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New Constructions of Codes for Asymmetric
Channels via Concatenation

Markus Grassl,Member, IEEE,Peter Shor, Graeme Smith, John Smolin, and Bei Zeng

Abstract—We present new constructions of codes for asym-
metric channels for both binary and nonbinary alphabets, based
on methods of generalized code concatenation. For the binary
asymmetric channel, our methods construct nonlinear single-
error-correcting codes from ternary outer codes. We show that
some of the Varshamov-Tenengol’ts-Constantin-Rao codes,a
class of binary nonlinear codes for this channel, have a nice
structure when viewed as ternary codes. In many cases, our
ternary construction yields even better codes. For the nonbinary
asymmetric channel, our methods construct linear codes for
many lengths and distances which are superior to the linear
codes of the same length capable of correcting the same number
of symmetric errors.

In the binary case, Varshamov [2] has shown that almost all
good linear codes for the asymmetric channel are also good for
the symmetric channel. Our results indicate that Varshamov’s
argument does not extend to the nonbinary case, i.e., one canfind
better linear codes for asymmetric channels than for symmetric
ones.

I. I NTRODUCTION

In communication systems, the signal transmitted is con-
ventionally represented as a finite sequence of elements from
an alphabetA, which we assume to be finite. In general, we
may takeA = {0,1, . . . , q−1}, and if needed, some additional
structure is assumed, e.g.,A = Zq or A = Fq. The most
commonly discussed channel model is the uniform symmetric
channel, that is, an errora → b happens with equal probability
for any a, b ∈ A and a ≠ b. Error-correcting codes for these
channels are extensively studied, see, for instance, [3].

However, in other systems, such as some data storing
systems including flash memories [4], [5] and optical com-
munication [6], the probability of the errora→ b is no longer
independent ofa and b and might vary a lot. If some errors
of low probability are neglected, some of those channels can
be modeled as ‘asymmetric channels.’
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More precisely, let the alphabet beA = {0,1, . . . , q − 1} ⊂
Z with the ordering0 < 1 < 2 < ⋯ < q − 1. A channel is
called asymmetric if any transmitted symbola is received as
b ≤ a. For example, forq = 2, the symbol0 is always received
correctly while1 may be received as0 or 1. The corresponding
channel is calledZ-channel, see Fig. 1. Forq > 2, one can
have different types of asymmetric channels [7].

Coding problems for asymmetric channels were discussed
by Varshamov in 1965 [2]. For the characterization of codes
for these channels, we need the following.

Definition 1.1 (see [2], [8], [9]): Forx,y ∈ An, wherex =
(x1, x2, . . . , xn) andy = (y1, y2, . . . , yn), let

(i) w(x) ∶= ∑n
i=1 xi,

(ii) N(x,y) ∶= ∑n
i=1max{yi − xi,0}, and

(iii) ∆(x,y) ∶=max{N(x,y),N(y,x)}.

Here w(x) is the weight ofx, and ∆(x,y) is called the
asymmetric distance betweenx and y. If x is sent andy
is received, we say thatw(x − y) errors have occurred. Note
thatw(x − y) ≥ 0 for asymmetric channels.

In this model, a code correctingt-errors is called at-
code [9]. The following theorem naturally follows.

Theorem 1.2 (see [9]):A setC ⊂ An is at-code if and only
if ∆(x,y) > t for all x,y ∈ C, x ≠ y.

Apparently, any code which can correctt errors on a sym-
metric channel will also be capable of correctingt asymmetric
errors, but the converse is not true in general. However,
Varshamov showed that almost all linear binary codes which
are able to correctt errors for theZ-channel are also able
to correctt symmetric errors [2]. Therefore, in order to con-
struct good codes for theZ-channel, nonlinear constructions
are needed. Varshamov and Tenengol’ts [10], followed by
Constantin and Rao [11], constructed families of1-codes for
the Z-channel with size≥ 2

n

n+1
. These codes are constructed

based on an Abelian groupG for which the group operation
is denoted by ‘+’ and the identity ofG is denoted by0G or
just 0.

Definition 1.3 (Constantin-Rao (CR) codes):Let G be an
Abelian group of ordern+1 and identity0G. For fixedg ∈ G,
the CR codeCg is given by

Cg = ({(x1, x2, . . . , xn)∣
n

∑
i=1

xigi = g}), (1)

whereg1, g2, . . . , gn are the non-identity elements ofG, xi ∈
{0,1}, and the productxigi is defined in the canonical way
1gi = gi and0gi = 0G.

If the groupG is a cyclic group of ordern + 1, then the
corresponding codes are Varshamov-Tenengol’ts (VT) codes
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[10] (denoted byVg). It is known that the largest Constantin-
Rao code of lengthn is the codeC0 based on the group
G =⊕p∣(n+1)⊕

np

i=1 Zp, wheren+1 = Πp∣(n+1)p
np is the prime

factorization ofn + 1 and ⊕ denotes the direct product of
groups (see [9]). These VT-CR codes have better rates than
the corresponding single-error-correcting codes for the binary
symmetric channel for all lengthsn apart fromn = 2r − 1. In
this case, the codeC0 for the groupG = Zr

2 is the linear binary
Hamming code.

These VT-CR codes have a direct generalization to the
nonbinary case. The modification of Definition 1.3 is to letxi ∈
A = {0,1, . . . , q−1} and require that the order ofgi is at least
q. The resulting nonlinear codes have cardinality∣Cg ∣ ≥

qn

n+1
.

