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New Constructions of Codes for Asymmetric
Channels via Concatenation

Markus GrassIMember, IEEE Peter Shor, Graeme Smith, John Smolin, and Bei Zeng

Abstract—We present new constructions of codes for asym-  More precisely, let the alphabet be= {0,1,...,¢-1} c
metric channels for both binary and nonbinary alphabets, ba&ed 7 with the orderingd < 1 < 2 < - < g — 1. A channel is

on methods of generalized code concatenation. For the binar called asymmetric if any transmitted symbols received as

asymmetric channel, our methods construct nonlinear sing- b<a E le. for = 2. th bol is al ved
error-correcting codes from ternary outer codes. We show tht < a. FOr exampie, fog = 2, (e Symbol IS always receive

some of the Varshamov-Tenengol'ts-Constantin-Rao codesa Correctly whilel may be received asor 1. The corresponding
class of binary nonlinear codes for this channel, have a nice channel is calledZ-channel, see Fid.J1. Fay > 2, one can

structure when viewed as ternary codes. In many cases, our have different types of asymmetric channéls [7].

ternary construction yields even better codes. For the nonbary Coding problems for asymmetric channels were discussed
asymmetric channel, our methods construct linear codes for b h . 96512 h h L f cod
many lengths and distances which are superior to the linear PY Varshamov in 1965[2]. For the ¢ aracterization of codes
codes of the same length capable of correcting the same numbe for these channels, we need the following.
of symmetric errors. Definition 1.1 (seel]2],[18], [9]): Forx,y ¢ A™, wherex =
In the binary case, Varshamov [2] has shown that almost all (x1,22,...,2,) andy = (y1,y2, ..., yn), let
good linear codes for the asymmetric channel are also goodrfo n
the symmetric channel. Our results indicate that Varshamotis (') w(x) = Yisy T4,
argument does not extend to the nonbinary case, i.e., one cénd (i) N(x,y) := >, max{y; — z;,0}, and
better linear codes for asymmetric channels than for symmeic (i) A(x,y) := max{N(x,y), N(y,x)}.
ones. Here w(x) is the weight ofx, and A(x,y) is called the
asymmetric distance between andy. If x is sent andy
|. INTRODUCTION is received, we say that(x —y) errors have occurred. Note

o ) ) ] thatw(x —y) > 0 for asymmetric channels.
In communication systems, the signal transmitted is con-|, this model. a code correctingerrors is called at-

ventionally represented as a finite sequence of elements frp, e [9]. The following theorem naturally follows.

an alphabet4, which we assume to be finite. In general, we thaorem 1.2 (se&J9))A setC c A" is at-code if and only
may takeA = {0,1,...,¢-1}, and if needed, some additionakg A(

structurel |sd_assumzd,he.gé. IZ Z‘a olr_ Ah: F‘I.'f The most Apparently, any code which can correcerrors on a sym-
commonly discussed channel model is the uniform symmetfie, i channel will also be capable of correctingsymmetric

channel, that is, an errar— b happens with equal prOb‘fj\bi"tyerrors, but the converse is not true in general. However,

for any a,b € A andq * 0. Errpr-correctmg_codes for theseVarshamov showed that almost all linear binary codes which
channels are extensively studied, see, for instance, [3].

are able to correct errors for theZ-channel are also able

However, in other systems, such as some data StorigQcqrrect: symmetric errors[2]. Therefore, in order to con-
systems including flash memories [4]. [5] and optical COMYiryct good codes for th&€-channel, nonlinear constructions

munication [[6], the probability of the errer— b is no longer are needed. Varshamov and Tenengoffs| [10], followed by

independent Ofl andb and might vary a lot. If some EITOrS constantin and Rad [11], constructed familiesledodes for
of low probability are neglected, some of those channels CRL z-channel with sizes 2

b deled as ° i ch s —+- These codes are constructed
e modeled as ‘asymmetric channels. based on an Abelian grou@ for which the group operation
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[10] (denoted by,). It is known that the largest Constantin-outer codes). Each code symbol is encoded into each of the
Rao code of lengthn is the codeC, based on the group 1-codes by: — C;. To be more precise, define a binary to
G = ®p|(n+1) 692‘:’)1 Zy, wheren +1 =11, ,41)p"* is the prime ternary mapé, which maps two bits to one trit.

factorization ofn + 1 and @ denotes the direct product of Definition 2.1: The map&: F2 — 3 is defined by

groups (see[]9]). These VT-CR codes have better rates than

the corresponding single-error-correcting codes for thary 6:00~0, 110, 01~ 1, 10~ 2. 2)
symmetric channel for all lengths apart fromn =2"-1.In _ The encoding — C; is then given by the inverse map of
this case, the cod@, for the groupG = Zj is the linear binary &. Note that& is not one-to-one. So for the ternary symbol
Hamming code. 0 the inverse map gives the two binary codewobdsand 11,

