists ¢ > 0 and ¢, > 0 making

Ate
/ 10,81, (z, y, )| dp < ce XTI e AT (31)
A

—€

e For all N there exists M, y so that for all A > 0

0x (ar,s (2. y,-) = Bra(e,y, ) * de(p)] < Moy (14 AN (32)
In equation (32) we have set ¢.(\) := 1¢(2) for some ¢ € S(R) chosen so that
supp ¢ C (—1,1) and $(0) = 1.

Relation (31) follows after applying Lemma 6 to the piece of the integral correspond-
ing to the second term in (29) and from applying Lemma 5 together with Remark 5
to px V = px 0! E\Q*, where Q := C.0” has vanishing subprincipal symbol.

To verify (32) note that supp(l — p) C {¢ : |t| > inj(M, g)/2} and supp(qgs) C{t:
|t| < 1}. Observe that

O (rs( . ) = Brs(e..) ) we (3 = F2 ((1-5(0) 600 U007 C2) (2.9) ) V).

By construction U(t)C? is a smoothing operator for 3 inj(M, g) < |¢t| < L. Thus, so is
oru(t) (o7 C’a)* which implies (32). This concludes the proof of relation (21). O
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