Note that by the Hamming bound, we have∣Csym∣ ≤
qn

(q−1)n+1
for a symmetric single-error-correcting code. Hence forq > 2
and all lengthsn, the VT-CR codes have more codewords than
the best single-error-correcting symmetric codes of the same
length. The construction can also be generalized to the case
of t-codes witht > 1, for both binary and nonbinary alphabets
[9].

Some other constructions for designing single-error-correct-
ing codes for theZ-channel have also been introduced. In
particular the partition method, together with some heuristic
search give good lower bounds for small length codes withn ≤
25 [12]–[15]. Nevertheless, the VT-CR construction remains
the best systematic construction of binary1-codes to date, and
the situation is similar for the nonbinary case. For a surveyof
classical results on codes for theZ-channel, see [9].

In this paper, we present new constructions of codes for
asymmetric channels for both binary and nonbinary alphabets,
based on methods of generalized code concatenation. For the
binary asymmetric channel, our methods construct nonlinear
1-codes from ternary outer codes which are better than the VT-
CR codes. For nonbinary asymmetric channels, our methods
yield linear codes for many lengths and distances, which
outperform the linear codes of the same lengths capable of
correcting the same number of symmetric errors. For certain
lengths, our construction gives linear codes with equal car-
dinality as the nonlinear VT-CR codes. Our results indicate
that Varshamov’s argument does not extend to the nonbinary
case, i.e., one can find better linear codes for asymmetric
channels than for symmetric ones. We will also apply our non-
binary linear codes to correct asymmetric limited magnitude
errors [16], which models the asymmetric errors in multilevel
flash memories in a more detailed manner.

II. B INARY ASYMMETRIC CODES FROM TERNARY OUTER

CODES

To discuss our new construction for asymmetric codes based
on the generalized concatenation method, we start with the
binary case, building1-codes for theZ-channel. We know
that in this case, good codes would have to be nonlinear, so
our method returns nonlinear codes.

To construct1-codes for theZ-channel, we first partition
all two-bit strings{00,01,10,11} into three1-codes, which
areC0 = {00,11}, C1 = {01}, C2 = {10}. Then we further
find some outer codes over the alphabet{0 ,1 ,2} (i.e. ternary

outer codes). Each code symbol is encoded into each of the
1-codes byi ↦ Ci. To be more precise, define a binary to
ternary mapS̃, which maps two bits to one trit.

Definition 2.1: The mapS̃∶ F2
2 → F3 is defined by

S̃∶ 00↦ 0 , 11↦ 0 , 01↦ 1 , 10↦ 2 . (2)

The encodingi → Ci is then given by the inverse map of
S̃. Note thatS̃ is not one-to-one. So for the ternary symbol
0 the inverse map gives the two binary codewords00 and11,
while for 1 and 2 we get the unique codewords01 and 10,
respectively.

Definition 2.2: The mapS∶ F3 → ℘(F2
2) is defined by

S∶ 0 ↦ {00,11}, 1 ↦ {01}, 2 ↦ {10}. (3)

Note that for a binary code of lengthn = 2m, by choosing a
pairing of coordinates, the map̃Sm∶ F2m

2 → F
m
3 takes a given

binary code of length2m to a ternary code of lengthm. On
the other hand, Definition 2.2 can be naturally extended as
well, i.e., the mapSm takes a given ternary code of lengthm
to a binary code of length2m. The mapSm hence specifies
the encoding of an outer ternary code into the inner codesCi.

We remark that our method is indeed a two-level concate-
nation as discussed in [17]. In the language of [17], we have
an inner codeB0 = {00,01,10,11} which is partitioned into
three codesB1,1 = {00,11}, B1,2 = {01} and B1,3 = {10}.
We also have two outer codes, one is a ternary codeA0 of
lengthm, and the other is the trivial ternary code of length 1,
i.e. A1 = {0,1,2}. The two-level concatenated code is then a
binary code with length2m.

For a better understanding of the mapsS̃
m andS

m, we
look at some examples.

Example 2.3:The optimal1-codeC(4) of lengthn = 4 and
cardinality 4 has four codewords0000,1100,0011,1111. By
pairing coordinates1,2 and3,4, the ternary image under̃S2

is then00 .
Example 2.4:By starting from the ternary outer code of

lengthn = 3 with the codewords000 ,111 ,122 ,212 ,221 , the
mapS3 yields the binary codeC(6) with the 12 codewords

000000, 000011, 001100, 001111, 110000, 110011,

111100, 111111, 010101, 011010, 100110, 101001.
(4)

The codeC(6) has asymmetric distance2, hence correcting
one asymmetric error. This is known to be an optimal1-code
for n = 6 [9].

Example 2.5:By starting from the linear ternary code[4,2,3]3 with generators0111 ,1012 , the mapS4 yields the
binary codeC(8) with 32 codewords

00000000, 00000011, 00001100, 00001111,

00110000, 00110011, 00111100, 00111111,

11000000, 11000011, 11001100, 11001111,

11110000, 11110011, 11111100, 11111111,

00010101, 00101010, 11010101, 11101010,

01000110, 10001001, 01110110, 10111001,

01011000, 10100100, 01011011, 10100111,

10010001, 01100010, 10011101, 01101110.

(5)

C(8) has asymmetric distance2, hence correcting one asym-
metric error. We observe thatC(8) is exactly the CR codeC0
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of lengthn = 8 constructed from the groupZ3 ⊕ Z3, which
hints some relationship between the ternary construction and
CR codes. We will discuss this in more detail in Sec. IV.