These VT-CR codes have a direct generalization to theéhile for 7 and 2 we get the unique codewordd and 10,
nonbinary case. The modification of Definition]1.3 is todet  respectively.
A=1{0,1,...,q-1} and require that the order of is at least  Definition 2.2: The map&: Fs — (F3) is defined by

q. The resulting nonlinear codes have cardinality] > ;TZ &: 0 (00,11}, 1 {01}, 2w {10}. 3)
Note that by the Hamming bound, we haeym| < =5y o ’ _
for a symmetric single-error-correcting code. Henceor2 Note that for a binary code of length= 2/, by choosing a

and all lengths:, the VT-CR codes have more codewords thap@iring of coordinates, the map™: F3™ — Iy takes a given
the best single-error-correcting symmetric codes of tiesaPinary code of lengttzm to a ternary code of length. On
length. The construction can also be generalized to the c43@ other hand, Definitioh 2.2 can be naturally extended as
of ¢-codes witht > 1, for both binary and nonbinary alphabetdvell. i-., the mapS™ takes a given ternary code of length

] to a binary code of lengtBm. The map&™ hence specifies

Some other constructions for designing single-erroremrr € €ncoding of an outer ternary code into the inner cddes
ing codes for theZ-channel have also been introduced. In We remark that our method is indeed a two-level concate-

particular the partition method, together with some heiaris Nation as discussed in [17]. In the languagelof [17], we have

search give good lower bounds for small length codes with an inner codeB = {00,01,10, 11} which is partitioned into
25 [12]-[15]. Nevertheless, the VT-CR construction remain&ree codesB.; = {00,11}, B2 = {01} and By 3 = {10}.

the best systematic construction of binargodes to date, and Ve also have two outer codes, one is a ternary cdgleof
the situation is similar for the nonbinary case. For a sunfey |€Ngthm, and the other is the trivial ternary code of length 1,

classical results on codes for tichannel, se€9). i.e. A; = {0,1,2}. The two-level concatenated code is then a

In this paper, we present new constructions of codes fginary code with lengtizm. -
asymmetric channels for both binary and nonbinary alplsabet For a better understanding of the maps’ and &™, we
based on methods of generalized code concatenation. For #f at Some examples. "
binary asymmetric channel, our methods construct nonfinea EX@Mple 2.3:The optimall-codeC™ of lengthn =4 and
1-codes from ternary outer codes which are better than the \Frdinality 4 has four codeword8000,1100, 0011, 1111. I?’g
CR codes. For nonbinary asymmetric channels, our methdifd'nd coordinated, 2 and3, 4, the temary image unde
yield linear codes for many lengths and distances, Whi&‘;‘thenOO. .
outperform the linear codes of the same lengths capable Oﬁxample 2._4:By starting from the ternary outer code of
correcting the same number of symmetric errors. For cert ﬁpgthg :_3 with the podeword$7(06)0, 1.11’ 122,212, 221, the
lengths, our construction gives linear codes with equal ca{PapG yields the binary cod€™™ with the 12 codewords
dinality as the nonlinear VT-CR codes. Our results indicaté)00000, 000011, 001100, 001111, 110000, 110011,
that Varshamov’s argument does not extend to the nonbinayi1100, 111111, 010101, 011010, 100110, 101001.
case, i.e., one can find better linear codes for asymmetric (4)
channels than for symmetric ones. We will also apply our nofhe codeC(®) has asymmetric distanc® hence correcting
binary linear codes to correct asymmetric limited magrétud®ne asymmetric error. This is known to be an optimaiode

errors [16], which models the asymmetric errors in multlev for n = 6 [9].
flash memories in a more detailed manner. Example 2.5:By starting from the linear ternary code

[4,2,3]3 with generatorg)111, 1012, the map&* yields the

binary codeC® with 32 codewords

II. BINARY ASYMMETRIC CODES FROM TERNARY OUTER

CODES 00000000, 00000011, 00001100, 00001111,
00110000, 00110011, 00111100, 00111111,
11000000, 11000011, 11001100, 11001111,
11110000, 11110011, 11111100, 11111111, 5)
00010101, 00101010, 11010101, 11101010,
01000110, 10001001, 01110110, 10111001,
01011000, 10100100, 01011011, 10100111,
10010001, 01100010, 10011101, 01101110.

To discuss our new construction for asymmetric codes based
on the generalized concatenation method, we start with the
binary case, buildingl-codes for theZ-channel. We know
that in this case, good codes would have to be nonlinear, so
our method returns nonlinear codes.

