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A REGIME OF LINEAR STABILITY FOR THE EINSTEIN-SCALAR FIELD
SYSTEM WITH APPLICATIONS TO NONLINEAR BIG BANG FORMATION

IGOR RODNIANSKI∗ AND JARED SPECK∗∗

Abstract. We linearize the Einstein-scalar field equations, expressed relative to constant mean
curvature (CMC)-transported spatial coordinates gauge, around members of the well-known family
of Kasner solutions on (0,∞) × T3. The Kasner solutions model a spatially uniform scalar field
evolving in a (typically) spatially anisotropic spacetime that expands towards the future and that
has a “Big Bang” singularity at {t = 0}. We place initial data for the linearized system along
{t = 1} ≃ T3 and study the linear solution’s behavior in the collapsing direction t ↓ 0. Our first main
result is the proof of an approximate L2 monotonicity identity for the linear solutions. Using it, we
prove a linear stability result that holds when the background Kasner solution is sufficiently close to
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) solution. In particular, we show that as t ↓ 0,
various time-rescaled components of the linear solution converge to regular functions defined along
{t = 0}. In addition, we motivate the preferred direction of the approximate monotonicity by showing
that the CMC-transported spatial coordinates gauge can be viewed as a limiting version of a family
of parabolic gauges for the lapse variable; an approximate monotonicity identity and corresponding
linear stability results also hold in the parabolic gauges, but the corresponding parabolic PDEs are
locally well-posed only in the direction t ↓ 0. Finally, based on the linear stability results, we outline
a proof of the following result, whose complete proof will appear elsewhere: the FLRW solution is
globally nonlinearly stable in the collapsing direction t ↓ 0 under small perturbations of its data at
{t = 1}.

Keywords: BKL conjectures, constant mean curvature, FLRW, Kasner solution, monotonicity,
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1. Introduction

This is the first of two papers in which we derive a new approximate monotonicity identity for two
Einstein-matter systems and use it to prove linear and nonlinear stability results for cosmological1

solutions featuring Big Bang singularities. By a “Big Bang” singularity in a spacetime, we roughly
mean a spacelike hypersurface such that the solution exhibits curvature blowup along the entire
hypersurface. In particular, our nonlinear result constitutes a proof of stable curvature blowup
along a spacelike hypersurface for an open set of solutions. We now briefly summarize the nonlinear
result, which is proved2 in our second paper [59]; see Theorem 8.1 for a precise statement and [59]
for an even more detailed statement.

Theorem 1.1 (Stable Big Bang Formation for near-FLRW solutions (Rough version)).
Consider initial data for the Einstein-scalar field system given on the manifold3 Σ1 = T3, which we
identify with a Cauchy hypersurface of constant time t = 1, i.e., Σ1 = {1} × T3. If the data are
close in a suitable Sobolev norm to the data of the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
solution (see Subsect. 1.3), then there exists a system of constant mean curvature-transported spatial
coordinates (t, x1, x2, x3) such that the perturbed solution exists for (t, x) ∈ (0,1] × T3. Like the
FLRW solution, the perturbed solution’s Kretschmann scalar RiemαβγδRiemαβγδ blows up like t−4

as t ↓ 0. Moreover, the solution exhibits asymptotically velocity term dominated (AVTD) behavior,

which means that near t = 0, the dynamics are dominated by time derivative terms (that is, the
spatial derivative terms in the equations become negligible), and certain t-rescaled components of
the solution converge in a monotonic fashion to regular functions of x as t ↓ 0. In particular, as
t ↓ 0, the solution is asymptotic to a solution of the VTD equations, which are obtained by setting
all spatial derivative terms equal to 0 in the Einstein-scalar field equations (expressed relative to the
CMC-transported spatial coordinates gauge).

See Subsect. 1.3 for further discussion of Theorem 1.1, Subsect. 1.7 for a summary of our linear
results, and Subsect. 1.5 for a discussion of the relationship between the various results.

In addition to deriving stability results, we also identify a new one-parameter family of para-
bolic gauges for the lapse function, which, like the well-known constant mean curvature (CMC)-
transported-spatial coordinates gauge, leads to a formulation of the equations exhibiting the key
structural features that allow us to prove the main results. For our purposes here, none of the gauges
that we employ are manifestly superior. The parabolic lapse gauges are more general/flexible in
that one does not need to construct4 a CMC hypersurface to employ them. However, in the present
context, they are a bit more unwieldy to use. For this reason, most of our results here rely on CMC
foliations of spacetime. However, it is conceivable that the parabolic gauges will be useful in future

1By “cosmological,” we mean that the spacetime manifold M has compact Cauchy hypersurfaces and that the
Ricci curvature of the spacetime metric gµν verifies RicαβX

αXβ ≥ 0 for all timelike vectors Xµ. For the Einstein-
scalar field system, this Ricci curvature condition is always verified by solutions because Einstein’s equations imply
that Ricµν = Tµν −

1
2
(g−1)αβTαβgµν and because the energy-momentum tensor Tµν of a scalar field verifies the

strong energy condition.
2More precisely, Theorem 1.1 is a special case of the results of [59]: in [59] we prove an analog of Theorem 1.1 for

the stiff fluid matter model. Theorem 1.1 follows as a special case in which the fluid’s vorticity is zero; see Subsect.
1.1 for further clarification of this point.

3Throughout, Tn ∶= [−π,π]n (with the ends identified) is an n-dimensional torus.
4For a general spacetime, such a CMC hypersurface does not exist. However, CMC hypersurfaces do exist for the

spacetime solutions studied here; see [59] for a proof of this fact.
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studies of cosmological spacetimes. For this reason, in Sect. 10, we provide these gauges in detail
and re-derive our linear results relative to them. We stress that all of the gauges under consideration
lead to a formulation of the equations exhibiting infinite speed5 of propagation. The infinite speed
is fundamental for our analysis since our approach is based on synchronizing the singularity across
a spacelike hypersurface of constant time; in a purely hyperbolic gauge involving a time coordinate
t, it is not generally possible to ensure that a blowup-hypersurface (should one exist) is of the form{t = const}.
1.1. The Einstein-scalar field equations. In the present article, we restrict our attention to the
study of the Einstein-scalar field equations

Ricµν − 1
2
Rgµν = Tµν ,(1.1a)

(g−1)αβDαDβφ = 0(1.1b)

with data given on the Cauchy hypersurface Σ1 = {1} × T3. Above and throughout, Ric denotes
the Ricci tensor of the spacetime6 metric g, R = (g−1)αβRicαβ denotes the scalar curvature of g, D
denotes the Levi–Civita connection of g, and T denotes the energy-momentum tensor of the scalar
field φ:

Tµν =DµφDνφ − 1

2
gµν(g−1)αβDαφDβφ.(1.2)

The scalar field is a simple matter model that has been well-studied in mathematical general rel-
ativity in the context of asymptotically flat spacetimes; see [20–25]. In our complementary article
[59], we study the Einstein-stiff fluid system, where a stiff fluid has sound speed equal to unity (that
is, equal to the speed of light). The stiff fluid model is more general in the sense that it reduces7

to the scalar field model when the fluid’s vorticity vanishes. Due to our gauge choices (which we
explain in detail below), one should identify the “data hypersurface” Σ1 with a surface of constant
time 1. We will study the behavior of solutions as t ↓ 0. The singular behavior that we will uncover
occurs along Σ0, which will be identified with a surface of constant time 0.

Although our results apply when the initial Cauchy hypersurface is T3, they can easily be gen-
eralized to the case of n spatial dimensions, that is, to the case of Tn for n ≥ 1. We anticipate that
similar results might also hold for some other matter models with special properties and, in the case
of very high spatial dimensions, for the Einstein-vacuum equations; see the discussion in Subsect.
1.9.

1.2. Paper outline.

● In the remainder of Sect. 1, we summarize our linear and nonlinear stability results, discuss
their relationship, and provide context by discussing prior work.● In Sect. 2, we introduce some notation and conventions that we use throughout the article.

5The fundamental (gauge-independent) dynamic variables in the Einstein-scalar field equations propagate at a
finite speed. It is only our description of them that involves an infinite speed.

6By “spacetime,” we mean a four-dimensional time-orientable manifold M equipped with a Lorentzian metric g
of signature (−,+,+,+).

7For scalar fields with a timelike gradient and under an exactness condition tied to the fluid velocity and enthalpy
per particle; see [58] for further discussion on this point.
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● In Sect. 3, we provide the Einstein-scalar field equations in CMC-transported spatial co-
ordinates. We then linearize the equations around members of the (generalized) Kasner
family.● In Sect. 4, we provide the norms and energies that we use in our analysis of linear solutions.● In Sect. 5, we prove an approximate monotonicity identity for linear solutions. The identity
lies at the heart of all of our results.● In Sect. 6, we use the approximate monotonicity identity to derive mildly singular energy
estimates for linear solutions in the case that the Kasner background is nearly spatially
isotropic.● In Sect. 7, we use the mildly singular energy estimates to prove a linear stability result for
nearly spatially isotropic Kasner backgrounds.● In Sect. 8, we use the results of the previous sections to outline a proof of the nonlinear
stability of the FLRW solution near its Big Bang singularity; complete details are located
in [59].● In Sect. 10, we introduce a family of parabolic lapse gauges and re-derive our linear results
in these gauges.

1.3. The FLRW solution and preliminary context for the results. A quintessential example
of a Big Bang spacetime is the FLRW solution (referred to in Theorem 1.1) to the Einstein-scalar
field system, which plays a prominent role in cosmology in view of its spatially isotropic nature. It
can be expressed in the well-known form

gFLRW = −dt2 + gFLRW , gFLRW = t2/3 3∑
i=1

(dxi)2, φFLRW =
√

2

3
ln t, (t, x) ∈ (0,∞) ×T3.

(1.3)

One can compute that the Kretschmann scalar of gFLRW , namely RiemαβγδRiemαβγδ, blows up
like t−4 as t ↓ 0. That is, the FLRW solution has a Big Bang singularity at t = 0.

Theorem 1.1 shows that like the FLRW solution, perturbed solutions also exhibit the same kind
of curvature blowup. We provide the complete proof of Theorem 1.1 in the companion article [59]
(for the Einstein-stiff fluid system). The proof is part of a “five-step program” encompassing the
results of both papers, which we summarize in Subsect. 1.5. Some key steps in the program are of
independent interest and hold in a more general context than the form in which they are used in
the proof of Theorem 1.1. In this article, we identify such a more general context and give rigorous
proofs of those key steps that remain valid. In particular, here we study a large family of linearized
versions of the Einstein-scalar field equations, where the backgrounds around which we linearize have
been well-studied in the mathematical general relativity literature. For each linearized system, we
derive the aforementioned approximate monotonicity identity for the linear solutions. Specifically,
we linearize the equations around members of the family of generalized Kasner solutions, which are
explicit spatially homogeneous (that is, non-x-dependent) solutions whose unique spatially isotropic
member is the FLRW solution. For generalized Kasner solutions, the spacetime metric is of the
form g = −dt ⊗ dt + ∑3

I=1 t
2qIωI ⊗ ωI , where the qI are constants verifying certain constraints and

the ωI ∶= ωI
adx

a are a set of three g-orthogonal one-forms on T3. In particular, relative to standard
coordinates {xa}a=1,2,3 on T3, we have ωI

a = ωI
adx

a, where the ωI
a are constants and det(ωI

a) ≠ 0.
See Subsect. 1.6 for more details regarding these generalized Kasner solutions. Here we only note
that for brevity, we will often refer to these (nonlinear) Einstein-scalar field solutions as Kasner
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solutions. This breaks with the traditional convention, which reserves the label “Kasner solution”
for Einstein-vacuum solutions. A fundamental aspect of the Kasner backgrounds (around which
we linearize) is that, like the FLRW solution, they have Big Bang singularities at t = 0 (aside from
some exceptional cases). In addition to deriving the approximate monotonicity identity, we also
use it to prove a linear stability result for a subset of the Kasner backgrounds, specifically those
that are nearly spatially isotropic (that is, for near-FLRW Kasner backgrounds). Before further
describing the five-step program and how our linear/nonlinear stability results fit into it, we first
provide context that clarifies the significance of Theorem 1.1.

● Although the data we consider fall under the scope of the Hawking-Penrose “singularity”
theorems8 [41, 50], Theorem 1.1 goes beyond the soft conclusion of geodesic incompleteness
provided by those theorems in that it shows that the incompleteness is due to curvature
blowup along the hypersurface {t = 0}. As such, the solutions of Theorem 1.1 exhibit Strong
Cosmic Censorship-type behavior, by which we mean that the solution variables cannot be
extended as C2 tensorfields beyond the boundary portion {t = 0} of the maximal development
of the data. This is the first result of this type for Einstein’s equations that does not involve
symmetry or analyticity assumptions on the data.● The AVTD behavior proved in Theorem 1.1, though predicted via heuristic arguments for
the scalar field model in [13] and for the stiff fluid in [11], had not previously been shown
in solutions without symmetry, except under the assumption of spatial analyticity [7]; see
Subsect. 1.8 for further discussion on these works. Moreover, as we describe below, the
solutions from Theorem 1.1 are such that at each fixed spatial point x, its asymptotic
behavior is Kasner-like, by which we mean that its limiting behavior is well-described by
fields that are related to members of the aforementioned Kasner family. The belief that the
“end states” should, at each fixed x, be Kasner-like was part of the heuristics given in [11,13].
More precisely, the authors in [13] assumed that all spatial derivative terms in the evolution
equations become negligible near the singularity {t = 0}. The authors then argued that
the spacetime metric should asymptotically behave like −dt⊗ dt +∑3

I=1 t
2qI(x)ωI(x) ⊗ ωI(x)

near the singularity, that is, like Kasner solutions in which the exponents and one-forms are
x-dependent. See just below Theorem 1.4 for further comments on the asymptotic behavior
of solutions to the linearized equations.● The monotonic behavior of the solution as t ↓ 0 was also predicted in [11, 13] and in fact is
accounted for by the authors’ posited asymptotic form of the metric −dt2+∑3

I=1 t
2qI(x)ωI(x)⊗

ωI(x). This existence of an interesting set of spatially analytic solutions to the Einstein-
scalar field and Einstein-stiff fluid systems exhibiting this kind of monotonic asymptotic
behavior was rigorously shown in the aforementioned work [7]. Like the heuristic arguments
given in [11,13] and the rigorous results of [7], our proof of the monotonic behavior (via the
approximate monotonicity identity and its consequences) relies on the particular structure
of the scalar field and stiff fluid matter models; see Subsect. 1.8 for further discussion on
this point.

1.4. Initial value problem formulation of the Einstein equations and gauges. Before fur-
ther discussing our results, we first discuss some basic issues concerning the initial value problem for
the (nonlinear) Einstein-scalar field system (1.1a)-(1.1b) and our gauge choices. The fundamental

8More precisely, see [70, Theorem 9.5.1] for a version of “Hawking’s theorem” that can be applied to the initial
data considered in Theorem 1.1.
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results [19] and [18], which are respectively by Choquet–Bruhat and Choquet–Bruhat + Geroch,
showed that the system (1.1a)-(1.1b) has an initial value problem formulation in which sufficiently
regular data give rise to a unique maximal globally hyperbolic development.9 The rest of our dis-
cussion here is adapted to the setup of the present article, where the initial Cauchy hypersurface
is T3. The “geometric data” (for the nonlinear equations) consist of the following fields on T3:(0gij, 0kij, 0φ, 0ψ). Here, 0gij is a Riemannian metric, 0kij is a symmetric two-tensor, and 0φ and 0ψ

are a pair of functions. A solution launched by the data consists of a four-dimensional time-oriented

spacetime (M,g), a scalar field φ on M, and an embedding T3
ι↪M such that ι(T3) is a Cauchy

hypersurface in (M,g). The spacetime fields must verify the equations (1.1a)-(1.1b) and be such

that ι∗g = 0g, ι∗k = 0k, ι∗φ = 0φ, ι∗N̂φ = 0ψ, where k is the second fundamental form of ι(T3) (our
sign convention is given in (3.1)), N̂φ is the derivative of φ in the direction of the future-directed

normal N̂ to ι(T3), and ι∗ denotes pullback by ι. Throughout the article, we will often suppress
the embedding and identify T3 with ι(T3).

It is well-known (see also Prop. 3.1) that the data are constrained by the Gauss and Codazzi
equations, which take the following form for the Einstein-scalar field system:

0R − 0kab
0kba + (0kaa)2 = 2T(N̂, N̂)∣T3 = 0ψ2 +∇a0φ∇a

0φ,(1.4a)

∇a
0kaj − 0∇j0kaa = −T(N̂, ∂

∂xj
)∣T3 = −0ψ∇j

0φ.(1.4b)

Above, T(N̂, N̂) ∶= TαβN̂αN̂β, ∇ denotes the Levi–Civita connection of 0g, 0R denotes the scalar
curvature of 0g, and indices are lowered and raised with 0g and its inverse. Equations (1.4a)-(1.4b)
are known, respectively, as the Hamiltonian and momentum constraints.

As is well known, to obtain a hyperbolic formulation, an elliptic-hyperbolic formulation, or a
parabolic-hyperbolic formulation of equations (1.1a)-(1.1b), suitable for studying the initial value
problem, one must impose gauge choices. As we mentioned at the beginning, there are two gauges
in which we are able to derive our main results. The first is the well-known CMC-transported-
spatial-coordinates gauge, which we recall in detail in Sect. 3. In this gauge, the spacetime metric
g is decomposed into the lapse n and the Riemannian 3-metric g on Σt ∶= {(s, x) ∈ (0,1]×T3 ∣ s = t}
as follows:

g = −n2dt2 + gabdxadxb.(1.5)

The spatial coordinates10 {xa}a=1,2,3 are called “transported” because they are constant along the

integral curves of the vectorfield N̂ = n−1∂t, which is the future-directed unit normal to Σt. The
basic variables to be solved for in the nonlinear equations are gij, kij ∶= −1

2
n−1∂tgij , n, and φ.

The hypersurfaces Σt have mean curvature 1
3
kaa that is constant, that is, that depends only on

t. To achieve this, n must verify an elliptic PDE on Σt. Hence, this gauge leads to an elliptic-
hyperbolic formulation of the equations. Above and throughout, kij = giakaj denotes the (mixed)
second fundamental form of the constant-time hypersurface Σt. We normalize the time coordinate
so that kaa(t, x) = −t−1 and we identify Σ1 with the initial Cauchy hypersurface. To be admissible
under this setup, the initial mixed second fundamental form must verify 0kaa = −1. See Sect. 3 for

9Roughly, this is the largest possible classical solution to the Einstein-scalar field equations that is uniquely
determined by the data.

10Technically, the spatial coordinates are only locally defined on T
3, even though the coordinate partial derivative

vectorfields ∂i ∶=
∂

∂xi can be globally defined so as to be smooth.
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a more detailed discussion of this gauge. In particular, we provide the corresponding constraint
and evolution equations in Prop. 3.1. Until Sect. 10, we will work with CMC-transported spatial
coordinates gauge.

The second gauge suitable for our purposes is a one-parameter family of gauges that is in many
ways like the CMC-transported spatial coordinates gauge, except that the elliptic CMC lapse equa-
tion is replaced with a parabolic evolution equation for n that is well-posed in the past direction;
see Sect. 10 for the details. Gauges for Einstein’s equations involving parabolic equations have been
considered in the general relativity literature for several decades. For example, in the work [10],
the authors introduced a family of gauges in which the lapse solves a parabolic equation, and they
suggested that such gauges should lead to efficient and accurate numerical simulations. We also
point out the work [68] on the Euler-Einstein equations under the equation of state p = c2sρ, where
p is the fluid pressure, ρ is its proper energy density, and the constant cs verifies 0 < cs ≤ 1. In [68],
the authors introduced the separable volume gauge, which is a parabolic gauge that can be viewed
as a Lorentzian version of inverse mean curvature flow. They posited that the separable volume
gauge should be useful for proving rigorous theorems concerning the behavior of inhomogeneous
cosmological solutions near a spacelike singularity. Their main result was geometric: they identified
a set that is invariant under the flow of their equations and conjectured that it is the past attractor
of the flow. Interestingly, well-posedness for the equations studied in [68] is not known because
their principal part is not of any standard type. In the work [39], the authors slightly modified the
equations of [68] to produce a system of transport-diffusion equations, which they showed to be
well-posed. Readers can also consult [40] for a discussion of local well-posedness for the Einstein
equations under various gauge conditions involving a parabolic equation for the lapse.