Example 2.5 indicates that good1-codes can be obtained
from some ternary codes under the mapS

m. Now the question
is what is the general condition under which a ternary code
gives a1-code via the mapSm. To address this question, by
combining the action of the channelZ × Z and the mapS̃,
we obtain the ternary channelT as shown in middle of Fig. 1.
Note thatT is different from the ternary symmetric channel
R3, which is also shown in Fig. 1.

01
❥

✙
00

11
❥

✙
10

0 1✛ 1 ✲✛ 0 ✲✛ 2

0

1 2✛ ✲
✣

✢
❪
❫

Z T R3

Fig. 1. The binary asymmetric channelZ, the ternary channelT derived
from Z × Z and S̃, and the ternary symmetric channelR3. The arrows
indicate the possible transitions between symbols.

Now we come to the main result of this section, which states
that any single-error-correcting code for the ternary channelT
gives a1-code under the mapSm.

Theorem 2.6:If C′ is a single-error-correcting ternary code
of lengthm for the channelT , thenC = Sm(C′) is a 1-code
of length2m.

Proof: For any two codewordsc′1,c
′
2 ∈ C

′, we have
to show that the asymmetric distance betweenS

m(c′1) and
S

m(c′2) is at least two.
First assume that the Hamming distance betweenc

′
1 andc′2

is at least three. Then the Hamming distance betweenS
m(c′1)

and S
m(c′2) is also at least three, which implies that the

asymmetric distance betweenSm(c′1) andSm(c′2) is at least
two.

If the Hamming distance betweenc′1 and c
′
2 is less than

three, it suffices to consider ternary words of length two. It
turns out that the following ten pairs of such ternary words can
be uniquely decoded if a single error happens in the channel
T × T :

01 ,22 10 ,22 01 ,12 10 ,21 02 ,11 ,

20 ,11 02 ,21 20 ,12 11 ,22 12 ,21 .
(6)

The asymmetric distance between the images of each pair
underS2 is at least two.

The following corollary is straightforward.
Corollary 2.7: If C′ is an(m,K,3)3 code, thenSm(C′) is

a 1-code of length2m.
The size of the binary code can be computed as follows.
Theorem 2.8:Let C′ be a ternary code of lengthm with

homogeneous weight enumerator

WC′(X,Y ) = ∑
c
′∈C′

Xm−wgt(c′)Y wgt(c′), (7)

wherewgt(c′) denotes the Hamming weight ofc′. ThenC =
S

m(C′) has cardinality∣C∣ =WC′(2,1).
Proof: By Definition 2.2, for every zero in the codeword

c
′ the corresponding pair in the binary codeword can take two

different values, while the non-zero elements are mapped toa
unique binary string. Hence∣Sm(c′)∣ = 2m−wgt(c′).

Theorem 2.6 only works for designing1-codes of even
length. So we generalize this construction to odd length,
starting from ‘adding a bit’ to the ternary code.

Theorem 2.9:If C′ is a single-error-correcting code of
lengthm + 1 for the channelZ × T m, then C = S

m(C′) is
a 1-code of length2m + 1, whereS

m acts on the lastm
coordinates ofC′.

Proof: First note that the combined channelZ ×T m has
a mixed input alphabet. Hence the first coordinate inC is
binary while the others are ternary. For any two codewords
c
′
1,c
′
2 ∈ C

′, we have to show that the asymmetric distance
betweenSm(c′1) andSm(c′2) is at least two.

First assume that the Hamming distance betweenc
′
1 and

c
′
2 is at least three. Then the Hamming distance between

S
m(c′1) andSm(c′2) is also at least three, implying that the

asymmetric distance betweenSm(c′1) andSm(c′2) is at least
two.

If the Hamming distance betweenc′1 and c
′
2 is less than

three, the case that the positions where they differ does not
involve the first coordinate has already been covered in the
proof of Theorem 2.6. So assume that the first coordinate is a
bit and the second is a trit. There are exactly two pairs01 ,12

and12 ,11 for which a single error onZ×T can be corrected.
The corresponding images of each pair underS

m give binary
codewords of asymmetric distance two.

To illustrate this construction for odd length codes, we look
at the following example.

Example 2.10:Consider the code0000 , 0111 , 0222 ,
1012 , 1120 , 1201 for the channelZ × T 3. The image under
the mapS3 is the binary code

0000000, 0000011, 0001100, 0001111,

0110000, 0110011, 0111100, 0111111,

0010101, 0101010, 1000110, 1110110,

1011000, 1011011, 1100001, 1101101.

(8)

This is a code of length7, cardinality 16, with asymmetric
distance two, hence correcting one asymmetric error.

The following corollary is straightforward, but gives the
most general situation of the ternary construction.

Corollary 2.11: If C′ is a ternary single error correcting
code of channelZm1 × T m2 of length m1 + m2, then C =
S

m2(C′) is a1-code of lengthm1+2m2, whereSm2 acts on
the lastn coordinate ofC′.

III. N EW BINARY ASYMMETRIC CODES WITH STRUCTURE

In the following, we compare nonlinear binary codes for
the Z-channel which are the image of ternary linear codes
(“F3-linear codes”), and linear binary codes. For this, we
compare the rate of1-codes for various length. The ratio of the
rates is given bys = log2 ∣T ∣/ log2 ∣B∣, where∣T ∣ and ∣B∣ are
the cardinalities of the nonlinear binary1-code from a linear
ternary codeT of Hamming distance three, and a linear binary
codeB of Hamming distance three, respectively.

