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GOPAKUMAR-VAFA INVARIANTS VIA VANISHING

CYCLES

DAVESH MAULIK AND YUKINOBU TODA

Abstract. In this paper, we propose an ansatz for defining Gopakumar-
Vafa invariants of Calabi-Yau threefolds, using perverse sheaves of van-
ishing cycles. Our proposal is a modification of a recent approach of
Kiem-Li, which is itself based on earlier ideas of Hosono-Saito-Takahashi.
We conjecture that these invariants are equivalent to other curve-counting
theories such as Gromov-Witten theory and Pandharipande-Thomas
theory.

Our main theorem is that, for local surfaces, our invariants agree with
PT invariants for irreducible one-cycles. We also give a counter-example
to the Kiem-Li conjectures, where our invariants match the predicted
answer. Finally, we give examples where our invariant matches the
expected answer in cases where the cycle is non-reduced, non-planar, or
non-primitive.
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1. Introduction

1.1. Background. Let X be a smooth projective Calabi-Yau threefold over
C. For g ≥ 0 and β ∈ H2(X,Z), the corresponding Gromov-Witten invari-
ant

GWg,β =

∫

[Mg(X,β)]vir
1 ∈ Q

enumerates stable maps f : C → X from connected, nodal curves C of
arithmetic genus g such that f∗[C] = β. In general, these invariants are given
by an infinite sequence of rational numbers; nevertheless, for fixed β, they are
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expected to be controlled by a finite collection of integer invariants. Indeed,
based on the string duality between type IIA and M theory, Gopakumar-
Vafa [GV] conjectured the existence of integer-valued invariants

ng,β ∈ Z, g ≥ 0, β ∈ H2(X,Z)(1.1)

which vanish for sufficiently large g and which determine the Gromov-Witten
series by the identity

∑

β>0,g≥0

GWg,βλ
2g−2tβ =

∑

β>0,g≥0,k≥1

ng,β

k

(
2 sin

(
kλ

2

))2g−2

tkβ.(1.2)

The invariants (1.1) are called Gopakumar-Vafa (GV for short) invariants.
In order to define these invariants directly1, the original approach of

Gopakumar-Vafa was to use the sl2 × sl2-action on the cohomology of a
certain moduli space of D-branes, which should be given by a moduli space
of one-dimensional sheaves. The goal of this paper is to propose an ansatz
for making this mathematically precise. As we will review shortly, there
have been earlier efforts in this direction, most notably by Hosono-Saito-
Takahashi [HST01] and Kiem-Li [KL]. Our approach is a modification of
the recent Kiem-Li proposal via perverse sheaves of vanishing cycles, where
we use the perverse filtration for the Hilbert-Chow map instead of the ac-
tion of sl2×sl2. We then show that our definition of GV invariants matches
with stable pair invariants introduced by Pandharipande-Thomas [PT09] in
several cases, in particular for irreducible one-cycles on local surfaces.

1.2. Proposed definition. Let Shβ(X) denote the moduli space of one-

dimensional stable sheaves E on X satisfying2

[E] = β ∈ H2(X,Z), χ(E) = 1.

Let Chowβ(X) denote the Chow variety parameterizing effective one-cycles
on X with homology class β. There is a Hilbert-Chow map

π : Shredβ (X)→ Chowβ(X)(1.3)

sending a stable sheaf to its fundamental one-cycle. In [BBD+, KL], a
certain perverse sheaf φSh on Shβ(X) is constructed whose Euler charac-
teristic recovers the usual invariants of Donaldson-Thomas (DT for short)
theory [Tho00]. Roughly speaking, the moduli space Shβ(X) is locally writ-
ten as a critical locus of some function on a smooth scheme, and φSh is
obtained by gluing together the locally-defined sheaves of vanishing cycles.
An important subtlety in this construction is that the gluing is not uniquely
determined and depends on a choice of orientation data, that is a square
root of the virtual canonical line bundle on Shβ(X).

We propose the following definition of GV invariants:

1 One can take equation (1.2) as an indirect definition of GV invariants, in which
case integrality and vanishing become conjectures. A symplectic approach to proving the
integrality is pursued in [IP].

2The case for other choices of χ(E) will be considered in Subsection 3.3.
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Definition 1.1. (Definition 3.7) We define the GV invariants ng,β by the
identity

∑

i∈Z

χ(pHi(Rπ∗φSh))y
i =

∑

g≥0

ng,β(y
1
2 + y−

1
2 )2g.(1.4)

Here pHi(−) is the i-th cohomology functor with respect to the perverse
t-structure. By the self-duality of φSh and the Verdier duality, the LHS
of (1.4) is uniquely written as the form of the RHS. The GV invariants in
Definition 1.1 are obviously integers, which vanish for sufficiently large g.

As currently formulated our GV invariants in (1.4) depend on a choice
of an orientation, and a canonical choice is not known. We impose an
additional restriction that the orientation data is trivial along the fibers of
(1.3). These are denoted Calabi-Yau orientations, and we conjecture that
such choices always exist. As we will see, the invariants ng,β defined by (1.4)
are independent of the choice of CY orientation data.

Our definition of GV invariants in Definition 1.1 is related to the char-
acter formula of the sl2 × sl2-actions in earlier approaches [HST01, KL],
see Subsection 1.5. As far as we know, the observation that the character
formula can be reformulated via perverse cohomology goes back to work of
Chuang-Diaconescu-Pan [CDP14] on the Hitchin fibration and the survey
article of Pandharipande-Thomas [PT14] in their discussion of [HST01].

One advantage of this reformulation is that it naturally lifts to a defini-
tion of local GV invariants, i.e. we can define a constructible function (see
Definition 3.9)

nloc
g,− : Chowβ(X)→ Z(1.5)

whose integral over the Chow variety gives ng,β. This makes it possible to
compare our GV invariants with stable pair invariants for a fixed one-cycle.

1.3. PT/GV correspondence for irreducible cycles. Given X as be-
fore, a stable pair on X consists of a pair

(F, s), s : OX → F

such that F is a pure one-dimensional sheaf on X, and s is a morphism
whose cokernel is at most zero-dimensional. Virtual invariants for stable pair
spaces were introduced by Pandharipande-Thomas (PT for short) in [PT09].
In [PT10], local PT invariants are defined by taking the constructible func-
tion

P loc
n,− : Chowβ(X)→ Z(1.6)

obtained by integrating the Behrend function [Beh09] over the locus of the
moduli space of stable pairs with fixed fundamental cycle. The usual PT
invariant Pn,β ∈ Z is determined from the local invariants by integrating
over the Chow variety; when X is projective, this agrees with the original
definition by virtual classes [Beh09].

For any threefold, there is a conjectural equivalence [MNOP06, PT09]
between GW and PT invariants, which is proved in many cases [MNOP06,
BP08, PP]. In particular, formula (1.2) implies a conjectural equivalence
between PT invariants and our GV invariants. Furthermore, since both PT
invariants and our GV invariants can be refined to local invariants (1.5),
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(1.6), we can conjecture a local PT/GV correspondence (see Figure 1). For
an irreducible one-cycle, it is given as follows:

Conjecture 1.2. For an irreducible one-cycle γ ∈ Chowβ(X), we have the
identity

∑

n∈Z

P loc
n,γq

n =
∑

g≥0

nloc
g,γ(q

1
2 + q−

1
2 )2g−2.

We will formulate the conjecture for general one-cycles in Conjecture 3.14;
it requires contributions coming from effective summands of the cycle γ.

The first main result of this paper is to prove Conjecture 1.2 for local
surfaces.

Theorem 1.3. (Theorem 5.15) Let S be a smooth projective surface with
H1(OS) = 0, and

p : X = Tot(KS)→ S

the non-compact CY 3-fold. Then Conjecture 1.2 is true for any one-cycle
γ on X such that p∗γ is irreducible.

We also prove Conjecture 1.2 for smooth one-cycles on an arbitrary Calabi-
Yau threefold X.

Theorem 1.4. (Theorem 6.4) For a smooth curve C ⊂ X, Conjecture 1.2
is true for the one cycle γ = [C].

The situations in Theorem 1.3, 1.4 include many cases where both Shβ(X)
and Chowβ(X) are singular. In particular, in these cases, the sheaf φSh will
typically not be pure and the Behrend function will not be constant. The
main idea to prove the above theorems is to use the vanishing cycles functor
to reduce to the generalized Macdonald formula for versal deformations of
locally planar curves, proved in [MY14, MS13]. The basic outline of this
reduction is explained in Section 4, which we recommend for readers who
just want to see the essential concept without the (many) technical details.

1.4. Examples for non-reduced cycles. One limitation of the theorems
above is they only apply in cases where the one-cycle is integral. In Sec-
tion 8, we produce an infinite family of examples where the local PT/GV
correspondence holds for one-cycles that are non-reduced or non-planar.

The idea for the construction is to study how our invariants behave for
certain 3-fold flops and combine this analysis with Theorem 1.3, 1.4. We
will show the following result:

Theorem 1.5. (Corollary 8.9) Let φ : X 99K X† be a flop between CY 3-
folds and C ⊂ X an irreducible curve which is not contained in Ex(φ).
Suppose that Conjecture 1.2 holds for γ = [C]. Then the local PT/GV
correspondence holds for φ∗γ.

In typical examples, the flopped cycle φ∗γ can be arranged to be non-
reduced and non-planar. In such cases, the correspondence requires the
more general formulation of Conjecture 3.14. In the examples obtained
above, the contributions from effective summands of the reducible one-cycle
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Figure 1. GW/PT/GV correspondence

will typically be nonzero. Furthermore, we can iterate the above theorem
to obtain more complicated one-cycles where our conjecture holds.

In Section 9, we also give examples of the local PT/GV correspondence
where the one-cycle is non-primitive. One interesting family of such exam-
ples is due to Chuang-Diaconescu-Pan [CDP14], when X is the total space
of KC ⊕ OC over a curve C of genus g. In this case, the conjecture for
β = r[C] is a consequence of the P = W conjecture for Higgs bundles of
rank r on the curve C; since the P = W conjecture is proven in rank 2, this
gives an infinite family of non-primitive examples.

1.5. Previous history. A mathematical approach for GV invariants was
first proposed by Hosono-Saito-Takahashi (HST for short) [HST01]. They
considered the intersection complex IC(Shβ(X)) and applied the decompo-
sition theorem [BBD82] with respect to the map (1.3) to define the action
of sl2 × sl2 on the intersection cohomology IH∗(Shβ(X)). They rearrange
this as

IH∗(Shβ(X)) =
⊕

g≥0

Ig ⊗Rg

where Ig is the cohomology of a g-dimensional complex torus with its natural
left sl2-action, and Rg is a certain (virtual) right sl2-representation. The
HST definition is given by the Euler characteristic of Rg. Since the IC-sheaf
is not sensitive to the virtual structure of Shβ(X), one can find examples
where this approach does not match the expected answer, even in genus 0.

In genus 0, Katz [Kat08] proposed as a definition the virtual integral

n0,β =

∫

[Shβ(X)]vir
1 ∈ Z.

Since this can be written as a Behrend-weighted Euler characteristic, one
can use a wall-crossing argument to prove this is compatible with the GV
invariants defined via stable pairs spaces.

More recently, Kiem-Li proposed a combination of these two approaches,
using the perverse sheaf φSh mentioned earlier. One ambiguity in their
proposal is they do not specify how to choose an orientation on Shβ(X) to
define φSh, and different choices lead to different prescriptions. Once chosen,
they consider a natural lift of φSh to the category of mixed Hodge modules.
In order to apply the decomposition theorem, they require a pure Hodge
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module, so take the associated graded gr•W (φSh) with respect to the weight
filtration, and apply the formalism of [HST01] described earlier. In genus 0,
independent of orientation, this recovers Katz’s definition.

1.6. Counter-example to Kiem-Li conjecture. We will give an example
that the earlier definitions [HST01, KL] are not deformation-invariant and,
in particular, do not match the invariants as calculated via PT theory. Let

S be an Enriques surface and E an elliptic curve. Let σ : S̃ → S be its K3
cover. We take a CY 3-fold

X = (S̃ × E)/〈τ〉.

Here τ is an involution of S̃ ×E which acts on S̃ by the covering involution
of σ and acts on E by x 7→ −x. An Enriques surface S always admits an
elliptic fibration S → P1, with a double fiber 2C. We take a curve class β
in X by

β = ([C], 0) ∈ H2(S,Z)⊕ Z[E] = H2(X,Z).

Proposition 1.6. (Proposition 7.6) Suppose that C is of type In for n ≥ 2,
i.e. C is a circle of P1 with n-irreducible components. Then the HST, KL,
our definitions, and the expected answers (from GW or PT theory) are given
in the following table:

HST KL ours expected
n0,β −8n 0 0 0
n1,β 4n 4n 4 4
n≥2,β 0 0 0 0

The result of Proposition 1.6 is a summary of the computations in Sub-
section 7.4. Since all Enriques surfaces are deformation equivalent, the re-
sulting invariants ng,β should be independent of the type of C. The result
of g = 1 for KL definition is true for any choice of orientation data, which
does not match with the predicted answer. Therefore Proposition 1.6 gives
a counter-example to the Kiem-Li conjecture [KL, Conjecture 7.4].

One interesting feature of this example is that our invariants are preserved
under deformations despite the fact that the Chow variety itself jumps in
dimension. Although our invariant in this example is deformation-invariant,
we do not see a mechanism for this in general families of CY threefolds,
due to our poor understanding of the Chow variety. For this reason, our
definition of GV invariants still may not be the final one and a better un-
derstanding of the Hilbert-Chow map and deformation invariance will be
needed.

One can also ask what happens if we study the motivic vanishing cy-
cles associated to Shβ(X) in the sense of Bussi-Joyce-Meinhardt [BJM],
and define the motivic GV invariants as in [Tod08]. It turns out that the
motivic GV invariants are different from Kiem-Li’s invariants due to some
rearrangement of weights, but in any case they also do not give a correct
answer. An example already occurs in the case of the nodal rational curve
in Section 5.11, where the genus one motivic invariant becomes zero.
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1.7. Outline of the paper. In Section 2, we review Joyce’s notion of d-
critical structures and introduce GV type invariants for d-critical schemes.
In Section 3, we define GV invariants on Calabi-Yau 3-folds and formulate
conjectures relating them with PT and GW invariants. In Section 4, we
explain the idea proving PT/GV correspondence using versal deformations
of curves. In Section 5, we prove Theorem 1.3. In Section 6, we prove
Theorem 1.4. In Section 7, we prove Proposition 1.6. In Section 8, we
produce examples for non-reduced cycles using 3-fold flops. In Section 9, we
discuss some examples for non-primitive cycles. In Appendix A, we discuss
Calabi-Yau orientation data for d-critical schemes.

1.8. Acknowledgments. We are grateful to Tomoyuki Abe, Jim Bryan,
Duiliu-Emanuel Diaconescu, Igor Dolgachev, Jesse Kass, Young-Hoon Kiem,
Jun Li, Georg Oberdieck, Rahul Pandharipande, Christian Schnell and Richard
Thomas for many discussions and valuable comments. We are also grateful
to the referees for many suggestions and comments. This article was written
while Y. T. was visiting Massachusetts Institute of Technology from 2015 Oc-
tober to 2016 September by the JSPS Program for Advancing Strategic In-
ternational Networks to Accelerate the Circulation of Talented Researchers.
D. M. is supported by NSF grants DMS-1645082 and DMS-1564458. Y. T. is
supported by World Premier International Research Center Initiative (WPI
initiative), MEXT, Japan, and Grant-in Aid for Scientific Research grant
(No. 26287002) from MEXT, Japan.

1.9. Notation and convention. In this paper, all varieties and schemes
are defined over C. For a scheme M , we will only consider constructible
sheaves with Q-coefficients. We denote by Perv(M) the category of perverse
sheaves on M , which is the heart of a t-structure on the derived category of
constructible sheaves onM (see [BBD82]). Let ι : M red →֒M be the reduced
part of M . Since ι is a homeomorphism, we always identity Perv(M) with
Perv(M red) in a natural way.

For a bounded complex E of constructible sheaves on M , we denote by
pHi(E) the i-th cohomology with respect to the perverse t-structure, and
χ(E) is the the Euler characteristic of RΓ(M,E). For a constructible func-
tion ν on a scheme M , the weighted Euler characteristic is denoted by

∫

M
ν de :=

∑

m∈Z

m · e(ν−1(m)).

Here e(−) is the topological Euler characteristic. We will use the fact that,
for a complex E of constructible sheaves on a finite type scheme M , we have

χ(E) =

∫

M
νE de

where νE is the constructible function given by p 7→ χ(E|p).
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2. GV type invariants for d-critical schemes

In this section, we review Joyce’s work on (algebraic) d-critical structures
and define GV-type invariants in this setting3. We then introduce the notion
of Calabi-Yau d-critical structures, which allows us to fix the ambiguity due
to choice of orientation.

2.1. d-critical schemes. We recall the notion of d-critical structures intro-
duced by Joyce [Joy15]. For any complex scheme M , Joyce [Joy15] shows
that there exists a canonical sheaf of C-vector spaces SM on M satisfying
the following property: for any Zariski open subset R ⊂ M and a closed
embedding i : R →֒ V into a smooth scheme V , there is an exact sequence

0 −→ SM |R −→ OV /I
2 dDR−→ ΩV /I · ΩV .(2.1)

Here I ⊂ OV is the ideal sheaf which defines R and dDR is the de-Rham
differential. Moreover there is a natural decomposition

SM = S0M ⊕ CM

where CM is the constant sheaf on M . The sheaf S0M restricted to R is the
kernel of the composition

SM |R →֒ OV /I
2
։ ORred .

For example, suppose that f : V → A1 is a regular function such that

R = {df = 0}, f |Rred = 0.(2.2)

Then f + I2 is an element of Γ(R,S0M |R).

Definition 2.1. ([Joy15]) A pair (M,s) for a complex scheme M and s ∈
Γ(M,S0M ) is called a d-critical scheme if for any x ∈ M , there is an open
neighborhood x ∈ R ⊂ M , a closed embedding i : R →֒ V into a smooth
scheme V , a regular function f : V → A1 satisfying (2.2) such that s|V =
f + I2 holds. In this case, the data

ξ = (R,V, f, i)(2.3)

is called a d-critical chart. The section s is called a d-critical structure of
M .