1.5. The five-step program. We now summarize the five-step program mentioned in Subsect.
1.3. In particular, we briefly introduce our linear results and explain in what sense they are tied
to/ constitute an extension of the proof of Theorem 1.1 given in [59].

(1) (Approximate monotonicity identity) In this article, for all Kasner backgrounds, we
first establish an approximate monotonicity identity for solutions to the linearized equations.
More precisely, we derive an integral identity for solutions in which, due to some special
cancellations, some unfavorable integrals are shown to be equal to favorably signed integrals,
up to error terms. See Theorem 1.2 for a rough summary of the integral identity and
Theorem 5.1 for the precise statement. The favorably signed integrals encourage some of
the linear solution variables to decay as t ↓ 0, that is, chronologically towards the Kasner
background’s Big Bang. The monotonicity is indeed only approximate in the sense that
some of the unsigned error terms in the integral identity compete against the favorably
signed integrals. It turns out that for nearly spatially isotropic backgrounds (that is, for
near-FLRW backgrounds), the favorably signed integrals are sufficiently strong to absorb
most of the unsigned error terms, which is crucial for the next step.

(2) (Mildly singular energy estimates at the lowest order for near-FLRW back-
grounds) Next, for nearly spatially isotropic Kasner backgrounds, we use the approximate
monotonicity identity from Step (1) to establish an energy estimate and elliptic estimates for
solutions to the linearized equations. The elliptic estimates are needed to control the lapse,
which verifies an elliptic equation in CMC gauge. If we were to instead use the parabolic
lapse gauge mentioned above, then the elliptic estimates would be replaced with parabolic
energy estimates; see Sect. 10. These estimates are at the level of the non-differentiated
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linearized equations. A key aspect is that the energy can blow up at the mild rate t−cη as
t ↓ 0, where c > 0 is a universal constant and the constant η ≥ 0 is a measure of how non-
spatially-isotropic the Kasner background is. In particular, η = 0 for the FLRW background;
see (1.9b) for the precise definition of η. Because of the energy blowup and because of the
precise structure of the t-weights in the energies (see Def. 4.4), the energy estimate is not
in itself sufficient to establish linear stability results that are consistent with the nonlinear
stable blowup result provided by Theorem 1.1. Another key aspect of the energy estimate
is that its proof crucially relies on the approximate monotonicity identity from Step (1).
Without the combined strength of the cancellations and favorably signed integrals provided
by the identity, we would have only been able to establish a more severe energy blowup-rate
of t−C as t ↓ 0, where C is a large constant. Such a severe energy blowup-rate would not have
been sufficient for establishing the linear stability of the solution (see Step (4) for clarifica-
tion on this point), which in turn would have prevented us from controlling the nonlinear
error terms that we encounter in the proof of Theorem 1.1. See Theorem 1.3 for a rough
statement of the energy estimate and Theorem 6.1 for the precise statement.

(3) (Mildly singular energy estimates up to top-order for near-FLRW backgrounds)
Next, we establish energy estimates and elliptic estimates for the linear solution’s higher
spatial derivatives. Specifically, we show that the higher-order energies verify the same
bounds as the base-level energy from Step (2). Since the Kasner backgrounds are spatially
homogeneous, this step is analytically trivial though conceptually important, as will become
clear in Step (4). Again, see Theorem 1.3 for a rough statement of the higher-order energy
estimates and Theorem 6.1 for the precise statement. We emphasize that these energy
estimates do not incur any loss of derivatives, which is of course crucial for closing the
nonlinear problem.

(4) (Linear stability and AVTD behavior) Next, still within the class of nearly spatially
isotropic Kasner backgrounds, we prove linear stability using the energy estimates and ellip-
tic estimates from Step (3). In particular, we use the energy estimates for the linear solution
and its higher-order spatial derivatives to establish improved estimates for the linear solu-
tion at the lower derivative levels, including convergence results consistent with the AVTD
behavior stated in Theorem 1.1. In fact, this step constitutes a proof of the linear solution’s
AVTD behavior, which is a result that does not directly follow from the singular energy
estimates of the previous step. This step incurs a loss of derivatives, roughly because in
deriving the convergence results and proving the AVTD behavior, we “put all spatial deriv-
ative terms on the right-hand side” of the evolution equations. Thus, from the perspective
of regularity, it is critically important that we have been able to independently establish
the non-derivative-losing energy estimates from Step (3). It is also critically important
that the energy blowup-rate t−cη from Step (3) is mild for nearly spatially isotropic Kasner
backgrounds; the mild blowup-rate results in the following: many of the spatial-derivative-
involving terms in the linearized equations are integrable in time near the singularity, which
is the key to establishing linear stability. By integrable in time, we are roughly referring to
the fact that ∫ 1

s=t s
p ds < Cp whenever p > −1, uniformly for t ∈ (0,1]; the integrability in time

of the error terms is one of the main analytical aspects of the solution’s AVTD behavior.
(5) (Control of nonlinear error terms) To prove Theorem 1.1, we must similarly establish

the following results for solutions to the nonlinear equations: I) an approximate monotonic-
ity identity; II) a priori energy estimates and elliptic estimates up to top-order; and III)
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improved/AVTD estimates at the lower derivative levels. In the usual fashion, we rely on a
bootstrap argument to accomplish this. Most aspects of the proofs of I)-III) are similar to
the linear analysis. The new feature is that we must also control the nonlinear error terms.
It turns out that given the framework we have established in Steps (1)-(4), the nonlinear
terms are not too difficult to control. The main thing that needs to be checked is that in all
of the estimates, the “borderline” error terms (borderline in the sense of their blowup-rate
as t ↓ 0) generated by the nonlinear interactions can either i) be absorbed into the favorably-
signed integrals generated by the approximate monotonicity identity from Step (1) or ii) are
multiplied by a coefficient that remains L∞-small as t ↓ 0. This allows us to prove that the
energy blowup-rate in the nonlinear problem is also mild, roughly at worst t−δ, where δ > 0
is small whenever the data are near the FLRW data. The detailed proofs are located in the
companion article [59]. In Sect. 8, we outline all of the main ideas and show how to control
several representative nonlinear error integrals, including a borderline one. All of the main
ingredients needed to control the nonlinear terms and to prove the theorem are provided by
Steps (1)-(4).

1.6. The (generalized) Kasner solutions. Before further discussing our results, we first formally
introduce the Kasner solutions. They can be expressed as

g̊ = −dt2 + g̊, g̊ = 3∑
i=1

t2qi(dxi)2, φ̊ = A ln t, (t, x) ∈ (0,∞) ×T3,(1.6)

where the constants qi are called the Kasner exponents and A ≥ 0 is a constant denoting the value
of ∂tφ at t = 1. Note that we have the following identity (in a slight abuse of notation):

t̊kij = −diag(q1, q2, q3).(1.7)

The exponents qi and A are constrained by the equations

3∑
i=1

qi = 1,(1.8a)

3∑
i=1

q2i = 1 −A2.(1.8b)

(1.8a) corresponds to our gauge condition kaa(t, x) = −t−1, while (1.8b) is a consequence of the gauge
condition kaa(t, x) = −t−1 and the Hamiltonian constraint equation (1.4a).

Remark 1.1. For convenience, in (1.6), we have written the Kasner metric in diagonal form. The
diagonal form is a specific case of the more general form −dt2+∑3

I=1 t
2qIωI⊗ωI mentioned in Subsect.

1.3 (where the ωI are, by assumption, orthogonal with respect to the Kasner metric itself). The
diagonal form can always be achieved by a change of spatial coordinates.

Exceptional cases aside, the Kasner solutions have Big Bang singularities along the past boundary{t = 0} where their Kretschmann scalars RiemαβγδRiemαβγδ blow up like11 t−4. In our study of

11One can compute that in terms of the Kasner exponents from (1.6), the Kretschmann scalar is equal to

4t−4 {∑3
i=1 q

4
i +∑1≤i<j≤3 q

2
i q

2
j +∑3

i=1 q
2
i − 2∑3

i=1 q
3
i } ≥ 4t−4∑1≤i<j≤3 q

2
i q

2
j .
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solutions to the linearized equations, an important role is played by the constants qMax > 0 and

0 ≤ η ≤ √2
3
defined by

qMax ∶=max{q1, q2, q3},(1.9a)

η2 ∶= 3∑
i=1

q2i − 1

3
= 3∑

i=1

(qi − 1

3
)2 = 2

3
−A2.(1.9b)

As we have mentioned, many of the results in this article hold only for nearly spatially isotropic
Kasner backgrounds, that is, when all three qi are near 1/3. It is important to note that it is not
even possible to have all three qi > 0 in the absence of matter due to the Hamiltonian constraint.
The nearly spatially isotropic assumption is equivalent to η being small. The analytic relevance of
η is: for Kasner metrics (1.6), the trace-free part of the second fundamental form k̊ij of Σt (see

(3.1)), defined by
ˆ̊
kij ∶= k̊ij − 1

3
k̊aaI

i
j = k̊ij + 1

3
t−1I ij (where I ij = diag(1,1,1) denotes the identity

transformation), verifies (with ∣ˆ̊k∣2g̊ ∶= g̊abg̊ij ˆ̊kaiˆ̊kbj)
∣ˆ̊k ∣̊g = ηt−1.(1.10)

We again stress that the parameter η drives the blowup-rate of our L2-based energies for the linear
solutions as t ↓ 0; see, for example, inequality (1.12)

1.7. Rough statement of the main linear results and further discussion. In this subsection,
we summarize the main linear results of this paper. We start by summarizing the approximate
monotonicity identity; see Theorem 5.1 for the precise statement. The proof is based on combining
a collection of integration by parts identities in suitable proportions and judiciously using the
constraint and lapse equations, which in total yields the cancellation of dangerous terms and the
emergence of favorable ones.

Theorem 1.2 (The approximate monotonicity identity (Rough version)). Consider the Einstein-
scalar field equations, written relative to CMC-transported-spatial coordinates (see Prop. 3.1), lin-
earized (see Prop. 3.2) about any member of the Kasner family (1.6), and with initial data given at
time 1. Then with “Potential Terms” denoting the linearized lapse and its spatial derivatives, the
spatial derivatives of the linearized scalar field, and the spatial derivatives of the linearized spatial
metric; with “Solution” denoting the Potential Terms together with the linearized second fundamen-
tal form and the time derivative of the linearized scalar field; and with “Data” denoting quantities
determined by the initial data, we have the following schematic identity, valid for t ∈ (0,1]:

∫
Σt

∣Solution∣2 dx = ∫
Σ1

Datadx(1.11)

− ∫ t

s=0
s−1∫

Σs

∣Potential Terms∣2 dxds +∫ t

s=0
s−1∫

Σs

Error terms dxds.

Next, we roughly summarize the energy estimates that follow as a consequence of Theorem 1.2.
See Theorem 6.1 for the precise statement of the energy estimates.

Theorem 1.3 (Mildly singular energy estimates without derivative loss (Rough version)).
Consider the linearized equations from the statement of Theorem 1.2. Let η ≥ 0 be as defined by
(1.9b). Then there exists an energy E(Total)(t) for the linear solution (see (4.6e) for the precise
definition), whose square has the strength of the left-hand side of (1.11), and constants C > 0 and
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c > 0 such that the following estimate holds for t ∈ (0,1] whenever the Kasner background is nearly
spatially isotropic (that is, as long as η is sufficiently small):

E(Total)(t) ≤ CE(Total)(t)(1)t−cη.(1.12)

Moreover, the higher-order spatial derivatives of the linear solution verify similar energy estimates
featuring the same blowup-rate t−cη.

Finally, we roughly summarize our linear stability results, whose proof relies on the energy esti-
mates of Theorem 1.3. See Theorem 7.1 for the precise statement.

Theorem 1.4 (Linear stability (Rough version)). Let N ≥ 2 be an integer. Consider a Kasner

solution (1, g̊ij , k̊i j , φ̊) (where 1 is the Kasner lapse) and let η be as in Theorem 1.3. Consider data
(at time 1) for the linearized (about the Kasner solution) system with enough regularity so that the
norm S(Frame);N (see Def. 4.3) is initially finite, that is, S(Frame);N(1) < ∞. Let (ν, hij ,κi

j, ϕ)
be a solution to the linearized (about the Kasner solution) equations of Prop. 3.2, where ν is the
linearized variable corresponding12 to n−1, hij is the linearized variable corresponding to gij−g̊ij, κi

j

is the linearized variable corresponding to kij − k̊i j, and ϕ is the linearized variable corresponding

to φ − φ̊. Then there exists a Kasner footprint state (see below for further discussion) such that

the linear solution converges towards it as t ↓ 0. Specifically, there exist a symmetric type (0
2
)

tensorfield hRegular ∈ HN−1
Frame(T3) (the norms ∥ ⋅ ∥HM

Frame
are defined by (4.2)), a type (1

1
) tensorfield

KBang ∈ HN−1
Frame(T3) verifying (KBang)aa = 0, and a constant C > 0 such that if η is sufficiently

small, then the following estimates hold13 for t ∈ (0,1], (i, j = 1,2,3):
∥ν∥HN−2 ≤ C

η
S(Frame);N(1)t4/3−cη,(1.13a)

∥t−2qjhij + 2 ln(t)(KBang)i j − (hRegular)ij∥HN−1 ≤ CS(Frame);N(1)t2/3−cη, (if qi = qj),(1.13b)

∥t−2qjhij + 1

qi − qj t2(qi−qj)(KBang)i j − (hRegular)ij∥
HN−1

≤ CS(Frame);N(1)t2/3−cη, (if qi ≠ qj),
(1.13c)

∥tκi
j − (KBang)i j∥HN−1 ≤ CS(Frame);N(1)t2/3−cη,(1.13d)

∥t∂tϕ −ΨBang∥HN−1 ≤ CS(Frame);N(1)t2/3−cη,(1.13e)

∥∂iϕ − ln(t)∂iΨBang∥HN−2 ≤ CS(Frame);N(1).(1.13f)

We now explain the significance of the above convergence estimates, starting with (1.13a). We first
recall that in studying the nonlinear solution, we decompose the spacetime metric as g = −n2dt⊗dt+g
and that ν is the linearized variable corresponding to n−1. Hence, (1.13a) shows that at the linear
level, the perturbation of the lapse converges to 0, that is, the lapse itself converges at the linear level
to the Kasner state n = 1. To further explain the convergence results stated in Theorem 1.4, we first
explain what we mean by a “Kasner footprint state.” Specifically, we mean a collection of variables(ν̃, h̃ij , κ̃i

j, ϕ̃) defined by ν̃ = 0, κ̃i
j = t−1(KBang)i j , h̃ij = −2 ln(t)t2qj(KBang)i j + t2qj(hRegular)ij if

qi = qj , h̃ij = − 1
qi+qj

t2qi(KBang)i j + t2qj(hRegular)ij if qi ≠ qj, ∂tϕ̃ = t−1ΨBang, and ∂iϕ̃ = ln(t)∂iΨBang,

12See the beginning of Subsect. 3.3 for further discussion on the linearization procedure and the linearized variables.
13On the left-hand sides of (1.13b)-(1.13c), we do not sum over i or j.
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where (hRegular)ij , (KBang)i j , and ΨBang are functions (of x) on T3. Note that the above definitions
of the Kasner footprint states are obtained by setting the terms inside the norms on the left-hand
sides of the estimates of Theorem 1.4 equal to 0. Roughly, Theorem 1.4 shows that the solutions
to the linearized equations of Prop. 3.2 are asymptotic to a Kasner footprint state (ν̃, h̃ij , κ̃i

j , ϕ̃) as
t ↓ 0. Note that the Kasner footprint states are generally not solutions to the linear equations of
Prop. 3.2. For this reason, we will now explain why one might expect them to emerge as the “end
states” of linear solutions and why the the t-behaviors stated on the left-hand side of the estimates
of Theorem 1.4 can be saturated. We will give two explanations, the first being completely heuristic
and the second one rigorously illustrating the saturation of the t-behavior. First, one can easily
check that given any (sufficiently regular) functions (hRegular)ij , (KBang)i j, and ΨBang on T3, the
corresponding Kasner footprint state is a solution to a truncated version of the linear equations of
Prop. 3.2 in which all spatial derivative terms are set equal to 0. The truncated linear equations
are linear analogs of the VTD equations mentioned at the end of the statement of Theorem 1.1.
Thus, Theorem 1.4 shows that linear solutions converge towards solutions of the linear VTD system,
which is quite natural since our proof of Theorem 1.4 relies on showing that spatial derivative terms
become negligible as t ↓ 0.

Our second explanation concerning the end state behavior of linear solutions is through the notion
of variations of one-parameter families of Kasner solutions. For the sake of illustration, we only con-
sider a one-parameter family of Kasner spatial metrics and mixed second fundamental forms. That
is, for convenience, in this part of the discussion, we ignore the scalar field by setting it equal to 0;
this will not have any substantial effect on the main ideas behind our discussion. Specifically, we con-
sider the α-parameterized family (where α ∈ R) defined by g̊ij[α] ∶= diag(t2Q1[α], t2Q2[α], t2Q3[α]) and
k̊ij[α] ∶= −t−1diag(Q1[α],Q2[α],Q3[α]), where the Qi[α] are a one-parameter family of Kasner ex-

ponents.14 We assume that Qi[0] ∶= qi, where the qi are constants. For each fixed α, (̊gij[α], k̊ij[α])
is a solution to the nonlinear Einstein equations of Prop. 3.1 (where the lapse is identically 1 and

the scalar field is identically 0). Thus, (̊gij[α], k̊ij[α]) can be viewed as a family of diagonal Kasner
solutions that vary from “point to point,” that is, that vary with α, in analogy with the x-dependent
Kasner-type behavior of solutions to the nonlinear equations near singularities that was predicted
in [11,13]. To more fully explain the results of Theorem 1.4, we must also account for the following
additional degrees of freedom: for each fixed α, we can perform a change of spatial coordinates. We
can account for this freedom by introducing a one-parameter family of invertible matrices M i

j[α]
(not depending on t) that represent a change of spatial coordinates at each fixed α. From these
considerations, we see that a general picture of a family of Kasner solutions varying from point to
point can be captured by a one-parameter family of Kasner solutions (gij[α], kij[α]) of the form15

gij[α] ∶=Ma
i[α]M b

j[α]̊gab[α],(1.14)

kij[α] ∶= (M−1)ia[α]M b
j[α]̊kab[α].(1.15)

14The Qi must verify the constraint conditions (1.8a) and (1.8b), but this is not important for our discussion here.
15For fixed α, the form gij[α] of the Kasner spatial metric given by (1.14) is equivalent to the form ∑3

I=1 t
2qIωI⊗ωI

mentioned in Subsect. 1.3.
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In what follows, we will use the notation Q′i[0] ∶= d
dα
Qi[α]∣α=0, and we use similar notation for other

quantities that depend on α. We now compute that

g′[0] =M⊺[0] ⋅ g̊′[0] ⋅M[0] + (M ′)⊺[0] ⋅ g̊[0] ⋅M[0] +M⊺[0] ⋅ g̊[0] ⋅M ′[0],(1.16)

k′[0] =M−1[0] ⋅ k̊′[0] ⋅M[0] −M−1[0] ⋅M ′[0] ⋅M−1[0] ⋅ k̊[0] ⋅M[0] +M−1[0] ⋅ k̊[0] ⋅M ′[0],(1.17)

where

g̊[0] = diag(t2q1 , t2q2 , t2q3),(1.18)

g̊′[0] = 2 ln(t)diag(t2q1Q′1[0], t2q2Q′2[0], t2q3Q′3[0]),(1.19)

k̊[0] = −t−1diag(q1, q2, q3),(1.20)

k̊′[0] = −t−1diag(Q′1[0],Q′2[0],Q′3[0]).(1.21)

In (1.16)-(1.17), ⊺ denotes matrix transpose and ⋅ denotes matrix multiplication. We now compare
the above computations with the results of Theorem 1.4. The key point is to observe that the
variations g′[0] and k′[0] solve the linearized Einstein equations, where the background spatial
metric and second fundamental form (about which the equations are linearized) are respectively

g̊[0] and k̊[0]. Indeed, one way to obtain the linearized equations is by differentiating a one-
parameter family of nonlinear solutions with respect to the parameter; see Subsect. 3.3 for further
discussion on this point. Thus, to each one-parameter family gij[α], kij[α] of the form (1.14)-
(1.15), there exists an associated variation g′[0] and k′[0] that solves the corresponding linearized
equations. Thus, the variations g′[0] and k′[0] are special (spatially homogeneous) examples of the
Kasner footprint states stated in Theorem 1.4. To further connect with the results of Theorem 1.4,
we will investigate the structure of the variations. From (1.17), (1.20), and (1.21), it follows that
tk′[0] is a 3 × 3 matrix with constant entries. The key point is that this agrees with the fact that
the limiting field KBang from Theorem 1.4 does not depend on t. Moreover, from (1.16), (1.18), and
(1.19), we see that the entries of the matrix g′[0] are sums of two kinds of terms: pure power-law
terms proportional to factors of type tp (where p is a constant), which come from the factors of g̊[0]
in (1.16), and similar power-law terms that are multiplied by a factor of ln(t), which come from
the factor of g̊′[0] in (1.16). This agrees with the limiting behavior of hij as t ↓ 0 shown by the
estimates (1.13b)-(1.13c). To summarize, our consideration of one-parameter Kasner families led
us to conclude that all variations g′[0](t) and k′[0](t) are spatially homogeneous Kasner footprint
states that are solutions to the linearization of the Einstein equations about the Kasner solution(̊g[0](t), k̊[0](t)). The results of Theorem 1.4 show that for near-FLRW backgrounds, all linear
solutions are asymptotic to x-dependent Kasner footprint states whose time behavior at each fixed
x is similar to the time behavior of one of the variations. Similar results hold for the scalar field, as
is shown by the estimates (1.13e) and (1.13f). In total, the above picture is closely aligned with the
vision of [11,13], in which the end state of nonlinear solutions was posited to be a family Kasner-like
solutions parameterized by the spatial point x.