To constructl-codes for theZ-channel, we first partition
all two-bit strings{00,01,10,11} into threel-codes, which
are Cy = {00,11}, C; = {01}, Cs = {10}. Then we further C®® has asymmetric distanck hence correcting one asym-
find some outer codes over the alphap@t 7, 2} (i.e. ternary metric error. We observe th&(® is exactly the CR codé,



of lengthn = 8 constructed from the groufi; @ Zs, which different values, while the non-zero elements are mapped to

hints some relationship between the ternary constructimh aunique binary string. Henc&™ (c’)| = 2wat(¢), [ ]

CR codes. We will discuss this in more detail in Jed. IV. Theorem[ 26 only works for designingrcodes of even
Example[2.b indicates that goddcodes can be obtainedlength. So we generalize this construction to odd length,

from some ternary codes under the n@&/fy. Now the question starting from ‘adding a bit’ to the ternary code.

is what is the general condition under which a ternary codeTheorem 2.9:If C’ is a single-error-correcting code of

gives al-code via the ma®™. To address this question, bylengthm + 1 for the channelZ x 7™, thenC = &™((’) is

combining the action of the channgl x Z and the mapS, a 1-code of length2m + 1, where ™ acts on the lasin

we obtain the ternary channgl as shown in middle of Fidl1. coordinates ot

Note that7 is different from the ternary symmetric channel  Proof: First note that the combined chanr@bk 7™ has

‘R3, which is also shown in Fid.]1. a mixed input alphabet. Hence the first coordinateCins
binary while the others are ternary. For any two codewords
11 ci,cy, € C', we have to show that the asymmetric distance
01< >10 between&™ (c}) and G™(c}) is at least two.
0o 2 First assume that the Hamming distance betweerand
0 ) ; 0 9 1&2 c, is at least three._ Then the Hamming_dista_nce between
P T Ra G™(c}) and&™(ch) is also at least three, implying that the

asymmetric distance betwe&i™(c}) and&™(c5) is at least
Fig. 1. The binary asymmetric channgl, the ternary channeJ” derived two.

from Z x Z and &, and the ternary symmetric chann®s. The arrows . . ;-
indicate the possible transitions between symbols. If the Hamming distance betweer{ and c; is less than

three, the case that the positions where they differ does not

gives al-code under the mag™. bit and the second is a trit. There are exactly two pairsl 2

Theorem 2.6:If C’ is a single-error-correcting ternary codétd12, 11 for which a single error o x 7" can be corrected.

of lengthm for the channelT, thenC = ™ (C’) is a 1-code The corresponding images of each pair un@ét give binary
of length 2m. codewords of asymmetric distance two. u

Proof: For any two codewords),c} ¢ ¢/, we have To illustrate this construction for odd length codes, wekloo

to show that the asymmetric distance betwesfi(c;) and at the following example.
&™(ch) is at least two. Example 2.10:Consider the code0000, 0111, 0222,

First assume that the Hamming distance betweeandc, 1012 1122!_1201 for the channelZ x 7°. The image under
is at least three. Then the Hamming distance betvesgric;) the mapS&” is the binary code

and G™(ch) is also at least three, which implies that the 0000000, 0000011, 0001100, 0001111,

asymmetric distance betwe&i"(c}) and&™(c)) is at least 0110000, 0110011, 0111100, 0111111, 8

two. 0010101, 0101010, 1000110, 1110110, (8)
If the Hamming distance betweear{ andc) is less than 1011000, 1011011, 1100001, 1101101.

three, it suffices to consider ternary words of length two. llthis is a code of lengttT, cardinality 16, with asymmetric
turns out that the following ten pairs of such ternary words c distance two. hence corrécting one asy,mmetric error

be uniquely decoded if a single error happens in the channe he following corollary is straightforward, but gives the

TxT. most general situation of the ternary construction.
01,22 10,22 01,12 10,21 02,11, ©6) Corollary 2.11: If C’ is a ternary single error correcting
20,11 02,21 20,12 11,22 12,21. code of channeZ™: x 7™z of length m; + mo, thenC =

m 7\ m
The asymmetric distance between the images of each pair(C ) iS @1-code of lengthm, +2m,, where&™ acts on

the lastn coordinate ofC’.

under&? is at least two. [ ]
The following corollary is straightforward.
Corollary 2.7: If C' is an(m, K, 3); code, therS™(C") is I11. N EW BINARY ASYMMETRIC CODES WITH STRUCTURE
a 1-code of lengtrem. In the following, we compare nonlinear binary codes for

The size of the binary code can be computed as followsthe Z-channel which are the image of ternary linear codes
Theorem 2.8:Let C’ be a ternary code of lengtin with (“Fs-linear codes”), and linear binary codes. For this, we

homogeneous weight enumerator compare the rate df-codes for various length. The ratio of the
st () et (e) rates is given by = log, |T'|/log, | B|, where|T'| and |B| are
We (X,Y) = ), Xmowette)ywee), (7)  the cardinalities of the nonlinear binatycode from a linear
c’eC’

ternary codel” of Hamming distance three, and a linear binary

wherewgt(c’) denotes the Hamming weight ef. ThenC = code B of Hamming distance three, respectively.