Roughly speaking, a d-critical scheme (M,s) is locally written as a critical
locus of some function f on a smooth scheme, and the section s remembers
the function f . Given a d-critical scheme (M,s), there exists a line bundle
KM,s on M red, called the virtual canonical line bundle, such that for any
d-critical chart (2.3) there is a natural isomorphism

KM,s|Rred

∼=
→ K⊗2

V |Rred .(2.4)

3In [Joy15], Joyce also introduces an analytic version of d-critical structures; this is
equivalent to the notion of virtual critical structures in [KL]. Although we work with
algebraic d-critical structures, the arguments of this section also apply for analytic d-
critical structures.
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Definition 2.2. ([Joy15]) An orientation of a d-critical scheme (M,s) is a

choice of a square root line bundle K
1/2
M,s for KM,s on M red and an isomor-

phism

(K
1/2
M,s)

⊗2 ∼=
→ KM,s.(2.5)

A d-critical scheme with an orientation is called an oriented d-critical scheme.

2.2. Sheaves of vanishing cycles. Let f : V → A1 be a regular function
on a smooth scheme V , and set R = {df = 0}. Suppose that f |Rred = 0 and
set V0 = f−1(0). We have the associated vanishing cycle functor (see [Dim04,
Theorem 5.2.21])

φf : Perv(V )→ Perv(V0).

Let IC(V ) ∈ Perv(V ) be the intersection complex on V , which coincides
with QV [dimV ] since V is smooth. We have the perverse sheaf of vanishing
cycles supported on Rred ⊂ V0

φf (IC(V )) ∈ Perv(R) ⊂ Perv(V0).(2.6)

Let (M,s) be a d-critical scheme. For a d-critical chart (R,V, f, i) as in (2.3),
we have the sheaf of vanishing cycles (2.6) on R. In [BBD+] it is proved
that if (M,s) is oriented, then the sheaves of vanishing cycles (2.6) glue to
give a global perverse sheaf on M . Let

(K
1/2
M,s|Rred)⊗2 ∼= K⊗2

V |Rred(2.7)

be the isomorphism given by the composition of (2.4) and (2.5). Then there
is a Z/2Z-principal bundle

τR : R̃red → Rred

which parametrizes local square roots of the isomorphism (2.7). We have
the decomposition

τR∗QR̃red = QRred ⊕ Lξ

for a rank one local system Lξ on Rred. The following result is proved
in [BBD+] (also see [KL] for the same result in the framework of virtual
critical structures):

Theorem 2.3. ([BBD+, Theorem 6.9]) For an oriented d-critical scheme

M = (M,s,K
1/2
M,s), there exists a natural perverse sheaf φM on M such that

for any d-critical chart (2.3) there is a natural isomorphism

φM|R
∼=
→ φf (IC(V ))⊗ Lξ.(2.8)

Moreover there exists a natural isomorphism DM (φM) ∼= φM, where DM is
the Verdier dualizing functor.

2.3. GV type invariants. For an oriented d-critical schemeM = (M,s,K
1/2
M,s),

let

π : M red → T

be a projective morphism to a finite type complex scheme T . We will use
the perverse sheaf φM in Theorem 2.3 through the following lemma:
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Lemma 2.4. There exist unique GVg,M/T ∈ Z for g ∈ Z≥0, and GVg,M/T =
0 for g ≫ 0, such that

∑

i∈Z

χ(pHi(Rπ∗φM))yi =
∑

g≥0

GVg,M/T (y
1
2 + y−

1
2 )2g.(2.9)

Proof. By the isomorphism DM (φM) ∼= φM and the Verdier duality, we have
the isomorphism

DT (Rπ∗φM) ∼= Rπ∗φM.

Since DT preserves the perverse t-structure, it follows that

DT (
pH−i(Rπ∗φM)) ∼= pHi(Rπ∗φM).

Therefore the LHS of (2.9) is a polynomial of y±1 which is invariant under
y 7→ y−1. By the induction of the degree of y, it is easy to see that any
polynomial of y±1 invariant under y 7→ y−1 is uniquely written as the form
of the RHS of (2.9). �

We also have the following local version of Lemma 2.4, whose proof is
identical to Lemma 2.4.

Lemma 2.5. In the situation of Lemma 2.4, for t ∈ T there exist unique
GVloc

g,M/T,t ∈ Z for g ∈ Z≥0, and GVloc
g,M/T,t = 0 for g ≫ 0, such that

∑

i∈Z

χ(pHi(Rπ∗φM)|t)y
i =

∑

g≥0

GVloc
g,M/T,t(y

1
2 + y−

1
2 )2g.

For each g ∈ Z≥0, we have the constructible function on T

GVloc
g,M/T,− : T → Z, t 7→ GVloc

g,M/T,t .

Then the integer GVg,M/T in (2.9) is written as

GVg,M/T =

∫

T
GVloc

g,M/T,− de.(2.10)

In genus zero, our GV type invariants are described in terms of Behrend’s
constructible function. For the perverse sheaf φM in Theorem 2.3, the
Behrend constructible function [Beh09] on M is defined by

νM : M → Z, p 7→ χ(φM|p).(2.11)

The constructible function νM is independent of the choice of orientation
data. Indeed, it is proved in [Beh09] that νM only depends on the scheme
structure of M .

Lemma 2.6. We have the identities

GV0,M/T =

∫

M
νM de, GVloc

0,M/T,t =

∫

π−1(t)
νM de.

In particular, GV0,M/T , GVloc
0,M/T,t are independent of the choice of orien-

tation.

Proof. By substituting y = −1 to (2.9), we obtain GV0,M/T = χ(φM).
Therefore the first identity holds. The second identity also holds in the
similar way. �
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2.4. Strictly Calabi-Yau conditions. In this subsection, we introduce
a certain CY condition for d-critical schemes. While not needed for our
definitions, it is convenient for proofs later on.

Definition 2.7. (i) A d-critical scheme (M,s) is called strictly CY if there
is a global d-critical chart

(M,J, f, i), i : M →֒ J, f : J → A1(2.12)

of (M,s) such that KJ = OJ . Here i is a closed embedding and f is a regular
function. A d-critical chart (2.12) is called a CY d-critical chart.

(ii) A d-critical scheme (M,s) with a projective morphism π : M red → T
is called strictly CY at t ∈ T if there is an open neighborhood t ∈ U ⊂ T
such that (MU , sU ) is strictly CY. Here MU := ι(π−1(U)), ι : M red →֒M is
the natural closed embedding, and sU = s|MU

.

Remark 2.8. If a d-critical scheme (M,s) is strictly CY, the line bundle
i∗KJ = OM together with the identity map id : O⊗2

M → OM gives a CY
orientation (see Definition A.2) of (M,s).

In the situation of Definition 2.7 (ii), let us take a CY d-critical chart
(MU , J, f, i). Moreover, let us make the additional assumption that the ring
H0(OJ ) is finitely generated. The function f factors through the affinization

f : J
πJ−→ T := SpecH0(OJ)

g
−→ A1.

Suppose that U ⊂ T is affine. The Stein factorization of π : M red
U → U is

given by

π : M red
U

π1−→ U := SpecH0(OM red
U

)
π2−→ U.

By the property of the affinization, we have the commutative diagram

M red
U

ι

π1

MU
i J

f
πJ

U
i′

T
g

A1.

(2.13)

In the proof of Theorem 1.3, 1.4, we will show the strictly CY conditions
for moduli of one dimensional sheaves and use the diagrams as above.

Remark 2.9. Let MU = (MU , sU , i
∗KJ) be the oriented d-critical scheme

given by the CY d-critical chart (MU , J, i, f), and φMU
the perverse sheaf

given in Theorem 2.3. Although φMU
is not necessary pure, one can use

the BBD decomposition theorem [BBD82] for RπJ∗ IC(J), the compatibility
of φg with proper push forwards [Dim04, Proposition 4.2.11], to show the
decomposition

Rπ∗φMU
∼=
⊕

j∈Z

pHj(Rπ∗φMU
)[−j].(2.14)

By (2.14), one can interpret GVloc
g,(M,s)/T,t in terms of the character of sl2-

action on the RHS of (2.14). As this fact will not be used in this paper, we
omit the details.
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3. GV invariants on Calabi-Yau 3-folds

Let X be a smooth quasi-projective CY 3-fold, i.e. there is an isomor-
phism

OX
∼=
→ KX .(3.1)

Below, we fix the isomorphism (3.1) In this section, we define GV invari-
ants on X and formulate the conjectures relating them with PT and GW
invariants.

3.1. Definition of GV invariants. Let

Coh≤1(X) ⊂ Coh(X)

be the subcategory consisting of sheaves whose supports are compact and
have dimensions less than or equal to one. For an ample divisor ω on X and
0 6= E ∈ Coh≤1(X), the ω-slope µω(E) is defined by

µω(E) :=
χ(E)

ω · [E]
∈ Q ∪ {∞}.

Definition 3.1. An object E ∈ Coh≤1(X) is called ω-(semi)stable if for any
subobject 0 6= E′ ( E, we have the inequality µω(E

′) < (≤)µω(E).

Remark 3.2. For E ∈ Coh≤1(X) with χ(E) = 1, its ω-stability is equiv-
alent to that χ(E′) ≤ 0 for any subsheaf 0 ( E′ ( E. In particular, it is
independent of a choice of h.

For β ∈ H2(X,Z), we denote by

Shβ(X)(3.2)

the moduli space of ω-stable E ∈ Coh≤1(X) with [E] = β, χ(E) = 1.
Note that Shβ(X) is independent of h by Remark 3.2. Also the condition
χ(E) = 1 implies that Shβ(X) is fine, i.e. there is no strictly ω-semistable
E ∈ Coh≤1(X) with [E] = β, χ(E) = 1, and there is a universal sheaf

E ∈ Coh(X × Shβ(X)).

Then it is known that Shβ(X) admits a canonical d-critical structure:

Theorem 3.3. ([BBBBJ15]) A choice of the trivialization (3.1) gives a
canonical d-critical structure sSh on Shβ(X) such that its virtual canonical
bundle is given by

Kvir
Sh := det

(
RpSh ∗RHomX×Shβ(X)(E , E)

)
|Shred

β (X).(3.3)

Here pSh : X × Shβ(X)→ Shβ(X) is the projection.

Remark 3.4. The canonical d-critical structure in Theorem 3.3 is induced
from derived deformation theory. Let Ŝhβ(X) be the derived moduli space of
h-stable sheaves E with [E] = β, χ(E) = 1. If X is projective, by [PTVV13],

a choice of (3.1) gives a canonical (−1)-shifted symplectic structure on Ŝhβ(X),
which is written as a Darboux form by [BBBBJ15], and induce the canonical

d-critical structure on its truncation Shβ(X) ⊂ Ŝhβ(X) in Theorem 3.3.
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Remark 3.5. Since we only assume that X is quasi-projective, we need a
generalization of the result in [PTVV13] to the quasi-projective case. If X is
written as (u 6= 0) for a smooth projective variety Y and 0 6= u ∈ H0(−KY ),

Bussi [Bus, Theorem 5.2] shows that Ŝhβ(X) has a canonical (−1)-shifted
symplectic structure. In general, this follows from the work of Preygel [Pre,
Theorem 3.0.6] combined with the original argument of [PTVV13].

Let

π : Shredβ (X)→ Chowβ(X)(3.4)

be the Hilbert-Chow morphism. Here Chowβ(X) is the Chow variety which
parametrizes compactly supported effective one-cycles on X with homology
class β (see [Kol96]), and the map (3.4) sends a one dimensional sheaf E
to the associated fundamental cycle of E. Because Shβ(X) is a fine moduli
space, the morphism (3.4) is a projective morphism.

Remark 3.6. Here we use the classical definition of the Chow variety, which
is a reduced scheme and denoted as Chow′(X) in [Kol96]. The existence of
the map (3.4) follows from, for example, by the argument of [Ryd, Corol-
lary 7.15].

The d-critical scheme in Theorem 3.3 always admits a (non-canonical)
orientation [NO]. Let us take one of them and consider an oriented d-critical
scheme

Shβ(X) = (Shβ(X), sSh, (K
vir
Sh )

1/2).

In the following definition, we take a special type of orientation data (Kvir
Sh )

1/2,
called CY orientation data (see Definition A.2). We expect that such an
orientation data always exist (or at least locally on Chowβ(X), see Conjec-
ture A.7).

Definition 3.7. We define the invariants ng,β ∈ Z by (see Lemma 2.4)

ng,β := GVg,Shβ(X)/Chowβ(X) .

The invariant ng,β is called the genus g Gopakumar-Vafa invariant with
curve class β.

Remark 3.8. Once we take a CY orientation data, the resulting invari-
ant ng,β is independent of an orientation data as long as it is CY (see
Lemma A.5).

The local version is defined in the similar way:

Definition 3.9. We define the invariants nloc
g,γ ∈ Z for g ∈ Z≥0 by (see

Lemma 2.5)

nloc
g,γ := GVloc

g,Shβ(X)/Chowβ(X),γ .

The invariant nloc
g,γ is called the local genus g Gopakumar-Vafa invariant at

γ.

Remark 3.10. Similarly to the global case, the local GV invariant nloc
g,γ is

defined using a CY orientation data. However for the local case, we only
need such an orientation data locally on Chowβ(X) near γ (i.e. only need
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to assume that Shβ(X) is CY at γ in Definition A.2 (iii)). If the latter
condition holds for any γ ∈ Chowβ(X), (i.e. (3.4) is a CY fibration in
Definition A.2 (iv)), we can define the global GV invariants by the identity
(see Remark A.6)

ng,β =

∫

Chowβ(X)
nloc
g,− de.

If Shβ(X) has a global CY orientation data, the above definition coincides
with the one in Definition 3.7.

If X is projective, our genus zero GV invariant agrees with Katz’s defini-
tion [Kat08]:

Lemma 3.11. If X is projective, we have the identity

n0,β =

∫

[Shβ(X)]vir
1.

Proof. The assumption implies that Shβ(X) is also projective and the RHS
makes sense. Then the lemma follows from Lemma 2.6 together with the
result of Behrend [Beh09] that the degree of the virtual class of Shβ(X)
coincides with the weighted Euler number of its Behrend constructible func-
tion. �

3.2. Conjectures on the relation to PT/GW invariants. Let X be
a smooth quasi-projective CY 3-fold as before. By definition, a stable pair
introduced by Pandharipande-Thomas [PT09] consists of a pair

(F, s), F ∈ Coh≤1(X), s : OX → F

where F is pure one-dimensional and s is surjective in dimension one. For
β ∈ H2(X,Z) and n ∈ Z, let

Pn(X,β)

be the moduli space of stable pairs (F, s) on X with [F ] = β and χ(F ) = n.
By [BBBBJ15], the moduli space of stable pairs Pn(X,β) admits a canoni-
cal d-critical structure sP whose virtual canonical line bundle Kvir

P is given
similarly to (3.3) for universal stable pairs. By [NO], it always has a (non-

canonical) orientation (Kvir
P )1/2. An oriented d-critical scheme

Pn(X,β) = (Pn(X,β), sP , (K
vir
P )1/2)

determines the sheaf of vanishing cycles φP on Pn(X,β) by Theorem 2.3.
Similarly to (2.11), let

νP : Pn(X,β)→ Z, p 7→ χ(φP |p)

be the Behrend constructible function on Pn(X,β). The PT invariant is
defined by

Pn,β :=

∫

Pn(X,β)
νP de.

If X is projective, it coincides with the integration of the zero-dimensional
virtual class of Pn(X,β) [Beh09].
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Remark 3.12. We don’t need the d-critical structure on Pn(X,β) to define
Pn,β, as we only need the Behrend constructible function νP to define it. The
d-critical structure on Pn(X,β) and the associated vanishing cycle sheaf will
be used later, e.g. in Subsection 4.2.

By [PT09, Lemma 3.1], there exist unique integers

nP
g,β ∈ Z, β > 0, g ∈ Z

such that the logarithm of the generating series of stable pairs is written as

log


1 +

∑

β>0,n∈Z

Pn,β(−q)
ntβ


(3.5)

=
∑

β>0

∑

g∈Z,k≥1

nP
g,β

k
(−1)g−1(q

k
2 − q−

k
2 )2g−2tkβ.

Here β > 0 means that β is a homology class of an effective one cycle on X.

Conjecture 3.13. Under the situation of Definition 3.7, we have the iden-
tity

nP
g,β = ng,β, β > 0, g ∈ Z.(3.6)

The local PT invariants are also defined in a similar way. For γ ∈
Chowβ(X), let P loc

n (X, γ) ⊂ Pn(X,β) be the closed subset corresponding
to stable pairs (F, s) such that the fundamental cycle of F coincides with γ.
We define

P loc
n,γ :=

∫

P loc
n (X,γ)

νP de.

We have the constructible function

P loc
n,− : Chowβ(X)→ Z, γ 7→ P loc

n,γ .

Similarly to (3.5), there exist locally constructible functions

nP,loc
g,− : Chow(X) :=

∐

β>0

Chowβ(X)→ Z, g ∈ Z

such that we have the identity

log

(
1 +

∑

n∈Z

P loc
n,−q

n

)
(3.7)

=
∑

g∈Z,k≥1

(k)∗
nP,loc
g,−

k
(−1)g−1((−q)

k
2 − (−q)−

k
2 )2g−2.

The above identity is interpreted as the identity of Q((q))-valued functions
on Chow(X). Here for functions n1, n2 on Chow(X), the product is defined
by

n1 · n2 := (+)∗(n1 ⊠ n2)(3.8)

where + is an obvious addition map of one cycles

+: Chow(X) × Chow(X)→ Chow(X).
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The logarithm of the LHS of (3.7) is taken with respect to the product (3.8).
Also (k)∗ in the RHS of (3.7) is the push-forward of the map γ 7→ kγ on
Chow(X).

Conjecture 3.14. Under the situation of Definition 3.9, we have the iden-
tity

nP,loc
g,γ = nloc

g,γ, γ ∈ Chowβ(X), g ∈ Z.(3.9)

Remark 3.15. By integrating over the Chow variety, it is easy to see that
Conjecture 3.14 implies Conjecture 3.13.

Remark 3.16. For an irreducible one cycle γ, Conjecture 3.14 is equivalent
to Conjecture 1.2.

Remark 3.17. The identity (3.6) in particular implies nP
g,β = 0 for g <

0, which is the strong rationality conjecture in [PT09, Conjecture 3.14].
By [Tod12, Theorem 6.4], the above vanishing is equivalent to the multiple
cover conjecture of generalized DT invariants of one dimensional semistable
sheaves (see [Tod12, Conjecture 6.3]), and in this case the identity (3.6)

holds for g = 0. Similarly in the local case, the vanishing nP,loc
g,γ = 0 for

g < 0 is equivalent to the multiple cover conjecture of local generalized DT
invariants (see [Tod14, Conjecture 4.13]) and in this case (3.9) holds for
g = 0.