From Table I we see that for certain lengths, the1-codes
obtained from ternary linear codes indeed encode more bits
than the corresponding linear binary codes. In particular,for
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TABLE I
RATIO s OF THE RATES OFF3-LINEAR CODES AND LINEAR BINARY CODES

n 6 8 10 12 14 16 18

s 1.107 1.250 1.000 0.940 0.936 1.026 1.020

n 20 22 24 26 28 30 32

s 1.017 1.014 1.013 1.012 0.967 0.946 0.987

n 34 36 38 40 42 44 46

s 0.988 0.988 0.989 0.990 0.990 0.991 0.991

n 48 50 52 54 56 58 60

s 0.992 0.992 0.992 0.993 0.993 0.993 0.994

n 62 64 66 68 70 72 74

s 0.994 1.012 1.011 1.011 1.010 1.010 1.010

n 76 78 80 82 84 86 88

s 1.010 1.009 1.009 0.987 0.988 0.988 0.988

n = 8 the 1-code of cardinality32 encodes one bit more than
the linear binary code of size16. This should be related to the
fact that the ternary Hamming code of length8/2 = 4 is ‘good.’
On the other hand, binary linear codes of distance three are
‘bad’ for length8, 16, 32, 64. Also, the1-codes of length64
through80 outperform the corresponding linear binary code,
i.e. s > 1. A general understanding of the condition under
which s > 1 for thoseF3-linear codes for theZ-channel is
still lacking. For instance, we do not know whys < 1 for
n = 32, despite the fact that the binary linear code of distance
three is ‘bad’ at length32.

Recall that Example 2.4 starts from a single-error-correcting
ternary cyclic code of length3, and results in a1-code of
length6 achieving the upper bound given in [9] via the map
S

3. Note that by the ternary construction, ternary cyclic codes
give binary quasi-cyclic codes. It turns out that we can find
more good1-codes from cyclic ternary codes of lengthm.

For m = 4, we have found a ternary cyclic code with
codewords0000 , 0112 , 1222 , 1111 , and their cyclic shifts,
which leads to a1-code with parameters(8,29). For m = 5,
we have found a unique ternary cyclic code which lead
to a 1-code with parameters(10,98). For m = 6,7,8, we
have found ternary cyclic codes which lead to1-codes with
parameters(12,336), (14,1200), and(16,3952), respectively.
The generators of the cyclic codes form = 4, . . . ,8 are given
in Table II.

From Table IV below we see that the1-codes from cyclic
ternary codes are not as good as the codes(8,32) (given in
Example 2.5) and(10,105), (12,351) which are obtained via
random numerical search based on the ternary construction.
However, with growing length imposing the cyclic structure
reduces the search complexity. The codes(14,1200) and(16,3952) listed in Table IV, for example, are obtained
from ternary cyclic codes of lengthm = 7 and m = 8,
respectively, while non-exhaustive randomized search didnot
yield anything better as the search space is too large.

For odd length, we can use the following construction of
extendedternary codes.

Lemma 3.1:Let C′ be a ternary code of lengthm which
can be decomposed into two subcodeC′0 and C′1 such that
each codeC′i can correct a single error for the channelT and
for any pair of codewordsc′0 ∈ C

′
0 and c′1 ∈ C

′
1, the distance

with respect to the channelT is at least two. Then the image

TABLE II
GENERATORS OF TERNARY CYCLIC CODES WHICH YIELD GOOD BINARY

1-CODES.

m generators
4 0000 , 0112 , 1222 , 1111
5 00000 , 10012 , 20110 , 12210 , 11202 , 11111 , 22122
6 000000 , 100021 , 122000 , 010101 , 120102 , 101101 ,

201102 , 101202 , 102012 , 222102 , 202020 , 112011 ,
220220

7 0000000 , 0000121 , 1100022 , 0022020 , 1110100 ,
1020100 , 1002001 , 0021021 , 2001011 , 1200211 ,
2021200 , 0201220 , 1022200 , 1221010 , 1012020 ,
1021201 , 1022121 , 2221020 , 0112122 , 1111121 ,
1112221 , 1122112 , 2121211 , 2221212 , 2222222

8 00000201 , 00010112 , 00011010 , 00021200 , 00101210 ,
00110011 , 00121111 , 00222110 , 01011102 , 01212210 ,
02021002 , 02112201 , 02211101 , 02211210 , 02211222 ,
10001122 , 10010210 , 10122021 , 10122111 , 10202002 ,
11021220 , 11100200 , 11111111 , 11111210 , 11120002 ,
11222011 , 12001200 , 12100120 , 12102200 , 12111211 ,
12112022 , 12121212 , 20010200 , 20102201 , 20121212 ,
20210101 , 20222011 , 20222200 , 21100210 , 21120111 ,
21120120 , 21200221 , 21212110 , 22000012 , 22000100 ,
22020201 , 22022000 , 22101102 , 22101222 , 22102210 ,
22120110 , 22221221 , 22222222

of C′′ = 0C′0 ∪ 1C
′
0 underSm is a 1-code of length2m+ 1 for

the asymmetric binary channel.
Proof: We only have to consider codewords ofC′′ which

differ in the first position, i.e.,c′′0 = 0c
′
0 and c′′1 = 1c

′
1. If the

Hamming distance betweenc′0 andc′1 is only one, then without
loss of generality, we can assumec′0 = 1v and c′1 = 2v, as
only the symbols1 and2 have distance two with respect to
the channelT . Then the images ofc′′i underSm are c0 =
001Sm−1(v) and c1 = 110Sm−1(v). Similarly, if c′0 and c′1
differ in at least two positions, the images ofc′′i underSm

will have asymmetric distance greater than one.
Generators forextended cyclic codesbased on Lemma 3.1

are given in Table III.
Example 3.2:For m = 3, consider the cyclic codesC′0 ={000 ,111 ,222 }, and C′1 = {210 ,021 ,102 }. The image of

0C′0 ∪ 1C
′
1 underS3 is

0000000,0000011,0001100,0001111,

0110000,0110011,0111100,0111111,

0010101,0101010,

1100100,1100111,1001001,1111001,1010010,1011110.