Consistent with the nonlinear stable blowup result provided by Theorem 1.1, we could also extend
the linear stability results of Theorem 1.4 to apply when the background solutions are near-FLRW
as measured by a Sobolev norm (and hence are spatially dependent). We do not provide such an
extension here because it would significantly lengthen the paper without contributing substantially
to the main ideas. A related issue connected to the nonlinear problem is that in our proof of the
existence and curvature blowup aspects Theorem 1.1, we do not rely on having precise knowledge
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of the solution’s “end state” (that is, the asymptotics near {t = 0}) in advance; it suffices to control
the difference between the perturbed solution and the FLRW solution. Put differently, in proving
Theorem 1.1, we could derive the sharp asymptotics/convergence results as t ↓ 0 as a separate
argument, after we have already shown that the solution exists for (t, x) ∈ (0,1] ×T3 and that the
Kretschmann scalar blows up as t ↓ 0. For this reason, our proof of Theorem 1.1 would allow for
the following margin of error: the proof would go through if we controlled the difference between
the perturbed solution and any near-FLRW Kasner solution rather than the perturbed solution and
the FLRW solution.

1.8. Previous work on singularities. Previous work has provided related results showing the
stability of singular solutions to the Einstein equations in various contexts, but only under under
symmetry assumptions that reduce the problem to the study of 1 + 1 dimensional PDEs16 [27,
43, 56, 57]. There also is a body of work that provides the construction of (but not the stability
of) singularity-containing solutions to select nonlinear Einstein-matter systems, but only under the
assumption of symmetry [1,9,16,17,42,44,51,63] and/or spatial analyticity [7,29]. Readers can also
consult [2] for a more general well-posedness result for singular initial value problems that applies
to a class of symmetric hyperbolic quasilinear systems in more than one spatial dimension. More
precisely, in [2], the authors prescribe Sobolev-class asymptotics featuring singular behavior. The
main result of [2] is the existence of a Sobolev-class solution that realizes the singular asymptotics.
We note, however, that [2] does not treat Einstein’s equations. A related approach to studying
Big Bang singularities involves devising a formulation of Einstein’s equations that allows one to
solve a Cauchy problem with initial data given on the singular hypersurface {t = 0} itself;17 see,
for example, [8, 28, 48, 49, 65–67]. In some cases, these works included a proof that the singular
solutions exhibit AVTD behavior. Readers can consult [53] for a precise comparison of these results
as well as an extension of them to prove the existence of singular solutions to the Einstein-vacuum
equations with Gowdy symmetry.18

In contrast to the regular Cauchy problem studied here and in the companion article [59], the
above works are based on prescribing the asymptotics as t ↓ 0 and then constructing a solution that
achieves those asymptotics. Most of those works are based on solving a Fuchsian PDE system that
is singular at {t = 0}. We now describe some aspects of the Fuchsian approach. A representative
work is [1], in which the authors construct singular solutions to the Einstein-vacuum equations19

with T2 symmetry under the polarized or half-polarized condition. In Sect. 9, we provide a simple
model problem suggesting that results similar to those of [1] might also hold for the Einstein-scalar

16There also are stable singularity formation results in the class of spatially homogeneous solutions (in which case
the equations reduce to ODEs); see [54] or [69] for an overview.

17This method is based on formulating the equations in terms of a rescaled metric, conformal to the physical
spacetime metric, in such a way that the rescaled metric remains regular throughout the entire evolution. As such,
this method can be viewed as an extension of Friedrich’s conformal method [37, 38].

18Gowdy solutions are a subset of the T2-symmetric solutions characterized by the vanishing of the twist constants

(g−1)µµ′ǫǫǫαβµνXαYβDµ′X
ν and (g−1)µµ′ǫǫǫαβµνXαYβDµ′Y

ν , where ǫǫǫ is the volume form of g and X and Y are the
Killing fields corresponding to the two symmetries.

19More general Fuchsian systems in one spatial dimension are also treated in [1].
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field system without symmetry assumptions. The Fuchsian PDEs20 treated in [1] are of the form

A0(t, x, u)t∂tu +A1(t, x, u)t∂xu +B(t, x, u)u = f(t, x, u),(1.22)

where u is the array of unknowns, Aα and B are symmetric matrices (the energy estimates rely on
the symmetric hyperbolic framework), and f is an array, all of which verify a collection of technical
assumptions. The analysis in [1] is based on splitting the solution as u = u0 + w, where u0 is the
“leading order” part and w is an error term that one would like to show is small compared to u0 as
t ↓ 0. An important technical assumption made in [1], which is used for deriving energy estimates,
is that for small w, one can split A0(t, x, u0 + w) = A0

0(x,u0) +A0
1(t, x, u0 + w), where A0

0(x,u0) is
symmetric positive definite, and the map w → A0

1(t, x, u0 +w) maps certain time-weighted Sobolev
spaces into other time-weighted Sobolev spaces. There are various methods for constructing u0. The
most relevant way in the context of the present article is to choose u0 to be a prescribed solution
to a truncated “VTD version” of (1.22) in which the spatial derivative terms are discarded. This
approach is complementary to the one taken in the present article and [59], in which we show that
AVTD behavior dynamically emerges in solutions to the non-truncated equations. From the VTD
system and (1.22), one computes that the error term w solves an “error equation” depending on u0.
The main result of [1] is that under suitable additional assumptions, there exists a solution w to the
error equation that becomes small relative to u0 as t ↓ 0 and that w is unique within appropriate
time-weighted Sobolev spaces. The main idea of the proof is to derive uniform a priori symmetric
hyperbolic energy estimates for a sequence {wn}∞n=1 of error equation solutions on intervals of the
form [tn,δ]. More precisely, the wn solve a standard symmetric hyperbolic Cauchy problem (to the
future) with 0 initial data at time tn. Here, δ > 0 is a small constant and {tn}∞n=1 is a sequence of
times decreasing to 0. A key aspect of the analysis in [1] is that the authors were able to close their
estimates by inserting time weights by hand into the energies. More precisely, in the approach of
[1], one derives energy estimates for t−Pwn, where t−P is a diagonal matrix whose non-zero entries
are well-chosen negative powers of t that are allowed to depend on x (that is, P = P (x)). Another
aspect of the approach of [1] is that the energies are weighted by an additional overall scalar factor of
e−κt

γ

, where κ and γ are positive constants. The time weights must be chosen to be compatible with
the nonlinearities in the sense that the nonlinear error integrals arising in the energy estimates must
be controllable. When successfully implemented, this leads to controlled energy growth towards the
future (away from the singularity) in a neighborhood of the singularity. In particular, for well-
chosen t-weights (as we illustrate in Remark 9.1, there is some freedom in choosing them), one can
derive uniform estimates for the {wn}∞n=1 showing that the weighted energies cannot grow too fast
towards the future; see Sect. 9 for a very simple linear model problem. Then through a standard
limiting procedure, one can produce a solution w to the error equation that exists on the interval(0,δ], and it is unique within suitable time-weighted Sobolev spaces.

Although the Fuchsian approach furnishes the existence of a set of solutions with singularities, it
is inadequate for treating the true stability problem of solving down towards {t = 0} starting from
Cauchy data for u given along a hypersurface {t = const} with const > 0. One difficulty that we
encounter in our study of the Einstein equations, which we stressed at the beginning, is that in order
to synchronize the singularity across space, one cannot work with a purely hyperbolic formulation
of the equations such as the one afforded by wave coordinates; gauges involving an infinite speed
of propagation, such as the elliptic and parabolic ones for the lapse employed in the present article

20Specifically, the PDEs are the T
2-symmetric polarized or half-polarized Einstein-vacuum equations in areal

coordinates with the singularity at {t = 0}.
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and in [59], seem essential. Hence, our approach to proving stability lies outside of the standard
Fuchsian framework, which applies only to hyperbolic equations. Moreover, the Fuchsian strategy
of inserting suitable time weights by hand into the energies is not sufficient for deriving our stability
results because some of the terms in the equations are too singular to be treated in this fashion;
see our discussion in Subsect. 1.9 for further discussion on this point, where we highlight similar
difficulties that would arise in an attempt to extend our approach to prove stability results for
far-from-FLRW solutions. For near-FLRW solutions, our approach is viable only because of the
cancellations that occur in our approximate monotonicity identity, which are tied to the special
structure of the Einstein-scalar field system in our gauges.

The scalar field and stiff fluid matter models have some special properties that we exploit in
deriving our results. We describe some of these properties in more detail in Subsect. 1.9. In
particular, we expect that our approximate monotonicity/stability results do not hold for general
matter models. Actually, as we now explain, for certain fluid models, Ringström obtained rigorous
results showing that solutions behave in a drastically non-monotonic fashion. In [55], Ringström
studied fluids verifying the equation of state p = c2sρ, where the constant cs verifies 0 < cs ≤ 1 and
physically represents the speed of sound. For the Euler-Einstein equations with a sub-stiff equation
of state (that is, with 0 < cs < 1), he showed that spatially homogeneous solutions with Bianchi IX
symmetry21 generically (that is, for non-Taub solutions) have limit points in the approach towards
the singularity that must be either vacuum Bianchi type I (that is, vacuum Kasner), vacuum Bianchi
type VII0, or vacuum Bianchi type II. In particular, Ringström’s work showed that a sub-stiff fluid
has a negligible effect on Bianchi IX solutions near the singularity. Furthermore, he showed that
almost all such solutions are oscillatory in the sense that there are at least three distinct limit points,
which stands in stark contrast to the approximately monotonic behavior of our linear solutions and
the nonlinear solutions in [59].

Ringström’s work [55] also applied to the Einstein-vacuum equations in Bianchi IX symmetry
and thus yielded the first examples of the oscillatory behavior conjectured in the work [14] of Be-
linsky, Khalatnikov, and Lifschitz (BKL). Specifically, in [14], the authors gave heuristic arguments
suggesting that general solutions to the Einstein-vacuum equations containing incomplete timelike
geodesics should exhibit highly oscillatory behavior near the boundary where the geodesics termi-
nate. Moreover, their arguments suggested that the boundary should be a spacelike singularity.
These so-called “BKL conjectures”22 have been seminal in stimulating the investigation of solutions
to Einstein’s equations near singularities. However, as we now explain, despite Ringström’s work,
there is immense controversy surrounding the conjectures. First, they are false as stated because
of, for example, the existence of Taub solutions, which develop a Cauchy horizon23 rather than a
true singularity. One might be tempted to weaken the conjectures by replacing the phrase “general
solutions” with “generic solutions.” However, Luk has constructed [45] a class of solutions to the
Einstein-vacuum equations without symmetry assumptions such that the boundary of the maximal
development contains a null portion along which the metric remains C0 but its Christoffel symbols
blow-up in L2. His examples, which are stable in a certain sense, contradict the BKL vision of

21Members of the Bianchi symmetry classes are spatially homogeneous and hence the corresponding solutions
depend on only a time variable. For a precise definition of these symmetry classes and the others that we mention,
readers can consult [26].

22The statements in [14] are somewhat vague and thus it is imprecise to refer to them as “conjectures.”
23Roughly, a Cauchy horizon is a boundary along which the solution remains regular but beyond which it cannot

be continued uniquely as a solution due to lack of information for how to continue.
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spacelike singularities. Moreover, outside of the class of spatially homogeneous solutions, there are
currently no examples of Einstein-vacuum solutions that are rigorously known to exhibit the kind
of oscillatory behavior near a singularity conjectured in [14]. In total, given the present-day state of
knowledge, it is not clear to what extent the vision of BKL is realized in Einstein-vacuum solutions.

In the opposite direction, we recall the aforementioned work of Belinsky and Khalatnikov [13],
who were the first to suggest the existence of non-spatially homogeneous approximately monotonic
singular solutions to the Einstein-scalar field system. In a later article [11], Barrow argued that
fluids verifying the equation of state p = c2sρ (where cs is a non-negative constant) should induce
a similar effect if and only if cs = 1; he referred to the mollifying effect of a stiff fluid as quiescent
cosmology. The first rigorous construction of such solutions without symmetry was provided by
the aforementioned work of Andersson and Rendall [7]. They constructed a family of spatially
analytic solutions to the Einstein-scalar field and Einstein-stiff fluid systems that have Big Bang
singularities and that exhibit approximately monotonic behavior near them. Their proof was based
on a two-step process. In the first step, they constructed a family of spatially analytic solutions
to VTD equations, which were obtained by throwing away the spatial derivative terms from the
Einstein-matter equations.24 In the second step, they constructed spatially analytic solutions to
the Einstein-matter equations by writing the true solution as a solution to the VTD equations plus
error terms that were shown, by Fuchsian analysis, to go to 0 as t ↓ 0. The results of [7] were
extended to higher dimensions and other matter models in [29]. The family of solutions constructed
in this fashion is large in the sense that its number of degrees of freedom coincides with the number
of free functions in the Einstein initial data. However, since the results are based on prescribing
the asymptotics near the Big Bang within the class of spatially analytic solutions, they are not true
stable singularity formation results. In particular, the work left open the possibility that the map
from the set of spatially analytic asymptotic states realized in [7] to the set of Cauchy data (say at
t = 1) might be highly degenerate in the sense that it cannot be extended as a map (with reasonable
properties) between more physically relevant function spaces such as Sobolev spaces; see, however,
the discussion in Sect. 9. The primary ingredient needed to upgrade the work of Andersson and
Rendall to a true stable singularity formation result corresponding to solving a regular Cauchy
problem is a suitable statement of linear stability, strong enough to control the nonlinear terms.
Our linear stability result (Theorem 7.1) provides this missing ingredient in the near-FLRW case.

1.9. Comments on other matter models, higher dimensions, and the analysis of far-
from-FLRW-solutions. The scalar field and stiff fluid matter models have two important prop-
erties, described in the next paragraph, that allow us to prove the stability results of the present
paper and those of [59]. We anticipate that other matter models with similar properties might allow
for proofs of similar results. Readers can consult [29] for a class of candidate matter models, where
the authors used Fuchsian techniques to construct families of non-spatially homogeneous solutions
with Big Bang singularities to various nonlinear Einstein-matter systems. We note that the authors’
construction also applied to the Einstein-vacuum equations in 10 or more spatial dimensions and
thus yielded rigorous examples of the non-oscillatory and non-spatially-homogeneous solutions that
were heuristically argued to exist in [30]. The existence of these spatially inhomogeneous Kasner-like
vacuum solutions is relevant for the discussion three paragraphs below.

24In [7], the Einstein equations were formulated relative to a Gaussian coordinate system in which the spacetime
metric takes the form g = −dt2 + gabdx

adxb.
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The first important property of the scalar field and stiff fluid matter models is simply that they
allow for the existence of spatially isotropic and nearly spatially isotropic Kasner solutions to the
Einstein-matter system. We recall that nearly spatially isotropic Kasner solutions have second
fundamental forms with trace-free parts that blow up at the rate ηt−1, where η is small (see (1.10)),
and that this blowup-rate ultimately leads to the mild energy blowup-rate (1.12). We now contrast
this against the case of the Einstein-vacuum equations in three spatial dimensions. In vacuum, we
have A = 0 in (1.8b) and thus (1.9b) and (1.10) imply that the trace-free part of the Kasner second

fundamental form blows up at the rate
√

2
3
t−1. Combining this blowup-rate with the methods of

this paper, one would only be able to derive energy estimates in the spirit of (1.12) showing that the

energy blows up like t−c
√
2/3 as t ↓ 0. Unfortunately, such a bound for the energy does not appear

to be useful for controlling error terms in the nonlinear problem. In fact, an energy blowup-rate

of t−c
√
2/3 seems to be insufficient even for proving linear stability results of the type proved in

Theorem 1.4; see the next paragraph for further discussion on this point. The second important
property of the scalar field matter model is that its time derivatives do not appear in the evolution
equations for the metric (equations (3.7a)-(3.7b)) nor in the elliptic PDE for the lapse (equation
(3.10)). This property, which for the scalar field matter model requires the assumption of three
spatial dimensions, is closely tied to the fact that the characteristics of the scalar field agree with
those of the Einstein field equations (that is, the characteristics for the Einstein-scalar field system
are precisely the null hypersurfaces relative to g). This property plays a critically important role
in allowing us to prove our stability results because to close our estimates, we rely on the fact that
spatial derivatives are small compared to time derivatives, at least at the lower derivative levels.
Although the stiff fluid matter model exhibits similar good properties, fluids verifying the sub-stiff
equation of state p = c2sρ with 0 < cs < 1 do not enjoy these properties, even if the fluid is irrotational
(roughly because the sound cones are necessarily distinct from the gravitational null cones in the
sub-stiff case). This is consistent with the oscillatory behavior for solutions to the Euler-Einstein
system observed by Ringström [55] in the Bianchi IX symmetry class when 0 < cs < 1 (see the
discussion in Subsect. 1.8).

We now further explain some of the obstacles to deriving stability results for the Einstein-scalar
field system in the far-from-FLRW case (e.g., when η is no longer small in the linear problem).
Although our methods could be used to obtain estimates for solutions to the linearized systems,
they do not seem to be strong enough to allow for a proof of linear stability or stable blowup in the
nonlinear problem. Our goal is to highlight why, for parameters corresponding to far-from-spatially
isotropic Kasner backgrounds, our methods do not allow us to prove that ∣tκi

j ∣ remains uniformly
bounded over the interval t ∈ (0,1], where κ is the linearized second fundamental form variable. In
the nonlinear problem, the same difficulty would arise, and it is tantamount to not even being able
to recover (in the context of a bootstrap argument) the blowup-rate of t−1 exhibited by the trace-
free part of the second fundamental form of a Kasner metric. In the nonlinear problem, such a bad
estimate would lead (by a Gronwall estimate) to energy estimates that are drastically worse than
(1.12): the top-order energies would be allowed to blow up faster than data × t−C for all constants
C > 0, where “data” denotes a term that is controlled by the initial data. Consequently, our entire
approach to linear and nonlinear stability would break down, and in the nonlinear problem, we would
not even be able to show that the solution exists near {t = 0}. To explain the source of the difficulty,
we first explain how we prove the uniform boundedness of ∣tκi

j ∣ in the nearly spatially isotropic

case. The main idea is that we can use the evolution equation for κi
j (see (3.16b)) and the mildly
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singular energy estimates of Theorem 6.1 to prove (see (7.1a)) the estimate ∣∂t(tκi
j)∣ ≲ data×t−1/3−cη.