If X is projective, the comparison with Gromov-Witten invariants is also
formulated in a similar way. Let

GWg,β ∈ Q

be the genus g Gromov-Witten invariant on X with curve class β. Then
there exist (a priori rational numbers)

nGW
g,β ∈ Q, g ∈ Z≥0, β > 0

satisfying the identity:

∑

β>0,g≥0

GWg,βλ
2g−2tβ =

∑

β>0,g≥0,k≥1

nGW
g,β

k

(
2 sin

(
kλ

2

))2g−2

tkβ.

Conjecture 3.18. Suppose that X is a smooth projective CY 3-fold. Then
under the situation of Definition 3.7, we have the identity

nGW
g,β = ng,β, β > 0, g ∈ Z≥0.

Remark 3.19. Suppose that we know either nP
g,β = 0 for g < 0 or nGW

g,β = 0

for g ≫ 0. Then the conjectural GW/DT(PT) correspondence [MNOP06,
PT09] implies nP

g,β = nGW
g,β .

3.3. Independence of Euler characteristic. For k ∈ Z, let

Shβ,k(X)

be the moduli space of ω-stable E ∈ Coh≤1(X) satisfying [E] = β, χ(E) = k.
We note that, for k 6= 1, the moduli space Shβ,k(X) may depend on a choice
of ω. Similarly to the k = 1 case, we have the Hilbert-Chow map

πk : Shredβ,k(X)→ Chowβ(X).
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In Subsection 3.1, we used the moduli space for k = 1 and the map π = π1
to define GV invariants. For other value of k, assuming that Shβ,k(X) is fine
and πk is a CY fibration (see Definition A.2), we expect that we can also use
Shβ,k(X) to define GV invariants. Namely by replacing Shβ(X) by Shβ,k(X)
in Definition 3.7 and Definition 3.9, we have the GV type invariants

ng,β,k,ω ∈ Z, nloc
g,γ,k,ω ∈ Z(3.10)

for β > 0 and γ ∈ Chowβ(X) respectively. A priori, the invariants (3.10)
may also depend on ω.

Conjecture 3.20. Assuming that Shβ,k(X) is fine, we have the following:

(i) πk is a CY fibration. In particular, the invariants (3.10) are defined.
(ii) The invariants (3.10) are independent of ω.
(iii) The invariants (3.10) are independent of k.

In genus zero, Conjecture 3.20 (ii) is known to be true by a wall-crossing
argument (see [JS12, Theorem 6.6]), and Conjecture 3.20 (iii) is a spe-
cial case of the multiple cover conjecture for generalized DT invariants
(see [Tod14, Conjecture 4.13]). By another wall-crossing argument, Con-
jecture 3.20 (iii) for a primitive one cycle γ is proved when g = 0 (see [Tod,
Lemma 2.12]), and we expect that a similar argument may be applied for
g > 0. For an irreducible one cycle γ, Conjecture 3.20 (iii) should follow
along with the same argument of [PT10, Proposition 2.1] by tensoring a
local line bundle with degree one on the support of γ.

4. PT/GV correspondence for locally planar curves

In this section, we explain an approach for proving Conjecture 3.14 for
integral planar curves. More precisely, we show that the existence of strictly
CY d-critical chart (see Definition 2.7) together with the results of [MY14,
MS13] implies the conjecture.

4.1. GV formula for locally versal deformations. Let C be an integral
projective curve with at worst planar singularities. Let g be the arithmetic
genus of C, and {c1, . . . , ck} the singular set of C. Let

πT : C → T(4.1)

be a flat family of curves with smooth base T such that C = π−1
T (0) for

0 ∈ T . We recall the notion of locally versal family:

Definition 4.1. A family (4.1) is called locally versal at 0 ∈ T if the natural
map

Tan0(T )→
k∏

i=1

Tan0(Def(C, ci))(4.2)

is surjective. Here Def(C, ci) is the miniversal deformation space of the
singularity ci ∈ C, and Tan0(∗) is the tangent space at 0. If a family (4.1)
is locally versal at any t ∈ T , it is called a locally versal family.

We will use the following lemma:
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Lemma 4.2. For any projective flat family of curves πH : CH → H with at
worst planar singularities, there is a locally versal family of curves C → T
and a closed immersion H →֒ T such that CH = C ×T H.

Proof. Since πH is projective, there is a closed embedding CH ⊂ Pn ×H as
H-schemes. Since πH is flat, it induces the morphism of schemes h : H →
Hilb(Pn), where Hilb(Pn) is the Hilbert scheme of one dimensional sub-
schemes in Pn. Let

πHilb : CHilb → Hilb(Pn)(4.3)

be the universal curve. We check that πHilb is locally versal at any point in
the image of h. For t ∈ H, let us write C = π−1

H (t) ⊂ Pn. Let I ⊂ OPn be
the ideal sheaf of C. By the exact sequence

0→ I/I2 → ΩPn |C → ΩC → 0

we have the exact sequence

Hom(I/I2,OC)→ Ext1C(ΩC ,OC)→ H1(C, TPn |C)

→ Ext1C(I/I
2,OC)→ Ext2C(ΩC ,OC)→ 0.

By replacing the embedding CH ⊂ Pn × H if necessary, we may assume
that H1(C,OC(1)) = 0 holds for any choice of t ∈ H. Then the vanish-
ing H1(C, TPn |C) = 0 also holds. Since the singularities of C are planar,
we also have Ext2C(ΩC ,OC) = 0. By the above exact sequence, we have
Ext1C(I/I

2,OC) = 0, therefore Hilb(Pn) is smooth at h(t). Moreover we
have the surjections

Hom(I/I2,OC) ։ Ext1C(ΩC ,OC) ։ H0(C, Ext1(ΩC ,OC)).

The above map is identified with the map (4.2) for the family (4.3), therefore
πHilb is locally versal at t.

Let h(H) ⊂ U ⊂ Hilb(Pn) be an open subset on which the corresponding
one dimensional subscheme have at worst planar singularities, and πHilb

is locally versal. We set T = H × U , and C = H × π−1
Hilb(U). Then

(id × πHilb) : C → T is a locally versal family. By taking the embedding
(id, h) : H →֒ T , the lemma follows. �

For a locally versal family (4.1), let

π[n] : C[n] → T, πJ : J → T

be the πT -relative Hilbert scheme of n-points, πT -relative rank one torsion
free sheaves with Euler characteristic one, respectively. The following is the
main result of [MY14, MS13].

Theorem 4.3. ([MY14, MS13]) Both of C[n] and J are smooth for any
n ≥ 1. After replacing T by its étale cover if necessary, we have the identity
in K(Perv(T ))((q)):

∑

n≥0

Rπ
[n]
∗ IC(C[n])qn+1−g =

q

(1 + q)2

∑

i∈Z

pHi(RπJ∗ IC(J))q
i.(4.4)
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Let g : T → A1 be a regular function. We define f [n] and fJ by the
commutative diagram

J

πJ

fJ

T g A1

C[n]

π[n]

f [n]

Let us consider the associated vanishing cycle sheaves:

φ[n] := φf [n](IC(C[n])) ∈ Perv(C[n]),(4.5)

φJ := φfJ (IC(J)) ∈ Perv(J).

Applying Theorem 4.3, we have the following lemma:

Lemma 4.4. After replacing T by its étale cover if necessary, we have the
identity in K(Perv(T ))((q)):

∑

n≥0

Rπ
[n]
∗ φ[n]qn+1−g =

q

(1 + q)2

∑

i∈Z

pHi(RπJ∗φJ)q
i.(4.6)

Proof. By the compatibility of vanishing cycles with proper push forwards
(see [Dim04, Proposition 4.2.11]), we have

φg(Rπ
[n]
∗ IC(C[n])) = Rπ

[n]
∗ φ[n], φg(RπJ∗ IC(J)) = RπJ∗φJ .

Since φg preserves the perverse t-structure, it commutes with the perverse

cohomology functor pHi(−). Therefore we have

φg(
pHi(RπJ∗ IC(J))) =

pHi(RπJ∗φJ).

Therefore the lemma follows by applying the vanishing cycle functor φg to
both sides of (4.4). �

4.2. GV formula for Calabi-Yau 3-folds. Let X be a smooth quasi-
projective CY 3-fold, and C ⊂ X an integral projective curve with at worst
planar singularities with arithmetic genus g. For β = [C] ∈ H2(X,Z) and
n ∈ Z, let

(P = Pn+1−g(X,β), sP ), (Sh = Shβ(X), sSh)

be the d-critical schemes considered in Section 3.2 and Section 3.1 respec-
tively. We have the Hilbert-Chow morphisms

P red

πP

Shred

πSh

Chowβ(X).

For an open neighborhood [C] ∈ U ⊂ Chowβ(X), let ShU ⊂ Sh, PU ⊂

P be the open subschemes whose underlying spaces are π−1
Sh (U), π−1

P (U)
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respectively. Suppose that there exist a locally versal deformation πT : C →
T of C and closed embeddings

iT : U →֒ T, iP : PU →֒ C
[n], iSh : ShU →֒ J

such that we have the commutative diagrams

ShredU
ι

πSh

ShU
iSh J

fJ
πJ

U
iT T

g
A1,

P red
U

ι

πP

PU
iP C[n]

f [n]

π[n]

U
iT T

g
A1

giving d-critical charts

(ShU , J, fJ , iSh), (PU , C
[n], f [n], iP )

of (ShU , sSh|ShU ), (PU , sP |PU
) respectively. Since the πJ -relative canonical

line bundle of J is trivial (see [MRV, Theorem A]), (Sh, sSh) has an orien-

tation data on ShredU which is trivial as a line bundle, i.e. CY orientation in
Definition A.2. Indeed the above diagram for Sh is a strictly CY d-critical
chart (see Definition 2.7 and the diagram (2.13)). Therefore the local GV
invariant nloc

g,γ ∈ Z is defined as in Definition 3.9, using a CY orientation
data.

Proposition 4.5. Suppose that the above assumption holds for all n ≥ 0.
Then Conjecture 3.14 holds for γ = [C] ∈ Chowβ(X).

Proof. We set φ[n], φJ as in (4.5). By the definition of P loc
n,γ , we have

∑

n≥0

χ(Rπ
[n]
∗ φ[n]|γ)q

n+1−g =
∑

n≥0

χ(φ[n]|P loc
n (X,γ))q

n+1−g

=
∑

n∈Z

P loc
n,γq

n.

Also by the definition of nloc
g,γ , we have

∑

i∈Z

χ(pHi(RπJ∗φJ )|γ)q
i =

∑

g≥0

nloc
g,γ(q

1
2 + q−

1
2 )2g.

The proposition follows by taking the Euler characteristics of (4.6) at iT (γ) ∈
T . �

5. GV formula for local surfaces

Let S be a smooth projective surface with H1(OS) = 0. In this section,
we prove Theorem 1.3 for the non-compact CY 3-fold X

p : X := Tot(KS)→ S.(5.1)

This will require a lengthy discussion on the natural obstruction theory
for sheaves on S and the d-critical structure for sheaves on X. Once these
technical details are in place, we will use them to apply the general approach
of the last section.
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5.1. Overview of the proof. Here we give an outline of the proof of The-
orem 1.3. Let ShX , PX be the moduli spaces of one dimensional stable
sheaves, stable pairs on X respectively. Our strategy is to find Chow(X)-
local d-critical charts of ShX , PX via versal deformations of irreducible
curves with at worst planar singularities as in the last section. We con-
struct such d-critical charts by relating these moduli spaces with similar
moduli spaces ShS , PS on the surface S.

Namely we have the natural projections

p∗ : ShX → ShS , p∗ : PX → PS .

The fiber of the morphism p∗ : ShX → ShS at each point [F ] ∈ ShS is the
vector space

Hom(F,F ⊗KS) = Ext2S(F,F )∨.

If ShS is smooth so that Ext2S(F,F ) is constant for [F ] ∈ ShS , then ShX is
just a vector bundle on ShS . Indeed as Ext2S(F,F ) is the obstruction space
for the deformations of the sheaf F inside S, the vector bundle ShX → ShS
is nothing but the dual of the obstruction bundle on ShS . In general, ShX is
the dual obstruction cone [JT] over ShS , determined by a perfect obstruction
theory of ShS . The property of dual obstruction cones tells us how to write
ShX as a critical locus. A similar argument also applies to p∗ : PX → PS .

Let H be the Chow variety on S (which is smooth by our assumption
H1(OS) = 0) with HC maps

PS → H ← ShS .(5.2)

For each [C] ∈ H, we will take an embedding H ⊂ T (locally on C), where
T is the base of a locally versal deformation C → T of C (see Lemma 4.2).
Then we will see that the diagram

C[n] → T ← J(5.3)

in the last section restricts to the diagram (5.2) on the closed subscheme
H ⊂ T .

As both of H, T are smooth, locally near [C] ∈ H we can realize H as a
zero section of a regular section s of a vector bundle E. Then we can form
the following diagram

C[n] ×T E∨

f [n]

E∨

g

J ×T E∨

fJ

A1

(5.4)

Here g is the function on E∨ defined by

g(a, e) = (s(a), e), a ∈ T, e ∈ E∨|a.

We will show that, locally near [C] ∈ H we have smooth surjections

PX ։ {df [n] = 0}, ShX ։ {dfJ = 0}, Chow(X) ։ Q ⊂ E∨(5.5)

for some closed subset Q ⊂ E∨, compatible with the maps in (5.4) and
HC maps on PX , ShX . The fibers of the maps in (5.5) are H1(OC(C))∨,
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so they are isomorphisms if H1(OC(C)) = 0. Then the same argument of
Proposition 4.5 shows the desired result.

The existence of smooth surjections (5.5) is the most technical part in the
proof. For this purpose, we will carefully compare the obstruction theories
on ShS , PS induced by their deformation theories with those induced by the
embedding of (5.2) into (5.3), and investigate the Chow variety on X.

5.2. Chow variety on local surfaces. Let us take an algebraic curve
class β ∈ H2(S,Z). By the assumption H1(OS) = 0, there is a unique
Lβ ∈ Pic(S) such that c1(Lβ) = β. The Chow variety on S is just the linear
system

Chowβ(S) = |Lβ|.

In this case, Chowβ(S) is also identified with the Hilbert scheme of pure
one-dimensional subschemes in S with homology class β. We define the
open subscheme

Hβ ⊂ Chowβ(S)

consisting of irreducible one-cycles. Note that any curve in Hβ has arith-
metic genus g given by

g = 1 +
1

2
β(KS + β).(5.6)

Let Cβ be the universal curve

πH : Cβ ⊂ S ×Hβ → Hβ.

By [KT14, Appendix], there is a perfect obstruction theory on Hβ

U•
H := (RπH∗OCβ (Cβ))

∨ → LHβ
.

As Hβ is smooth, we have the distinguished triangle

R1πH∗OCβ (Cβ)
∨[1]→ U•

H → LHβ
.

For the non-compact CY 3-fold (5.1), we have the push-forward map

p∗ : Chowβ(X)→ Chowβ(S).(5.7)

Lemma 5.1. For [C] ∈ Hβ, the set of closed points of (p∗)
−1([C]) is iden-

tified with H0(ν∗OC̃ ⊗KS). Here ν : C̃ → C is the normalization of C.

Proof. Let C ′ ⊂ X be an irreducible curve with p(C ′) = C. By taking
the diagonal map C ′ →֒ X ×S X = Tot(p∗KS), we obtain the section of
H0(p∗KS |C′) = H0(p∗OC′⊗KS). Since the normalization ν factors through
p|C′

ν : C̃ → C ′ p|C′

→ C

we obtain the section of ν∗OC̃ ⊗ KS . Conversely a section of ν∗OC̃ ⊗ KS

gives a morphism C̃ → Tot(ν∗KS). By composing it with the projection

Tot(ν∗KS) → X, we obtain the morphism C̃ → X whose image gives a
point of (p∗)

−1([C]). �
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5.3. Moduli spaces of one-dimensional stable sheaves on surfaces.
Let Shβ(S) be the moduli space of one-dimensional stable sheaves F on S
satisfying [F ] = β and χ(F ) = 1. We set

ShS ⊂ Shβ(S)

to be the open subscheme consisting of sheaves F whose fundamental cycles
are irreducible. Then we have the Hilbert-Chow morphism

ρSh : ShS → Hβ(5.8)

sending F to its fundamental cycle.

Remark 5.2. Since S is a surface the morphism (5.8) is defined without
taking the reduced part of ShS. Indeed let F ∈ Coh(S × T ) be a flat family
of objects in ShS. Then there is an exact sequence

0→ F−1 → F0 → F → 0

for vector bundles F i. By taking the determinants, we obtain the global
section of det(F0) ⊗ det(F−1)−1 = Lβ ⊠ OT , giving the T -valued point of
Hβ.

By Lemma 4.2, there is a locally versal deformation πT : CT → T and a
closed embedding i : Hβ →֒ T such that we have the Cartesian square

Cβ

πH �

CT

πT

Hβ
i

T.

(5.9)

Let

πJ : J → T

be the πT -relative moduli space of rank one torsion free sheaves with Euler
characteristic one, which is non-singular by Theorem 4.3. We have the
Cartesian square

ShS

ρSh �

J

πJ

Hβ
i

T.

(5.10)

Since πJ is flat (see [MRV, Theorem C (ii)]), the above diagram in particular
implies that ShS has at worst locally complete intersection singularities.

We next discuss obstruction theories on ShS. Let C′β be the universal
curve over ShS

C′β := Cβ ×Hβ
ShS ⊂ S × ShS

and F the universal sheaf

F ∈ Coh(C′β) ⊂ Coh(S × ShS).
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By a standard deformation theory of sheaves, we have the perfect obstruction
theory on ShS

U•
Sh := (τ≥1RHompSh(F,F))

∨[−1]→ LShS(5.11)

where pSh : ShS × S → ShS is the projection.

Proposition 5.3. There is a natural distinguished triangle

ρ∗ShR
1πH∗OCβ (Cβ)

∨[1]→ U•
Sh → LShS .(5.12)

Proof. Let us consider the natural morphism in Db(S × ShS)

OC′
β
⊗ p∗SKS → RHomS×ShS(F,F)⊗ p∗SKS .

By pushing forward to ShS and using the Grothendieck duality, we obtain
the morphism in Db(ShS)

RHompSh(F,F)[1]→ RHompSh(OC′
β
,OShS×S)[1].(5.13)

Note that the RHS is identified with

RpSh∗OC′
β
(C′β) = ρ∗ShRπH∗OCβ (Cβ).

By taking the truncations τ≥1 of (5.13) and dualizing, we obtain the mor-
phism

ρ∗ShU
•
H → U

•
Sh.

Let G•Sh be the cone of the above morphism. Then there is a morphism
G•Sh → LShS/Hβ

which fits into the morphism of distinguished triangles:

ρ∗ShU
•
H U•

Sh G•Sh

ρ∗ShLHβ
LShS LShS/Hβ

.