We finally note that we use nonlinear cyclic codes. This
makes it more complicated to find a systematic generalized
construction for larger length.

IV. T HE BINARY VT-CR CODES VIEWED AS TERNARY

CODES

In this section we clarify the relationship between the
ternary construction and the VT-CR codes, by showing that
certain VT-CR codes are a special case of the ternary con-
struction. We start from the following.

Definition 4.1: A binary codeC of even lengthn = 2m is
called ternary if S

m(S̃m(C)) = C.
Based on this definition, if a binary codeC of even length

is ternary, then it can be constructed from some ternary code
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TABLE III
GENERATORS OF EXTENDED TERNARY CYCLIC CODES WHICH YIELD

GOOD BINARY 1-CODES.

m generators
3 0000 , 0111 , 0222 ,

1210

4 00000 , 00221 , 01211 , 02222 ,
11010 , 12020 , 11220

5 000000 , 010021 , 012102 , 020111 , 022201 ,
011111 , 022222 ,
102210 , 101020 , 101212

6 0100021 , 0122000 , 0100100 , 0200200 , 0010101 ,
0222010 , 0110201 , 0101202 , 0202020 , 0111111 ,
0221211 , 0212211 , 0222222 ,
1022100 , 1112000 , 1001002 , 1120102 , 1101101 ,
1012111 , 1102012 , 1220220 , 1122202 , 1211112 ,
1211222 , 1121212

7 01100002 , 00200100 , 01200010 , 00202200 ,
00112200 , 01002120 , 01001011 , 01210020 ,
01222100 , 00022202 , 01221200 , 00101121 ,
00210201 , 01102220 , 01020111 , 01012211 ,
02021210 , 00122221 , 01112021 , 01202221 ,
01111111 , 01122112 , 02222222 ,
10221000 , 10102000 , 10001101 , 12000120 ,
12101100 , 11100120 , 11002202 , 11200220 ,
11200211 , 10012112 , 11021210 , 12201022 ,
11110220 , 10111211 , 11212210 , 10202122 ,
10211212 , 12202212 , 11221221

via the mapS. The following theorem shows that certain VT-
CR codes are a special case of asymmetric codes constructed
from some ternary codes.

Theorem 4.2:Forn even, the VT codeVg and the CR code
Cg are ternary for anyg.

Proof: Let C = Vg or C = Cg. We only need to prove
that there exists a pairing of the coordinates ofC such that
for any codewordv ∈ C the following holds: if for a pairα of
coordinates the code symbols ofv are00, denoted byv∣α = 00,
then there exists another codewordv′ ∈ C with v′∣α = 11 and
v′∣ᾱ = v∣ᾱ. Hereᾱ denotes all coordinates except the pairα.

Both the VT codeVg and the CR codeCg are defined by
a groupG of odd ordern + 1, and the coordinates of the
codewords correspond to the non-identity group elements. As
the group order is odd, the only group element that is its
own inverse is identity. Hence we can pair every non-identity
elementh ∈ G with its inverse−h. If neither h nor −h are
contained in the sum in Eq. (1), then the sum clearly does not
change when including bothh and−h.

We look at some examples.
Example 4.3:For n = 6, the VT codeV0 is given by

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 = 0 mod 7, (9)

wherexi ∈ {0,1}. Then one can use the pairing

{x1x6, x2x5, x3x4}. (10)

The cardinality of the code is10. The image of this code under
S̃

6 is a linear code[3,1,3]3.
Example 4.4:For n = 8, the VT codeV0 is given by

8

∑
i=1

ixi = 0 mod 9, (11)

wherexi ∈ {0,1}. Then one can use the pairing

{x1x8, x2x7, x3x6, x4x5}. (12)

The cardinality of the code is30.
Example 4.5:For n = 8, the CR codeC0 of largest cardi-

nality, which is associated with the groupZ3 ⊕ Z3, is given
by

x1(0,1) + x2(0,2)+ x3(1,0) + x4(1,1)
+x5(1,2) + x6(2,0)+ x7(2,1) + x8(2,2) = mod(3,3), (13)

wherexi ∈ {0,1}. Then one can use the pairing

{x1x2, x3x6, x4x8, x5x7}. (14)

The cardinality of the code is32, which is however nonlinear.
The image of this code under̃S8 is a linear code[4,2,3]3,
which is the one given in Example 2.5.

Example 4.6:Considern = 10. For the VT codeV0 is then
given by

10

∑
i=1

ixi = 0 mod 11, (15)

wherexi ∈ {0,1}. Then one can use the pairing

{x1x10, x2x9, x3x8, x4x7, x5x6}. (16)

The cardinality of the code is94, and the image of this code
underS̃10 is equivalent to a cyclic ternary code withm = 5.
Note that there exists a1-code(10,98) which is obtained from
a cyclic ternary code (see Sec. III).

Now we consider the case of odd length.
Definition 4.7: A binary codeC of odd lengthn = 2m + 1

is calledgeneralized ternaryif S
m(S̃m(C)) = C, whereS̃m

acts on the last2m coordinates ofC.
Based on this definition, if a binary codeC of odd length

2m+ 1 is generalized ternary, then it can be constructed from
some single-error-correcting code for the channelZ ×T m via
the mapS̃.

Theorem 4.8:For n odd, the VT codeVg is generalized
ternary for anyg.