&™(C") has cardinalityC| = We/(2,1). From Table[ll we see that for certain lengths, theodes
Proof: By Definition[2.2, for every zero in the codewordobtained from ternary linear codes indeed encode more bits

¢’ the corresponding pair in the binary codeword can take tvilban the corresponding linear binary codes. In partictar,



TABLE | TABLE Il
RATIO s OF THE RATES OFFg-LINEAR CODES AND LINEAR BINARY CODES GENERATORS OF TERNARY CYCLIC CODES WHICH YIELD GOOD BINARY
1-CODES
n 6 8 10 12 14 16 18
s | 1.107 | 1.250 | 1.000 | 0.940 | 0.936 | 1.026 | 1.020 m | generators
o 30 59 51 6 23 30 35 4 0000, 0112, 1222, 1111
s 17017 | 1.014 1 1.013 | 1.012 | 0.967 | 0.946 | 0.937 5 00000, 10012, 20110, 12210, 11202, 11111, 22122
6 000000, 100021, 122000, 010101, 120102, 101101,
n| 34 | 36 | 38 | 40 | 42 | 44 | 46 201102, 101202, 102012, 222102, 202020, 112011,
s | 0.988 | 0.988 | 0.989 | 0.990 | 0.990 | 0.991 | 0.991 220220
n 43 50 52 54 56 58 60 7 0000000, 0000121, 1100022, 0022020, 1110100,
s | 0.992 [ 0.992 | 0.992 | 0.993 | 0.993 | 0.993 | 0.994 1020100, 1002001, 0021021, 2001011, 1200211,
n 62 64 66 63 70 72 A 2021200, 0201220, 1022200, 1221010, 1012020,
s 10994 | 1.012 | 1.011 | 1.011 | 1.010 | L.010 | 1.010 1021201, 1022121, 2221020, 0112122, 1111121,
1112221, 1122112, 2121211, 2221212, 2222222
Z 12610 12%9 1%%9 0%)287 0?;;8 0?)%8 0?)28 8 00000201, 00010112, 00011010, 00021200, 00101210,
. . . . - - - 00110011, 00121111, 00222110, 01011102, 01212210,
02021002, 02112201, 02211101, 02211210, 02211222,
10001122, 10010210, 10122021, 10122111, 10202002,
. . . 11021220, 11100200, 11111111, 11111210, 11120002,
n = 8 the 1-code of cardlnallt)B2 encodes one bit more than 11222011, 12001200, 12100120, 12102200, 12111211,
the linear binary code of siz&s. This should be related to the 12112022, 12121212, 20010200, 20102201, 20121212,
: - ) 20210101, 20222011, 20222200, 21100210, 21120111,
fact that the ternary Hgmmln_g code of Ien@m N 4is gOOd' 21120120, 21200221, 21212110, 22000012, 22000100,
On the other hand, blnary linear codes of distance three are 22020201, 22022000, 22101102, 22101222, 22102210,
‘bad’ for lengths, 16, 32, 64. Also, thel-codes of lengtto4 22120110, 22221221, 22222222

through80 outperform the corresponding linear binary code,
i.e. s > 1. A general understanding of the condition under
which s > 1 for thoseFs-linear codes for theZ-channel is " _ ot / m }
still lacking. For instance, we do not know why< 1 for ?gecasy?nc%zt1§:0bl::gri/rfhaligl1 code of lengtfem +1 for
n = 32, despite the fact that the binary linear code of distance  p;oof We only have to con'sider codewords@f which
three is ‘bad” at lengtt32. differ in the first position, i.e.¢j = Och and ¢} = 1¢}. If the
Recall that Example 2.4 starts from a single-error-coimgct Hamming distance betweef andc] is only one, then without
ternary cyclic code of length3, and results in al-code of |gss of generality, we can assumg = 1v and ¢} = 2v, as
length6 achieving the upper bound given inl [9] via the magnly the symbols/ and 2 have distance two with respect to
G®. Note that by the ternary construction, ternary cyclic ®@dgne channel7. Then the images of/ under&™ are ¢, =
give binary quasi-cyclic codes. It turns out that we can fingh1s™1(y) and¢; = 1106™(v). Similarly, if ¢, and ¢}
more goodi-codes from cyclic ternary codes of length  ifer in at least two positions, the images df under&™
For m = 4, we have found a ternary cyclic code withwill have asymmetric distance greater than one. ]
codewords0000, 0112, 1222, 1111, and their cyclic shifts, Generators foextended cyclic coddsased on Lemmia_3.1
which leads to a-code with parameter,29). Form =5, are given in Tabl&Tll.
we have found a unique ternary cyclic code which lead Example 3.2:For m = 3, consider the cyclic code§)) =
to a 1-code with parameter§10,98). For m = 6,7,8, we {000, 111,222}, andC| = {210,021, 102}. The image of
have found ternary cyclic codes which lead ltwodes with (¢} u 1C] under&? is
parameter$12,336), (14,1200), and(16, 3952), respectively.
The generators of the cyclic codes far=4,...,8 are given 0000000, 0000011,0001100,0001111,
in Table[Tl. 0110000,0110011,0111100,0111111,
From Table IV below we see that thecodes from cyclic 0010101, 0101010,
ternary codes are not as good as the cddes2) (givenin 109109, 1100111,1001001, 1111001, 1010010, 1011110,
Example2.b) and10, 105), (12,351) which are obtained via ’ ' ’ ' ’
random numerical search based on the ternary constructiorWe finally note that we use nonlinear cyclic codes. This
However, with growing length imposing the cyclic structurgnakes it more complicated to find a systematic generalized
reduces the search complexity. The codésd,1200) and construction for larger length.
(16,3952) listed in Table[1VY, for example, are obtained
from ternary cyclic codes of lengtin = 7 and m = 8, IV. THE BINARY VT-CR CODES VIEWED AS TERNARY
respectively, while non-exhaustive randomized searchdid CODES