(5.14)

We claim that the morphism G•Sh → LShS/Hβ
is a quasi-isomorphism. First

we check that G•Sh is concentrated on [−1, 0]. For a sheaf F giving a closed
point p ∈ ShS, let C ⊂ S be the support of F . By the top distinguished
triangle in (5.14), we have the exact sequence

0→H−2(G•Sh|p)→ H1(OC(C))∨ → Ext1S(F,F )∨.

By the Serre duality, the right morphism is identified with the natural mor-
phism

H0(KS |C)→ Hom(F,F ⊗KS)

which is clearly injective as F is a torsion free sheaf on C. Therefore
H−2(G•Sh|p) = 0 and G•Sh is concentrated on [−1, 0]. Also note that the
left and the middle morphisms in the diagram (5.14) satisfy that H0(∗) are
isomorphisms and H−1(∗) are surjective. Then an easy diagram chasing
shows that G•Sh → LShS/Hβ

is a ρSh-relative perfect obstruction theory. Its
virtual dimension is

1− χ(F,F ) − χ(OC(C)) = g

by the Riemann-Roch theorem, where g is the arithmetic genus of C given
by (5.6).
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On the other hand, since T and J in the diagram (5.10) are smooth, it
follows that

LShS/Hβ
= (π∗

JΩT → ΩJ)|ShS
.

Therefore id : LShS/Hβ
→ LShS/Hβ

is also a ρSh-relative perfect obstruction
theory, whose virtual dimension is also g as πJ has relative dimension g.
Therefore G•Sh → LShS/Hβ

must be a quasi-isomorphism.

By taking the cones of the diagram (5.14), we obtain the distinguished
triangle (5.12). �

5.4. Dual obstruction cone. In general, let M be a complex scheme with
a perfect obstruction theory U• → LM . The dual obstruction cone is a cone
over M defined by

Obs∗(U•) := SpecOM


⊕

i≥0

Symi(H1(U•∨))


 .(5.15)

By [JT], the dual obstruction cone (5.15) is locally written as a critical
locus of some function on a smooth scheme. Suppose that M is cut out
by a section s of a vector bundle E → A on a smooth scheme A, and the
obstruction theory U• is given by

U• = (E∨|M
ds

s

ΩA|M )

LM = (I/I2 ΩA|M ).

(5.16)

Here I ⊂ OA is the ideal sheaf of M in A. Then the dual obstruction cone
(5.15) is written as the critical locus of the function

f : Tot(E∨)→ A1, f(a, e) = (s(a), e)(5.17)

where a ∈ A and e ∈ E∨|a (see [JT, Section 2] for details). Since any perfect
obstruction theory is locally of the form (5.16), the dual obstruction cone
(5.15) is locally written as a critical locus.

Suppose that M has at worst locally complete intersection singularities.
Then id : LM → LM is a perfect obstruction theory, and Obs∗(LM ) carries a
natural d-critical structure which locally is given by the above construction.
Indeed, the dual obstruction cone is the underlying scheme of the (−1)-
shifted cotangent derived scheme (see [PTVV13, Definition 1.20])

Ω•
M [−1]→M

and the d-critical structure is induced by the natural (−1)-shifted symplectic
structure.

In the above situation, suppose that U• → LM is a perfect obstruction
theory. Then we have the distinguished triangle

V[1]→ U• → LM

for a vector bundle V on M . By taking the dual and the long exact sequence
of cohomology, we have the exact sequence

0→H1(L∨
M )→H1(U•∨)→ V∨ → 0.
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Therefore we have the smooth surjection

Obs∗(U•) ։ Obs∗(LM ).

Assume the perfect obstruction theory on M has a local model as given
at the beginning of this section. One can then show that the pullback of
the canonical d-critical structure on Obs∗(LM ) agrees with the d-critical
structure

(Obs∗(U•), sU ), sU ∈ Γ(S0Obs∗(U•)).(5.18)

Indeed, since the underlying scheme structure on M is lci, one can show the
dg-scheme structure is locally split on M , which implies the claim. Locally,
the d-critical structure can be defined by critical charts, as described in
equation (5.17).

5.5. Moduli spaces of stable sheaves on local surfaces. We apply the
above dual obstruction cone construction to the perfect obstruction theory
U•
Sh → LShS given in (5.11), and compare it with the moduli space of one-

dimensional stable sheaves on X = Tot(KS). Let Shβ(X) be the moduli
space of compactly supported one-dimensional stable sheaves E on X with
[p∗E] = β and χ(E) = 1. Let

ShX ⊂ Shβ(X)

be the open subset corresponding to sheaves E such that the fundamental
cycle of p∗E is irreducible.

Lemma 5.4. We have the following commutative diagram:

ShX
∼=

p∗

Obs∗(U•
Sh)

ShS.

(5.19)

Here the top morphism is a canonical isomorphism, p∗ is induced by the
projection p : X → S and the right morphism is the natural morphism defined
from the cone structure.

Proof. For a closed point [E] ∈ ShX , the sheaf p∗E on S is stable as
it is pure and has irreducible support. Therefore we have the morphism
p∗ : ShX → ShS . The fiber of this morphism at [F ] ∈ ShS is given by the
OX -module structures on F , that is Hom(F,F⊗KS). On the other hand, the
fiber of the right morphism of (5.19) at [F ] ∈ ShS is given by Ext2S(F,F )∨

which is isomorphic to Hom(F,F ⊗ KS). Therefore the fibers of left and
right morphisms in (5.19) are canonically identified. It is straightforward to
generalize this argument for flat families of sheaves in ShS, which shows the
existence of a canonical isomorphism in the diagram (5.19). �

By the diagram (5.10), ShS has at worst locally complete intersection sin-
gularities. Therefore the construction in (5.18) yields the d-critical scheme

(ShX , sSh), sSh ∈ Γ(S0ShX
).(5.20)
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Let us take the dual and the long exact sequence of cohomologies of (5.12).
Then we obtain the exact sequence of sheaves

0→ H1(L∨
ShS

)→H1(U•∨
Sh )→ ρ∗ShR

1πH∗OCβ (Cβ)→ 0.(5.21)

We define OH to be the total space of the vector bundle

OH := R1πH∗OCβ (Cβ)
∨ → Hβ(5.22)

on Hβ. By the exact sequence (5.21) and Lemma 5.4, the Hβ-group scheme
OH acts on ShX fiberwise over Hβ without fixed points. The quotient space
is

ηSh : ShX ։ ShX/OH = Obs∗(LShS
).(5.23)

By the Riemann-Roch computation, the relative dimension d of ηSh is given
by

d = dimHβ −
1

2
β2 +

1

2
KS · β.(5.24)

By the construction of (5.20), the d-critical structure sSh is pulled back from
the smooth surjection ηSh.

Remark 5.5. One subtlety in this discussion is the compatibility of the
d-critical structure sSh in (5.20) with the d-critical structure sderSh induced
by the derived deformation theory as in Remark 3.4. In fact, we expect a
stronger matching of (−1)-shifted symplectic structures is known to experts;
however, since a reference is unavailable, we sketch a proof of the weaker
statement as follows.

First, both sSh and sderSh are homogeneous with weight 1 with respect to the
natural action of C∗ on ShX . Using this, it suffices to show their formal
completions agree at sheaves [E] ∈ ShX which are pushed forward from S,
i.e. of the form E = i∗F for a sheaf F on S and the inclusion i : S →֒ X by
the zero section.

At any such point, the d-critical structure sderSh is determined formal-locally
by the cyclic pairing on the L∞-algebra LX,E = RHomX(E,E) induced by
Serre duality. In this case, since [E] is C∗-fixed, LX,E inherits an extra
grading compatible with the higher operations and the cyclic structure; using
this grading, we can identify

LX,E = LS,F ⊕ L∨
S,F [1]

where LS,F = RHomS(F,F ) and the right-hand side has a cyclic dgla struc-
ture from the coadjoint action and the natural pairing. If we use this de-
composition to compute sderSh and compare with equation (5.17), we see that

sSh = sderSh .

5.6. Hilbert-Chow map on ShX . We set

Ĥβ := p−1
∗ (Hβ) ⊂ Chowβ(X)
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where p∗ is the morphism (5.7). We have the Hilbert-Chow map πSh : Sh
red
X →

Ĥβ for X and the commutative diagram

ShredX

p∗

πSh

ShS

ρSh

Ĥβ p∗
Hβ.

(5.25)

Below we fix a point

c = [C] ∈ Hβ(5.26)

for an irreducible curve C ⊂ S. Let ShredX,c be the reduced fiber at c of

the morphism ShredX → Hβ in the diagram (5.25). Let ν : C̃ → C be the
normalization. By Lemma 5.1, we obtain the morphism

πSh,c : Sh
red
X,c → H0(ν∗OC̃ ⊗KS).(5.27)

Note that the fiber of (5.22) at c is

H1(OC(C))∨ = H0(KS |C).

The OH -action on ShX induces theH0(KS |C)-action on ShredX,c. On the other

hand, H0(KS |C) is contained in H0(ν∗OC̃
⊗ KS), hence acts on it by the

translation.

Lemma 5.6. The morphism (5.27) is equivariant with respect to the H0(KS |C)-
action.

Proof. A closed point of ShredX,c consists of a pair (F, s), where F ∈ Coh(S)
gives a closed point of ShS with fundamental cycle c, and s is a morphism

s : F → F ⊗ KS (see the proof of Lemma 5.4). Let F̃ = ν∗F/T where

T ⊂ ν∗F is the torsion part. Since C̃ is smooth, F̃ is a line bundle on C̃
and we have the embedding

End(F ) ⊂ ν∗End(F̃ ) = ν∗OC̃
.(5.28)

Combined with the inclusion OC ⊂ End(F ), we have

H0(KS |C) ⊂ Hom(F,F ⊗KS) ⊂ H0(ν∗OC̃
⊗KS).(5.29)

The H0(KS |C)-action on ShredX,c is given by the translation with respect to
the first embedding of (5.29). Also the morphism (5.27) is given by the
second embedding of (5.29). Therefore (5.27) is H0(KS |C)-equivariant. �

For the normalization ν : C̃ → C, we set Qc to be

Qc := ν∗OC̃
/OC .

Lemma 5.7. We have

H0(ν∗OC̃
⊗KS)/H

0(KS |C) = Qc := Ker
(
Qc

u
→ ΩHβ

|c

)

for some morphism u.



GOPAKUMAR-VAFA INVARIANTS VIA VANISHING CYCLES 29

Proof. By the exact sequence

0→ KS |C → ν∗OC̃
⊗KS → Qc → 0

we obtain the long exact sequence

0→ H0(KS |C)→ H0(ν∗OC̃ ⊗KS)→ Qc → H1(KS |C).

Then the lemma follows from the identification

H1(KS |C) = H0(OC(C))∨ = ΩHβ
|c.

�

Let Obs∗(LShS )
red
c be the reduced fiber of the composition at c = [C] ∈

Hβ:

Obs∗(LShS
)red → ShS

ρSh→ Hβ

where the first morphism is the projection. By Lemma 5.6 and Lemma 5.7,
we obtain the Cartesian square

ShredX,c

πSh,c �

Obs∗(LShS )
red
c

H0(ν∗OC̃ ⊗KS) Qc

(5.30)

such that horizontal morphisms are smooth morphisms with fiberH0(KS |C).

5.7. CY condition for ShX . We consider the embedding i : Hβ →֒ T in
the diagram (5.9). We take an open neighborhood U in T of the point (5.26),
and a bundle E on it with a section s

c ∈ U ⊂ T, E → U, s ∈ Γ(U,E)(5.31)

such that s is a regular section which cuts out Hβ, i.e.

HU := Hβ ∩ U = (s = 0) ⊂ U.

By taking the fiber products of the diagrams (5.10), (5.25) with U over T ,
we obtain the diagrams

ShS,U

ρSh �

JU

πJ

HU
i

U,

ShredX,U

p∗

πSh

ShS,U

ρSh

ĤU p∗
HU .

(5.32)

Since s is a regular section of E, we have the isomorphism

(π∗
JE

∨|ShS,U

d(π∗
Js)−→ ΩJU

|ShS,U )
∼=
→ LShS,U .

By the argument in Subsection 5.4, we have the commutative diagram

Obs∗(LShS,U
)

∼=
→ {dfJ = 0} JU ×U E∨

fJπJ

E∨ g
A1

(5.33)
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giving a d-critical chart of Obs∗(LShS,U ). Here g is the function defined as
in (5.17), i.e.

g(a, e) = (s(a), e), a ∈ U, e ∈ E∨
a := E∨|a.

By shrinking U if necessary, the canonical line bundle of JU is trivial
(see [MRV, Theorem A]). Then the above d-critical structure is strictly CY
and (5.33) is a CY d-critical chart (see Definition 2.7).

Lemma 5.8. Let JC be the fiber of πJ : J → T at the point (5.26), and Ec

the fiber of E → U at c ∈ HU ⊂ U . There is a closed embedding Qc ⊂ E∨
c

such that the following diagram commutes:

Obs∗(LShS
)redc JC × E∨

c

Qc E∨
c .

(5.34)

Here the top morphism is induced by the embedding (5.33), and the left
morphism is given in (5.30).

Proof. By the description (5.23), Obs∗(LShS )
red
c is a cone over JC whose

fiber at a closed point [F ] ∈ JC is the quotient of Hom(F,F ⊗KS) by the
action of H0(KS |C). Similarly to Lemma 5.7, we see that

Hom(F,F ⊗KS)/H
0(KS |C) = Ker

(
End(F )/OC → ΩHβ

|c
)

(5.35)

which is a closed subspace of E∨
c by the diagram (5.33). We have the em-

bedding (5.28), such that the equality holds if F = ν∗L for some line bundle

L on C̃. Applying (5.35) for such F , we obtain the embedding Qc ⊂ E∨
c

which makes the diagram (5.34) commutative. �

We write OH,U = OH×Hβ
HU , where OH is given by (5.22). By the above

lemma, we have the commutative diagram

ShredX,U

ηSh

πSh �

Obs∗(LShS,U
)red JU ×U E∨

πJ

ĤU
η

ĤU/OH,U E∨.

(5.36)

where the left horizontal morphisms are quotient maps with respect to the
free OH,U -actions and the right horizontal morphisms are bijections onto
their images. Combined with the diagram (5.33), we obtain the following:

Corollary 5.9. The d-critical scheme (ShX , sSh) in (5.20) together with the

morphism ShredX → Ĥβ in (5.25) is a CY fibration in the sense of Defini-
tion A.2.

5.8. GV invariants on local surfaces. We keep the notation in the pre-
vious subsection. Let

φSh ∈ Perv(ShX,U )
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be the perverse sheaf of vanishing cycles on ShX,U determined by its canon-
ical d-critical structure with a CY orientation data (see Corollary 5.9). Let

φJ := φfJ (IC(JU ×U E∨)) ∈ Perv(Obs∗(LShS,U ))

be the perverse sheaf of vanishing cycles associated to the CY d-critical chart
(5.33).

Lemma 5.10. We can choose a CY orientation data on ShX,U such that
the following identity holds:

φSh = η∗ShφJ [d] ∈ Perv(ShX,U ).

Here ηSh is the quotient map (5.23), and d is the relative dimension of ηSh
given by (5.24).

Proof. The lemma follows since the d-critical structure and the virtual canon-
ical line bundle on ShX,U are pulled back from Obs∗(LShS,U ). �

Let us take a one-cycle γ on X (see the diagram (5.25))

γ ∈ p−1
∗ (c) ⊂ ĤU ⊂ Ĥβ ⊂ Chowβ(X)(5.37)

where c = [C] ∈ Hβ is the point (5.26). By Definition 3.9, the local GV

invariant nloc
g,γ ∈ Z is given by
∑

i∈Z

χ(pHi(RπSh∗φSh)|γ)y
i =

∑

g≥0

nloc
g,γ(y

1
2 + y−

1
2 )2g.

The following lemma obviously follows from the diagram (5.36) together
with Lemma 5.10.

Lemma 5.11. Let γ ∈ E∨ be the image of γ under the map ĤU → E∨ in
the diagram (5.36). Then we have the following identity (see the diagram
(5.33)):

∑

i∈Z

χ(pHi(RπJ∗φJ)|γ)y
i = (−1)d

∑

g≥0

nloc
g,γ(y

1
2 + y−

1
2 )2g.

5.9. Stable pairs on local surfaces. Let Pn(S, β) be the moduli space of
stable pairs (F, s) on S with [F ] = β, χ(F ) = n. For n ≥ 0, we set

PS ⊂ Pn+1−g(S, β)

to be the open subscheme of stable pairs (F, s) such that the fundamental
cycle of F is irreducible. Here g is the arithmetic genus of curves in Hβ

given by (5.6). Then we have the Hilbert-Chow map ρP : PS → Hβ, and the
Cartesian square by [PT10, Appendix]

PS

ρP �

C
[n]
T

π[n]

Hβ
i

T.

(5.38)

Since T is a base of a locally versal family, the relative Hilbert scheme C
[n]
T is

non-singular by Theorem 4.3. As π[n] is flat (see [MY92, Lemma 2.6]), the
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diagram (5.38) implies that PS has only complete intersection singularities.
Let

IS := (OS×PS
→ F) ∈ Db(S × PS)

be a universal pair on S × PS . By [KT14], we have the perfect obstruction
theory

U•
P := RHompP (IS ,F)

∨ → LPS
.

Here pP : S × PS → PS is the projection.

Lemma 5.12. There is a natural distinguished triangle

ρ∗PR
1πH∗OCβ (Cβ)

∨[1]→ U•
P → LPS

.(5.39)

Proof. The proof is similar to Proposition 5.3, so we just give an outline.
By [KT14, Appendix], there is a natural morphism ρ∗PU

•
H → U

•
P such that

its cone G•P fits into a distinguished triangle of perfect obstruction theories:

ρ∗PU
•
H U•

P G•P

ρ∗PLHβ
LPS

LPS/Hβ
.

(5.40)

Similarly to the proof of Proposition 5.3, the morphism G•P → LPS/Hβ
is

shown to be a quasi-isomorphism. Therefore taking the cones of (5.40) gives
the desired distinguished triangle (5.39). �

Let Pn(X,β) be the moduli space of stable pairs (E, s) on X = Tot(KS)
such that [p∗E] = β and χ(E) = n. Let

PX ⊂ Pn+1−g(X,β)

be the open subscheme of stable pairs (E, s) such that the fundamental
cycle of p∗E is irreducible. We first observe the following lemma, which is
an analogue of Lemma 5.4.

Lemma 5.13. We have the following commutative diagram:

PX

∼=

p∗

Obs∗(U•
P )

PS .