The key point is that the right-hand side is integrable in time over the time interval (0,1] for η

small. That is, if η is small, then we can express tκi
j as an integral of ∂t(tκi

j) and use the time-

integrability to obtain the desired bound ∣tκi
j ∣ ≲ data. In contrast, if η is large, then the bound∣∂t(tκi

j)∣ ≲ data × t−1/3−cη does not imply the time-integrability of ∣∂t(tκi
j)∣, and thus our approach

does not work in its current form.
Finally, we make some comments on extending our stability results to higher dimensions. For

brevity, we limit our discussion to the Einstein-scalar field and Einstein-vacuum systems. For the
Einstein-scalar field system in any number of spatial dimensions, we expect that the proofs of our
linear and nonlinear stability results (in the near-FLRW setting) would go through without any
significant changes. Moreover, in the case of the Einstein-vacuum equations in n spatial dimensions
with n sufficiently large, there exists a class of Kasner solutions for which it might be possible
to prove sufficiently strong versions of linear stability (similar to the linear stability results of the
present paper), suitable for deriving nonlinear stable blow-up results like those proved in [59]. As
we mentioned above, the existence of (but not the stability of) non-spatially homogeneous solutions
to the Einstein-vacuum equations with Big Bang singularities has already been shown in [29] when
n ≥ 10. We now provide some motivation for our speculation on the existence of stable Einstein-
vacuum singularities. First, we note that it is possible to derive an approximate monotonicity
identity for the linearized (around a vacuum Kasner solution) Einstein-vacuum equations that
parallels the results for the Einstein-scalar field model provided by Theorems 5.1 and 10.1. More
precisely, the approximate monotonicity identities of Theorems 5.1 and 10.1 remain valid in the
vacuum case; just set the scalar field and its amplitude A equal to 0 in the equations. However,
one faces the difficulty that in vacuum, the trace-free part of the Kasner second fundamental form
has large size (1 − 1/n)1/2t−1, a fact that follows from the vacuum Kasner exponent constraints:

n∑
i=1

qi = 1, n∑
i=1

q2i = 1.(1.23)

The expression (1 − 1/n)1/2t−1 suggests that the energy blowup-rate for solutions to the linearized
Einstein-vacuum equations becomes worse as n → ∞, which seems to be an obstacle to proving
stable blowup. Nonetheless, it might be possible to overcome this difficulty, at least in a certain
regime. The main idea is the following observation: the proof of the energy blowup-rate can be
somewhat sharpened compared to the proof that leads to inequality (1.12). More precisely, many of
the error terms that contribute to the blowup-rate of the energy can be controlled by the eigenvalues
of the second fundamental form25 and its trace-free part. In particular, a more careful analysis, not
carried out in this article,26 shows that most error terms in the energy estimates that involve the
second fundamental form can cause the energies energies to blow up at worst like ≲ data×t−cα, where
c > 0 is a universal constant independent of n and α ∶= n

max
i=1
{∣qi∣}. Moreover, it is not difficult to see

that there exists a family of vacuum Kasner solutions such that α ↓ 0 as n→∞. However, there are
a few anomalous terms in the energy estimates that could in principle lead to a blowup-rate that
is worse than data× t−cα, and these terms are therefore a potential obstacle for proving stability. If
one were able to sufficiently control the anomalous terms, then we expect that one would be able

25Specifically, we mean the version of the second fundamental form with one index up and one down.
26See the proof of inequality (6.5) regarding the role that the eigenvalues play in deriving energy estimates.
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to prove that Kasner solutions with α sufficiently small27 are linearly and nonlinearly stable in a
neighborhood of the Big Bang by using the methods of the present article and those of [59]. We
note that for fixed large n, only a small portion of the vacuum Kasner solutions could in principle
be shown to be stable through this approach. If the argument goes through, then it would also
be interesting to discover the threshold value of n beyond which the stable Kasner solutions exist;
it is conceivable that the threshold value n ≥ 10 from [29], which is sufficient for the existence of
non-spatially homogeneous solutions, is not large enough to imply their stability.

1.10. A related instance in which monotonicity led to global results. We now describe
the work [5] by Andersson and Moncrief, in which they proved global existence results for the
Einstein-vacuum equations using techniques that have some overlap with the ones used in the
present article and in [59]. In the next paragraph, we compare and contrast the approach of [5]
with that of the present work. We first describe their result in more detail. In [5], the authors
proved a future-global existence theorem (that is, in the expanding direction) for perturbations of
spatially compact versions of FLRW-like vacuum spacetimes in 1 +m dimensions for m ≥ 3. The

background solutions were of the “continuously self-similar” form −dt2 + t2

m2
γ, where the spatial

metric γ verifies the Einstein condition Ric = −m − 1
m2

γ, where Ric is the Ricci curvature of γ.

Readers can also consult [4, 52] for proofs of the results of [5] in the case m = 3, where unlike in
[5] and the present article, the latter two works rely on curvature-based energies constructed from
the Bel-Robinson tensor. Andersson and Moncrief made some technical assumptions on γ, notably
one28 that they called being “stable.” This condition states that the eigenvalues of the operator
hij → −∆γhij − 2R a b

i j hab, which appears in linearized versions of the evolution equations, are non-

negative. Here, hij is a symmetric type (0
2
) tensor and R a b

i j is the Riemann curvature tensor of γ.

In our proof of nonlinear stable blowup [59], terms like 2R a b
i j hab also appear, but we are able to

treat them as lower-order nonlinear error terms. That is, we do not have to work with combinations
such as −∆γhij −2R a b

i j hab; see Subsect. 8.9 for an overview of how we handle nonlinear error terms.
In [5], the authors also proved that a rescaled version of the perturbed spatial metric converges to
an element of the moduli space of γ. In the case m = 3, the Einstein condition implies that γ has
constant negative sectional curvature, and Mostow’s rigidity theorem implies that the moduli space
is trivial. Hence, the rescaled solution in fact converges to the background solution. In contrast, in
our nonlinear results [59] and in the linear convergence results of Theorem 7.1, the family of possible
end states (corresponding to the asymptotic behavior of the solution near the Big Bang) is much
larger. In the nonlinear problem, the family of course includes members of the Kasner family (1.6).
However, as we described below Theorem 1.4, even for the linear problem, it also includes29 a much
larger family of “x-dependent” Kasner-like states. As Andersson and Moncrief stated in [5], their
work is closely related to the Fisher–Moncrief work [36], in which the authors carried out the linear

27One can think of 1/n as a parameter that one would like to choose to be sufficiently small to close the estimates.
28The authors also made additional assumptions. Specifically, they assumed that either the moduli space of γ is

trivial or that γ is contained in an integrable moduli space of Einstein structures.
29More accurately, we do not rigorously prove that the family includes x-dependent end states. However, we recall

here the work [7] described in Subsect. 1.8, in which Andersson and Rendall constructed solutions with end states
that are analytic in x (with non-trivial x dependence). Based on their work, our results here, and the results of [59],
we expect that it might be possible to remove the analyticity assumption (perhaps only in the near-FLRW regime),
which would yield new information about the set of achievable end states; see also Sect. 9.
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stability analysis. Specifically, in [36], Fischer-Moncrief found a reduced Hamiltonian description of
the Einstein-vacuum flow (see also the works [6, 31–36, 46, 47] for related results) that applied to a
family of spacetimes containing CMC hypersurfaces. Their Hamiltonian was the volume functional
of constant-time hypersurfaces Σt, where, as in the present article, the Σt were CMC hypersurfaces.
They showed that the Hamiltonian is monotonic along the flow of their reduced equations, that

its critical points are precisely the continuously self-similar metrics −dt2 + t2

m2
γ mentioned above

(where γ verifies the Einstein condition), and, crucially for the linear stability analysis (on which
global existence result [5] relied), that its second variation is positive definite when γ is stable in
the sense described above.

The analysis in [5] has some features in common with the present work, including its reliance
on CMC foliations to reveal monotonicity and its focus on studying the solution at the level of
the metric. Moreover, the energies for the spatial metric and second fundamental form defined in
[5, Section 7] are reminiscent of the metric energies that we use in the present article (see (4.6a) and
(8.2a)). However, the energy identities of [5, Section 7] do not involve subtle cancellations of the
type that we observe in deriving the approximate monotonicity identities of Props. 5.2 and 10.3.
A related fact is that in [5], Andersson and Moncrief were able to close their proof by bounding
the lapse in terms of the second fundamental form via standard elliptic estimates. In contrast, to
control the lapse, we rely on the approximate monotonicity identities and the AVTD-type estimates
described in Step (4) of Subsect. 1.5. Another notable difference is that unlike our work here, the
results of [5] are based on spatial harmonic coordinates; see Remark 5.3 for additional comments
about those coordinates.

2. Notation and conventions

In this section, we summarize some notation and conventions that we use throughout the article.

2.1. Indices. Greek “spacetime” indices α,β,⋯ take on the values 0,1,2,3, while Latin “spatial”
indices a, b,⋯ take on the values 1,2,3. Repeated indices are summed over (from 0 to 3 if they
are Greek, and from 1 to 3 if they are Latin). We use the same conventions for primed indices
such as a′ as we do for their non-primed counterparts. When working with the nonlinear equations
in CMC-transported spatial coordinates gauge or the parabolic lapse gauges, spatial indices are
lowered and raised with the Riemannian 3-metric gij and its inverse gij. When working with the
linearized equations, we will always explicitly raise and lower indices with the background Kasner
3-metric g̊ij and its inverse g̊ij.

2.2. Spacetime tensorfields and Σt-tangent tensorfields. We denote spacetime tensorfields
T µ1⋯µm

ν1⋯νn in bold font. In the nonlinear equations, we denote the g-orthogonal projection of
T µ1⋯µm

ν1⋯νn onto the constant-time hypersurfaces Σt ∶= {(s, x) ∈ R × T3 ∣ s = t} in non-bold font:
T a1⋯am
b1⋯bn

. We also denote general Σt-tangent tensorfields in non-bold font.

2.3. Coordinate systems and differential operators. We often work in a fixed standard local
coordinate system (x1, x2, x3) on T3. The vectorfields ∂j ∶= ∂

∂xj are globally well-defined even though
the coordinates themselves are not. Hence, in a slight abuse of notation, we use {∂1, ∂2, ∂3} to denote
the globally defined vectorfield frame. We denote the corresponding dual frame by {dx1, dx2, dx3}.
As we described in Subsect. 1.4, the spatial coordinates can be transported along the unit normal to
Σt, thus producing a local coordinate system (x0, x1, x2, x3) on manifolds-with-boundary of the form
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(T,1]×T3, and we often write t instead of x0. The corresponding vectorfield frame on (T,1]×T3 is{∂0, ∂1, ∂2, ∂3}, and the corresponding dual frame is {dx0, dx1, dx2, dx3}. Relative to this frame, the
Kasner metrics g̊ are of the form (1.6). The symbol ∂µ denotes the frame derivative ∂

∂xµ , and we
often write ∂t instead of ∂0 and dt instead of dx0. Most of our equations and estimates are stated
relative to the frame {∂µ}µ=0,1,2,3 and dual frame {dxµ}

µ=0,1,2,3
.

We use the notation ∂f to denote the spatial coordinate gradient of the function f . Similarly, if
Θ is a Σt-tangent one-form, then ∂Θ denotes the Σt-tangent type (02) tensorfield with components
∂iΘj relative to the frame described above.

If I⃗ = (n1, n2, n3) is a triple of non-negative integers, then we define the spatial multi-indexed

differential operator ∂I⃗ by ∂I⃗ ∶= ∂n1

1 ∂n2

2 ∂
n3

3 . The notation ∣I⃗ ∣ ∶= n1 + n2 + n3 denotes the order of I⃗.
Throughout, D denotes the Levi–Civita connection of g. We write

DνT
µ1⋯µm

ν1⋯νn = ∂νT µ1⋯µm
ν1⋯νn +

m∑
r=1

Γ µr
ν αT

µ1⋯µr−1αµr+1⋯µm
ν1⋯νn −

n∑
r=1

Γ α
ν νr

T µ1⋯µm
ν1⋯νr−1ανr+1⋯νn

(2.1)

to denote a component of the covariant derivative of a tensorfield T (with components T µ1⋯µm
ν1⋯νn )

defined on (T,1] ×T3. The Christoffel symbols of g, which we denote by Γ λ
µ ν , are defined by

Γ λ
µ ν ∶= 12(g−1)λσ {∂µgσν + ∂νgµσ − ∂σgµν} .(2.2)

We use similar notation to denote the covariant derivative of a Σt-tangent tensorfield T (with
components T a1⋯am

b1⋯bn
) with respect to the Levi–Civita connection ∇ of the Riemannian metric g.

The Christoffel symbols of g, which we denote by Γ i
j k, are defined by

Γ i
j k ∶= 12gia {∂jgak + ∂kgja − ∂agjk} .(2.3)

2.4. Integrals and L2 norms. Throughout this subsection, f denotes a scalar function defined
on the hypersurface Σt = {(s, x) ∈ R ×T3 ∣ s = t}. We define

∫
Σt

f dx ∶= ∫
T3

f(t, x1, x2, x3)dx.(2.4)

Above, the notation “ ∫T3 f dx” denotes the integral of f over T3 with respect to the measure corre-
sponding to the volume form of the standard Euclidean metric E on T3, which has the components
Eij = diag(1,1,1) relative to the coordinate frame described in Subsect. 2.3. All of our Sobolev
norms are built out of the (spatial) L2 norms of scalar quantities (which may be the components
of a tensorfield). We define the standard L2 norm ∥ ⋅ ∥L2 over Σt as follows:

∥f∥L2 = ∥f∥L2 (t) ∶= (∫
Σt

f 2 dx)1/2 .(2.5)

For integers N ≥ 0, we define the standard HN norm ∥ ⋅ ∥HN over Σt as follows:

∥f∥HN = ∥f∥HN (t) ∶= ⎛⎝ ∑∣I⃗ ∣≤N ∥∂I⃗f∥
2

L2 (t)⎞⎠
1/2

.(2.6)
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2.5. Constants. We use C and c to denote positive numerical constants that are free to vary from
line to line. If A and B are two quantities, then we often write

A ≲ B(2.7)

to indicate that “there exists a constant C > 0 such that A ≤ CB.” We write A = O(B) to indicate
that ∣A∣ ≤ CB. Some of the constants C and c in our estimates are allowed to depend on the
parameter N which, roughly speaking, represents the number of times that the equations have been
differentiated with spatial derivatives.

3. The Einstein-scalar field equations in CMC-transported spatial coordinates

and the linearized equations

In this section, we provide a standard formulation of the Einstein-scalar field equations relative
to CMC-transported spatial coordinates. We then linearize the equations around a Kasner solution
(1.6).

3.1. Preliminary discussion. We begin by stating some basic facts concerning the formulation
of the equations. The fundamental unknowns are g, k,n, and φ, where g and n are as in (1.5), and
k is the second fundamental form of the hypersurfaces Σt. More precisely, the Σt-tangent type (02)
tensorfield k is defined by requiring that following relation holds for all vectorfields X,Y tangent to
Σt:

g(DXN̂, Y ) = −k(X,Y ),(3.1)

where D is the Levi–Civita connection of g and

N̂ ∶= n−1∂t(3.2)

is the future-directed normal to Σt. It is a standard fact that k is symmetric:

k(X,Y ) = k(Y,X).(3.3)

Let ∇ denote the Levi–Civita connection of g. The action of the Levi–Civita connection D of g can
be decomposed into the action of ∇ and k as follows:

DXY = ∇XY − k(X,Y )N̂.(3.4)

Remark 3.1 (The mixed form of k verifies equations with favorable structure and the
meaning of ∂αkij). When working with the components of k, we will always write it in the mixed

form ki j ∶= giakaj with the first index upstairs and the second one downstairs. The reason is that the

nonlinear evolution and constraint equations verified by the components kij have a more favorable
structure than the corresponding equations verified by kij. For this reason, throughout the article,
we use the notation ∂αkij ∶= ∂α(kij).
3.2. The Einstein-scalar field equations in CMC-transported spatial coordinates. In the
following proposition, we formulate the Einstein-scalar field equations (1.1a)-(1.1b) relative to CMC-
transported spatial coordinates.

Proposition 3.1 (The Einstein-scalar field equations in CMC-transported spatial coor-
dinates). In CMC-transported spatial coordinates normalized by

kaa(t, x) = −t−1,(3.5)
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the Einstein-scalar field system comprises the following equations.
The Hamiltonian and momentum constraint equations are respectively:

R − kabkba + (kaa)2²
t−2

=
2T(N̂,N̂)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(n−1∂tφ)2 + gab∇aφ∇bφ,(3.6a)

∇ak
a
i − ∇ik

a
a²

0

= −n−1∂tφ∇iφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−T(N̂,∂i)

,(3.6b)

where R denotes the scalar curvature of gij.
The metric evolution equations are:

∂tgij = −2ngiakaj ,(3.7a)

∂tk
i
j = −gia∇a∇jn + n{Rici j + kaa°

−t−1

ki j −gia∇aφ∇jφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−T i

j+(1/2)Ii jT

},(3.7b)

where Rici j denotes the Ricci curvature of gij (see (3.22)), I ij = diag(1,1,1) denotes the identity

transformation, and T ∶= (g−1)αβTαβ denotes the trace of the energy-momentum tensor (1.2).
The volume form factor

√
detg verifies the auxiliary equation30

∂t ln(t−1√detg) = n − 1
t

.(3.8)

The scalar field wave equation is:

−D
N̂
D

N̂
φ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ−n−1∂t(n−1∂tφ)+gab∇a∇bφ =

−kaaDN̂
φ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

1

t
n−1∂tφ−n−1gab∇an∇bφ.(3.9)

The elliptic lapse equation31 is:

gab∇a∇b(n − 1) = (n − 1){R + (kaa)2²
t−2

−gab∇aφ∇bφ}(3.10)

+R − gab∇aφ∇bφ + (kaa)2 − ∂t(kaa)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

.

The gauge condition (3.5) and the constraint equations (3.6a)-(3.6b) are preserved by the flow of
the remaining equations if they are verified by the data.

Proof of Prop. 3.1. It is well-known that the constraint equations (3.6a)-(3.6b) follow from
(1.1a); see, for example, [70, Chapter 10], and note that our k has the opposite sign conven-
tion of the one in [70]. It is also well-known that equations (3.7a)-(3.9) follow from (1.1a)-(1.1b);
see, for example, [62, Section 6.2] or [64, Section 10 of Chapter 18]. To derive (3.10), we take the
trace of (3.7b) and use the CMC condition kaa = −t−1. The preservation of the gauge condition

30This equation, which we do not use in the present article, is implied by (3.7a) and the CMC condition kaa = −t
−1.

31Below, when we linearize the equations, we will view n−1 as a linearly small quantity. Hence, we prefer to write
(3.10) as an equation in n − 1.
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and constraints is a standard result that can be derived from a straightforward modification of the
argument presented in [3, Theorem 4.2]. �

3.3. The linearization procedure and the linearly small quantities. In our linear analysis,
we work with the “linearly small quantities” defined just below in Def. 3.1. In the definition, g
denotes the (Riemannian) 3-metric from Prop. 3.1, kij denotes its mixed second fundamental form,

g̊ denotes the 3-metric of the Kasner solution (see (1.6)), k̊ij denotes its mixed second fundamental
form (see (1.7)), and similarly for the other quantities. Before stating the definition of the linearly
small quantities, we first make some remarks about how one can linearize the equations of Prop. 3.1
around a given solution. There are two ways that this can be achieved. Both approaches lead to the
same system of linear PDEs but conceptually are somewhat different. The first way, which is mani-
festly invariant, is through the notion of one-parameter family of solutions to the equations, similar
to our discussion below Theorem 1.4. That is, one can consider an α-parameterized family of solu-
tions (n[α], g[α], k[α], φ[α]) to the nonlinear equations of Prop. 3.1 such that (n[0], g[0], k[0], φ[0])
is the background solution around which one would like to linearize. We set n′[α] ∶= d

dα
n[α] and

similarly for the other variables. One can then differentiate the nonlinear equations with respect
to α and set α = 0 to deduce that the variations (n′[0], g′[0], k′[0], φ′[0]) solve a system of lin-
ear PDEs whose coefficients depend on (n[0], g[0], k[0], φ[0]). The system thus obtained is the
linearization of the Einstein-scalar field equations in CMC-transported spatial coordinates gauge
about the background solution (n[0], g[0], k[0], φ[0]).