yield anything better as the search space is too large. In this section we clarify the relationship between the
For odd length, we can use the following construction akrnary construction and the VT-CR codes, by showing that

extendedernary codes. certain VT-CR codes are a special case of the ternary con-
Lemma 3.1:Let C’ be a ternary code of lengthh which struction. We start from the following.

can be decomposed into two subcoffe and C; such that  Definition 4.1: A binary codeC of even lengthn = 2m is

each code! can correct a single error for the chanffeland  calledternary if 6™ (&™(C)) =C.

for any pair of codewords{, € C and ¢} € Ci, the distance  Based on this definition, if a binary codeof even length

with respect to the chann@T is at least two. Then the imageis ternary, then it can be constructed from some ternary code



TABLE Il . . .
GENERATORS OF EXTENDED TERNARY CYCLIC CODES wHicH vietp  1Ne cardinality of the code i80. _
GOOD BINARY 1-CODES. Example 4.5:For n = 8, the CR code&C, of largest cardi-

nality, which is associated with the gro#y & Zs, is given

m generators b
3 [ 0000, 0111, 0222, y
1210
1 | 00000, 00221, 01211, 02222, 21(0,1) +22(0,2) + 23(1,0) + 24 (1, 1)
11010, 12020, 11220 +x5(1,2) +26(2,0) + x7(2,1) + 28(2,2) = mod(3,3), (13)
5 | 000000, 010021, 012102, 020111, 022201,
011111, 022222, wherex; € {0,1}. Then one can use the pairing
102210, 101020, 101212
6 | 0100021,0122000,0100100, 0200200, 0010101, {z129, w336, TaT8, T5 27} (14)
0222010, 0110201 ,0101202, 0202020,0111111,
%Zé%é, ?1211%% : 10020212020222,1120102 101101 The cardinality of the code 82, which is however nonlinear.
s s s s ) H H xS i H
1012111, 1102012, 1220220, 1122202, 1211112, The image of this code und&" is a linear codg4,2, 3]s,
1211222, 1121212 which is the one given in Example_2.5.
7 | 01100002, 00200100, 01200010, 00202200, Example 4.6:Considern = 10. For the VT codé), is then
00112200, 01002120, 01001011, 01210020, given b
01222100, 00022202, 01221200, 00101121, y 10
00210201, 01102220, 01020111, 01012211, —
02021210, 00122221, 01112021, 01202221 , Z iz; = 0mod 11, (15)
01111111, 01122112, 02222222, i=1
10221000, 10102000, 10001101, 12000120, wherez; € {0’ 1}_ Then one can use the pairing
12101100, 11100120, 11002202, 11200220,
11200211, 10012112, 11021210, 12201022, 10 Lo . Tads. Tade. Trde ) 16
11110220, 10111211, 11212210, 10202122, {z1210, 2229, T38, 2477, 2576} (16)
10211212, 12202212, 11221221 The cardinality of the code 84, and the image of this code

under&'? is equivalent to a cyclic ternary code with = 5.
Note that there exists kcode(10,98) which is obtained from
via the mapS. The following theorem shows that certain VT-a cyclic ternary code (see Sécl Ill).
CR codes are a special case of asymmetric codes constructedow we consider the case of odd length.

from some ternary codes. Definition 4.7: A binary codeC of odd lengthn = 2m + 1
Theorem 4.2:Forn even, the VT cod®, and the CR code is calledgeneralized ternaryf 6™ (&™(C)) =C, whereG™
C, are ternary for any;. acts on the lastm coordinates of.

Proof: Let C =V, or C = C4,. We only need to prove Based on this definition, if a binary codkof odd length
that there exists a pairing of the coordinatesCofuch that 2m +1 is generalized ternary, then it can be constructed from
for any codeword ¢ C the following holds: if for a pairv of some single-error-correcting code for the chanfiel 7" via
coordinates the code symbolswoére00, denoted by|, =00, the mapS.
then there exists another codewarde C with v|, = 11 and Theorem 4.8:For n odd, the VT codeV, is generalized
v'|a = v|a. Herea denotes all coordinates except the pair ternary for anyg.