(5.41)

Here the top morphism is a canonical isomorphism, p∗ is induced by the
projection p : X → S and the right morphism is the natural morphism defined
from the cone structure.

Proof. For a stable pair (E, s) giving a closed point of PX , we have the
morphism p∗s : OS → p∗E by the adjunction. Note that p∗E is a pure one
dimensional sheaf on S. Since the fundamental cycle of p∗E is irreducible
and p∗s is non-zero, the pair (p∗E, p∗s) is a stable pair on S. This argument
can be generalized to families of stable pairs, so we obtain the morphism
p∗ : PX → PS . For a closed point (F, s) in ShS, the fiber of p∗ : PX → PS at
(F, s) consists of OX -module structures of F , i.e. Hom(F,F ⊗KS). Indeed
if an OX -module structure of F is given, the morphism s : OS → F is
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extended to an OX-module homomorphism OX → F by the adjunction. On
the other hand, the fiber of the right morphism in (5.41) at (F, s) consists

of Ext1S(I, F )∨, where I = (OS
s
→ F ) is the two term complex. We have the

exact sequence

Ext1S(F,F )→ H1(F )→ Ext1S(I, F )→ Ext2S(F,F )→ 0.

In [PT10, Proposition C.2], the morphism Ext1S(F,F ) → H1(F ) is shown

to be surjective. Hence we have the isomorphism Ext1S(I, F )
∼=
→ Ext2S(F,F ),

and the fiber of the right morphism in (5.41) is identified with Ext2S(F,F )∨ ∼=
Hom(F,F ⊗ KS). Then similarly to Lemma 5.4, we obtain the desired
isomorphism in the diagram (5.41). �

Similarly to (5.25), we have the commutative diagram

P red
X

p∗

πP

PS

ρP

Ĥβ p∗
Hβ

where the vertical morphisms are Hilbert-Chow maps. Let us take γ ∈ Ĥβ

as in (5.37). The local stable pair invariant is given by

P loc
n+1−g,γ =

∫

π−1
P

(γ)
νP de

where νP is the Behrend function on PX .
We describe the local stable pair invariant in terms of data (5.31). By the

diagram (5.38), we have the isomorphism

(π[n]∗E∨|PS

ds
→ Ω

C
[n]
T

|PS
)

∼=
→ LPS

.

Similarly to (5.33), we have the commutative diagram

Obs∗(LPS
)

∼=
→ {df [n] = 0} C

[n]
T ×T E∨

f [n]

π[n]

E∨ g
A1.

Let φ[n] be the associated perverse sheaf of vanishing cycles

φ[n] := φf [n](IC(C
[n]
T ×T E∨)) ∈ Perv(Obs∗(LPS

)).

Lemma 5.14. By taking d and γ ∈ E∨ as in Lemma 5.11, we have the
identity:

P loc
n+1−g,γ = (−1)dχ(Rπ

[n]
∗ φ[n]|γ).(5.42)

Proof. By taking the dual and the long exact sequence of cohomologies of
(5.39), we obtain the exact sequence of sheaves

0→H−1(L∨
PS

)→H1(U•∨
P )→ ρ∗PR

1πH∗OCβ (Cβ)→ 0.
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By Lemma 5.13, the total space of the vector bundle (5.22) acts on PX

fiberwise over Hβ without fixed points. The quotient space is

PX/OH = Obs∗(LPS
).

The canonical d-critical structure on the RHS as in Subsection 5.4 is pulled-
back to the d-critical structure on PX (also see Remark 5.5). Similarly to
(5.36), we have the commutative diagram

P red
X,U

ηP

πP �

Obs∗(LPS,U
)red C

[n]
U ×U E∨

π[n]

ĤU
η

ĤU/OH,U E∨

(5.43)

giving a d-critical chart of Obs∗(LPS,U
). Here −U refers to the pull-back by

the open immersion (5.31), and the right horizontal morphisms are bijections
onto their images. Let φP be the perverse sheaf on PX,U given by

φP := η∗Pφ
[n][d] ∈ Perv(PX,U ).

By the definition of the Behrend function, we have∫

π−1
P

(γ)
νP de = χ(RπP∗φP |γ).

Therefore the identity (5.42) follows from the commutative diagram (5.43).
�

5.10. Proof of Theorem 1.3. By combining the arguments so far, Theo-
rem 1.3 now immediately follows:

Theorem 5.15. Suppose that C ⊂ S be an irreducible curve. Then for
γ ∈ Chowβ(X) with p∗γ = [C], we have the identity

∑

n∈Z

P loc
n,γq

n =
∑

g≥0

nloc
g,γ(q

1
2 + q−

1
2 )2g−2.

Proof. By Lemma 5.11 and Lemma 5.14, the result follows from the argu-
ment of Proposition 4.5. �

By taking the integration over Chowβ(S), we also obtain the following:

Corollary 5.16. Conjecture 3.13 holds for X = Tot(KS) with irreducible
curve class β ∈ H2(X,Z) = H2(S,Z).

5.11. Examples from rigid singular rational curves. The result of
Theorem 5.15 includes many examples where the moduli space ShX is sin-
gular. We describe what the above argument looks like in some examples
arising from rigid singular rational curves on surfaces.

Let S be a smooth projective surface with H1(OS) = 0 and

C ⊂ S

an irreducible curve whose normal bundle OC(C) is a non-trivial degree zero
line bundle on C. We assume C is either a nodal rational curve with one
node, or a cuspidal rational curve. For example, we can construct such an
example as follows: we first embed C ⊂ P2 as a cubic curve and blow-up P2
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at 9-points on C in a general position. Then the resulting blow-up S → P2

and the strict transform of C to S give such an example.
Let β ∈ H2(S,Z) denote the homology class of C. Since OC(C) is non-

trivial, we have

H0(OC(C)) = H1(OC(C)) = 0.(5.44)

In particular, the Chow variety Chowβ(S) on S is one point. Moreover we
have the isomorphism

C
∼=
→ ShS , x 7→ I∨x .

Here Ix ⊂ OC is the ideal sheaf of x in C and I∨x is its (non-derived) dual
on C, viewed as a sheaf on S.

Let ν : P1 → C be the normalization. Since KS |C = OC(−C) is degree
zero, we have

H0(ν∗KS) = H0(OP1) = C,

where this section does not descend to C. By Lemma 5.1, we see that
Chowβ(X) = A1, where X = Tot(KS). The origin 0 ∈ A1 corresponds to
C ⊂ S ⊂ X, and 0 6= a ∈ A1 corresponds to the embedding

ia : P
1 →֒ X

whose projection to S is C. The moduli space ShX is (set theoretically)
identified with the union of ShS = C and A1. Here a ∈ A1 \{0} corresponds
to the sheaf ia∗OP1 , and A1 intersects with C at the singular point p ∈ C.
We have the Hilbert-Chow map

πSh : Sh
red
X = C ∪ A1 → Chowβ(X) = A1

which sends C to the origin and restricts to id on A1. Below we describe
ShX as critical locus, and compute the local GV invariants

nloc
g,− : Chowβ(X) = A1 → Z.(5.45)

Let πT : C → T be a versal deformation of C, with a point 0 ∈ T such
that π−1

T (0) = C. We first treat the case that p ∈ C is a nodal singularity.
In this case, we can take T to be a sufficiently small open neighborhood of
0 ∈ A1, and

πT : C = {zy
2 = x3 + zx2 + tz3} ⊂ P2 × T → T

where [x : y : z] is the homogeneous coordinate of P2, t is the coordinate of
T and the right arrow is the projection. The generic fiber of πT is a smooth
elliptic curve, and the πT -relative compactified Jacobian is isomorphic to C
itself. Since ShS is cut out by t = 0 in C, by the diagram (5.33) and the
vanishing (5.44), we have the commutative diagram

ShX
∼=
→ {df = 0} C × A1

f
πT×id

T × A1 g
A1.

Here g is defined by

g(t, u) = tu.



36 DAVESH MAULIK AND YUKINOBU TODA

The moduli space ShX is singular at the node p ∈ C. We have the following
affine open neighborhood of p ∈ ShX :

SpecC[x, y, u]/(y2 − x3 − x2, yu, (3x2 + 2x)u).

This is the critical locus of the following function

f : A3 → A, (x, y, u) 7→ u(y2 − x3 − x2).

After taking the completion at 0 and coordinate change, the singularity at
p is simplified as

ÔShX ,p
∼= C[[x, y, u]]/(xy, yu, ux).

This is the critical locus of the super potential xyu ∈ C[[x, y, u]].
As for the local GV invariants (5.45), the result is as follows:

nloc
0,− ≡ −1, nloc

1,− = δ0, nloc
≥2,− ≡ 0.(5.46)

Here δ0(t) = 1 for t = 0 and δ0(t) = 0 for t 6= 0. Indeed we have the perverse
decomposition

R(πT × id)∗ IC(C × A1) = IC(T ×A1)[1]⊕ V ⊕ IC(T × A1)[−1]

where V = R1(πT × id)∗Q[2] is a constructible sheaf on T × A1. Applying
φg, we obtain

RπSh∗φf = φg(R(πT × id)∗ IC(C ×A1))

= Q0[1] ⊕ φg(V )⊕Q0[−1].

The above perverse decomposition immediately implies (5.46) for nloc
≥1,−.

The computation of nloc
0,− easily follows by the computation of the Behrend

function. Note that we don’t have to compute φg(V ) in the above compu-
tation.

We next treat the case that p ∈ C is a cusp. In this case, we can take T
to be a sufficiently small open neighborhood of 0 ∈ A2, and

πT : C = {zy
2 = x3 + t1xz + t2z

3} ⊂ P2 × T → T.

Here (t1, t2) is the coordinate of T . Similarly to the nodal case, we have the
commutative diagram

ShX
∼=
→ {df = 0} C × A2

f
πT×id

T × A2 g
A1.

Here g is defined by

g(t1, t2, u1, u2) = t1u1 + t2u2.

We have the following affine open neighborhood at p ∈ ShX :

SpecC[x, y, u]/(x2u, yu, y2 − x3).

In this case, A1 is a double line in ShX . The above affine open neighborhood
is the critical locus of the following function:

f : A5 → A, (x, y, t1, u1, u2) 7→ u1t1 + u2(y
2 − x3 − t1x).
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This is simplified as the critical locus of u(y2− x3) ∈ C[x, y, z]. Similarly to
the nodal case, the local GV invariants (5.45), are computed as follows:

nloc
0,− ≡ −2, nloc

1,− = δ0, nloc
≥2,− ≡ 0.

6. Smooth curve case

Let X be a smooth quasi-projective CY 3-fold and C ⊂ X a smooth
projective curve with homology class β and genus g. Note that we no longer
are assuming that X is a local surface.

In this section, we apply Proposition 4.5 to prove Conjecture 3.14 at the
point

γ = [C] ∈ Chowβ(X).

6.1. Moduli space at a smooth one-cycle. We set

Sh = Shβ(X), E ∈ Coh(X × Sh)

where E is a universal sheaf. We will use the following lemma:

Lemma 6.1. Let Sh′ ⊂ Sh be the subset consisting of sheaves of the form
j∗L for a smooth curve j : Z →֒ X and L ∈ Pic(Z). Let Z ⊂ X × Sh be the
closed subscheme defined by the following ideal sheaf IZ

IZ := Ker
(
OX×Sh → EndOX×Sh

(E)
)
.(6.1)

Then Z is flat over Sh at any point in Sh′.

Proof. Let us take a point y ∈ Sh′ corresponding to j∗L for a smooth curve
j : Z →֒ X and L ∈ Pic(Z). We also take a point x ∈ X and set

z = (x, y) ∈ X × Sh′.

We need to show that OZ,z is a flat OSh,y-module. Since E is a universal
sheaf, we have an isomorphism E|X×{y}

∼= j∗L. Since (j∗L)x is generated by
one element as an OX,x-module, for a sufficiently ample line bundle L on X
there is a morphism

s : OX×Sh → E ⊗ p∗XL

which is surjective at z. Here pX : X × Sh→ X is the projection. Therefore
the morphism s induces an isomorphism EndOX×Sh,z

(Ez) ∼= Ez as OX×Sh,z-
modules. Since we have the factorization

sz : OX×Sh,z ։ OZ,z →֒ EndOX×Sh,z
(Ez) ∼= Ez

and the above composition is surjective, we see that OZ,z
∼= Ez as OX×Sh,z-

modules. Since E is flat over Sh, it follows that OZ,z is a flat OSh,y-module.
�

Let Hilb(X) be the Hilbert scheme of compactly supported closed sub-
schemes in X. We take the open subscheme

[C] ∈ H ⊂ Hilb(X)
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consisting of smooth subschemes Z ⊂ X with dimZ = 1, homology class β
and arithmetic genus g. Let

CH

πH

X ×H

pH

H

(6.2)

be the universal curve. We denote by JH → H the πH -relative moduli space
of line bundles with Euler characteristic one, which is a smooth abelian
fibration with relative dimension g. We take the universal line bundle

L ∈ Pic(CH ×H JH).

Let i : CH×HJH →֒ X×JH be the closed embedding induced by the diagram
(6.2). The object

i∗L ∈ Coh(X × JH)(6.3)

is a JH -flat family of one dimensional stable sheaves on X. The object (6.3)
determines the morphism of schemes

h : JH → Sh.

Lemma 6.2. The subset Sh′ ⊂ Sh in Lemma 6.1 is open, and the morphism

h gives an isomorphism of schemes h : JH
∼=
→ Sh′.

Proof. By Lemma 6.1, the subset Sh′ ⊂ Sh coincides with the set of points
y ∈ Sh such that Z is flat over Sh at y and Zy := Z|X×y is smooth. Since
the latter conditions are open conditions, the subset Sh′ ⊂ Sh is open.

By Lemma 6.1, the subscheme

Z ′ := Z|X×Sh′ ⊂ X × Sh′

is flat over Sh′. Hence it defines the morphism

πSh : Sh
′ → H(6.4)

such that Z ′ = CH ×H Sh′. Then by the definition of Z in (6.1), we have

E|X×Sh′ ∈ Coh(Z ′) = Coh(CH ×H Sh′).

The above object is a Sh′-flat family of line bundles on the fibers of CH → H,
hence determines the morphism h′ : Sh′ → JH . The morphism h′ gives an
inverse of h, hence h is an isomorphism. �

6.2. CY condition for Sh. Here we prove the CY condition for Sh:

Proposition 6.3. The d-critical scheme

(Sh = Shβ(X), sSh)

in Theorem 3.3 is strictly CY at the point γ = [C] ∈ Chowβ(X) for a smooth
projective curve C ⊂ X (see Definition 2.7).

Proof. For the universal curve πH : CH → H in (6.2), by Lemma 4.2 we can
take a locally versal family and a closed embedding

πT : C → T, j : H →֒ T
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such that CH = C ×T H. Let πJ : J → T be the πT -relative moduli space
of line bundles with Euler characteristic one. By Lemma 6.2, we have the
Cartesian squares:

Shred

�

Sh
′red

�

Sh′ i

πSh �

J

πJ

Chowβ(X) Hred H
j

T.

(6.5)

Here πSh is given in (6.4), the left bottom arrow is an injection induced
by the cycle CH ×H Hred, and the left top arrow is an open immersion.
By the diagram (6.5), it is enough to show the following: there is an open
neighborhood γ = [C] ∈ U ⊂ T and a regular function g : U → A1 such that
by setting the commutative diagram

Sh′U

�

i

πSh

JU

πJ

fJ

HU
j

U
g

A1

where −U refers to the pull-back by U ⊂ T , the data

(Sh′U , JU , fJ , i)(6.6)

is a d-critical chart of (Sh′U , sSh|Sh′U ).

Let I ⊂ OT be the ideal sheaf which defines the subscheme H ⊂ T . Since
πJ is smooth, the ideal sheaf π∗

JI ⊂ OJ defines the subscheme Sh′ ⊂ J . By
the property of the sheaves SSh′ and SH (see (2.1)), we have the commutative
diagram

0 H0(SH)

π∗
Sh

H0(OT /I
2)

π∗
J

H0(ΩT /I · ΩT )

π∗
J

0 H0(SSh′) H0(OJ/π
∗
JI

2) H0(ΩJ/π
∗
JI · ΩJ).

(6.7)

Here the horizontal arrows are exact sequences of vector spaces. By the
derived base change, we have

RπJ∗OJ

L

⊗ OT /I
2 ∼= RπJ∗(OJ/π

∗
JI

2).

Since each RiπJ∗OJ is locally free, it follows that πJ∗(OJ/π
∗
JI

2) ∼= OT /I
2,

and the middle vertical arrow of (6.7) is an isomorphism. Since we have the
exact sequence of locally free sheaves

0→ π∗
JΩT → ΩJ → ΩJ/T → 0

we have the injection

π∗
JΩT/π

∗
JI · π

∗
JΩT →֒ ΩJ/π

∗
JI · ΩJ .

Therefore the right vertical arrow of (6.7) is an injection, hence the left
vertical arrow of (6.7) is an isomorphism. It follows that there exists sH ∈
H0(S0H) such that the identity sSh|Sh′ = π∗

ShsH holds.
Since πSh is a smooth surjective morphism, by [Joy15, Proposition 2.8],

the section sH is a d-critical structure of H. By [Joy15, Proposition 2.7],
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we can find an open neighborhood γ ∈ U ⊂ T and a regular function
g : U → A1 such that (HU , U, g, j) is a d-critical chart of (HU , sH |HU

). Since
πJ is a smooth morphism and sSh|Sh′ = π∗

ShsH , the data (6.6) obviously
gives a desired d-critical chart. �

6.3. Proof of Theorem 1.4. The following is the main result of this sec-
tion, which proves Theorem 1.4:

Theorem 6.4. For a smooth projective curve C ⊂ X with genus g, Con-
jecture 3.14 is true for γ = [C] ∈ Chowβ(X). In this case, we have

nloc
h,γ =

{
(−1)gνSh(OC), h = g,

0, h 6= g.
(6.8)

Here νSh is the Behrend function on Sh = Shβ(X).

Proof. By the proof of Proposition 6.3, the moduli space Sh satisfies the
assumption in Proposition 4.5 at γ. As for the moduli space of stable pairs
let

P ′ ⊂ P = Pn+1−g(X,β)

be the subset consisting of stable pairs (F, s) such that F = j∗L for a
smooth subscheme j : Z →֒ X and L ∈ Pic(Z). Then the same argument
of Lemma 6.1 shows that P ′ is an open subset of P , and isomorphic to
the relative Hilbert scheme of n-points of πH : CH → H. Then similarly
to Lemma 6.3, one can show show that P also satisfies the assumption in
Proposition 4.5 at γ. Therefore applying Proposition 4.5, Conjecture 3.14 is
true in this case. The formula (6.8) for nloc

h,[C] follows from the GV formula

for stable pairs given in [PT10, Proposition 3.6]. �

7. Comparison with the former definitions

In this section, we review the previous definitions of GV invariants [HST01,
KL] using sl2 × sl2-actions, and compare them with our definition. We also
give an example that the previous definitions do not match with the pre-
dicted answer.