The second way to derive the linearized system is to perform a first-order Taylor expansion of the
nonlinear equations of Prop. 3.1 about a given solution, in our case a Kasner solution (1, g̊, k̊, φ̊),
where 1 is the Kasner lapse. Equivalently, in the nonlinear equations, one decomposes the nonlinear
spatial metric gij as gij = g̊ij+hij (where hij is the “linearly small” metric perturbation) and similarly
for the other solution variables, and then discards all terms that are quadratic or smaller in the
perturbation variables (where the derivatives of the perturbation variables are also considered to be
linearly small). After one discards the quadratic-or-higher-order small terms and accounts for the
fact that the background Kasner solution is a solution to the nonlinear equations, what remains is
a system of linear PDEs whose coefficients depend on the Kasner solution. This is the approach
that we take in the proof of Prop. 3.2. Though seemingly less invariant than the first approach, it
is straightforward to see that it yields the same linear PDE system.

Having made these remarks, we now define the linearly small “perturbation variables” that play
a role in our derivation of the linearized equations.
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Definition 3.1 (Linearly small quantities). We define (for a, b, i, j = 1,2,3)
hij ∶= gij − g̊ij,(3.11a)

(h)Γ i
a b ∶= 12 g̊ic {∂ahcb + ∂bhac − ∂chab} ,(3.11b)

(h)R ∶= −1
2
g̊abg̊ef∂e∂fhab + g̊ef∂a(h)Γ a

e f ,(3.11c)

(h)Rici j ∶= −12 g̊iag̊ef∂e∂fhja +
1

2
g̊ef∂j

(h)Γ i
e f + 1

2
g̊iag̊jb̊g

ef∂a
(h)Γ b

e f ,(3.11d)

κi
j ∶= kij − k̊ij ,(3.11e)

ϕ ∶= φ − φ̊,(3.11f)

ν ∶= n − 1.(3.11g)

Remark 3.2 (Justification of Def. 3.1). The main point is that for solutions to the nonlinear
equations that are near the Kasner solution (1.6), all of the quantities defined in Def. 3.1 are linearly
small in the sense described above Def. 3.1.

Remark 3.3. Below and throughout, T̂ denotes the trace-free part of the Σt-tangent tenor T .

Remark 3.4. Note that κ is trace-free, that is,

κ = κ̂.(3.12)

(3.12) follows from definition (3.11e), the CMC condition kaa(t, x) = −t−1, and the fact that

k̊aa(t, x) = −t−1.
3.4. The linearized Einstein-scalar field equations in CMC-transported spatial coordi-
nates. In the next proposition, we use the procedure described just above Def. 3.1 to linearize the
equations of Prop. 3.1 around a given Kasner solution (1.6).

Proposition 3.2 (The linearized Einstein-scalar field equations in CMC-transported
spatial coordinates). Consider the equations of Prop. 3.1 linearized around a Kasner solution
(1.6). The linearized equations in the unknowns (ν, h,κ, ϕ), which are functions of (t, x) ∈ (0,∞) ×
T3, take the following form (see Def. 3.1 for the definitions of some of the quantities).

The linearized constant mean curvature condition is:

κa
a = 0.(3.13)

The linearized versions of the Hamiltonian and momentum constraint equations

(3.6a)-(3.6b) are:

t2(h)R − 2(tˆ̊kab)(tκb
a) − 2At∂tϕ + 2A2ν = 0,(3.14a)

∂a(tκa
i) = −A∂iϕ − (h)Γ a

a b(tˆ̊kbi) + (h)Γ b
a i(tˆ̊kab),(3.14b)

g̊ab∂a(tκi
b) = −Ag̊ia∂aϕ − g̊ab(h)Γ i

a c(tˆ̊kcb) + g̊ab(h)Γ c
a b(tˆ̊kic),(3.14c)

where the constant 0 ≤ A ≤√2/3 is defined by (1.8b).
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The linearized version of the lapse equation (3.10) can be expressed in either of the fol-
lowing two forms:

2A(t∂tϕ) + 2(tˆ̊kab)(tκb
a) = t2g̊ab∂a∂bν + (2A2 − 1)ν,(3.15a)

t2g̊ab∂a∂bν − ν = t2(h)R.(3.15b)

Equation (3.14a) can be used to show that (3.15a) is equivalent to (3.15b).
The linearized versions of the metric evolution equations (3.7a)-(3.7b) are:

∂thij = −2t−1(t̊kaj)hia − 2t−1g̊ia(tκa
j) − 2t−1g̊ia(t̊kaj)ν,(3.16a)

∂t(tκi
j) = −t̊gia∂a∂jν − t−1(t̊ki j)ν + t(h)Rici j.(3.16b)

The linearized version of the scalar field wave equation (3.9) is:

−∂t(t∂tϕ) + t̊gab∂a∂bϕ = −A∂tν +At−1ν.(3.17)

Remark 3.5 (An alternate approach). One could adopt an alternate approach to the proof of
our stability results in which the product n−1∂tφ is treated as an independent quantity. In such
an approach, one would not generate terms in the equations that depend on the time derivative
of the lapse. This would simplify some aspects of the analysis. For example, upon linearizing the
equations under the alternate approach, one would not generate the term ∂tν, which appears on the
right-hand side (3.17). The alternate approach would not have any substantial effect on our main
results. For example, notice that ∂tν does not appear in the approximate monotonicity identity
stated in Theorem 5.1 (though, under the approach of this paper, ∂tν does play a role in its proof ).
The alternate approach is closer in spirit to the approach that we take in [59] in our study of the
Einstein-stiff fluid system, in which we avoid having to treat the time derivative of the lapse in the
evolution equations.

Remark 3.6. Equation (3.14b) is the linearized version of the constraint ∇ak
a
i = −n−1∂tφ∇iφ, while

equation (3.14c) is the linearized version of ∇akia = −n−1∂tφgia∇aφ. We use both of these equations
when deriving estimates.

Remark 3.7 (Propagation of L2 regularity). In deriving the equations of Prop. 3.2, we have
linearized a version of the Einstein-scalar field system written relative to a dynamic system of coordi-
nates that is adapted to the nonlinear flow. It is for this reason that our approximate monotonicity
identity for linear solutions, which we derive below in Prop. 5.2, should be viewed as providing
relevant information about the L2 regularity of the nonlinear solution. In particular, the proof
of Prop. 5.2 can be modified in a straightforward fashion to yield a coercive integral identity for
the nonlinear equations, consistent with well-posedness relative to the CMC-transported spatial
coordinates gauge.

Proof of Prop. 3.2. We first note that (3.13) follows from (3.12).
We will derive three more equations in detail. The remaining equations can be derived using sim-

ilar arguments and we omit those details. The overall strategy is to consider the equations of Prop.
3.1 and to expand the Riemannian metric g as an order 0 “Kasner term” and a perturbation term
as follows: gij = g̊ij +hij , and similarly for (tkij, φ, n). We then discard all terms that are quadratic
or higher-order in the perturbations, which yields the proposition. Since this proof features the
spatial metrics g and g̊, to avoid confusion, we will denote the components of the inverse Kasner
spatial metric by (̊g−1)ij rather than g̊ij.
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As our first detailed example, we derive (3.17). We start by expanding the scalar field wave
equation (3.9) as follows:

−∂t(t∂tφ) + n2tgab∇a∇bφ = (n − 1)
t

t∂tφ − (∂tn)
n

t∂tφ − ntgab∇an∇bφ.(3.18)

Using (3.18), we compute that

− ∂t(t∂tφ −A) + tgab∂a∂bφ + t(n + 1)(n − 1)gab∇a∇bφ(3.19)

= A(n − 1)
t
−A∂tn

+ n2tgabΓ j
a b∂jφ + (n − 1)t

(t∂tφ −A)
− (∂tn)(t∂tφ −A) + (∂tn)n − 1

n
t∂tφ − tgab∂an∂bφ − (n − 1)tgab∂an∂bφ.

We now discard the quadratically small terms, that is, the term t(n + 1)(n − 1)gab∇a∇bφ and the
terms on the last two lines of (3.19), which, in view of Def. 3.1, yields (3.17).

Next, we derive equation (3.16b). To this end, we expand the evolution equation (3.7b) for kij
as follows:

∂t(tkij) = −tgia∂a∂jn + tgiaΓ b
a j∂bn − n − 1t (tkij) + tRici j + t(n − 1)Rici j − tngia∂aφ∂jφ.(3.20)

From (3.20), we compute that

∂t {tkij − t̊kij} = −t(̊g−1)ia∂a∂jn − n − 1t (t̊kij) + tRici j(3.21)

− t{gia − (̊g−1)ia}∂a∂jn + tgiaΓ b
a j∂bn

− n − 1
t
(tkij − t̊kij) + t(n − 1)Rici j − tngia∂aφ∂jφ.

Next, we note that it is straightforward to see that in Def. 3.1, (h)Γ i
a b is the linearization of the

Christoffel symbol Γ i
a b (see (2.3)) around the Kasner solution, and similarly for (h)Rici j and (h)R.

We have obtained the latter two linearizations from the standard expression

Rici j = gic∂aΓ a
c j − gic∂cΓ a

j a + gicΓ a
a bΓ

b
c j − gicΓ a

c bΓ
b
a j(3.22)

for the Ricci curvature of g in terms of its Christoffel symbols (2.3) and the definition R ∶= Ricaa.
From these facts and Def. 3.1, it follows that the linearly small terms in (3.21) are the term on
the left-hand side, the first two terms on the right-hand side, and t(h)Rici j, which we obtain from

linearizing the third term tRici j on the right-hand side of (3.21). Discarding the remaining terms,
we obtain the linearized equation (3.16b) as desired.

As our final example, we derive the linearized Hamiltonian constraint equation (3.14a). We first
expand equation (3.6a) to deduce

t2R − (tkab)(tkba) + 1 = (t∂tφ)2 − 2(t∂tφ)2(n − 1)(3.23)

+ (2n + 1)
n2

(t∂tφ)2(n − 1)2 + t2gab∂aφ∂bφ.
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Using (3.23), the CMC condition tkaa = −1, the identity (t̊kab)(t̊kba) = ∑3
i=1 q

2
i , and the exponent

constraints (1.8a)-(1.8b), we compute that

t2R − 2(tk̂ab − tˆ̊kab)(t̊kba) + 1 − 3∑
i=1

q2i −A2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

(3.24)

= 2A(t∂tφ −A) − 2A2(n − 1)
+ (t∂tφ −A)2 − 4A(n − 1)(t∂tφ −A)(t∂tφ +A) − 2(n − 1)(t∂tφ −A)2
+ (2n + 1)

n2
(t∂tφ)2(n − 1)2 + t2gab∂aφ∂bφ.

With the help of Def. 3.1, we see that the linearly small terms in (3.24) are the two terms on the first

line of the right-hand side, the term 2(tk̂ab − tˆ̊kab)(t̊kba) on the left-hand side, and the term t2(h)R
obtained from linearizing the first term t2R on the left-hand side. Discarding the remaining terms,
we obtain the linearized equation (3.14a) as desired. This completes our proof of Prop. 3.2. �

4. Norms and energies

In this short section, we define the norms and energies that play a role in our analysis of linear
solutions.

4.1. Pointwise norms. We will use the following two norms.

Definition 4.1 (Pointwise norms). Let T be a type (m
n
) Σt-tangent tensor with components

T a1⋯am
b1⋯bn

. Then ∣T ∣Frame denotes the following norm (involving the components of T relative to
the transported coordinate frame):

∣T ∣2Frame ∶= 3∑
a1=1

⋯
3∑

am=1

3∑
b1=1

⋯
3∑

bn=1

∣T a1⋯am
b1⋯bn

∣2 .(4.1a)

∣T ∣̊g denotes the g̊-norm of T , where g̊ is the background Kasner spatial metric from (1.6):

∣T ∣2g̊ ∶= g̊a1a′1⋯g̊ama′m
(̊g−1)b1b′1⋯(̊g−1)bnb′nT a1⋯am

b1⋯bn
T

a′
1
⋯a′m

b′
1
⋯b′n

.(4.1b)

4.2. Sobolev and Lebesgue norms. In our analysis, we will use the Sobolev norms ∥ ⋅ ∥HM
Frame

and the Lebesgue norm ∥ ⋅ ∥L2

g̊
defined below in Def. 4.2. The norms ∥ ⋅ ∥HM

Frame
are “less geometric”

than the energies of Def. 4.4 because their definition involves the components of tensorfields relative
to the transported coordinate frame rather than invariant quantities. The norms ∥ ⋅ ∥HM

Frame
are

important for the proof of linear stability (see Theorem 7.1).

Definition 4.2 (Sobolev and Lebesgue norms). Let T be a type (m
n
) Σt-tangent tensorfield

with components T a1⋯am
b1⋯bn

. We define

∥T ∥HM
Frame

= ∥T ∥HM
Frame

(t) ∶= ∑
∣I⃗ ∣≤M
∥∣∂I⃗T (t, ⋅)∣Frame

∥
L2
,(4.2)

where ∥f∥L2 is defined in (2.5), I⃗ denotes a spatial coordinate derivative multi-index (see Subsect.
2.3), and

(∂I⃗T ) a1⋯am
b1⋯bn

∶= ∂I⃗(T a1⋯am
b1⋯bn

).(4.3)
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We sometimes use the notation ∥T ∥L2

Frame
in place of ∥T ∥H0

Frame
.

We also define the Lebesgue norm

∥T ∥L2

g̊
= ∥T ∥L2

g̊
(t) ∶= ∥∣T (t, ⋅)∣̊g∥L2

,(4.4)

where ∣T (t, ⋅)∣̊g is defined in (4.1b).

Remark 4.1. If T is a scalar function, then we often write ∣T ∣ instead of ∣T ∣Frame or ∣T ∣̊g, ∥T ∥HM

instead of ∥T ∥HM
Frame

, and ∥T ∥L2 instead of ∥T ∥L2

Frame
or ∥T ∥L2

g̊
since for scalar functions, there is no

danger of confusion over how to measure the size of T .

Definition 4.3 (Solution norms). The specific norms that are most relevant for the linear solu-
tions under study are as follows:

S(Frame);M(t) ∶= ∥tκ∥HM
Frame

+ ∥∂h∥HM
Frame

+ ∥t∂tϕ∥HM
Frame

+ t2/3∥∂ϕ∥HM
Frame

+ 2∑
p=0

t(2/3)p ∥ν∥HM+p .(4.5)

4.3. Energies. Our monotonicity identities and our energy estimates involve the following energies
for the linearized variables.

Definition 4.4 (Energies). For t ∈ (0,1], we define E(Metric)(t) ≥ 0, ⋯, E(Total);θ(t) ≥ 0 as follows:

E
2
(Metric)(t) ∶= ∫

Σt

∣tκ∣2g̊ + 1

4
∣t∂h∣2g̊ dx,(4.6a)

E
2
(Scalar)(t) ∶= ∫

Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx,(4.6b)

E
2
(∂Lapse)(t) ∶= ∫

Σt

∣t∂ν∣2g̊ dx,(4.6c)

E
2
(Lapse)(t) ∶= ∫

Σt

ν2 dx,(4.6d)

E
2
(Total);θ(t) ∶= E

2
(Scalar)(t) + E

2
(∂Lapse)(t) + (1 −A2)E 2

(Lapse)(t) + θE
2
(Metric)(t),(4.6e)

where the constant 0 ≤ A ≤ √2/3 is defined by (1.8b) and θ is a small positive constant that we
choose below when we derive estimates for E 2

(Total);θ(t).
We will also use up-to-order M energies. Specifically, we view the energy E 2

(Total);θ defined in

(4.6e) as a functional of κ, ∂h, ∂tϕ,∂ϕ, ∂ν,ν (that is, E 2
(Total);θ = E 2

(Total);θ[κ, ∂h, ∂tϕ,∂ϕ, ∂ν,ν]), and
we define

E
2
(Total);θ;M(t) ∶= ∑

∣I⃗ ∣≤M
E

2
(Total);θ[∂I⃗κ, ∂∂I⃗h, ∂t∂I⃗ϕ,∂∂I⃗ϕ,∂∂I⃗ν, ∂I⃗ν](t).(4.7)

In Lemma 4.3 below, we compare the strength of the energies to the strength of the norms. Its
proof is straightforward and amounts to tracking powers of t. We first provide the following lemma,
whose simple proof we omit.

Lemma 4.1 (Basic properties of the spatial part of the Kasner metric). Let η ≥ 0 be as
defined in (1.9b). The components g̊ij of the Kasner spatial metric (see (1.6)) and the components
g̊ij of its inverse verify the following estimates for (t, x) ∈ (0,1] ×T3, (i, j = 1,2,3):

∣̊gij ∣ ≤ t2/3−2η,(4.8a)

∣̊gij∣ ≤ t−2/3−2η.(4.8b)
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Furthermore, the 3 × 3 matrices g̊ij and g̊ij have the following positive definiteness properties:

t2/3+2ηδabX
aXb ≤ g̊abXaXb ≤ t2/3−2ηδabXaXb, ∀X ∈ R3,(4.9a)

t−2/3+2ηδabξaξb ≤ g̊abξaξb ≤ t−2/3−2ηδabξaξb, ∀ξ ∈ R3,(4.9b)

where δab and δab are standard Kronecker deltas.
Furthermore,

∂tg̊ij = −2t−1g̊ia(t̊kaj), ∂tg̊
ij = 2t−1g̊ja(t̊kia),(4.10)

where t̊ki j = −diag(q1, q2, q3) (see (1.7)).

Before comparing the strength of the energies and the norms, we first provide the following simple
elliptic estimate, which will allow us to derive estimates for the top-order derivatives of the linearized
lapse.

Lemma 4.2 (Top-order estimate for ν). If ν verifies equation (3.15a), then the following32

elliptic estimate holds:

t2∥∂2ν∥L2

g̊
≲ ∣2A2 − 1∣∥ν∥L2 + 2A∥t∂tϕ∥L2 + 2∣tˆ̊k ∣̊g∥tκ∥L2

g̊
.(4.11)

Proof. We multiply equation (3.15a) by t2g̊ef∂e∂fν, integrate by parts over Σt (relative to the
Euclidean volume form on Σt), and use Cauchy-Schwarz and Young’s inequality as well as the
simple estimate ∥̊gef∂e∂fν∥L2 ≲ ∥∂2ν∥L2

g̊
. �

Lemma 4.3 (Energy-norm comparison lemma). Let N ≥ 0 be an integer and let η ≥ 0 be as
defined in (1.9b). Under the assumptions of Lemma 4.2, there exist constants33 C > 0 and c > 0,
depending on θ, such that the following comparison estimates hold for the norm S(Frame);N(t)
defined in (4.5) and the total energy E(Total);θ;N(t) defined in (4.7) on the interval t ∈ (0,1]:

E(Total);θ;N(t) ≤ Ct−cηS(Frame);N(t),(4.12a)

S(Frame);N(t) ≤ Ct−cηE(Total);θ;N(t).(4.12b)

Proof. Lemma 4.3 follows easily from Lemma 4.1, Lemma 4.2 (which allows us to bound the top-
order linearized lapse term t4/3 ∥ν∥HN+2 from (4.5) in terms of the other linear solution variables),
and the definitions of the quantities involved. �

5. The approximate monotonicity identity

5.1. Statement of the approximate monotonicity identity. The next theorem provides the
approximate monotonicity identity that lies at the heart of the linear stability of near-FLRW Kasner
solutions. Unlike the results of Sects. 6 and 7, the identity is valid for all Kasner backgrounds.

Remark 5.1 (Monotonicity-coaxing terms and error terms). The favorable “monotonicity-
coaxing terms” are the negative definite spacetime integrals on the third and fourth lines of (5.1).
The last line of (5.1) features unsigned error integrals that compete against the negative definite
integrals. In Theorem 6.1, we show that for near-FLRW Kasner backgrounds, the unsigned integrals
can be absorbed into the negative definite integrals, except for one error integral whose coefficient
is controlled by the parameter η.

32We note that ∥∂2ν∥2
L2

g̊

= ∫Σt
g̊abg̊ef∂a∂eν∂b∂fνdx.