Both the VT codeV, and the CR cod€, are defined by Proof: We only need to prove that there exists a pairing
a groupG of odd ordern + 1, and the coordinates of thewhich leaves a single coordinate as a bit, such that for any
codewords correspond to the non-identity group elemergs. éodewordv € V,, if v restricted to a chosen pairis 00, then
the group order is odd, the only group element that is ithere exist another codewoid € V, such thatv'|, = 11 and
own inverse is identity. Hence we can pair every non-identit/|5 = v|5.
elementh € G with its inverse-h. If neither h nor -k are For a VT codeV, of odd length, choose the pairifg, n +
contained in the sum in EQ](1), then the sum clearly does niot j}/? and leave the coordinate.+1)/2 as a bit. Then the

3

change when including both and -h. B above condition is satisfied. [
We look at some examples. We discuss an example.
Example 4.3:For n = 6, the VT code)) is given by Example 4.9:For n = 7, the VT code)) is given by
T1 + 229 + 323 +4x4 + x5 + 626 = 0 mod 7, 9 7
! ° ’ ! ° o N ®) zixi =0 mod 8, a7
wherex; € {0,1}. Then one can use the pairing i=1
{x126, T225, T3T4 ). (10) Wherez; € {0,1}. Then one can use the pairing
The cardinality of the code i5). The image of this code under {z127, 2076, 2375}, (18)

&Y is a linear codg3,1,3]3.

L and treatz, as a bit. The size of the code i$, and it is
Example 4.4:For n = 8, the VT code), is given by

equivalent to the code given in Examjple_2.10.

In Table[TV, the cardinality of codes found by the (general-
ized) ternary method is compared to the size of the correspon
ing VT-CR codes. One can see that the (generalized) ternary
construction indeed outperforms the VT-CR construction, i
{x128, X227, T3T6, T4T5}. (12) particular for largem.

8
zixi =0 mod 9, (12)
i=1

wherex; € {0,1}. Then one can use the pairing



TABLE IV
SIZE OF 1-CODES FROM TERNARY CONSTRUCTION VIA NUMERICAL 1-codeC, for ¢ > 2. For n odd, an outer((n +1)/2,K),

SEARCH, COMPARED TOCR CODES CODES OBTAINED BY THE PARTITION ~ cOde correcting a single error for the chanf] leads to an
METHOD, AND THE KNOWN BOUNDS FROM[9], [14], [18]. (7% q(n—l)/QK)q 1-codec, for ¢ > 2.

FOR ODDn, ‘CYCLIC TERNARY' REFERS TO EXTENDED CYCLIC CODES L . . .
If the outer code is linear, then our construction givesdine
codes for the asymmetric channel. We state this result as a

CR cyclic ternary  ternary  partition  known bounds

n

6 10 12 12 * 12 corollary below.

7 16 16 16 N 18 Corollary 5.2: An outer [m, k], linear code correcting a

8 32 29 32 * 36 .

9 52 53 55 * 62 single error for the channeéR, leads to a[2m,m + k], 1-

10 94 08 105 104) 112-117 code and §2m - 1,m+ k- 1], 1-code, forg > 2.

11 172 154 180 186 198-210 It turns out that in many cases, our construction gives finea

i; 2;2 gig 2?; 2§$ 2;8“7‘;2 codes with larger cardinality than the distance-three sginm

14 1096 1200 1200 1298 12731500 ches of qual length. We first dls_cuss the case of3. _In.

15 2048 2144 o144 2068 29882828 this caseR3 is the ternary symmetric channel, so we will just

16 3856 3952 3952 428D 4280-5486 use outer codes of Hamming distan&eWe consider some
examples.

The column in TablETV labeled ‘partition’ is obtained from Example 5.3:Considerq = 3 and take the outer code as
the partition method in Ref[]12]. The code) is found [3.1,3]s, with codewords000, 111, 222. This will give a
from the partition of constant weight codes of lengttand [5.3]3 1-code with codewords
asymmetric codes of length Codes(b) are from Ref.[1P].

For n = 10,11,12, the ternary construction yields codes of 00000, 00011, 00022, 01100, 0111,
equal size or even more codewords compared to the partition 01122, 02200, 02211, 02222,
method. However, the best codes are obtained by heuristic 10101, 10112, 10120, 11201, 11212,
methods, which, e.g., givel0,112) [14] and(12,379) [15]. ;g?g’ ;?831’ ;%833’ ;;??8’ 99191
This is not surprising as both the ternary construction and ' ' ’ ’ ’
the partition method assume some additional structure ef th 22102, 20210, 20221, 20202,
binary 1-codes. while the best linear single-symmetric-error-correctioge is
[5,2,3]5. The[3,1,3]; outer code also yields[#&, 4]; 1-code,
V. NONBINARY ASYMMETRIC-ERRORCORRECTING CODES while the best linear single-symmetric-error-correcitoge is

In this section, we consider the constructionlefodes for [, 3, 3]5. Now take the outer code 44,2, 3]s. This will give
nonbinary asymmetric channels. Recall that the charatiteri a3 [7,5]5 1-code, while the best linear single-symmetric-error-
properties of codes for this channel model are given Ryrrecting code i7,4,3]s. We can also construct 8, 6];
Definition[1.1 and Theorefn1.2. Our construction will again-code, while the best linear single-symmetric-error-ecting
be based on concatenation, generalizing the @&é&p code is[8, 5, 3]s.