7.1. sl2 × sl2-action. Let X be a smooth projective CY 3-fold. As in Sub-
section 3.1, we take the moduli space of one-dimensional stable sheaves on
X with its canonical d-critical structure

(Shβ(X), sSh)(7.1)

and the Hilbert-Chow map

π : Shredβ (X)→ Chowβ(X).(7.2)

Let MHM(Shβ(X)) be the abelian category of polarized mixed Hodge
modules on Shβ(X), whose basics we refer to [Sai, Sch]. We take a perverse
sheaf φ on Shβ(X) which underlies a polarized mixed Hodge module, i.e.

there is an object φH ∈ MHM(Shβ(X)) such that rat(φH) = φ for the
forgetful functor

rat : MHM(Shβ(X))→ Perv(Shβ(X)).
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We say that φ is pure if φH is a pure Hodge module. If φ is pure, then we
have the BBD decomposition theorem [BBD82]

Rπ∗φ ∼=
⊕

i∈Z

pHi(Rπ∗φ)[−i].

Then the hypercohomology of φ decomposes into

H∗(Shβ(X), φ) =
⊕

i,j

H i,j, H i,j := Hj(Chowβ(X), pHi(Rπ∗φ)).

Let ωL be a π-ample divisor on Shredβ (X) and ωR an ample divisor on

Chowβ(X). Since each pHi(Rπ∗φ) is also pure (see [Sch, Theorem 16.1]),
we have the Hard-Lefschetz isomorphisms

ωi
L : H

−i,j ∼=
→ H i,j , ωj

R : H i,−j ∼=
→ H i,j.

The above isomorphisms define the sl2 × sl2-action on H∗(Shβ(X), φ). The
multiplication by ωL defines the left sl2-action, and the multiplication by
ωR defines the right sl2-action.

Let Ig be the sl2-representation given by

Ig = IH∗(A,Q)

where A is a g-dimensional abelian variety with its sl2-action given by the
Hard-Lefschetz theorem. For 2j ∈ Z, let (j) be the unique irreducible sl2-
representation with dimension 2j + 1. The sl2-representation Ig is written
as

Ig =

((
1

2

)
⊕ 2(0)

)⊗g

.

By the Clebsch-Gordan rule, one can write

H∗(Shβ(X), φ) =
⊕

g≥0

(Ig)L ⊗ (Rg)R(7.3)

for some virtual right sl2-representation Rg. Here −L, −R refer to left, right
sl2-representations respectively. We can write Rg as

Rg =
∑

2j∈Z

Rg,j ⊗ (j), Rg,j ∈ K(Vect(Q)).

Following the previous works [GV, HST01], we define

ng,β(φ) :=
∑

2j∈Z

(−1)2j(2j + 1) · dimRg,j.(7.4)

The invariants (7.4) are characterized by the character formula, as in Lemma 2.4:

Lemma 7.1. We have the identity
∑

i∈Z

χ(pHi(Rπ∗φ))y
i =

∑

g≥0

ng,β(φ)(y
1
2 + y−

1
2 )2g.(7.5)

Proof. By taking the characters of the identity (7.3), we have the following
identity in K(Vect(Q))[x±1, y±1]:

∑

i,j∈Z

H i,jxjyi =
∑

g≥0,2j∈Z

Rg,j(x
−2j + x−2j+2 + · · ·+ x2j)(y

1
2 + y−

1
2 )2g.
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By substituting x = −1, we obtain the identity (7.5). �

7.2. HST and KL definitions. Both of HST [HST01] and KL [KL] def-
initions are given by (7.4) for some pure perverse sheaf φ. Let us take the
normalization and the intersection complex

ν : S̃hβ(X)→ Shβ(X), φ = ν∗ IC(S̃hβ(X)).

The HST definition is given by

nHST
g,β := ng,β(φ = ν∗ IC(S̃hβ(X))).

The KL definition uses sheaves of vanishing cycles. Let us choose an
orientation (Kvir

Sh )
1/2 for the d-critical scheme (7.1), and set

Sh = (Shβ(X), sSh, (K
vir
Sh )

1/2).

Let φSh be the gluing of local sheaves of vanishing cycles as in Theorem 2.3.
By [BBD+, Theorem 6.9], the perverse sheaf φSh underlies a polarized mixed
Hodge module, but it is not pure in general. Let

gr•W (φSh) ∈ Perv(Shβ(X))

be the associated graded sheaf with respect to the weight filtration in MHM(Shβ(X)),
which is now a pure perverse sheaf. The KL definition is given by

nKL
g,β := ng,β(φ = gr•W (φSh)).(7.6)

Remark 7.2. By Lemma 7.1, the HST and KL definitions are also given
by substituting

φ = ν∗ IC(S̃hβ(X)), φ = gr•W (φSh)

to the formula (7.5) respectively. On the other hand, the character formula
(7.5) makes sense even if φ is not pure. As in Lemma 2.4, if φ is self-dual
D(φ) = φ, the invariant ng,β(φ) is uniquely determined by the identity (7.5).
This is our point of view defining GV invariants in Definition 1.1.

Remark 7.3. In [KL], Kiem-Li used the semi-normalization of (7.2) as
the definition of HC map, following the convention of the Chow variety
in [Kol96]. Since taking the semi-normalization is a homeomorphism, this
step does not affect the definition of the GV invariants.

7.3. Dependence on orientation data of KL definition. In Kiem-Li’s
paper [KL], they did not specify how to choose an orientation data. Indeed
as the following example shows, the KL invariant (7.6) depends on a choice
of an orientation data.

Let E be an elliptic curve, which is embedded into a CY 3-fold

i : E →֒ X

whose normal bundle is written as

NE/X = L⊕ L−1, L ∈ Pic0(E) \ {OE}.

Then E is rigid inside X. Let us take the homology class

β = [E] ∈ H2(X,Z).
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Suppose that E is the unique curve in X with homology class β, i.e. the
Chow variety is a point

Chowβ(X) = {[E]}.

Then we have the isomorphism (see [HST01, Proposition 4.4])

E
∼=
→ Shβ(X), x 7→ i∗OE(x).

Since E is smooth, we have Kvir
Sh = OE . Then an orientation (Kvir

Sh )
1/2 of

(Shβ(X), sSh) is a 2-torsion element of Pic0(E). For the oriented d-critical

scheme Sh = (Shβ(X), sSh, (K
vir
Sh )

1/2), we have

φSh = L[1]

for a rank one local system L on E such that L⊗2 ∼= QE . The local system
L is trivial if and only if (Kvir

Sh )
1/2 = OE . Since H∗(E,L) = 0 if L is

non-trivial, we obtain nKL
g,β = 0 for g 6= 1 and

nKL
1,β =

{
1, (Kvir

Sh )
1/2 = OE ,

0, (Kvir
Sh )

1/2 6= OE .

The expected answer is n1,β = 1, so should choose an orientation data to be

CY, i.e. (Kvir
Sh )

1/2 = OE .

Remark 7.4. Suppose that Shβ(X) is non-singular and the usual canonical
line bundle KSh on Shβ(X) is pulled back from the Hilbert-Chow map (7.2).

Then as Kvir
Sh = K⊗2

Sh , we can take the oriented d-critical scheme

Sh = (Shβ(X), sSh = 0,KSh)

which is a CY fibration over Chowβ(X). In this case, we have φSh =
IC(Shβ(X)) and all the definitions agree:

nHST
g,β = nKL

g,β = ng,β.

Even if we choose a CY orientation data, our definition may not agree
with KL definition. In general, there is a weight spectral sequence

Ei,j
1 = pHi+j(Rπ∗gr

−i
W (φSh))⇒

pHi+j(Rπ∗φSh)(7.7)

which always degenerates at E2 by considering weights (see [Sch, Section 17]
for the similar spectral sequence for nearby cycles). It is easy to see that,
for a choice of CY orientation data, our definition agrees with KL definition
if the spectral sequence (7.7) degenerates at E1. In the next subsection,
we will see an example where (7.7) does not degenerate, which also gives a
counter-example to the conjectures of Kiem-Li.

7.4. Counter-example to Kiem-Li conjecture. In this subsection, we
prove Proposition 1.6. Let S be an Enriques surface. It always admits an
elliptic fibration

h : S → P1.(7.8)

Let σ : S̃ → S be a K3 cover and E an elliptic curve. We set

X = (S̃ × E)/〈τ〉.
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Here τ is an involution on S̃ × E which acts on S̃ as a covering involution
of σ, and acts on E by x 7→ −x. The 3-fold X is a smooth projective CY
3-fold, and its GW invariants were studied in [MP08].

We first describe the geometry of X via fibrations over P1 and S. The

projections from S̃ × E onto each factors induce the fibrations

p : X → E/〈τ〉 = P1, p̂ : X → S.(7.9)

We denote by

e1, e2, e3, e4 ∈ E, q1, q2, q3, q4 ∈ P1

the 2-torsion points of E and their images under the quotient map E → P1

respectively. The fiber of p at x ∈ P1 is S̃ for x 6= qi, and the fiber at qi is a
double fiber 2S. The map p̂ is a smooth fibration with fiber E.

Remark 7.5. The CY 3-fold X is closely related to the non-compact CY
3-fold

X ′ = Tot(KS).

Indeed X ′ is given by the quotient of S̃ × A1 by τ , where τ acts on A1 by
x 7→ −x. Similarly to (7.9), we have the fibration

p′ : X ′ → A1/τ = A1.

Then there exist analytic open neighborhoods qi ∈ Ui ⊂ P1, 0 ∈ U ⊂ A1 such
that p−1(Ui) is isomorphic to p

′−1(U).

Let 2C be a double fiber the elliptic fibration (7.8), and setXC := p̂−1(C),

C̃ := σ−1(C) ⊂ S̃. Note that we have

XC = (C̃ × E)/〈τ〉.

Here if C̃ is smooth, τ acts on C̃ × E by (x, y) 7→ (x + t,−y) where t is a

two torsion point in C̃. We will use the following diagram

XC

p|XC

p̂|XC

P1

C.

(7.10)

Let Ci be the reduced fiber of p|XC
at qi for 1 ≤ i ≤ 4, giving four sections

of p̂|XC
. Note that we have

Ci = C ⊂ 2S = p−1(qi).(7.11)

Also we have

p|−1
XC

(x) = C̃ ⊂ p−1(x) = S̃, x 6= qi.

Using the Künneth formula, we see that

H2(X,Z) = H2(S,Z)⊕ Z[E](7.12)

where [E] is the fiber class of the projection p̂ : X → S. Let β be the
homology class given by

β = ([C], 0) ∈ H2(X,Z)
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under the decomposition (7.12). By (7.11), each Ci has homology class β.
The computations in this subsection are summarized below (which is also
stated in Proposition 1.6):

Proposition 7.6. Suppose that C is of type In for n ≥ 2, i.e. C is a circle
of P1 with n-irreducible components. Then the HST, KL, our definitions,
and the expected answers (from GW or PT theory) are given in the following
table:

HST KL ours expected
n0,β −8n 0 0 0
n1,β 4n 4n 4 4
n≥2,β 0 0 0 0

As before, we consider the moduli space Shβ(X) and the Hilbert-Chow
map

π : Shredβ (X)→ Chowβ(X).(7.13)

We have the following lemma on the Chow variety Chowβ(X):

Lemma 7.7. A closed point of Chowβ(X) corresponds to a one cycle γ on
XC in the diagram (7.10) satisfying p̂∗γ = C and p∗γ = 0.

Proof. For a one cycle γ ∈ Chowβ(X), the cycle p̂∗γ is a one cycle on S with
homology class [C]. Then we have p̂∗γ = C as C is the unique effective one
cycle on S with homology class [C]. In particular, γ is supported on XC .
The last statement p∗γ = 0 is obvious from p∗β = 0. �

We first assume that C is of type I0, i.e. C is a smooth elliptic curve. In
this case, we have the following:

Lemma 7.8. If C is of type I0, then (7.13) is

Shredβ (X)→ Chowβ(X)

∐4
i=1Ci → {q1, q2, q3, q4}

x ∈ Ci 7→ qi.

In particular, (7.13) is a CY fibration with a CY orientation data.

Proof. Let γ be a one cycle on XC satisfying the conditions in Lemma 7.7.
Since C is irreducible, the cycle γ must be irreducible as well. Then p(γ) ∈
P1 is a one point, so γ is supported on either on Ci for 1 ≤ i ≤ 4 or

C̃ ⊂ p−1(x) for x 6= qi. Since p̂∗C̃ = σ∗C̃ = 2C, the latter possibility is
excluded. It follows that

Chowβ(X) = {[C1], [C2], [C3], [C4]}.

Let Pic1(Ci) ∼= Ci be the moduli space of line bundles on Ci of degree 1.
We have the natural closed embedding

∐4
i=1 Pic

1(Ci) →֒ Shβ(X)(7.14)

which is bijective on closed points as Ci is smooth. On the other hand, we
have the exact sequence

0→ H1(OCi
)→ Ext1X(OCi

,OCi
)→ H0(NCi/X).
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Since NCi/X is a rank two vector bundle given by an extension of non-

trivial 2-torsion line bundles, we have H0(NCi/X) = 0 and the second arrow
of the above sequence is an isomorphism. This shows that (7.14) induces
isomorphisms on tangent spaces. As Pic1(Ci) is smooth, the embedding
(7.14) is an isomorphism. �

By the above lemma, we can define ng,β ∈ Z as in Definition 3.7. Together
with the argument in Subsection 7.3, we have the following:

Corollary 7.9. If C is of type I0, we have the identity:

ng,β =

{
4, g = 1,
0, g 6= 1.

(7.15)

The same identity holds for nKL
g,β if and only if we take a CY orientation

data.

Remark 7.10. As in the discussion of Subsection 7.9, the answer (7.15)
matches with the expected one (see [HST01, Section 4]).

We next consider the case that C is of type In for n ≥ 2, i.e. C is a nodal
curve of a circle of n smooth rational curves. Such an Enriques surface
exists when 2 ≤ n ≤ 9 by [CD89, Theorem 5.7.5]. We denote the irreducible
components of C as

C = C(1) ∪ · · · ∪C(n), C(j) = P1.

The nodal points are denoted as

p(j) = C(j) ∩C(j+1), j ∈ Z/nZ.

In this case, the Chow variety is described as follows:

Lemma 7.11. If C is of type In for n ≥ 2, we have

Chowβ(X) = E×n.(7.16)

For 1 ≤ i ≤ n, let Γi ⊂ E×n be the closed subvariety defined by

Γ1 = {(x1, . . . , xn) ∈ E×n : x1 = · · · = xn},

Γi = {(x1, . . . , xn) ∈ E×n : xi = · · · = xn = −x1 = · · · = −xi−1}, i ≥ 2.

Then the image of (7.13) is identified with

Imπ =
n⋃

i=1

Γi ⊂ E×n.

The cycle [Ci] ∈ Chowβ(X) corresponds to the point yi = (ei, . . . , ei).

Proof. By Lemma 7.7, giving a point of Chowβ(X) is equivalent to giving a
one cycle γ on XC written as

γ = γ1 + · · ·+ γn, p̂∗γj = C(j).

Since P1 is simply connected, the fibration p̂ is trivial over each irreducible
component C(j) ⊂ C. It follows that a choice of γj is equivalent to a choice of

a section of the trivial bundle E×C(j) → C(j). As there is no non-constant
morphism P1 → E, such a section is determined by a point in E. Therefore
the set of choices of γ is identified with E×n, and (7.16) holds.
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For a stable sheaf [F ] ∈ Shβ(X), its support must be connected. Suppose
that a one cycle γ ∈ Chowβ(X) corresponds to a point (x1, . . . , xn) ∈ E×n.
Since the monodromy of p̂|XC

around the generator of π1(C) = Z is given
by τ : E → E sending x to −x, the cycle γ is connected if and only if
(x1, . . . , xn) ∈ Γi for some i. Conversely if γ is connected, then its underlying
curve is either C or a partial normalization of C at one of p(j). In each case,
there exist line bundles on it giving closed points of Shβ(X), so γ ∈ Imπ
holds. The case γ = [Ci] is only possible when x1 = x2 = · · · = xn = −x1,
so it corresponds to yi. �

For 1 ≤ i ≤ 4 and 1 ≤ j ≤ n, we denote by p
(j)
i the nodal point in Ci

corresponding to p(j) ∈ C. We have the following lemma describing (7.13)
(see Figure 2 for n = 2 case):

Lemma 7.12. For y ∈ ∪ni=1Γi, we have (set theoretically)

π−1(y) =

{
Ci, y = yi,

one point, y 6= yi.

Moreover the moduli space Shβ(X) is non-singular except points p
(j)
i in

π−1(yi) = Ci. At p
(j)
i , the singularity of Shβ(X) is analytically isomorphic

to the critical locus of

f : A3 → A, (x, y, z) 7→ xyz(7.17)

at the origin 0 ∈ A3.

Proof. It is well-known that the moduli of rank one stable sheaves on C
with Euler characteristic one is isomorphic to C itself, by the map x 7→ I∨x .
Therefore π−1(yi) = Ci follows. For y 6= yi, π

−1(y) consists of rank one
stable sheaves L on a partial normalization C ′ → C at one of p(j) with
χ(L) = 1. So it consists of a one point {OC′}. For a point in Shβ(X)
except nodal points in π−1(yi), the corresponding sheaf is a line bundle on
the underlying curve. Therefore the same argument of Lemma 7.8 shows

that Shβ(X) is smooth except points p
(j)
i .

By Remark 7.5, we can also describe the singularities of Shβ(X) at p
(j)
i by

the same argument as in Subsection 5.11. Namely let πT : C → T be a versal
deformation of C, with 0 ∈ T such that C = π−1

T (C). We can take T to be
a sufficiently small open neighborhood of 0 ∈ An. We define B ⊂ C ×An by
the commutative diagram

B = {df ′ = 0}

π′

C × An

f ′

πT×id

T × An g′

A1.

(7.18)

Here g′ is defined by

g′(t1, . . . , tn, u1, . . . , un) = t1u1 + · · ·+ tnun.
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Figure 2. Picture of HC map for n = 2

Then there exist analytic open neighborhoods yi ∈ Vi ⊂ Chowβ(X), 0 ∈

V ⊂ T × An such that π−1(Vi) is isomorphic to π
′−1(V )4.