33As we have mentioned, C and c are free to vary from line to line and can depend on N .
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Theorem 5.1 (The approximate monotonicity identity). For any constant θ > 0, solutions
to the linearized equations of Prop. 3.2 verify the following identity for t ∈ (0,1]:

∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx + ∫
Σt

∣t∂ν∣2g̊ dx + (1 −A2)∫
Σt

ν2 dx + θ∫
Σt

∣tκ∣2g̊ + 1

4
∣t∂h∣2g̊ dx − ∫

Σt

N1 dx

(5.1)

= ∫
Σ1

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx + ∫
Σ1

∣t∂ν∣2g̊ dx + (1 −A2)∫
Σ1

ν2 dx + θ∫
Σ1

∣κ∣2g̊ + 14 ∣t∂h∣2g̊ dx −∫Σ1

N1 dx

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds − ∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds − ∫ 1

s=t
s−1∫

Σs

ν2 dxds

−
1

2
θ∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds
+

3∑
i=1
∫ 1

s=t
s−1∫

Σs

Ni dxds + θ
10∑
i=4
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where the constant 0 ≤ A ≤√2/3 is defined by (1.8b) and along Σs, we have

N1 = N1(sˆ̊k, sκ,ν) ∶= −2(sˆ̊kab)(sκb
a)ν,(5.2a)

N2 = N2(s̊k, s∂ϕ, s∂ϕ) ∶= −2s2g̊ab(s̊kcb)∂aϕ∂cϕ,(5.2b)

N3 = N3(s∂ϕ, s∂ν) ∶= −2As2g̊ab∂aϕ∂bν,(5.2c)

N4 = N4(s̊k, s∂h, s∂h) ∶= −1
2
s2g̊abg̊ij g̊cf(s̊kec)∂ehai∂fhbj ,(5.2d)

N5 = N5(sˆ̊k, sκ, sκ) ∶= 2̊gic̊gab(sˆ̊kcj)(sκi
a)(sκj

b) − 2̊gij g̊ac(sˆ̊kbc)(sκi
a)(sκj

b),(5.2e)

N6 = N6(sˆ̊k, s∂h, s∂h) ∶= s2g̊ab̊gef g̊ij(sˆ̊kac)(h)Γ c
i j
(h)Γ b

e f − s
2g̊abg̊

ef g̊ij(sˆ̊kcj)(h)Γ a
i c
(h)Γ b

e f(5.2f)

+ s2g̊ef(sˆ̊kac)(h)Γ c
a b
(h)Γ b

e f − s
2g̊ef(sˆ̊kcb)(h)Γ a

a c
(h)Γ b

e f ,

N7 = N7(s̊k, s∂h, s∂ν) ∶= 2s2g̊ij(sˆ̊kbi)(h)Γ a
a b∂jν − 2s

2g̊ij(sˆ̊kab)(h)Γ b
a i∂jν(5.2g)

+ s2g̊ij g̊ef(s̊kaj)∂ehai∂fν,
N8 = N8(sˆ̊k, sκ,ν) ∶= 2̊gabg̊ij(sˆ̊kai)(sκb

j)ν,(5.2h)

N9 = N9(s∂ϕ, s∂ν) ∶= 2As2g̊ij∂iϕ∂jν,(5.2i)

N10 = N10(s∂h, s∂ϕ) ∶= −2As2g̊ef (h)Γ a
e f∂aϕ.(5.2j)

Proof. Below we independently derive the identities (5.3) and (5.8). To obtain (5.1), we simply add
(5.3) to θ times (5.8). �

Corollary 5.1 (Approximate monotonicity identity for the solution’s higher derivatives).

For any spatial derivative multi-index I⃗ (as defined in Subsect. 2.3), the identity (5.1) holds with
κ, ∂h,ϕ,ν replaced with, respectively, ∂I⃗κ, ∂∂I⃗h, ∂I⃗ϕ,∂I⃗ν.

Proof. Since the Kasner background metric is spatially homogeneous (that is, independent of x ∈
T3), the operators ∂I⃗ commute through the linear equations of Prop. 3.2. Put differently, the
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differentiated quantities ∂I⃗κ, ∂∂I⃗h, ∂I⃗ϕ,∂I⃗ν verify the same equations satisfied by κ, ∂h,ϕ,ν. Hence,
Theorem 5.1 applies to the differentiated quantities as well. �

5.2. The key integral identity for the linearized lapse and scalar field. The most important
ingredient in the proof of Theorem 5.1 is the following proposition, which provides an integral iden-
tity for the linearized scalar field and the linearized lapse. The proof of the proposition essentially
involves combining several integration by parts-type identities in a manner that replaces dangerous
error integrals with favorable ones.

Proposition 5.2 (The key integral identity for the linearized scalar field and the lin-
earized lapse). Solutions to the linearized equations of Prop. 3.2 verify the following identity for
t ∈ (0,1]:

∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx +∫
Σt

∣t∂ν∣2g̊ dx + (1 −A2)∫
Σt

ν2 dx −∫
Σt

N1 dx(5.3)

= ∫
Σ1

(∂tϕ)2 + ∣∂ϕ∣2g̊ dx + ∫
Σ1

∣∂ν∣2g̊ dx + (1 −A2)∫
Σ1

ν2 dx − ∫
Σ1

N1 dx

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds − ∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds − ∫ 1

s=t
s−1∫

Σs

ν2 dxds

+
3∑
i=1
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where the constant 0 ≤ A ≤ √2/3 is defined by (1.8b) and N1, N2, and N3 are defined in (5.2a)-
(5.2c).

Remark 5.2. The surprising aspect of the identity (5.3) is the presence of the spacetime integrals
that are negative definite in ν and ∂ν. In Sect. 10, we show that a version of (5.3) also holds when
the CMC gauge is replaced with a parabolic lapse gauge.

Proof of Prop. 5.2. The proof involves combining three integration by parts identities. Throughout,
we silently use the identities in (4.10). To obtain the first identity, we multiply both sides of the
linearized lapse equation (3.15a) by ν and integrate by parts over Σt to deduce that

2A∫
Σt

(t∂tϕ)νdx = −∫
Σt

∣t∂ν∣2g̊ dx + (2A2 − 1)∫
Σt

ν2 dx − 2∫
Σt

(tˆ̊kab)(tκb
a)νdx.(5.4)

The second identity is an energy identity for the linearized scalar field wave equation. Specifically,
we replace t with the integration variable s in equation (3.17), multiply by −2s∂tϕ, and integrate
by parts over (s, x) ∈ [t,1]×T3 (we stress that t ≤ 1) to deduce that the following identity holds for
t ∈ (0,1]:

∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx = ∫
Σ1

(∂tϕ)2 + ∣∂ϕ∣2g̊ dx(5.5)

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ + s2g̊ab(s̊kcb)∂aϕ∂cϕdxds
− 2A∫ 1

s=t
∫
Σs

(s∂tϕ)∂tνdxds + 2A∫ 1

s=t
s−1∫

Σs

(s∂tϕ)νdxds.
Next, we multiply equation (3.17) by ν to obtain the following identity:

(t∂tϕ)∂tν = ∂t(t∂tϕν) − 1

2
A∂t(ν2) − tνg̊ab∂a∂bϕ +At−1ν2.(5.6)
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To obtain the third identity, we now replace t with the integration variable s in equation (5.6),
multiply by 2A, and integrate by parts over (s, x) ∈ [t,1] ×T3 to deduce that

−2A∫ 1

s=t
∫
Σs

(s∂tϕ)∂tνdxds = −2A∫
Σ1

∂tϕνdx +A
2∫

Σ1

ν2 dx(5.7)

+ 2A∫
Σt

(t∂tϕ)νdx −A2∫
Σt

ν2 dx

− 2A∫ 1

s=t
s−1∫

Σs

s2g̊ab∂aϕ∂bνdxds − 2A
2∫ 1

s=t
s−1∫

Σs

ν2 dxds

= ∫
Σ1

∣∂ν∣2g̊ dx + (1 −A2)∫
Σ1

ν2 dx + 2∫
Σ1

ˆ̊
kabκ

b
aνdx

−∫
Σt

∣t∂ν∣2g̊ dx − (1 −A2)∫
Σt

ν2 dx − 2∫
Σt

(tˆ̊kab)(tκb
a)νdx

− 2A∫ 1

s=t
s−1∫

Σs

s2g̊ab∂aϕ∂bνdxds − 2A
2∫ 1

s=t
s−1∫

Σs

ν2 dxds,

where to obtain the second equality, we substituted the right-hand side of (5.4) for the integrals
2A ∫Σ1

∂tϕνdx and 2A ∫Σt
(t∂tϕ)νdx. We now use the identity (5.4) with t replaced by s to substitute

for the integral 2A ∫Σs
(s∂tϕ)νdx in the last spacetime integral on the right-hand side (5.5). Finally,

we substitute the right-hand side of (5.7) for the next-to-last spacetime integral on the right-hand
side of (5.5). In total, these steps lead to the identity (5.3).

�

5.3. An energy identity for the linearized metric variables. In the next proposition, we
derive an energy identity for the linearized metric solution variables.

Proposition 5.3 (Energy identity for the linearized metric variables). Solutions to the
linearized equations of Prop. 3.2 verify the following identity for t ∈ (0,1]:

∫
Σt

∣tκ∣2g̊ + 1

4
∣t∂h∣2g̊ dx = ∫

Σ1

∣κ∣2g̊ + 1

4
∣∂h∣2g̊ dx(5.8)

−
1

2 ∫
1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds
+

10∑
i=4
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where N4, ⋯, N10 are defined in (5.2d)-(5.2j).

Remark 5.3 (No need for spatial harmonic coordinates). Prop. 5.3 shows in particular that
we can derive energy estimates for solutions to Einstein’s equations34 directly in CMC-transported
spatial coordinates. Remarkably, we have not seen this observation made in the literature. Previous
authors (see, for example, [3, 5]) have instead chosen to impose the spatial harmonic coordinate
condition gab∇a∇bxi = 0 to “reduce” the Ricci tensor Rij of g to an elliptic operator acting on the
components gij. That is, in spatial harmonic coordinates, we have Rij = −1

2
gab∂a∂bgij + fij(g, ∂g),

which eliminates the last two products on the right-hand side of (3.11d) and leads to a simpler proof
of a basic L2-type energy identity. In the proof of Prop. 5.3, we handle these two products through

34Although the proposition addresses only the linearized equations, essentially the same argument can be used to
derive a similar energy identity for the nonlinear equations.
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a procedure involving integration by parts and the constraint equations; see equations (5.16) and
(5.17). The spatial harmonic coordinate condition, though it might have advantages in certain
contexts, introduces additional complications into the analysis. The complications arise from the
necessity of including a non-zero “shift vector” X i in the spacetime metric g: g = −n2dt2+gab(dxa+
Xadt)(dxb +Xbdt). To enforce the spatial harmonic coordinate condition, the components X i must
verify a system of elliptic PDEs that are coupled to the other solution variables.

Proof of Prop. 5.3. The proof involves combining a collection of integration by parts identities.
Throughout, we silently use the identities in (4.10). To begin, we use the evolution equation
(3.16b) to deduce that

∂t(∣tκ∣2g̊) = −2t−1g̊icg̊ab(t̊kcj)(tκi
a)(tκj

b) + 2t−1g̊ij g̊ac(t̊kbc)(tκi
a)(tκj

b)(5.9)

+ 2̊gabg̊
ij(tκa

i){−t̊gbc∂c∂jν − t−1ν(t̊kbj) + t(h)Ricbj} .
Note that we can express the first line of the right-hand side of (5.9) as

−2t−1g̊icg̊
ab(tˆ̊kcj)(tκi

a)(tκj
b) + 2t−1g̊ij g̊ac(tˆ̊kbc)(tκi

a)(tκj
b)(5.10)

because the terms corresponding to the pure trace part of k̊ cancel. Furthermore, since equation
(3.13) implies that κ = κ̂, we can express the second product on the second line of the right-hand
side of (5.9) as

−2t−12̊gabg̊
ij(tκa

i)(t̊kbj)ν = −2̊gabg̊ij(sˆ̊kai)(sκb
j)ν.(5.11)

Similarly, using the evolution equation (3.16a), we deduce that35

1

4
∂t(t2∣∂h∣2g̊) = 12t∣∂h∣2g̊ + t̊gbcg̊ij g̊ef(t̊kac)∂ehai∂fhbj + 1

2
t̊gabg̊ij g̊cf(t̊kec)∂ehai∂fhbj(5.12)

+
1

2
g̊abg̊ij g̊ef∂ehai∂f {−2thbc(t̊kcj) − 2t̊gbc(tκc

j) − 2t̊gbc(t̊kcj)ν} .
For convenience, in the remainder of this proof, we denote terms that can be expressed as perfect

spatial derivatives by “⋯.” These terms will vanish when we integrate the identities over T3. We
now use equation (3.14b) and differentiation by parts to express the first product on the second line
of the right-hand side of (5.9) as

−2t̊gabg̊
bcg̊ij(tκa

i)∂c∂jν = 2t̊gij∂a(tκa
i)∂jν +⋯(5.13)

= −2At̊gij∂iϕ∂jν
− 2t̊gij(h)Γ a

a b(tˆ̊kbi)∂jν + 2t̊gij(h)Γ b
a i(tˆ̊kab)∂jν

+⋯.

Next, we use equation (3.11d) to express the third product on the second line of the right-hand
side of (5.9) as

2t̊gabg̊
ij(tκa

i)(h)Ricbj = −t̊gij g̊ef(tκa
i)∂e∂fhja(5.14)

+ t̊gabg̊
ij g̊ef(tκa

i)∂j(h)Γ b
e f + t(tκa

b)̊gef∂a(h)Γ b
e f .

35We recall that ∣∂h∣2g̊ = g̊abg̊ij g̊ef∂ehai∂fhbj .
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Next, we use differentiation by parts to express the first product on the right-hand side of (5.14)
as

−t̊gij g̊ef(tκa
i)∂e∂fhja = t̊gij g̊ef∂e(tκa

i)∂fhja +⋯.(5.15)

Next, we use equation (3.14c) and differentiation by parts to express the second product on the
right-hand side of (5.14) as

t̊gabg̊
ij g̊ef(tκa

i)∂j (h)Γ b
e f = −t̊gabg̊ij g̊ef∂j(tκa

i)(h)Γ b
e f +⋯(5.16)

= At̊gef∂aϕ(h)Γ a
e f

+ t̊gabg̊
ef g̊ij(tˆ̊kcj)(h)Γ a

i c
(h)Γ b

e f − t̊gabg̊
ef g̊ij(tˆ̊kac)(h)Γ c

i j
(h)Γ b

e f

+⋯.

Next, we use equation (3.14b) and differentiation by parts to express the third product on the
right-hand side of (5.14) as

t(tκa
b)̊gef∂a(h)Γ b

e f = −t̊gef∂a(tκa
b)(h)Γ b

e f +⋯(5.17)

= At̊gef∂bϕ(h)Γ b
e f + t̊g

ef(tˆ̊kcb)(h)Γ a
a c
(h)Γ b

e f − t̊g
ef(tˆ̊kac)(h)Γ c

a b
(h)Γ b

e f +⋯.

Combining (5.9)-(5.17) and carrying out straightforward computations, we deduce that

∂t(∣tκ∣2g̊) + 1

4
∂t(t2∣∂h∣2g̊) = 1

2
t∣∂h∣2g̊ + 12 t̊gabg̊ij g̊cf(t̊kec)∂ehai∂fhbj(5.18)

− 2t−1g̊icg̊
ab(tˆ̊kcj)(tκi

a)(tκj
b) + 2t−1g̊ij g̊ac(tˆ̊kbc)(tκi

a)(tκj
b)

+ t̊gabg̊
ef g̊ij(tˆ̊kcj)(h)Γ a

i c
(h)Γ b

e f − t̊gabg̊
ef g̊ij(tˆ̊kac)(h)Γ c

i j
(h)Γ b

e f

+ t̊gef(tˆ̊kcb)(h)Γ a
a c
(h)Γ b

e f − t̊g
ef(tˆ̊kac)(h)Γ c

a b
(h)Γ b

e f

− 2t̊gij(tˆ̊kbi)(h)Γ a
a b∂jν + 2t̊g

ij(tˆ̊kab)(h)Γ b
a i∂jν − t̊g

ij g̊ef(t̊kaj)∂ehai∂fν
− 2At̊gij∂iϕ∂jν − 2̊gab̊g

ij(sˆ̊kai)(sκb
j)ν + 2At̊gef∂aϕ(h)Γ a

e f

+⋯.

To conclude (5.8), we have only to replace t with the integration variable s in the identity (5.18)
and to integrate by parts over (s, x) ∈ [t,1] ×T3, where we stress that t ≤ 1. �

6. Mildly singular energy estimates without derivative loss for the linearized

equations

In the next result, Theorem 6.1, we use the approximate monotonicity identity of Theorem 5.1 to
derive energy estimates for solutions to the linearized equations. A central aspect of the estimates
is that the energies can blow up as t ↓ 0. Consequently, the energy estimates by themselves do not
yield a proof of linear stability. However, for near FLRW backgrounds, the blowup-rate is mild (see
(6.2)), which is a key ingredient in our subsequent proof of linear stability (see Theorem 7.1). We
stress that if our proof of Theorem 6.1 had relied on more standard energy identities rather than
the approximate monotonicity identity of Theorem 5.1, then the outcome would have been a much
worse energy blowup-rate, which in turn would have obstructed our proof of linear stability. In
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Theorem 6.1, we consider only the case of near-FLRW Kasner backgrounds, though it is possible
to derive (perhaps very singular) energy estimates in the case of a general Kasner background.

Theorem 6.1 (Mildly singular energy estimates without derivative loss for solutions to
the linearized equations). Consider a solution to the linear equations of Prop. 3.2 corresponding
to the data (κ(1), h(1), ∂tϕ(1), ∂ϕ(1)) (given on Σ1 = {1} × T3), where ν(1) is determined by the
elliptic PDEs (3.15a)-(3.15b). There exist a small constant θ∗ > 0 and constants C > 0 and c > 0
such that if η ≥ 0 is sufficiently small (see definition 1.9b) and S(Frame);0(1) < ∞ (see definition
(4.5)), then the base-level total energy E(Total);θ∗(t) defined in (4.6e) verifies the following inequality36

for t ∈ (0,1]:
E

2
(Total);θ∗(t) ≤ CE

2
(Total);θ∗(1)(6.1)

−
1

6
θ∗∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−
1

6 ∫
1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−
1

6 ∫
1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−
1

2 ∫
1

s=t
s−1∫

Σs

ν2 dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

+ cη∫ 1

s=t
s−1E 2

(Total);θ∗(s)ds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Error integral that can create blowup

.

In addition, if N ≥ 0 is an integer and the solution norm S(Frame);N(t) defined in (4.5) veri-
fies S(Frame);N(1) < ∞, then the up-to-order N energy E(Total);θ∗;N(t) defined in (4.7) verifies the
following inequality for t ∈ (0,1]:

E(Total);θ∗;N(t) ≤ CE(Total);θ∗;N(1)t−cη.(6.2)

Furthermore, if N ≥ 0 is an integer and S(Frame);N(1) <∞, then there exist constants C > 0 and
c > 0 such that the following inequality holds for t ∈ (0,1]:

S(Frame);N(t) ≤ CS(Frame);N(1)t−cη.(6.3)

Remark 6.1. Theorem 6.1 should be viewed as being relevant for estimating the solution’s high-
order derivatives in the nonlinear problem, while Theorem 7.1 below should be viewed as being
relevant for estimating its low-order derivatives; see Sect. 8 for further discussion.

Remark 6.2. The proof of Theorem 6.1 essentially amounts to combining an intricate collection
of integration by parts identities in the right way (this step was carried out in Theorem 5.1) and
absorbing various integrals into favorably signed integrals. Certain aspects of our proof somewhat
remind us of arguments used in [12], in which Bartnik gave a new proof of the positive mass
theorem of Schoen–Yau [60, 61] and Witten [71]. His proof was simpler than the previous proofs
but was valid only under the assumption that the metric is near-Euclidean and required the use of
spatial harmonic coordinates. Like our proof, Bartnik’s involved expressing the scalar curvature of
the Riemannian 3-metric in terms of Christoffel symbols, integrating with respect to the measure

36The explicit numerical constants on the right-hand side of (6.1) are not sharp, but that is not important when
η is small.
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corresponding to the Euclidean metric, and absorbing all of the unsigned quadratic terms into
favorably signed quadratic terms (whose coefficients happened to be sufficiently large).