Proof: We only need to prove that there exists a pairing
which leaves a single coordinate as a bit, such that for any
codewordv ∈ Vg, if v restricted to a chosen pairα is 00, then
there exist another codewordv′ ∈ Vg such thatv′∣α = 11 and
v′∣α̃ = v∣α̃.

For a VT codeVg of odd length, choose the pairing{i, n+
1− i}n/2i=1 and leave the coordinate(n+1)/2 as a bit. Then the
above condition is satisfied.

We discuss an example.
Example 4.9:For n = 7, the VT codeV0 is given by

7

∑
i=1

ixi = 0 mod 8, (17)

wherexi ∈ {0,1}. Then one can use the pairing

{x1x7, x2x6, x3x5}, (18)

and treatx4 as a bit. The size of the code is16, and it is
equivalent to the code given in Example 2.10.

In Table IV, the cardinality of codes found by the (general-
ized) ternary method is compared to the size of the correspond-
ing VT-CR codes. One can see that the (generalized) ternary
construction indeed outperforms the VT-CR construction, in
particular for largern.



6

TABLE IV
SIZE OF 1-CODES FROM TERNARY CONSTRUCTION VIA NUMERICAL

SEARCH, COMPARED TOCR CODES, CODES OBTAINED BY THE PARTITION
METHOD, AND THE KNOWN BOUNDS FROM[9], [14], [18].

FOR ODDn, ‘ CYCLIC TERNARY’ REFERS TO EXTENDED CYCLIC CODES.

n CR cyclic ternary ternary partition known bounds
6 10 12 12 * 12
7 16 16 16 * 18
8 32 29 32 * 36
9 52 53 55 * 62
10 94 98 105 104(a) 112–117
11 172 154 180 180(b) 198–210
12 316 336 351 336(b) 379–410
13 586 612 612 652(b) 699–786
14 1096 1200 1200 1228(b) 1273–1500
15 2048 2144 2144 2288(b) 2288–2828
16 3856 3952 3952 4280(b) 4280–5486

The column in Table IV labeled ‘partition’ is obtained from
the partition method in Ref. [12]. The code(a) is found
from the partition of constant weight codes of length6 and
asymmetric codes of length4. Codes(b) are from Ref. [12].
For n = 10,11,12, the ternary construction yields codes of
equal size or even more codewords compared to the partition
method. However, the best codes are obtained by heuristic
methods, which, e.g., give(10,112) [14] and(12,379) [15].
This is not surprising as both the ternary construction and
the partition method assume some additional structure of the
binary 1-codes.

V. NONBINARY ASYMMETRIC-ERROR-CORRECTING CODES

In this section, we consider the construction of1-codes for
nonbinary asymmetric channels. Recall that the characteristic
properties of codes for this channel model are given by
Definition 1.1 and Theorem 1.2. Our construction will again
be based on concatenation, generalizing the mapS

m.
For a givenq, choose the outer code as some code over the

alphabetA = {0,1, . . . , q − 1}, which encodes to some inner
codes{C0,C1, . . . ,Cq−1} via i↦ Ci. Now choose theq inner
codes as the double-repetition codeC0 = {00,11, . . . , (q −
1)(q − 1)} and all its q − 1 cosetsCi = C0 + (0i), i.e., we
have the rule that(0i) ∈ Ci. It is straightforward to check that
eachCi is a1-code, i.e., has asymmetric distance2. Note that
a single asymmetric error will only drive transitions between
i, j for i = j ± 1. For instance, forq = 3,4,5, the induced
channelsR3, R4, R5 are shown in Fig. 2. In general, we
will write the induced channel asRq for outer codes over the
alphabetA = {0,1, . . . , q − 1}.

0

1 2✛✲✣✢ ❪❫

0

1 2

3

✲✛

✲✛
✻❄ ✻❄

0

1

2 3

4

✛✲▼◆ ✍✌

❃❂ ⑦⑥

R3 R4 R5

Fig. 2. The induced channelR3 for q = 3 (which is just the ternary
symmetric channel), the induced channelR4 for q = 4, and the induced
channelR5 for q = 5. The arrows indicate the possible transitions between
symbols.

Similar to Theorems 2.6 and 2.9, we have the following
Theorem 5.1:Forn even, an outer(n/2,K)q code correct-

ing a single error for the channelRq leads to an(n, qn/2K)q

1-code C, for q > 2. For n odd, an outer((n + 1)/2,K)q
code correcting a single error for the channelRq leads to an(n, q(n−1)/2K)q 1-codeC, for q > 2.

If the outer code is linear, then our construction gives linear
codes for the asymmetric channel. We state this result as a
corollary below.

Corollary 5.2: An outer [m,k]q linear code correcting a
single error for the channelRq leads to a[2m,m + k]q 1-
code and a[2m − 1,m + k − 1]q 1-code, forq > 2.

It turns out that in many cases, our construction gives linear
codes with larger cardinality than the distance-three symmetric
codes of equal length. We first discuss the case ofq = 3. In
this case,R3 is the ternary symmetric channel, so we will just
use outer codes of Hamming distance3. We consider some
examples.

Example 5.3:Considerq = 3 and take the outer code as[3,1,3]3, with codewords000 , 111 , 222 . This will give a[5,3]3 1-code with codewords

00000, 00011, 00022, 01100, 01111,

01122, 02200, 02211, 02222,

10101, 10112, 10120, 11201, 11212,

11220, 12001, 12012, 12020,

21010, 21021, 21002, 22110, 22121,

22102, 20210, 20221, 20202,

(19)

while the best linear single-symmetric-error-correctingcode is[5,2,3]3. The[3,1,3]3 outer code also yields a[6,4]3 1-code,
while the best linear single-symmetric-error-correctingcode is[6,3,3]3. Now take the outer code as[4,2,3]3. This will give
a [7,5]3 1-code, while the best linear single-symmetric-error-
correcting code is[7,4,3]3. We can also construct a[8,6]3
1-code, while the best linear single-symmetric-error-correcting
code is[8,5,3]3.