It is easy to see that B is only singular at (p(j), 0) ∈ C × {0} ⊂ C × T for
1 ≤ j ≤ n, and near these points f ′ is analytically isomorphic to

f ′ : (x, t1, . . . , tn, u1, . . . , un) 7→ xt1u1 + t2u2 + · · ·+ tnun(7.19)

at the origin. The critical locus of the above function is isomorphic to the
critical locus of (7.17). �

Lemma 7.13. In the above situation, the morphism (7.13) is a CY fibration,
and one can take a CY orientation data of Shβ(X).

Proof. The lemma follows since the canonical line bundle of C × An in the
diagram (7.18) is trivial. �

Now we compute the KL definition for type In case with n ≥ 2, and
see that it does not match with the predicted answer. Let us take a (not
necessary CY) orientation data on Shβ(X), and

φSh ∈ Perv(Shβ(X))

the perverse sheaf as in Theorem 2.3. Let

M1, . . . ,Mn ⊂ Shβ(X)(7.20)

be the irreducible components of Shβ(X) which are mapped to Γi by the
map (7.13). We denote by

C
(1)
i , . . . , C

(n)
i ⊂ π−1(yi) = Ci ⊂ Shβ(X)(7.21)

the irreducible components of Ci. By Lemma 7.12, the subvarieties (7.20),
(7.21) form the set of irreducible components of Shβ(X). We also denote
by Shsm ⊂ Shβ(X) the smooth locus of Shβ(X), whose complement is the

points p
(j)
i by Lemma 7.12. We first compute the associated graded sheaf of

the weight filtration of φSh.

4Indeed the image of π′ lies in 0 × An so one can instead take an open neighborhood
0 ∈ V ⊂ An
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Lemma 7.14. There exist rank one local systems Lk on Mk ∩ Shsm for
1 ≤ k ≤ n such that griW (φSh) is written as

gr0W (φSh) =

n⊕

i=1

IC(Li)⊕

4⊕

i=1

n⊕

j=1

IC(C
(j)
i ),(7.22)

gr±1
W (φSh) =

4⊕

i=1

n⊕

j=1

Q
p
(j)
i

, grkW (φSh) = 0, |k| ≥ 2.

Proof. Note that φSh|Shsm is written as L[1] for a rank one local system L on
Shsm, which is of weight zero by our weight convention as in [BBD+]. Note
that any perverse sheaf on Shβ(X) which underlines a pure Hodge module is
a direct sum of intersection complexes of some local systems on dense open
subsets of closed irreducible subvarieties in Shβ(X). Therefore, gr0W (φSh) is
written as

gr0W (φSh) =

n⊕

i=1

IC(L|Mi∩Sh
sm)⊕

4⊕

i=1

n⊕

j=1

IC(L|
C

(j)
i ∩Shsm)⊕Q.

Here Q and grkW (φSh) for k 6= 0 are supported on points p
(j)
i .

Let us first take a CY orientation data of Shβ(X) and show that L|
C

(j)
i ∩Shsm

is a trivial local system. In the diagram (7.18), we set

φB = φf ′(IC(C × An)) ∈ Perv(B).

By the description of f ′ in (7.19) and the Thom-Sebastiani theorem, φB is

locally near (p(j), 0) calculated as the vanishing cycle sheaf of (7.17). Let N
be the critical locus of (7.17) andNi for 1 ≤ i ≤ 3 the irreducible components
of N . For φN = φf (IC(A

3)), its weight filtration is easily computed (for
example see the last part of Section 6 in [Efi])

gr0W (φN ) =

3⊕

i=1

IC(Ni), gr±1
W (φN ) = Q0, griW (φN ) = 0, |i| ≥ 2.(7.23)

The above local calculation implies that the monodromy of L|
C

(j)
i ∩Shsm

around p
(j)
i is trivial. Since C

(j)
i ∩ Shsm = C∗, the monodromy around

p
(j)
i determines the local system on it. Therefore L|

C
(j)
i ∩Shsm

is trivial. The

computation (7.23) also shows that Q = 0 and gives the result for grkW (φSh)
with k 6= 0. Therefore we obtain the identities (7.22) for a CY orientation
data of Shβ(X).

Next let us take an orientation data of Shβ(X) which is not necessary
CY, and denote by φSh′ the resulting perverse sheaf on Shβ(X). Then by
Theorem 2.3, φSh′ = φSh⊗L

′ for some rank one local system L′ on Shβ(X).

Since ⊗L′ preserves the purity, and each L′|
C

(j)
i

is trivial as C
(j)
i = P1 is

simply connected, the associated graded sheaf gr•W (φSh′) is still of the form
(7.22). �

Lemma 7.15. Suppose that C is of type In for n ≥ 2. Then for any choice
of orientation data of Shβ(X), we have nKL

1,β = 4n.
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Proof. By Lemma 7.14, we have
∑

i∈Z

χ(pHi(Rπ∗ gr
•
W (φSh)))y

i = 4n(y
1
2 + y−

1
2 )2 + (constant).

Then the lemma follows by Remark 7.2. �

Since an Enriques surface with an In type double fiber can be deformed
to a one with an I0 type double fiber, by Lemma 7.8, 7.15, we have the
following:

Corollary 7.16. The Kiem-Li invariant nKL
g,β is not deformation invariant.

Now we show that our invariants agree with the result in Corollary 7.9. So
we can observe that our invariants are deformation invariant in this example
despite the fact that the Chow variety jumps in dimension. Below we fix a
CY orientation data of Shβ(X).

Lemma 7.17. Suppose that C is of type In for n ≥ 2. Then we have
n1,β = 4.

Proof. Let us consider the spectral sequence (7.7). The differential E0,−1
1 →

E1,−1
1 is induced by taking the pH0(Rπ∗(−)) of the canonical morphism

gr0W (φSh)[−1]→ gr−1
W (φSh).(7.24)

Let νi be the normalization of Ci

νi : C̃i :=

n∐

j=1

C
(j)
i → Ci.

By Lemma 7.14, we have

E0,−1
1 =

4⊕

i=1

H0(C̃i,Q)⊗Qyi , E1,−1
1 =

4⊕

i=1

n⊕

j=1

H0(p
(j)
i ,Q

p
(j)
i

)⊗Qyi .

The differential E0,−1
1 → E1,−1

1 at yi is induced by taking the global sections
of the exact sequences

0→ QCi
→ νi∗QC̃i

→
n⊕

j=1

Q
p
(j)
i

→ 0.

Indeed this follows from the local calculation of the function (x, y, z) 7→ xyz
as in (7.23), where we can easily see that the canonical morphism

3⊕

i=1

QNi
= gr0W (φN )[−1]→ gr−1

W (φN ) = Q0

is the surjection of sheaves which is non-zero on each component Ni.
Therefore E0,−1

1 → E1,−1
1 is rank n− 1 at yi, and the E2 term is

E0,−1
2 =

4⊕

i=1

Qyi .
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Since E0,−1
2 is the only term which contributes to pH−1(Rπ∗φSh), and the

spectral sequence does not contribute to pHi(Rπ∗φSh) for |i| ≥ 2, we have
∑

i∈Z

χ(pHi(Rπ∗φSh))y
i = 4(y

1
2 + y−

1
2 )2 + (constant).

Therefore the lemma follows. �

Remark 7.18. In type In case with n ≥ 2, the genus zero invariant n0,β

can be directly checked to be zero as follows. As a singularity of Shβ(X) is
the critical locus of (7.17), the Behrend function on Shβ(X) is constant −1,
and n0,β = −e(Shβ(X)). By Lemma 7.12, we have

e(Shβ(X)) = 4 · e(C) + n · (e(E) − 4) = 0

as expected.

Remark 7.19. Contrary to Lemma 7.15, our GV invariant in Lemma 7.17
gives a different answer if we take a non-CY orientation data, as it affects
the map E0,−1

1 → E1,−1
1 in the proof of Lemma 7.17.

The HST invariants are similarly computed, which we leave the readers
for details. The computations in this subsection are summarized in the table
in Proposition 7.6.

8. Non-reduced examples from 3-fold flops

In this section, using the results of the previous sections and derived equiv-
alences under 3-fold flops, we give some examples where Conjecture 3.14
holds for non-reduced, non-planar one cycles.

8.1. 3-fold flops. Let X, X† be smooth quasi-projective CY 3-folds which
are connected by a flop

X

f

φ
X†

f†

Y.

(8.1)

This means that f, f † are birational morphisms which are isomorphic in
codimension one with relative Picard number one, Y has only Gorenstein
singularities, and φ is a non-isomorphic birational map. The exceptional
loci of f, f † are chains of smooth rational curves. By the result of Bridge-
land [Bri02], there is an equivalence of derived categories

Φ: Db(Coh(X))
∼
→ Db(Coh(X†))(8.2)

given by the Fourier-Mukai transform whose kernel is OX×Y X† . The above
equivalence restricts to the equivalence of triangulated subcategories (see [Tod08,
Proposition 5.2])

Φ: Db(Coh≤1(X))
∼
→ Db(Coh≤1(X

†))(8.3)
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The equivalence (8.3) preserves the hearts of perverse t-structures. Namely
there exist hearts of bounded t-structures defined in [Bri02, Section 3]

pPer≤1(X/Y )

(8.4)

:=

{
E ∈ Db(Coh≤1(X)) :

Rf∗E ∈ Coh(Y )
Hom<−p(E, CX) = Hom<p(CX , E) = 0

}

where CX is defined by

CX := {F ∈ Coh(X) : Rf∗F = 0}.

Below we always take p ∈ {−1, 0}. The equivalence (8.3) restricts to the
equivalence

Φ: 0Per≤1(X/Y )
∼
→ −1Per≤1(X

†/Y ).(8.5)

We can describe the hearts (8.4) in terms of tilting. Let Coh(X/Y ) be the
subcategory of Coh≤1(X) consisting of sheaves supported on the exceptional
locus of f . For an ample divisor ω on X, we set

0F := 〈E ∈ Coh(X/Y ) : E is ω-semistable with µω(E) < 0〉

−1F := 〈E ∈ Coh(X/Y ) : E is ω-semistable with µω(E) ≤ 0〉.

Here 〈∗〉 is the smallest extension closed subcategory which contains ∗. Let
pT be the orthogonal complement of pF

pT := {E ∈ Coh≤1(X) : Hom(E, pF) = 0}.

Lemma 8.1. We have the identity
pPer(X/Y ) = 〈pF [1], pT 〉.

Proof. See [Tod15, Lemma 2.5]. �

Remark 8.2. Below, we will use the fact that the equivalence Φ commutes

with Rf∗ and Rf †
∗ (see [Bri02]). By the definition of pPer≤1(X/Y ), we have

CX [−p] = {E ∈ pPer≤1(X/Y ) : Rf∗E = 0}.

In particular, Φ restricts to the equivalence of CX and CX† [1].

8.2. Isomorphism of moduli spaces. Let us consider the moduli space
of one dimensional stable sheaves Shβ(X) as in (3.2). We have the following
lemma:

Lemma 8.3. For [E] ∈ Shβ(X), we have

E ∈ pT = pPer≤1(X/Y ) ∩ Coh≤1(X).(8.6)

Proof. By the h-stability of E, we have Hom(E, pF) = 0, hence E ∈ pT
follows. The right identity of (8.6) is due to Lemma 8.1. �

We define the open subscheme

Sh◦β(X) ⊂ Shβ(X)

to be consisting of sheaves E whose supports are irreducible and not con-
tained in Ex(f). For the birational map φ in (8.1), let

φ∗ : H2(X,Z)
∼=
→ H2(X

†,Z)
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be the induced map on homology groups.

Lemma 8.4. For [E] ∈ Sh◦β(X), we have [Φ(E)] ∈ Shφ∗β(X
†).

Proof. We have Φ(E) ∈ −1Per≤1(X
†/Y ) by Lemma 8.3 and the equivalence

(8.5). Let us set A = H−1(Φ(E)) and B = H0(Φ(E)). We have the exact
sequence

0→ A[1]→ Φ(E)→ B → 0

in −1Per≤1(X
†/Y ). By applying Rf †

∗ and noting Remark 8.2, we obtain the
exact sequence of sheaves

0→ Rf †
∗(A[1])→ f∗E → Rf †

∗B → 0.

Since f∗E is a pure one dimensional sheaf on Y , we have Rf †
∗(A[1]) =

0, i.e. A ∈ CX† . Suppose that A 6= 0. Then Φ−1(A[1]) is a non-zero
object in CX (see Remark 8.2), which admits a non-zero morphism to E.
This contradicts to the assumption that the support of E does not contain
irreducible components in Ex(f). Hence A = 0, and Φ(E) ∈ Coh≤1(X

†)
follows.

It remains to show Φ(E) is a stable sheaf. Let

0→ P → Φ(E)→ Q→ 0

be an exact sequence in Coh≤1(X
†) with P,Q 6= 0. By pushing forward to

Y , we obtain the exact sequence of sheaves

0→ f †
∗P → f∗E → f †

∗Q→ R1f †
∗P.

Since Rf∗E = f∗E is a stable sheaf with Euler characteristic one, we have

χ(f †
∗P ) ≤ 1. Since R1f †

∗P is a zero dimensional sheaf, we have

χ(P ) = χ(f †
∗P )− χ(R1f †

∗P ) ≤ 1.

In order to conclude the stability of Φ(E), we need to exclude the case of

χ(P ) = 1. In this case, Rf †
∗Q = 0, i.e. Q ∈ CX† . Since Φ−1(Q) ∈ CX [−1],

and Hom(E, CX [−1]) = 0, we obtain the contradiction. �

We define the open subscheme

Sh◦φ∗β(X
†) ⊂ Shφ∗β(X

†)

to be consisting of sheaves E such that the support of Φ−1(E) is irreducible
and not contained in Ex(f).

Proposition 8.5. The equivalence Φ induces the isomorphism

Φ∗ : Shβ(X)
∼=
→ Shφ∗β(X

†).(8.7)

Proof. By the definition of Sh◦φ∗β(X
†) and Lemma 8.4, we have the well-

defined morphism (8.7). Let us take an object [E] ∈ Sh◦φ∗β(X
†). It is

enough to show that Φ−1(E) is an object in Sh◦β(X). We first note that

Rf †
∗E = f †

∗E is a pure sheaf on Y . Indeed otherwise, there is y ∈ Y and

a non-zero morphism Oy → f †
∗E. By the adjunction, we have the non-

zero morphism f †∗Oy → E. Since f †∗Oy is a stable sheaf (see the proof
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of [Kat08, Lemma 3.2]) with Euler characteristic one supported on Ex(f †),

this contradicts to the stability of E. Therefore f †
∗E is a pure sheaf.

Next we show that Φ−1(E) is a coherent sheaf. By Lemma 8.3, we have
Φ−1(E) ∈ 0Per≤1(X/Y ). We set A = H−1(Φ−1(E)) and B = H0(Φ−1(E)).
We have the exact sequence in 0Per≤1(X/Y )

0→ A[1]→ Φ−1(E)→ B → 0.(8.8)

Suppose that A 6= 0. Then Rf∗(A[1]) is a subsheaf of f †
∗E which is at most

zero dimensional. By the purity of f †
∗E, it follows that Rf∗(A[1]) = 0, i.e.

A ∈ CX . This implies A ∈ 0Per≤1(X/Y ), which contradicts to that (8.8) is
an exact sequence in 0Per≤1(X/Y ). Hence A = 0 and Φ−1(E) ∈ Coh≤1(X)
follows.

It remains to show that Φ−1(E) is a stable sheaf, or equivalently a pure
sheaf as the support of Φ−1(E) is irreducible. If otherwise, there is x ∈ X
and a non-zero morphismOx → Φ−1(E). Let P be its image in 0Per≤1(X/Y ).

Then Rf∗P is a subsheaf of f †
∗E which is at most zero dimensional, hence

Rf∗P = 0 by the purity of f †
∗E. Then P ∈ CX , and Φ(P ) ∈ CX† [1] is a

subobject of E in −1Per≤1(X
†/Y ). Since Hom(CX† [1], E) = 0 as E is a

sheaf, this is a contradiction. �

Remark 8.6. The equivalence of derived categories (8.2) induces the iso-
morphism

H0(X,KX )
∼=
→ H0(X†,KX†)(8.9)

by taking the induced isomorphism on Hochschild homologies. Therefore the

trivialization (3.1) induces the trivialization OX†

∼=
→ KX† , hence a d-critical

stricture on Shφ∗β(X
†) by Theorem 3.3.

The isomorphism (8.7) can be proved to preserve the d-critical structures
of both sides. Indeed the Fourier-Mukai equivalence (8.2) lifts to a dg quasi-
functor between the enhancements of both sides of (8.2), therefore the de-

rived moduli schemes Ŝhβ(X) and Ŝhφ∗β(X
†) in Remark 3.4 are equiva-

lent. On the other hand by the announced work [BD, Theorem 1.2], the
(−1)-shifted symplectic structures on the above derived schemes are canon-
ically constructed from the CY dg enhancements (see [BD, Theorem 1.2]),
where the CY structures are given by non-zero elements in (8.9) by [BD,

Lemma 5.11]. By taking the truncations of Ŝhβ(X) and Ŝhφ∗β(X
†), we have

the matching of d-critical structures of both sides of (8.7).

8.3. Comparison of GV invariants. We define the open subset

Uβ ⊂ Chowβ(X)

to be consisting of irreducible one cycles which do not contain irreducible
components of Ex(f). For γ ∈ Uβ , by taking pull-back and push-forward
along with the morphisms

X ← X ×Y X† → X†

we have the map

φ∗ : Uβ → Chowφ∗β(X
†).
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The above map is obviously injective. Let Uφ∗β be the image of the above
map. We have the commutative diagram

Shredβ (X)
Φ∗

Shredφ∗β(X
†)

Uβ
φ∗

Uφ∗β.

Here the vertical arrows are Hilbert-Chow maps. Then from Proposition 8.5,
we obtain the following:

Corollary 8.7. For γ ∈ Uβ, the d-critical scheme (Shβ(X), sSh) is CY at

γ if and only if (Shφ∗β(X
†), sSh) is CY at φ∗γ. In this case, we have the

identity nloc
g,γ = nloc

g,φ∗γ
.

As for stable pairs, let us set

PT(X) := 1 +
∑

n∈Z,β>0

Pn,βq
ntβ,

PT(X/Y ) := 1 +
∑

n∈Z,f∗β=0

Pn,βq
ntβ.

The following result is proved using wall-crossing formulas in the derived
category:

Theorem 8.8. ([Tod13, Cal16]) We have the following identity:

φ∗
PT(X)

PT(X/Y )
=

PT(X†)

PT(X†/Y )
.(8.10)

Here φ∗ is the variable change tβ 7→ tφ∗β.