For a giveny, choose the outer code as some code over therhis example can be directly generalized to other lengths.
alphabetd = {0,1,...,¢ - 1}, which encodes to some innergythermore, the constructions extend trivially go> 3, as
codes{Co, C1,...,Cq1} Viai ~ C;. Now choose theg inner gy code of Hamming distanck corrects a single error for
codes as the double-repetition codg = {00,11,...,(¢ = the channeR,. Note that Hamming codes ovE; have length
1)(¢-1)} and all itsq — 1 cosetsC; = Co + (0i), i.e., we , (4 1)/(q-1). For a givenn,., our construction then
have the rule that0i) € C;. It is straightforward to check that 5jows to construct asymmetrit-codes of all length{n,. +
eachC; is al-code, i.e., has asymmetric distarceNote that 1,2n,] for n, odd or all lengthgn, +2, 2n, ] for n, even. The
a single asymmetric error will only drive transition_s betne sequence of lengths, is a geometric series, and hence our
i, for i = j = 1. For instance, foy = 3,4,5, the induced method can construct asymmetric codes for approximakely
channelsRs, R4, Rs are shown in Figll2. In general, ey 5| |engths, outperforming the best single-symmetm}qe
will write the induced channel &g, for outer codes over the correcting linear codes.
alphabetd = {0,1,....q - 1}. Now consider the casg> 3 in more detail. The chann@,

(see Fig[R) is no longer a symmetric channel, so outer codes
of Hamming distance3 are no longer expected to give the

(19)

0<~—>3
fo i I 1 4 bestl-codes. It turns out, however, that single-error-corregti
1 2 ]2 codes for the channé®, are equivalent to single-symmetric-
R3 Ra Rs error correcting codes with respect to Lee metficl [19] (see

Fig. 2. The induced channéRs for ¢ = 3 (which is just the ternary also [20]), for which optimal linear codes are known. When
symmetric channel), the induced chanrel, for ¢ = 4, and the induced 4 js odd, let H be the parity check matrix whose columns
channelRs for ¢ = 5. The arrows indicate the possible transitions betwee R . s

dre all vectors inZ; whose first non-zero elements is in the

symbols. N ) )
{1,2,..., %=} (wherer is the number of rows itf7), then the
Similar to TheoremB 216 arid 2.9, we have the following corresponding code can correct a single error for the channe

Theorem 5.1:Forn even, an outefn/2, K'), code correct- Rg.
ing a single error for the chann®&l, leads to ar(n,q"/zK)q We consider an example.



Example 5.4:For ¢ = 5 consider the parity check matrix A generalization of Definitioh 6]1 is when we allow asym-
metric errors to wrap around frotmback tog—-1. That is, we
( 1111122 2 2 2 ), interpret -’ in y = x—e as subtraction mogl. This error model
0123401234 is then called the asymmetri¢limited-magnitude channels

which gives a[10,8]; code correcting a single error for thewith wrap around.

channelRs, and hence 420, 18]5 1-code. Note that the best ~Similar as the asymmetric distandg(x,y), we can define

linear single-symmetric-error-correcting code for= 20 is & distancel, for this error model, as below.

[20,17,3]5. Definition 6.2: For x,y € A", defineM (x,y) = [{i : ; >
Our new linear codes for asymmetric channels jos 2 ¥i}|- The distancel, between the words,y is then defined

show that Varshamov's argument that for the binary cas@s

there is almost no hope to find good linear codes for the {n+1 if max, {|z; —yi|} > ¢

asymmetric channel, does not hold for the nonbinary cask(x,y) = max{M(x,y), M(y,x)} otherwise

There is indeed room for constructing good linear codes

adapted to the asymmetric channel. Similar as Theoreni 1.2, the proposition below directly
Note that contrary to the binary case, the nonlinear V¥ollows [16].