This example can be directly generalized to other lengths.
Furthermore, the constructions extend trivially toq > 3, as
any code of Hamming distance3 corrects a single error for
the channelRq. Note that Hamming codes overFq have length
nr = (qr − 1)/(q − 1). For a givennr, our construction then
allows to construct asymmetric1-codes of all length[nr +
1,2nr] for nr odd or all lengths[nr+2,2nr] for nr even. The
sequence of lengthsnr is a geometric series, and hence our
method can construct asymmetric codes for approximately1

q

of all lengths, outperforming the best single-symmetric-error-
correcting linear codes.

Now consider the caseq > 3 in more detail. The channelRq

(see Fig. 2) is no longer a symmetric channel, so outer codes
of Hamming distance3 are no longer expected to give the
best1-codes. It turns out, however, that single-error-correcting
codes for the channelRq are equivalent to single-symmetric-
error correcting codes with respect to Lee metric [19] (see
also [20]), for which optimal linear codes are known. When
q is odd, letH be the parity check matrix whose columns
are all vectors inZr

q whose first non-zero elements is in the
{1,2, . . . , q−1

2
} (wherer is the number of rows inH), then the

corresponding code can correct a single error for the channel
Rq.

We consider an example.
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Example 5.4:For q = 5 consider the parity check matrix

( 1 1 1 1 1 2 2 2 2 2

0 1 2 3 4 0 1 2 3 4
) ,

which gives a[10,8]5 code correcting a single error for the
channelR5, and hence a[20,18]5 1-code. Note that the best
linear single-symmetric-error-correcting code forn = 20 is[20,17,3]5.

Our new linear codes for asymmetric channels forq > 2

show that Varshamov’s argument that for the binary case,
there is almost no hope to find good linear codes for the
asymmetric channel, does not hold for the nonbinary case.
There is indeed room for constructing good linear codes
adapted to the asymmetric channel.

Note that contrary to the binary case, the nonlinear VT-
CR codes can no longer be viewed as a special case of our
construction. However, for lengthsnr = q

r−1, our construction
gives codes of the same cardinality as the VT-CR codes, while
our codes are linear, but the VT-CR codes are not.

Finally, we briefly discuss the extension of our concatena-
tion method to constructt-asymmetric-error-correcting codes
for t > 1. We look at some examples.

Example 5.5:Consider the case ofq = 3. Take the outer
code as the[5,3]3 1-code constructed in Example 5.3, which
has asymmetric distance2. Now take the encoding to the inner
code as0 ↦ 00 , 1 ↦ 11 , 2 ↦ 22 . Then the concatenated code
has asymmetric distance4, which gives a[10,3]3 3-code,
while the best linear triple-error-correcting code is[10,2,7]3.
Similarly, take the outer code as the[6,4]3 1-code, then the
concatenated code is a[12,4]3 3-code, while the best3-error-
correcting linear code is[12,3,7]3.

VI. CODES FOR ASYMMETRIC LIMITED-MAGNITUDE

ERRORS

In this section, we discuss the application of these nonbinary
linear codes constructed in Sec. V to correct asymmetric
limited-magnitude errors with wrap around. This new ‘asym-
metric limited-magnitude error’ model, is introduced recently
in [16], which models the asymmetric errors in multilevel
flash memories in a more detailed manner. This model is
parameterized by two integer parameters:t̃ is the maximum
number of symbol errors within a codeword, andℓ the
maximal magnitude of an error. The definition of asymmetric
limited-magnitude errors is the following [16].

Definition 6.1: A vector of integerse = (e1, . . . , ei) is
called at̃ asymmetricℓ-limited-magnitude error word if∣{i ∶
ei ≠ 0∣ ≤ t̃, and for alli, 0 ≤ ei ≤ ℓ.

Here by ‘asymmetric’ it still means that if any transmitted
symbola is received asb ≤ a. For a codewordx ∈ An, then
a t̃ asymmetricℓ-limited-magnitude channel outputs a vector
y ∈ An such thaty = x − e, wheree is a t̃ asymmetricℓ-
limited-magnitude error word.

Coding problems for these channels have an intimate re-
lation to coding problems for asymmetric channels. Indeed,
when t = t̃ℓ, any t-code for the asymmetric channel trivially
correctst̃ asymmetricℓ-limited-magnitude errors. Of course,
the reverse is not true.

A generalization of Definition 6.1 is when we allow asym-
metric errors to wrap around from0 back toq−1. That is, we
interpret ‘−’ in y = x−e as subtraction modq. This error model
is then called the asymmetricℓ-limited-magnitude channels
with wrap around.

Similar as the asymmetric distance∆(x,y), we can define
a distancedℓ for this error model, as below.

Definition 6.2: For x,y ∈ An, defineM(x,y) = ∣{i ∶ xi >
yi}∣. The distancedℓ between the wordsx,y is then defined
as

dℓ(x,y) =
⎧⎪⎪⎨⎪⎪⎩
n + 1 if maxi{∣xi − yi∣} > ℓ
max{M(x,y),M(y,x)} otherwise

Similar as Theorem 1.2, the proposition below directly
follows [16].