Proof of Theorem 6.1. The prove the theorem, we will use the following pointwise estimates for the
integrand terms Ni, i = 1,2,⋯,10 defined in (5.2a)-(5.2j):

∣N1∣ ≤ 2∣sˆ̊k ∣̊g∣sκ∣̊g∣ν∣ ≤ ηθ∣sκ∣2g̊ + η

θ
ν2,(6.4)

N2 ≤ (2
3
+ 2η) ∣∂ϕ∣2g̊,(6.5)

∣N3∣ ≤ ∣s∂ϕ∣2g̊ +A2∣s∂ν∣2g̊ ≤ ∣s∂ϕ∣2g̊ + 2

3
∣s∂ν∣2g̊,(6.6)

θN4 ≤ (1
6
+
1

2
η)θ∣s∂h∣2g̊,(6.7)

θ∣N5∣ ≤ Cηθ∣sκ∣2g̊,(6.8)

θ∣N6∣ ≤ Cηθ∣s∂h∣2g̊,(6.9)

θ∣N7∣ ≤ 1

12
θ∣s∂h∣2g̊ +Cθ∣s∂ν∣2g̊,(6.10)

θ∣N8∣ ≤ ηθ∣sκ∣2g̊ +Cηθν2,(6.11)

θ∣N9∣ ≤ Cθ∣s∂ϕ∣2g̊ +Cθ∣s∂ν∣2g̊,(6.12)

θ∣N10∣ ≤ 1

12
θ∣s∂h∣̊g +Cθ∣s∂ϕ∣2.(6.13)

All of the above estimates except for (6.5)-(6.7) are straightforward consequences of the Cauchy-
Schwarz inequality relative to the metric g̊ and simple estimates of the form ∣ab∣ ≤ (1/2)δa2 +(1/2)δ−1b2, for appropriately chosen constants δ > 0. To derive (6.5) and (6.7), we use the fact that

the eigenvalues of t̊kij are ≥ −qMax ≥ −{ 13 + η}, where qMax is defined in (1.9a). To derive the second

inequality in (6.6), we use the simple inequality A ≤√2
3
.
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We now claim that there exist constants C > 0 and c > 0 such that the following estimate holds
when θ > 0:

∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx + ∫
Σt

∣t∂ν∣2g̊ dx + {1 −A2 −
η

θ
}∫

Σt

ν2 dx(6.14)

+ θ{1 − η}∫
Σt

∣tκ∣2g̊ dx + 14θ∫Σt

∣t∂h∣2g̊ dx
≤ ∫

Σ1

(∂tϕ)2 + ∣∂ϕ∣2g̊ dx + ∫
Σ1

∣∂ν∣2g̊ dx + {1 −A2 +
η

θ
}∫

Σ1

ν2 dx

+ θ{1 + η}∫
Σ1

∣κ∣2g̊ dx + 1

4
θ∫

Σ1

∣∂h∣2g̊ dx
− {1

3
−Cη −Cθ}∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds − {13 −Cθ}∫
1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds
− {1 −C η

θ
−Cηθ}∫ 1

s=t
s−1∫

Σs

ν2 dxds − θ{1
6
−Cη}∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds
+ cηθ∫ 1

s=t
s−1∫

Σs

∣sκ∣2g̊ dxds.
To obtain (6.14), we simply substitute the estimates (6.4)-(6.13) into the approximate monotonicity
identity (5.1) and keep careful track of the coefficients. For example, the coefficient −{ 1

3
−Cη −Cθ}

found in front of the integral ∫ 1

s=t s
−1 ∫Σs

∣s∂ϕ∣2
g̊
dxds on the right-hand side of (6.14) comes from

adding the coefficient −2 on the third line of (5.1) to the coefficient 2
3
+2η from (6.5), the coefficient

1 from (6.6), and the coefficients Cθ from (6.12)-(6.13). Note that for i = 4,⋯,10, the terms Ni

from (5.1) are multiplied by θ.
Next, from definition (4.6e), we deduce the following simple bound for the last integral in (6.14):

cηθ∫ 1

s=t
s−1∫

Σs

∣sκ∣2g̊ dxds ≤ cη∫ 1

s=t
s−1E 2

(Total);θ(s)ds.(6.15)

The desired inequality (6.1) now follows from definition (4.6e), the identity (1.9b), and the estimates
(6.14) and (6.15), and from first choosing θ ∶= θ∗ to be sufficiently small and then choosing η to be
sufficiently small in a manner that depends on the fixed choice of θ∗. We stress that the estimate
(6.15) is precisely what generates the last error integral on the right-hand side of (6.1).

To deduce inequality (6.2), we first use (6.1) and Gronwall’s inequality to deduce

E
2
(Total);θ∗(t) ≤ CE

2
(Total);θ∗(1)t−cη.(6.16)

Next, we recall the following fact noted in the proof of Cor. 5.1: the ∂I⃗ -differentiated linear solution
variables solve the same equations as the non-differentiated linearized solution variables. Thus, the
energy of the ∂I⃗ -differentiated linear solution variables verifies an analog of the estimate (6.16).

Summing these estimates for ∣I⃗ ∣ ≤ N and appealing to definition (4.7), we arrive at (6.2).
Inequality (6.3) then follows from (6.2) and Lemma 4.3. �

7. Linear stability for near-FLRW Kasner backgrounds

In this section, we state and prove Theorem 7.1, which is our main linear stability result. The
theorem shows i) that for nearly spatially isotropic Kasner backgrounds, the lower-order derivatives
of the linear solution enjoy improved estimates with respect to t (i.e., involving less singular powers
of t) compared to the energy estimates of Theorem 6.1 and ii) that various time-rescaled components
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of the solution variables converge as t ↓ 0. As we outline in Sect. 8, the improved behavior is essential
for proving the nonlinear stable blow-up results of [59]. The proof of the theorem is essentially based
on revisiting the linearized equations and treating them as transport equations with derivative-losing
error terms that we control with the energy estimates of Theorem 6.1. Elliptic estimates for the
lapse also play a role. The main difficulty is finding a suitable order in which to prove the estimates.
In essence, this amounts to finding effective dynamic decoupling.

Theorem 7.1 (Linear stability). Assume the hypotheses and conclusions of Theorem 6.1. Let
N ≥ 2 be an integer and assume that ∥h∥L2

Frame
(1) <∞ and S(Frame);N(1) <∞ (see definition (4.5)).

There exist constants C > 0 and c > 0 such that if η > 0 is sufficiently small (see definition 1.9b),
then the linear solution to the equations of Prop. 3.2 verifies the following estimates for t ∈ (0,1]:

∥∂t(tκ)∥HN−1
Frame

≤ CS(Frame);N(1)t−1/3−cη,(7.1a)

∥tκ∥HN−1
Frame

≤ CS(Frame);N(1),(7.1b)

∥h∥L2

Frame
≤ C {∥h∥L2

Frame
(1) + 1

η
S(Frame);N(1)} t2/3−cη,(7.1c)

∥∂h∥HN−1
Frame

≤ C
η

S(Frame);N(1)t2/3−cη,(7.1d)

∥∂t(t∂tϕ −Aν)∥HN−1 ≤ CS(Frame);N(1)t−1/3−cη,(7.1e) ∥t∂tϕ∥HN−1 ≤ CS(Frame);N(1),(7.1f) ∥∂ϕ∥HN−2
Frame

≤ CS(Frame);N(1){1 + ∣ ln(t)∣} ,(7.1g)

∥ν∥HN ≤ CS(Frame);N(1)t−cη,(7.1h)

∥ν∥HN−1 ≤ CS(Frame);N(1)t2/3−cη,(7.1i)

∥ν∥HN−2 ≤ C
η

S(Frame);N(1)t4/3−cη.(7.1j)

Convergence. There exist a symmetric type (0
2
) tensorfield hRegular ∈ HN−1

Frame(T3), a type (1
1
)

tensorfield KBang ∈HN−1
Frame(T3) verifying (KBang)aa = 0, and a function ΨBang ∈HN−1(T3) such that

the following estimates hold37 for t ∈ (0,1]:
∥t−2qjhij + 2 ln(t)(KBang)i j − (hRegular)ij∥HN−1 ≤ CS(Frame);N(1)t2/3−cη, (if qi = qj),(7.2a)

∥t−2qjhij + 1

qi − qj
t2(qi−qj)(KBang)i j − (hRegular)ij∥

HN−1

≤ CS(Frame);N(1)t2/3−cη, (if qi ≠ qj),(7.2b)

∥tκ −KBang∥HN−1
Frame

≤ CS(Frame);N(1)t2/3−cη,(7.2c)

∥t∂tϕ −ΨBang∥HN−1 ≤ CS(Frame);N(1)t2/3−cη,(7.2d) ∥∂ϕ − ln(t)∂ΨBang∥HN−2
Frame

≤ CS(Frame);N(1),(7.2e)

37On the left-hand sides of (7.2a)-(7.2b), we do not sum over i or j.
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and

∥hRegular − h(1)∥HN−1
Frame

≤ CS(Frame);N(1),(7.3a)

∥KBang − κ(1)∥HN−1
Frame

≤ CS(Frame);N(1),(7.3b)

∥ΨBang − ∂tϕ(1)∥HN−1 ≤ CS(Frame);N(1).(7.3c)

In addition, the same estimates hold in the case η = 0 with all factors of
1

η
replaced by 1 + ln t.

Before proving the theorem, we first make some remarks.

● Just below the “rough” Theorem 1.4 (which is a recap of Theorem 7.1), we gave a detailed
explanation of why the convergence results of Theorem 7.1 are natural. Furthermore, we
highlighted the connection between the convergence results stated in the theorem and the
heuristic statements made in [11,13] concerning the asymptotic behavior of solutions to the
nonlinear equations near singularities.
● The improved behavior in t provided by (7.1a)-(7.1j) is of critical importance in closing the
nonlinear problem; see Sect. 8.

Proof of Theorem 7.1. We give the proof only in the case η > 0. The case η = 0 can be handled by
straightforward modifications of the case η > 0. Throughout the proof, we silently use Lemma 4.1,
Lemma 4.3, and the t-weights inherent in Def. 4.3.

Proof of (7.1h) and (7.1i): We commute equation (3.15b) with ∂I⃗ , multiply by ∂I⃗ν, and integrate
by parts over Σt to deduce the elliptic estimate

t∥∂∂I⃗ν∥L2

g̊
+ ∥∂I⃗ν∥L2 ≤ Ct2∥∂I⃗ (h)R∥L2 .(7.4)

From (3.11c) and (6.3), we deduce that whenever ∣I⃗ ∣ ≤ N−1, we have ∥∂I⃗ (h)R∥L2 ≤ Ct−4/3−cηS(Frame);N(1).
The estimates (7.1h) and (7.1i) now readily follow.

Proof of (7.1a): We first deduce from equation (3.16b) that

∥∂t(tκ)∥HN−1
Frame

≤ Ct1/3−cη∥ν∥HN+1 +Ct−1∥ν∥HN−1 +Ct∥(h)Ric∥HN−1
Frame

.(7.5)

From (3.11d), (6.3), and (7.1i), we conclude that the right-hand side of (7.5) is ≤ CS(Frame);N(1)t−1/3−cη
as desired.

Proof of (7.1b), (7.2c), and (7.3b): We set f(t) ∶= tκi
j(t, ⋅), where we are viewing f as a

scalar HN−1(T3)-valued function of t. From (7.1a), we deduce that for 0 < s ≤ t ≤ 1, we have∥f(t) − f(s)∥HN−1 ≤ C (t2/3−cη − s2/3−cη)S(Frame);N(1). From this bound and the completeness of
HN−1(T3), it follows that if η is sufficiently small, then limt↓0 f(t) exists as an element of HN−1(T3).
We denote the limit by (KBang)i j ∶= f(0). Moreover, the previous estimate yields ∥f(t) − f(0)∥HN−1 ≤
CS(Frame);N(1)t2/3−cη. The estimates (7.2c) and (7.3b) follow from this bound, while (7.1b) follows
from (7.2c), (7.3b), and the bound f(1) ≤S(Frame);N(1).
Proof of (7.1c) and (7.1d): We give the details only for (7.1c) since the proof of (7.1d) is essentially

the same. To proceed, we first split t̊kaj into its pure trace and trace-free parts and use equation
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(3.16a) to deduce that

∂t(t−2/3hij) = −2t−1(t−2/3hia)(tˆ̊kaj) − 2t−5/3g̊ia(tκa
j) − 2t−5/3g̊ia(t̊kaj)ν.(7.6)

From equation (7.6), we deduce that

∥∂t(t−2/3h)∥L2

Frame
≤ Ct−1∣tˆ̊k∣Frame∥t−2/3h∥L2

Frame
+Ct−5/3 ∣̊g∣Frame∥tκ∥L2

Frame
(7.7)

+Ct−5/3 ∣̊g∣Frame∣t̊k∣Frame∥ν∥L2 .

From inequality (6.3), we deduce that the right-hand side of (7.7) is

≤ cηt−1∥t−2/3h∥L2

Frame
+CS(Frame);N(1)t−1−cη.

Using this estimate and integrating (7.7) in time, we deduce that

t−2/3∥h∥L2

Frame
(t) ≤ ∥h∥L2

Frame
(1) + C

η
S(Frame);N(1)t−cη + cη∫ 1

s=t
s−1 {s−2/3∥h∥L2

Frame
(s)} ds.(7.8)

From (7.8) and Gronwall’s inequality in the quantity t−2/3∥h∥L2

Frame
(t), we conclude the desired

inequality (7.1c).

Proof of (7.1j): We need only to revisit the proof of (7.1i) and use the fact that the im-

proved estimate (7.1d) allows us to deduce that whenever ∣I⃗ ∣ ≤ N − 2, we have ∥∂I⃗ (h)R∥L2 ≤
C

η
S(Frame);N(1)t−2/3−cη.

Proof of (7.1e): We first deduce from equation (3.17) that

∥∂t(t∂tϕ −Aν)∥HN−1 ≤ Ct∥̊gab∂a∂bϕ∥HN−1 +Ct−1∥ν∥HN−1 .(7.9)

From (6.3) and (7.1i), we deduce that the right-hand side of (7.9) is ≤ the right-hand side of (7.1e)
as desired.

Proof of (7.1f), (7.2d), and (7.3c): The existence of the limiting tensorfield ΨBang and the three
estimates under consideration follow from inequalities (7.1e) and (7.1i) by the same reasoning we
used to prove (7.1b), (7.2c), and (7.3b).

Proof of (7.1g) and (7.2e): From (7.2d), we deduce ∥∂t {∂ϕ − ln t∂ΨBang}∥HN−2
Frame

≤ CS(Frame);N(1)t−1/3−cη.
Integrating from time t to time 1, we find that ∥∂ϕ − ln t∂ΨBang∥HN−2

Frame
≤ CS(Frame);N(1)t2/3−cη +∥∂ϕ∥HN−2

Frame
(1) ≤ CS(Frame);N(1), which yields (7.2e). (7.1g) then follows from (7.1f), (7.2e), and

(7.3c).

Proof of (7.2a), (7.2b), and (7.3a): Throughout this paragraph, we do not use Einstein’s sum-

mation convention for i or j. Recall that g̊ii = t2qi , that t(̊kii) = −qi, and that the off-diagonal
components of these tensorfields are 0. Multiplying equation (3.16a) by t−2qj , we deduce the equa-
tion ∂t(t−2qjhij) = −2t−1+2(qi−qj)(tκi

j)+2qiδijt−1ν. From this equation, the estimates (7.1i) and (7.2c),

and the simple estimate ∣qi − qj ∣ ≤ 2η (see (1.9b)), we deduce that for i, j = 1,2,3, we have

∥∂t {t−2qjhij − 2(∫ 1

s=t
s−1+2(qi−qj) ds)(KBang)i j}∥

HN−1

≤ CS(Frame);N(1)t−1/3−cη.(7.10)
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When η is sufficiently small, the existence of the limiting tensorfield components (hRegular)ij and
the estimates (7.2a), (7.2b), and (7.3a) follow from (7.10) and (7.3b) by the same reasoning we used
to prove (7.1b), (7.2c), and (7.3b). �

8. Summary of the proof of the nonlinear stability of the FLRW Big Bang

singularity

Recall that the FLRW metric is gFLRW = −dt2 + t2/3∑3
i=1(dxi)2 (see (1.3)). In this section, we

outline the proof of Theorem 8.1, which yields the nonlinear stability of FLRW solution’s Big Bang
singularity. Our discussion will provide a detailed overview of the central role that the monotonicity
identities and linear stability results play in the nonlinear problem. For complete details in the
context of the Einstein-stiff fluid system, we refer the reader to [59].

Remark 8.1. In [59], we formulated the equations and estimates in terms of time-rescaled solution
variables. Here, to keep the discussion short, we do not introduce such time-rescaled variables. This
changes the appearance of various equations and estimates compared to [59], but not their content.

8.1. Norms and energies. We start by introducing the norms and energies that we use to control
the nonlinear solution. In our analysis, we view the unknowns to be the solution variables n, gij , kij , φ

appearing in the nonlinear equations of Prop. 3.1. Note that the pure trace part of kij is controlled
by the CMC condition kaa = −t−1 and thus we only need to derive estimates for its trace-free part

k̂ij .

Definition 8.1 (The pointwise norm ∣ ⋅ ∣g). Throughout this section, we use the pointwise norm∣ ⋅ ∣g, which is defined by replacing the background Kasner metric g̊ with the metric g on both sides
of (4.1b).

Definition 8.2 (Solution norms). To control the nonlinear solution, we rely on norms38 belonging
to the following family:

S(Frame);M(t) ∶= ∥tk̂∥HM
Frame

+ ∥∂g∥HM
Frame

(8.1)

+ t−2/3 ∥g − gFLRW ∥HM
Frame

+ t2/3 ∥g−1 − g−1FLRW ∥HM
Frame

+ ∥t∂tφ∥HM
Frame

+ t2/3∥∂φ∥HM
Frame

+ 2∑
p=0

t(2/3)p ∥n − 1∥HM+p .

To control the norms (8.1), we will use the energies provided by the next definition. The energies
for the nonlinear solution are tied to approximate monotonicity identities for the nonlinear solution
in the same way that the energies of Def. 4.4 for the linear solution are tied to the approximate
monotonicity identity of Theorem 5.1.

Definition 8.3 (Energies). Let I⃗ is a spatial derivative multi-index (as defined in Subsect. 2.3),
let M ≥ 0 be an integer, and let θ > 0 be a constant. We define the energies E(Metric);I⃗(t) ≥ 0, ⋯,

38More precisely, in [59], our high-order solution norms do not directly control ∥g − gFLRW ∥L2

Frame
or

∥g−1 − g−1FLRW ∥L2

Frame

, but that detail is not important for the ensuing discussion.
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E(Total);θ;M(t) ≥ 0 as follows:

E2(Metric);I⃗(t) ∶= ∫
Σt

∣t∂I⃗ k̂∣2g + 14 ∣t∂∂I⃗g∣2g dx,(8.2a)

E
2

(Scalar);I⃗(t) ∶= ∫Σt

(t∂t∂I⃗φ)2 + n2∣t∂∂I⃗φ∣2g dx,(8.2b)

E
2

(∂Lapse);I⃗(t) ∶= ∫Σt

∣t∂∂I⃗n∣2g dx,(8.2c)

E
2
(Lapse)(t) ∶= ∫

Σt

∣∂I⃗(n − 1)∣2 dx,(8.2d)

E
2

(Total);θ;I⃗(t) ∶= E
2

(Scalar);I⃗(t) + E
2

(∂Lapse);I⃗(t) + 1

3
E

2

(Lapse);I⃗(t) + θE
2

(Metric);I⃗(t),(8.2e)

E
2
(Total);θ;M(t) ∶= ∑

∣I⃗ ∣≤M
E

2

(Scalar);I⃗(t).(8.2f)

We clarify that on the right-hand side of (8.2a), ∣t∂∂I⃗g∣2g = t2gabgijgef∂e∂I⃗gai∂f∂I⃗gbj .
Remark 8.2. Note that our energies do not directly control the terms t2/3 ∥g − gFLRW ∥HM

Frame
or

t−2/3 ∥g−1 − g−1FLRW ∥HM
Frame

, which are featured in the norm (8.1). Therefore, control of these terms

does not directly follow from the energy estimates described below and instead requires a separate
argument based on the metric evolution equation (3.7a); we will avoid further discussion of this
issue here.