By taking the logarithm of both sides of (8.10) and comparing the coeffi-
cient at tβ, we have

nP
g,β = nP

g,φ∗β, β ∈ H2(X,Z), f∗β > 0.

The arguments of [Tod13, Cal16] also apply to the local version, which give

nP,loc
g,γ = nP,loc

g,φ∗γ
, γ ∈ Chowβ(X), f∗γ > 0.

By combining with Corollary 8.7, we obtain the following:

Corollary 8.9. Under the situation of Corollary 8.7, for γ ∈ Uβ we have

nP,loc
g,γ = nloc

g,γ if and only if nP,loc
g,φ∗γ

= nloc
g,φ∗γ

.

8.4. Examples via flops. For γ ∈ Uβ, the one cycle φ∗γ is not a reduced
cycle if it intersects with Ex(f) with multiplicity bigger than or equal to

two. So if we know nP,loc
g,γ = nloc

g,γ, by Corollary 8.9 we obtain examples of

non-reduced one cycles γ′ where nP,loc
g,γ′ = nloc

g,γ′ holds. We give two examples

where such an argument applies.
First, the following corollary obviously follows from Theorem 6.4 and

Corollary 8.9:
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Corollary 8.10. Let φ : X 99K X† be a flop as in (8.1), and C ⊂ X a
smooth curve which is not contained in (but may intersect with) the excep-
tional locus of φ. Then Conjecture 3.14 holds for the one cycle φ∗[C] on
X†.

We state the next example. Let S be a smooth projective surface with
H1(OS) = 0, and take a blow-up

h : S† → S

at a point p ∈ S. Then there exist smooth projective 3-foldsX, X† and a flop
diagram (8.1) satisfying the following conditions (see [Tod15, Lemma 4.2])

• Both of the exceptional locus Z = Ex(f), Z† = Ex(f †) are irre-
ducible (−1,−1)-curves.
• There are closed embeddings

i : S →֒ X, i† : S† →֒ X†(8.11)

such that S ∩ Z consists of one point, the strict transform of S in
X† coincides with S†, and Z† ⊂ S† coincides with the exceptional
locus of h : S† → S.
• There are open neighborhoods S ⊂ X0, S

† ⊂ X†
0 and isomorphisms

X0
∼= Tot(KS), X†

0
∼= Tot(KS†)(8.12)

such that the embeddings (8.11) are identified with the zero sec-
tions.

Below we regard one cycles on S, S† as one cycles on X, X† by isomorphisms
(8.12) and zero sections. Applying the result of Theorem 5.15 and the
argument of Corollary 8.7, we have the following:

Corollary 8.11. (i) For any irreducible curve C ⊂ S, Conjecture 3.14 holds
for the one cycle φ∗C = h∗C on X†.

(ii) For any irreducible curve C† ⊂ S†, Conjecture 3.14 holds for the one
cycle φ−1

∗ C†.

Remark 8.12. Although X, X† may not be CY, they are CY at X0 ∪ C

and X†
0, so the statements of Corollary 8.11 make sense.

Remark 8.13. In Corollary 8.11 (i), suppose that the multiplicity of C at
p is m. Then φ∗C = C +mZ, where C ⊂ S† is the strict transform of C.
In particular, φ∗C is not reduced, but it is planar.

Remark 8.14. In Corollary 8.11 (ii), suppose that the curves C†, Z† in S†

intersect with multiplicity m. Then φ−1
∗ C† = h(C) +mZ. In this case, the

cycle φ−1
∗ C† is not reduced, not planar.

9. Non-primitive examples

We give some examples where Conjecture 3.14 holds for non-primitive one
cycles and g ≥ 1.
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9.1. Super rigid elliptic curves. Let C be an elliptic curve and

X = Tot(L⊕ L−1)

for a for generic line bundle L on C with degree zero. Note that X is a non-
compact CY 3-fold, with unique projective curve C ⊂ X given by the zero
section. For β = m[C], the Chow variety Chowβ(X) consists of one point
m[C], and the moduli space Shm[C](X) is isomorphic to C itself (see [HST01,
Proposition 4.4]). Therefore we have

n1,m[C] = 0, ng,m[C] = 0, g 6= 1.

As C is smooth, our GV invariants agree with the invariants defined in [HST01].
In this case, Conjecture 3.18 is checked in [HST01] using the result of [Pan99].
Combined with DT/GW correspondence for local curves [BP08], Conjec-
ture 3.14 holds for the one cycle γ = m[C].

9.2. Elliptic fibrations. Let X be a smooth projective CY 3-fold with an
elliptic fibration

π : X → S

such that every scheme theoretic fiber is an integral curve. Let F ∈ H2(X,Z)
be a fiber class of π, and set β = n[F ]. Then Chowβ(X) = Symn(S) and we
have the commutative diagram

X

π

∼=
Shβ(X)

S Symn(S).

(9.1)

Here the right arrow is the Hilbert-Chow map, and the bottom arrow is the
diagonal map. We have the decomposition

Rπ∗IC(X) = IC(S)[1] ⊕ V ⊕ IC(S)[−1]

where V = R1π∗QX [2] is a perverse sheaf on S. For s ∈ S, let Xs be the
fiber of π at s which is either an elliptic curve, rational curve with one node
or a cusp. In any case, we have

R1π∗QX |s = H1(Xs,Q) = Q2−e(Xs).

Then an easy calculation shows

χ(IC(S))y−1 + χ(V ) + χ(IC(S))y = −e(X) + e(S)(y
1
2 + y−

1
2 )2.

By the diagram (9.1), we obtain

n0,β = −e(X), n1,β = e(S), ng,β = 0, g ≥ 2.

The invariants nP
g,β from stable pairs are computed in [Tod12, Theorem 6.9]

via wall-crossing method, and completely agree with the above ng,β. The
argument here is easily applied to the local version, proving Conjecture 3.14
for the one cycle γ = n[Xs] for some s ∈ S.
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9.3. Hitchin moduli spaces. Let C be a smooth projective curve and

X = Tot(OC ⊕KC)

a non-compact CY 3-fold. Let C ⊂ X be the zero section, and take the curve
class β = r[C]. Then the moduli space Shβ(X) is isomorphic to the product
of A1 with Hitchin moduli space of rank r and Euler characteristic one
stable Higgs bundles on C. In this case, by the work of Chuang-Diaconescu-
Pan [CDP14], Conjecture 3.13 (or rather its refined version) is reduced to
the following conjectures:

• Cataldo-Hausel-Migliorini’s P = W conjecture [dCHM12]: it claims
the perverse filtration on the Hitchin moduli space coincides with
the weight filtration of the character variety under their natural
diffeomorphism. Here the character variety is the moduli space of
representations of π1(C).
• Hausel-Rodriguez-Villegas’s conjecture [HRV08]: it describes the
generating series of mixed Poincaré polynomials of character va-
rieties in terms of explicit sum of rational functions associated to
Young diagrams.

The first conjecture is proven in [dCHM12] when r = 2; for character va-
rieties, the weight polynomial (ignoring cohomological degree) is calculated
in [HRV08]. By combining these results, Conjecture 3.13 holds for β = 2[C].
By applying the fiberwise (C∗)×2-action on X and localizing, we also obtain
Conjecture 3.14 for the one cycle γ = 2[C].

Appendix A. Calabi-Yau orientation data

In this Appendix, we discuss the role of orientation data on our definition
of GV type invariants in Section 2.3. In general, they depend on a choice
of an orientation data. Our idea to solve this issue is that we impose an
additional condition (called CY condition) of an orientation data, and show
that the resulting GV type invariants are independent of an orientation data
as long as it satisfies the CY condition.

Roughly speaking, a CY condition of an orientation data is that it is
trivial along the fibers of the map π : M red → T as a line bundle. This
is a quite strong restriction, and such an orientation data does not always
exist for arbitrary d-critical schemes. However for the moduli space of one
dimensional sheaves and its HC map, we expect that such an orientation data
exists. In other words, we expect that the HC map for the moduli space
of one dimensional sheaves is a kind of Calabi-Yau fibration in a somewhat
virtual sense.

A.1. Dependence on orientation data. Let us consider the situation in

Section 2.3, i.e. M = (M,s,K
1/2
M,s) be an oriented d-critical scheme and

π : M red → T be a projective morphism for a finite type complex scheme T .
For g ≥ 0 and t ∈ T , let

GVg,M/T ∈ Z, GVloc
g,M/T,t ∈ Z(A.1)

be the GV type invariants given in Lemma 2.4, Lemma 2.5 respectively. For

g = 0, they do not depend on a choice of an orientation data K
1/2
M,s (see
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Lemma 2.6). For g ≥ 1, they may depend on a choice of an orientation
data. However we have the following lemma:

Lemma A.1. Let K
′1/2
M,s be another orientation of (M,s). Suppose that for

a Stein factorization

π : M red π1→ T
π2→ T(A.2)

i.e. T = SpecT (π∗OM red), there exists a line bundle LT on T such that

K
′1/2
M,s
∼= K

1/2
M,s ⊗ π∗

1LT

as line bundles. Then for M′ = (M,s,K
′1/2
M,s ) and t ∈ T , we have

GVg,M/T = GVg,M′/T , GVloc
g,M/T,t = GVloc

g,M′/T,t .

Proof. The isomorphism (2.5) and the similar isomorphism for K
′1/2
M,s gives

an isomorphism s : π∗
1L

⊗2
T

∼=
→ OM red . Since π1 satisfies π1∗OM red = OT ,

the isomorphism s is pulled back from an isomorphism s′ : L⊗2
T

∼=
→ OT via

π∗
1. Let τT : T̃ → T be the Z/2Z-principal bundle which parametrizes local

square roots of s′, and LT the rank one local system on T given by τT∗QT̃ =
QT ⊕LT . Let φM′ be the vanishing cycle sheaf on M in Theorem 2.3 defined
from the oriented d-critical schemeM′. Then the property (2.8) shows that
φM′ = φM⊗π

∗
1LT . Also since π2 is finite, Rπ2∗ = π2∗ takes perverse sheaves

on T to perverse sheaves on T . Therefore we obtain the isomorphisms

pHi(Rπ∗φM′) ∼= π2∗

(
pHi(Rπ1∗φM)⊗ LT

)
.

The lemma follows from the above isomorphisms. �

A.2. Calabi-Yau d-critical schemes. We introduce the following notion
of CY d-critical schemes:

Definition A.2. (i) A d-critical scheme (M,s) is called Calabi-Yau (CY
for short) if KM,s

∼= OM red .

(ii) An oriented d-critical scheme (M,s,K
1/2
M,s) is called CY if K

1/2
M,s
∼=

OM red .
(iii) A d-critical scheme (M,s) with a projective morphism π : M red → T

is called CY at t ∈ T if there is an open neighborhood t ∈ U ⊂ T such that,
by setting M red

U := π−1(U), the d-critical scheme

(MU , sU ), MU := ι(M red
U ), sU := s|MU

(A.3)

is CY. Here ι : M red →֒M is the closed immersion.
(iv) A d-critical scheme (M,s) with a projective morphism π : M red → T

is called a CY fibration over T if and only if it is CY at all of t ∈ T .

The following lemma is obvious.

Lemma A.3. For a d-critical scheme (M,s) with a projective morphism
π : M red → T , it is a CY fibration over T if and only if there is a line
bundle L on T for the Stein factorization (A.2) such that KM,s

∼= π∗
1L

We introduce the following notion of CY orientation data:



60 DAVESH MAULIK AND YUKINOBU TODA

Definition A.4. For a d-critical scheme (M,s) with a projective morphism
π : M red → T , suppose that it is a CY fibration over T . A CY orientation

data of (M,s) is an orientation data K
1/2
M,s satisfying K

1/2
M,s
∼= π∗

1L
1/2 for a

line bundle L1/2 on T . Here M red π1→ T → T is the Stein factorization.

By Lemma A.1, we immediately have the following lemma:

Lemma A.5. The GV type invariants (A.1) are independent of a choice of
an orientation data as long as it is CY orientation data.

Remark A.6. If π : M red → T is a CY fibration, it is not a priori true
that it always has a CY orientation data as in Definition A.4. However
of course such an orientation data always exists locally on T . Therefore
using a local CY orientation data, we can define the local GV type invariant
GVloc

g,M/T,t ∈ Z. Then following the relation (2.10), we can define the global

GV type invariant by the integration

GVg,M/T :=

∫

T
GVloc

g,M/T,t de.

A.3. Conjecture on Calabi-Yau conditions. We keep the situation and
notation from the previous subsection. We conjecture that the GV invariants
are always well-defined:

Conjecture A.7. The d-critical scheme (Shβ(X), s) in Theorem 3.3 is a

CY fibration over Chowβ(X) so that the local/global GV invariants nloc
g,γ,

ng,β are defined by Definition 3.9, Remark 3.10 respectively.

We have the following evidence of the above conjecture:

Proposition A.8. Let T be a normal quasi-projective variety and F ∈
Coh(X × T ) be a T -flat family of one dimensional sheaves on X such that
the fundamental cycle [Ft] ∈ Chow(X) for t ∈ T is constant. Then we have

det (RpT∗RHomX×T (F ,F)) ∼= OT .

Proof. For a smooth quasi-projective variety Y , let

K≥i(Y ) ⊂ K(Y )

be the subgroup generated by sheaves whose supports have codimensions
bigger than or equal to i. By a classical result of Grothendieck (see [Gil05,
Theorem 3.10]), the smoothness of Y implies that the tensor product on the
K-theory restricts to the map

⊗ : K≥i(Y )×K≥j(Y )→ K≥i+j(Y ).(A.4)

For a normal variety T , any line bundle on it is determined by its smooth
part, so we may assume that T is smooth. Let C ⊂ X be a subscheme whose
fundamental cycle coincides with [Ft]. By the property (A.4), we have

[OC ]⊗ [OC ] ∈ K≥4(X) = 0.(A.5)

Also by the assumption, we have [F ], [F ]∨ ∈ K≥2(X × T ) and

[F ], [F ]∨ ∈ [OC×T ] +K≥3(X × T ).(A.6)
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By (A.4), (A.5) and (A.6), we have

[RHomX×T (F ,F)] = [F ]∨ ⊗ [F ] ∈ K≥5(X × T ).

Since X is three-dimensional, it follows that

[RpT∗RHomX×T (F ,F)] ∈ K≥2(T ).

By taking the determinant, we obtain the proposition. �

Remark A.9. The above proposition in particular implies that the virtual
canonical line bundle of Shβ(X) is numerically trivial on any fiber of the
HC map

π : Shredβ (X)→ Chowβ(X)

and trivial on any fiber of π with at worst normal singularities. These are
necessary conditions for Conjecture A.7. When Chowβ(X) is a one point,

the above proposition implies Conjecture A.7 if Shredβ (X) is normal. On the

other hand if Shredβ (X) is not normal, the argument of the above proposition
does not imply Conjecture A.7.

Remark A.10. We may ask a question whether (Shβ(X), s) is strictly CY
at any point in Chowβ(X) (see Definition 2.7), which is stronger than Con-
jecture A.7. In Section 5, we more or less proved such a statement for
the local surface case. As we have no other evidence, we just leave it as a
question (rather than a conjecture) in this paper.
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Schürmann, J. Singul. 11, 85–151.

[BBD82] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and
topology on singular spaces I, Asterisque 100 (1982), 5–171.

[BD] C. Brav and T. Dyckerhoff, Relative Calabi-Yau structures, preprint,
arXiv:1606.00619.

[Beh09] K. Behrend, Donaldson-Thomas invariants via microlocal geometry, Ann. of
Math 170 (2009), 1307–1338.

[BJM] V. Bussi, D. Joyce, and S. Meinhardt, On motivic vanishing cycles of critical
loci, preprint, arXiv:1305.6428.

[BP08] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves,
J. Amer. Math. Soc. 21 (2008), 101–136.

[Bri02] T. Bridgeland, Flops and derived categories, Invent. Math 147 (2002), 613–
632.

[Bus] V. Bussi, Generalized Donaldson-Thomas theory over fields K 6= C, preprint,
arXiv:1403.2403.

[Cal16] J. Calabrese, Donaldson-Thomas invariants and Flops, J. Reine
Angew. Math. 716 (2016), 103–145.

[CD89] F. Cossec and I. Dolgachev, Enriques surfaces. I., Progress in Mathematics,
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[PTVV13] T. Pantev, B. Toën, M. Vaquie, and G. Vezzosi, Shifted symplectic structures,
Publ. Math. IHES 117 (2013), 271–328.

[Ryd] D. Rydh, Families of cycles, https://people.kth.se/~dary/thesis/thesis-
paperIV.pdf.

[Sai] M. Saito, A young person’s guide to mixed Hodge modules, preprint,
arXiv:1605.00435.

[Sch] C. Schnell, An overview of Morihiko Saito’s theory of mixed Hodge modules,
preprint, arXiv:1405.3096.

[Tho00] R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds and
bundles on K3-fibrations, J. Differential. Geom 54 (2000), 367–438.

[Tod] Y. Toda, Multiple cover formula of generalized DT invariants II: Jacobian
localizations, preprint, arXiv:1108.4993.

[Tod08] , Birational Calabi-Yau 3-folds and BPS state counting, Communica-
tions in Number Theory and Physics 2 (2008), 63–112.

[Tod12] , Stability conditions and curve counting invariants on Calabi-Yau 3-
folds, Kyoto Journal of Mathematics 52 (2012), 1–50.

[Tod13] , Curve counting theories via stable objects II. DT/ncDT flop formula,
J. Reine Angew. Math. 675 (2013), 1–51.

[Tod14] , Multiple cover formula of generalized DT invariants I: parabolic stable
pairs, Adv. Math. 257 (2014), 476–526.

[Tod15] , Flops and the S-duality conjecture, Duke Math. J. 164 (2015), 2293–
2339.

Davesh Maulik
Massachusetts Institute of Technology, Departement of Mathematics, 77
Massachusetts Avenue Cambridge, MA 02139, US.

E-mail address: maulik@mit.edu

Yukinobu Toda
Kavli Institute for the Physics and Mathematics of the Universe, University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan.

E-mail address: yukinobu.toda@ipmu.jp

http://arxiv.org/abs/1605.00435
http://arxiv.org/abs/1405.3096
http://arxiv.org/abs/1108.4993

	1. Introduction
	2. GV type invariants for d-critical schemes
	3. GV invariants on Calabi-Yau 3-folds
	4. PT/GV correspondence for locally planar curves
	5. GV formula for local surfaces
	6. Smooth curve case
	7. Comparison with the former definitions
	8. Non-reduced examples from 3-fold flops
	9. Non-primitive examples
	
	Appendix A. Calabi-Yau orientation data
	References