Proposition 6.3:A codeC corrects̃t asymmetricℓ-limited-
magnitude errors if and only ifdℓ(x,y) ≥ t̃+1 for all distinct
x,y ∈ C.

And one can readily interpretdℓ for asymmetricℓ-limited-
magnitude channels with wrap around (interpret ‘−’ in as
subtraction modq), such that Proposition 6.3 still holds.
Apparently, in general at-code for the asymmetric channel
can no longer be used to correct errors for asymmetricℓ-
limited-magnitude channel with wrap around. There is a sphere
packing bound which naturally follows.

Theorem 6.4: [16] If C is a t̃ asymmetric ℓ-limited-
magnitude (with wrap-around) error-correcting code, of length
n over an alphabet of sizeq, then

∣C∣ t

∑
i=0

(n
i
)ℓi ≤ qn. (20)

An asymmetricℓ-limited-magnitude code is called perfect in
a sense that it attains this sphere-packing bound.

Code designs for correcting asymmetricℓ-limited-magni-
tude errors, with or without wrap around, are discussed in [16],
[20]. Here we show that the linear codes constructed in Sec. V
can be used to correct asymmetricℓ-limited-magnitude errors
and then further discuss their optimality using the sphere-
packing bound.

Recall the construction in Sec. V, where for a given
q, we choose theq inner codesC0, C1, . . . , Cq−1 as{00,11, . . . , (q − 1)(q − 1)} and all its q − 1 cosets. It is
straightforward to check that eachCi has dℓ = 2, for the
asymmetricℓ-limited-magnitude channel with wrap around,
for ℓ = 1, according to Definition 6.2. Indeed, this asymmetric
ℓ-limited-magnitude channel with wrap around, forℓ = 1 has
transitions

(q − 1)→ (q − 2)→ (q − 3)⋯→ 1→ 0→ (q − 1). (21)

We illustrate these asymmetric1-limited-magnitude channels
Ln for n = 3,4,5 bits in Fig. 3.

Now choose the outer code as some distance3 code over the
alphabetA = {0,1, . . . , q−1}, which encodes to the inner codes{C0,C1, . . . ,Cq−1} via i → Ci, then the following results
readily hold according to Proposition 6.3.

Proposition 6.5:The codes based on the constructions
given by Theorem 5.1 and Corollary 5.2 in Sec. V correct
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Fig. 3. The asymmetric1-limited-magnitude channelsLn for n = 3,4,5

bits. The arrows indicate the possible transitions betweensymbols.

a single asymmetricℓ-limited-magnitude error with wrap
around, forℓ = 1.
For ℓ = 1, the sphere-packing bound of Eq. (20) for correcting
a single error becomes

∣C∣ ≤ qn

n + 1
. (22)

Recall that for a givennr, the construction in Sec. V
gives linear codes of all lengths[nr + 1,2nr] for nr odd
or all lengths[nr + 2,2nr] for nr even, which outperform
the best single-symmetric-error-correcting linear codes. Here
nr =

1
q
(qr − 1), and q is a prime power thatFq is a field.

The sphere-packing bound given in Eq. (22) then shows that
all these linear codes are indeed optimal linear codes, for
correcting a single asymmetricℓ-limited-magnitude error with
wrap around, forℓ = 1. For n = qr − 1, we have perfect
linear codes. As an example, the[8,6]3 code constructed in
Example 5.3 is a perfect linear code. Note that perfect linear
codes of lengthn = qr − 1 for correcting a single asymmetric
ℓ-limited-magnitude error with wrap around, forℓ = 1, are also
obtained in [20], but from different constructions.

Indeed, those lineart-codes constructed in Sec. V can also
be used to correct̃t asymmetricℓ-limited-magnitude errors for
t = t̃ℓ. However, the sphere-packing bound no longer tells us
whether these linear codes are optimal.

VII. D ISCUSSION

We present new methods of constructing codes for asym-
metric channels, based on modified code concatenation. Our
methods apply to both binary and nonbinary case, for con-
structing both single- and multi-asymmetric-error-correcting
codes.

For the binary case, our construction gives nonlinear1-
codes for theZ channel, based on ternary outer codes. Some
good1-codes with structure, such as codes from ternary linear
codes and ternary cyclic codes are constructed. We also show
that the VT-CR code, which are the best known systematic
construction of1-codes, posses some nice structure while
viewed in the (generalized) ternary construction, and they
are suboptimal under the (generalized) ternary construction.
Indeed, this ternary construction is originally inspired by
constructing high performance quantum codes adapted to
asymmetric channels, see [21].

For the nonbinary case, our construction gives linear1-
codes, which for many lengths outperforms the best single-
symmetric-error-correcting codes of the same lengths. Our
method can also be applied to construct good lineart-codes.
To our knowledge, our method gives the first systematic
construction of good linear codes for nonbinary asymmetric
channels, which indicates that Varshamov’s argument of no

good linear codes for asymmetric channels does not extend to
the nonbinary case.

Our t-codes also apply to correct̃t asymmetricℓ-limited-
magnitude errors with wrap around, fort = t̃ℓ. These channels
model the errors in multilevel flash memory in a more detailed
manner than Varshamov’s asymmetric channel given in Defi-
nition 1.1. In case ofℓ = 1, our single-error-correcting codes
are shown to be optimal linear codes by the sphere-packing
bound. For lengthsn = qr − 1, these codes are perfect linear
codes.

We hope our methods shade light on further study of
asymmetric codes, particularly, on systematic construction of
these codes. These initial results on good lineart-codes with
t > 1 and q > 2 are rather promising as they might find
application in the context of flash memories.
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