CR codes can no longer be viewed as a special case of ouproposition 6.3: A codeC correctsi asymmetric/-limited-

construction. However, for lengths. = ¢"-1, our construction magnitude errors if and only if;(x,y) > £+ 1 for all distinct

gives codes of the same cardinality as the VT-CR codes, whiley ¢ C.

our codes are linear, but the VT-CR codes are not. And one can readily interpret, for asymmetric/-limited-
FinaIIy, we brlefly discuss the extension of our Concatenf;hagnitude channels with wrap around (interpret in as

tion method to construdt-asymmetric-error-correcting codessubtraction modg), such that Propositiof 8.3 still holds.

for ¢ > 1. We look at some examples. Apparently, in general a-code for the asymmetric channel
Example 5.5:Consider the case af = 3. Take the outer can no longer be used to correct errors for asymmetric

code as thg5,3]3 1-code constructed in Examgdle b.3, whichimited-magnitude channel with wrap around. There is a sphe
has asymmetric distance Now take the encoding to the innerpacking bound which naturally follows.

codeag) — 00, 1 ~ 11, 2 — 22. Then the concatenated code Theorem 6.4: [16] If C is a i asymmetric (-limited-
has asymmetric distancé which gives a[10,3]3 3-code, magnitude (with wrap-around) error-correcting code, ofjiéa
while the best linear triple-error-correcting codd 19,2, 7]s. 5, over an alphabet of sizg then

Similarly, take the outer code as the 4]; 1-code, then the .

concatenated code is[&2,4]; 3-code, while the besi-error- oy (n)gl <q". (20)
correcting linear code i§12,3,7];. izo \1

An asymmetric/-limited-magnitude code is called perfect in
VI. CODES FOR ASYMMETRIC LIMITED-MAGNITUDE a sense that it attains this sphere-packing bound.
ERRORS Code designs for correcting asymmetridimited-magni-

In this section, we discuss the application of these nompingude errors, with or without wrap around, are discussed@j, [1
linear codes constructed in Sec. V to correct asymmet@]- Here we show that the linear codes constructed in[Sec. V
limited-magnitude errors with wrap around. This new ‘asynf:an be used to correct asymmetfiimited-magnitude errors
metric limited-magnitude error’ model, is introduced nethg and then further discuss their optimality using the sphere-
in [16], which models the asymmetric errors in multilevePacking bound.
flash memories in a more detailed manner. This model isRecall the construction in Se¢.]V, where for a given
parameterized by two integer parametérss the maximum ¢ We choose theq inner codesCo, Ci, ..., Cg1 as
number of symbol errors within a codeword, addthe {00,11,....(¢-1)(¢-1)} and all itsg - 1 cosets. It is
maximal magnitude of an error. The definition of asymmetritraightforward to check that eadfi; hasd, = 2, for the
limited-magnitude errors is the following [1L6]. asymmetric/-limited-magnitude channel with wrap around,

Definition 6.1: A vector of integerse = (e1,...,e;) is for/.: 1, acco@ng to Def|n|t|02. Indeed, this asymmetric
called af asymmetric/-limited-magnitude error word if{i : ¢-limited-magnitude channel with wrap around, for 1 has
e; #0| <, and for alli, 0 < e; < L. transitions

Here b)_/ ‘asymmetric' it still means that if any transmitted (G-1) > (g-2) > (q-3)->1-0-(qg-1). (21)
symbola is received a9 < a. For a codewordk € A", then
a t asymmetric/-limited-magnitude channel outputs a vectowe illustrate these asymmetrielimited-magnitude channels
y € A" such thaty = x — e, wheree is at asymmetricl- £, for n = 3,4,5 bits in Fig.[3.

limited-magnitude error word. Now choose the outer code as some distanhoede over the
Coding problems for these channels have an intimate mphabetd = {0,1,...,¢-1}, which encodes to the inner codes
lation to coding problems for asymmetric channels. Indeef(y,C,...,Cy-1} via i — C;, then the following results

whent = t/, any t-code for the asymmetric channel triviallyreadily hold according to Propositidn 6.3.
correctst asymmetric/-limited-magnitude errors. Of course, Proposition 6.5:The codes based on the constructions
the reverse is not true. given by Theoreni 5]1 and Corollafy 5.2 in S&d. V correct



good linear codes for asymmetric channels does not extend to

Q $_>if 1 4 the nonbinary case.
1A2 [P Our t-codes also apply to correétasymmetric/-limited-
L3 L4 Ls magnitude errors with wrap around, foe /. These channels
Fig. 3. The asymmetrid-limited-magnitude channels,, for n = 3,4,5 model the errors in multilevel flash memory in a more detailed
bits. The arrows indicate the possible transitions betwsyenbols. manner than Varshamov’s asymmetric channel given in Defi-

nition [I-1. In case of = 1, our single-error-correcting codes
_ S _ _ are shown to be optimal linear codes by the sphere-packing
a single asymmetric/-limited-magnitude error with wrap pound. For lengths: = ¢" — 1, these codes are perfect linear

around, for/ = 1. codes.
For ¢ = 1, the sphere-packing bound of EQ.20) for correcting \we hope our methods shade light on further study of
a single error becomes asymmetric codes, particularly, on systematic constactif
q" these codes. These initial results on good linceodes with
IC| < (22)

t > 1 and ¢ > 2 are rather promising as they might find
application in the context of flash memories.

n+1l

Recall that for a givenn,, the construction in Sed ]V
gives linear codes of all lengthg, + 1,2n,] for n, odd
or all lengths[n, + 2,2n,] for n, even, which outperform REEERENCES
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