As in our proof of Theorem 6.1, in order to close the energy estimates for the nonlinear solutions,
we have to make a suitable choice of θ > 0. Here we note that the same choice of

θ ∶= θ∗(8.3)

that we made in the proof of Theorem 6.1 is also sufficient in our study of nonlinear solutions. The
reason is that θ needs to be adapted only to handle various integrals in the approximate monotonicity
identity that are generated by linear terms in the equations; quadratically small nonlinear terms
do not affect the viability of the choice θ ∶= θ∗, but rather generate error integrals that we explain
how to control in Subsect. 8.9.

8.2. The nonlinear stability of the FLRW Big Bang singularity. In this subsection, we state
our main nonlinear result, namely Theorem 8.1. In the rest of Sect. 8, we will explain the main
ideas behind the proof of the theorem. We refer the reader to [59] for complete details in the case
of the Einstein-stiff fluid system. We note that in Remarks 3.5 and 8.1, we pointed out some minor
differences between the approach outlined here and the approach taken in [59].

Theorem 8.1 (Stable Big Bang Formation for near-FLRW solutions). Consider initial data
(as described in Subsect. 1.4) for the Einstein-scalar field system given on the Cauchy hypersurface
Σ1 = {1} × T3 that verify the CMC condition 0kaa = −1, where 0kij ∶= (ki j)∣Σ1

is the mixed second

fundamental form of Σ1. Assume that N ≥ 8 and that39 S(Frame);N(1) ≤ ε2, where S(Frame);N
is defined by (8.1) (see also Remark 8.3). There exist constants C > 0 and c > 0 such that if ε is

39Note that S(Frame);N(1) is assumed to be quadratically small compared to the amplitude ε featured in the
estimate (8.4). This assumption is non-optimal and could be improved with further effort; we have aimed for a clean
presentation rather than for optimizing powers of ε.
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sufficiently small, then the perturbed solution to the Einstein-scalar field system in CMC-transported-
spatial-coordinates gauge (that is, to equations (3.6a)-(3.10)) exists for (t, x) ∈ (0,1]×T3 and verifies
the norm bound

S(Frame);N(t) ≤ 1

2
εt−c

√
ε.(8.4)

Moreover, the Kretschmann scalar verifies the pointwise bound

∣t4RiemαβγδRiemαβγδ(t, x) − 20

27
∣ ≤ Cε.(8.5)

In particular, RiemαβγδRiemαβγδ blows up like t−4 as t ↓ 0. Moreover, there exists a type (1
1
)

tensorfield KBang ∈ HN−1(T3) such that the following convergence results for components holds for
t ∈ (0,1], (i, j = 1,2,3):

∥n − 1∥HN−2 ≤ Cεt4/3−c√ε,(8.6a)

∥tki j − (KBang)i j∥HN−1 ≤ Cεt2/3−c√ε,(8.6b)

∥(KBang)i j + 1

3
I ij∥

HN−1

≤ Cε,(8.6c)

where I ij ∶= diag(1,1,1) is the identity transformation. Similar convergence results hold for other
solution variables, in analogy with the convergence results for the linear solution proved in Theo-
rem 7.1; see [59] for precise statements in the context of the Einstein-stiff fluid system.

Remark 8.3. In Theorem 8.1, we formulated our near-FLRW data assumption as a smallness
condition on the norm S(Frame);N(1). We could have instead formulated a “more geometric” near-
FLRW assumption by making assumptions only on the “geometric data” from Subsect. 1.4, which
does not include the lapse. We could have then derived the smallness of S(Frame);N(1) as a conse-
quence of the assumptions on the geometric data (essentially by deriving elliptic estimates for the
lapse along Σ1 by using equation (3.10)); for convenience, we have avoided doing this.

Remark 8.4. As stated, Theorem 8.1 applies only to data with constant mean curvature. However,
this restriction is not necessary: in [59], we show that for perturbations of the FLRW solution, it
is always possible to find a CMC hypersurface Σ′1 near Σ1. One can then use CMC-transported
coordinates gauge starting from the “data” induced on Σ′1. Alternatively, one could employ the
parabolic lapse gauges described in Sect. 10 starting from near-FLRW data on Σ1; these gauges do
not require the initial Cauchy hypersurface to have constant mean curvature.

8.3. Outline of the proof. We now outline the main steps in proof of Theorem 8.1. In the
remainder of Sect. 8, we will provide additional details about the most important aspects of the
proof.

(1) (Big picture) The main step in the proof of the theorem is to derive the a priori estimate
(8.4) for the “high-norm” S(Frame);N(t), which shows in particular that it remains finite
for t ∈ (0,1], even though it can blow up as t ↓ 0. It then follows as a standard result for
elliptic-hyperbolic systems (see [3]) that, as a consequence of the a priori norm estimate, the
solution must exist for (t, x) ∈ (0,1] ×T3.

(2) (High-norm bootstrap assumption) We use a bootstrap argument to obtain the desired
estimates for the norm S(Frame);N . To this end, we let (T,1] be any time interval on which
the solution exists, where 0 < T < 1. We make a bootstrap assumption for S(Frame);N(t)
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for t ∈ (T,1]; see Subsect. 8.4. The bootstrap assumption weakly captures the fact that the
perturbed solution is near-FLRW. By the remarks made in Step (1), to prove the existence
result of Theorem 8.1, it suffices to derive the a priori estimate (8.4) for S(Frame);N(t)
for t ∈ (T,1], which is a strict improvement of the bootstrap assumption; by a standard
continuity argument, this justifies the bootstrap assumption, shows that the solution exists
for (t, x) ∈ (0,1]×T3, and shows that in fact, the norm estimate (8.4) holds for t ∈ (0,1]. To
obtain the desired a priori norm estimate, we will derive energy estimates via a nonlinear
analog of Theorem 6.1, that is, a result showing that appropriately defined nonlinear energies
can blow up at most in a very mild fashion as t ↓ 0. We carry this out in Step (7). The
intermediate steps stated below are mostly in service of Step (7).

(3) (“Strong” low-norm bootstrap assumptions)Wemake stronger bootstrap assumptions
at the low-order derivative levels for t ∈ (T,1], that is, bootstrap assumptions that involve
less singular behavior in t than what is afforded by the bootstrap assumptions for the
high-norm S(Frame);N(t). These stronger bootstrap assumptions are key ingredients for
controlling error terms in the energy estimates, for exhibiting the AVTD nature of the
solution (that is, that the spatial derivative terms in the equations are negligible near the
singularity), and for proving the convergence results such as (8.6a)-(8.6c). Although we do
not explicitly state such stronger bootstrap assumptions in this paper, we note that they are
essentially nonlinear analogs of the estimates that we proved in the linear stability results
of Theorem 7.1. The existence of a T ∈ (0,1) such that the solution exists and verifies
the high-norm and low-norm bootstrap assumptions on (T,1] follows from standard local
well-posedness for elliptic-hyperbolic systems; see [3].

(4) (Improvements of the low-norm bootstrap assumptions) As an intermediate step,
we derive improvements of the strong low-norm bootstrap assumptions from the previous
step, thereby closing this portion of the bootstrap argument. By improvements, we mean
estimates that are strictly stronger than the estimates afforded by the low-norm bootstrap
assumptions. This step is tantamount to justifying the AVTD nature of the solution. We
state several of the resulting estimates in Subsect. 8.7. In this paper, we do not provide
details behind this step since the desired estimates can be obtained by using arguments
similar to the ones that we used in proving the linear stability results of Theorem 7.1, but
with the added complication that one must control the nonlinear error terms. We will,
however, explain how to bound some representative nonlinear error terms that arise in the
energy estimates; see Steps (6)-(7). As in the proof of Theorem 7.1, the proofs in this step
incur a loss of derivatives.

(5) (Approximate monotonicity identity) To obtain the desired energy estimates, the key
starting point is an approximate monotonicity identity, that is, a nonlinear analog of The-
orem 5.1; recall that for linear solutions, the approximate monotonicity identity provided
by Theorem 5.1 is the main ingredient that we use to derive the mildly singular energy
estimates of Theorem 6.1. In this article, we do not derive an approximate monotonicity
identity for the nonlinear equations because the derivation would be very similar to the
proof of Theorem 5.1 but would be rather lengthy due to the presence of many nonlinear
error integrals. It turns out that these nonlinear error integrals have only a small effect
on the dynamics in the sense that their presence is compatible with the proof of a mild
blowup-rate for the nonlinear energies, similar to the (at most) mild blowup of the linear
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solution’s energies guaranteed by Theorem 6.1. In the next two steps, we highlight some
key representative nonlinear error integrals and overview how we can handle them.

(6) (Bounds for nonlinear error integrals) In Subsects. 8.8 and 8.9, we highlight three rep-
resentative nonlinear error integrals, which appear in the approximate monotonicity identity
described in the previous step, and bound the error integrals in terms of the energies. The
improved estimates at the low derivative levels from Step (4) are crucial for this.

(7) (A priori energy estimates) Recall that by using the approximate monotonicity identity
for linear solutions, we were able to show that they verify the estimate (6.1), which is the
integral inequality for linear solutions’ energies that we used to establish the mild energy
blowup rate (6.2). In the present nonlinear context, an analog of the integral inequality (6.1)
also holds, but the right-hand side features all of the nonlinear error integrals generated by
the previous two steps. In Subsect. 8.5, we outline the derivation of the nonlinear energy
integral inequalities that result from accounting for the nonlinear error integrals. We then
use Gronwall’s inequality to obtain the desired a priori energy estimates on the bootstrap
interval (T,1] and sketch a proof of how the energy estimates allow one to derive strict
improvements of the bootstrap assumption for the norm S(Frame);N(t) made in Step (2). In
particular, this yields the desired a priori estimate (8.4).

(8) (Additional information) Having derived improvements of both the low-norm and high-
norm bootstrap assumptions, to complete the proof of the theorem, we need only to derive
the curvature blowup result (8.5) and convergence results such as (8.6a)-(8.6c). We omit
these details since they can be essentially be proved as part of Step (4), that is, by using
derivative-losing arguments similar to the ones we gave in the proof of the linear stability
results of Theorem 7.1.

8.4. Bootstrap assumptions. Let T ∈ (0,1) be a “bootstrap time” such that the solution classi-
cally exists on (T,1]×T3 and obeys the following bootstrap assumption, where the norm S(Frame);N(t)
is defined in (8.1):

S(Frame);N(t) ≤ εt−σ, t ∈ (T,1].(8.7)

In (8.7), ε and σ are two small positive bootstrap parameters that are constrained in particular by
0 < √ε ≤ σ < 1. We will adjust the allowable smallness of ε and σ throughout the course of the
analysis. In particular, we will later impose a condition of the form c

√
ε < σ for a large constant c

(see just below inequality (8.11)). One can think of σ as a rough bound for the maximum possible

size of tk̂, in analogy with the role that the parameter η played in driving the energy blowup rates
of Theorem 6.1 (recall that η is equal to t times the norm of the trace-free part of the background
Kasner metric’s second fundamental form). Note that our smallness assumption for σ is reasonable

in the sense that tk̂ is small for perturbations of the FLRW metric. Note also that (8.7) allows
for the possibility that S(Frame);N(t) blows up as t ↓ 0, consistent with the estimates for the linear
solutions that we derived in Theorem 6.1. In Cor. 8.2, we sketch a proof that for near-FLRW data,
the following bound holds:

S(Frame);N(t) ≤ 1
2
εt−c

√
ε, t ∈ (T,1],(8.8)

which is a strict improvement of the bootstrap assumption (8.7) for ε sufficiently small. Deriving
(8.8) is the main technical step in the proof of Theorem 8.1.
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Remark 8.5. Recall that in Theorem 8.1, we are assuming that N ≥ 8. In [59], we show that this
is sufficient to allow for closure of all nonlinear estimates at all orders.

8.5. Statement of the main a priori energy and norm estimates. In Prop. 8.1, we state
the integral inequalities verified by the energies. In Cor. 8.2, we use use the integral inequalities
to derive a Gronwall estimate for the energies, which leads to the improvement (8.8) of the norm
bootstrap assumption and completes the main step in the proof of Theorem 8.1. Following this, we
devote the rest of Sect. 8 to sketching the main ideas behind the proof of Prop. 8.1.

Proposition 8.1 (Integral inequalities verified by the energies). There exist constants C > 0
and c > 0 such that if the bootstrap assumption (8.7) holds for t ∈ (T,1] and if ε and σ are sufficiently
small, then the following analog of the linear energy inequality (6.1) holds for 0 ≤ M ≤ N and
t ∈ (T,1]:

E2(Total);θ∗;M(t) ≤ E2(Total);θ∗;M(1)(8.9)

+ cε∫ 1

s=t
s−1E2(Total);θ∗;M(s)ds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Borderline term

+C ∫ 1

s=t
s−1/3−c

√
εE2(Total);θ∗;M(s)ds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Non-borderline term
+ Similar error integrals not treated here

+Negative definite spacetime integrals, similar to those in (6.1).

Corollary 8.2 (Main a priori energy estimates). Assume that N ≥ 8. Consider the en-
ergy E(Total);θ∗;N(t) defined in (8.2f) and the norm S(Frame);N(t) defined in (8.1). Assume that
S(Frame);N(1) ≤ ε2 (see Footnote 39 regarding this assumption). There exists a constant C > 0
such that under the bootstrap assumption (8.7), the following a priori estimate holds for t ∈ (T,1]
whenever ε and σ are sufficiently small:

E(Total);θ∗;N(t) ≤ Cε2t−c√ε.(8.10)

Moreover, the following estimate holds for t ∈ (T,1]:
S(Frame);N(t) ≤ 1

2
εt−c

√
ε,(8.11)

which is an improvement of the bootstrap assumption (8.7) whenever c
√
ε < σ.

Discussion of the proof. We refer readers to [59, Section 13] for the complete details of the proof.
Here we only sketch the main ideas. First, we note that it is straightforward to establish comparison
estimates in the spirit of Lemma 4.3. The comparison estimates show in particular that (8.11) follows
from combining the energy estimate (8.10) with estimates for the terms t2/3 ∥g − gFLRW ∥HN

Frame
and

t−2/3 ∥g−1 − g−1FLRW ∥HN
Frame

, which are featured in the nonlinear norm (8.1) but which we do not

discuss here.40 These additional terms are also the reason that the amplitude on the right-hand side
of (8.11) is O(ε) rather than O(ε2). The proofs of the comparison estimates rely on estimates for
the coordinate components gij and gij. Specifically, they rely on the estimates (8.18a) stated below,

40Note that we did not include such terms in the norms (4.5) for linear solutions.
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which do not follow directly from the bootstrap assumption (8.7) and thus require an independent
proof (along the lines of the proof of the estimate (7.1c) for linear solutions).

To derive the energy estimates stated in (8.10), one can use inequality (8.9) to establish the
following estimates by a straightforward argument based on Gronwall’s inequality and induction in
M for 0 ≤M ≤ N :

E2(Total);θ∗;M(t) ≤ Cε4t−c√ε, t ∈ (T,1].(8.12)

We now further comment on two aspects of the estimate (8.12). First, it is only the first “Borderline”
term on the right-hand side of (8.9) that can cause E(Total);θ∗;M(t) to blow up as t ↓ 0; the “Non-

borderline” term on the right-hand side of (8.9) is harmless in the sense that the function s−1/3−c
√
ε

is integrable over the interval s ∈ (0,1] whenever ε is sufficiently small. Second, we note that the
exponent on the right-hand side of (8.12) is t−c

√
ε due to some terms that we have not discussed

here, that is, the terms “Similar error integrals not treated here” from (8.9); if not for the omitted
terms, the exponent could be improved to t−cε (this is a minor remark that has no substantial
bearing on the main results). �

8.6. A convenient frame and dual frame. In the ensuing discussion, we will find it convenient
to perform some computations relative to the frame41 {e′(A)}3A=1 and dual frame {θ′(A)}3A=1, whose
elements are defined as follows:

e′(A) ∶= t−1/3∂A, θ
′(A) ∶= t1/3dxA.(8.13)

The appeal of the frame {e′(A)}3A=1 is that it is orthonormal as measured by the background spatial

metric gFLRW ∶= t2/3∑3
i=1(dxi)2, and, as we explain in Subsect. 8.7, it is approximately orthonormal

for the perturbed metric g (in a sense that we make precise via the estimate (8.19)). The perturbed
metric and its inverse can respectively be expanded42 relative to the dual frame and frame as follows:

g = gABθ
′(A) ⊗ θ

′(B), g−1 = gABe′(A) ⊗ e
′
(B),(8.14)

where gAB ∶= g(e′(A), e′(B)) and gAB ∶= g−1(θ′(A), θ′(B)). We remark that in [59], instead of working

with the “time-rescaled” frame and dual frame (8.13), we instead work with solution variables that
are rescaled with respect to powers of t; see Remark 8.1.

The connection coefficients γACB of the frame relative to g are determined by the equation43

∇e′
(A)
e′(B) = gCDγADBe

′
(C),(8.15)

where, since the vectorfield commutators [e′(A), e′(B)] vanish, we have44

γACB = 1

2
{e′(A)(gCB) + e′(B)(gAC) − e′(C)(gAB)} .(8.16)

41In (8.13) and the remainder of Sect. 8, ∂A ∶=
∂

∂xA , with {xA}A=1,2,3 denoting the transported spatial coordinates.

Moreover, ∂I⃗ is still the coordinate partial derivative multi-indexed operator defined in Subsect. 2.3.
42Throughout this subsection and the next one, we use Einstein’s summation convention for uppercase Latin

indices.
43Recall that ∇ denotes the Levi–Civita connection of g.
44We are using here the standard notation X(f) to denote the derivative of the scalar function f in the direction

of the vectorfield X .
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For use below, we note the following standard expression for the Ricci curvature of g (in type (1
1
)

form):

Ric = RicABe′(A) ⊗ θ′(B),
where

RicAB = gAEgCFe′(C)(γEFB) − gAEgCFe′(E)(γBCF )(8.17)

+ gAEgCFgDHγCFDγEHB − g
AEgCFgDHγEFDγCHB.

8.7. Improved AVTD-type estimates at the lower derivative levels. As we mentioned in
Steps (3) and (4) of Subsect. 8.3, to prove Prop. 8.1, we need to derive improved estimates at the
lower derivative levels. By improved, we mean that they are less singular as t ↓ 0 compared to
the estimates afforded by the bootstrap assumption (8.7). In the context of the linear problem,
we derived such estimates in Theorem 7.1. For brevity, we will take for granted here that we
can derive similar estimates for the nonlinear solution, effectively postponing the discussion of the
nonlinear error terms until Subsect. 8.9, when we discuss them in the context of energy estimates.
Specifically, we will take for granted that the following pointwise coordinate component estimates
hold for t ∈ (T,1] whenever ∣I⃗ ∣ ≤ N − 3 in (8.18a)-(8.18b), 1 ≤ ∣I⃗ ∣ ≤ N − 3 in (8.18c), and i, j = 1,2,3:

∣∂I⃗ {gij − (gFLRW )ij}∣ ≲√εt2/3−c√ε, ∣∂I⃗ {gij − (g−1FLRW )ij}∣ ≲√εt−2/3−c√ε,(8.18a) RRRRRRRRRRR∂I⃗
⎧⎪⎪⎨⎪⎪⎩t∂tφ −

√
2

3

⎫⎪⎪⎬⎪⎪⎭
RRRRRRRRRRR ≲ ε,(8.18b)

∣∂I⃗φ∣ ≲√εt−c√ε.(8.18c)

Note, for example, that (8.18b) is an improvement over the bootstrap assumption (8.7) in that

(8.7) and Sobolev embedding would yield only the bound ∣∂I⃗ {t∂tφ −√2
3
}∣ ≲ εt−cσ, which, due to

the singular behavior of the right-hand side as t ↓ 0, is inadequate for treating the borderline integral
that we control in (8.32). Similarly, for ε sufficiently small, the factors of t2/3−c

√
ε and t−2/3−c

√
ε in

(8.18a) are improvements45 over the factors of t2/3−cσ and t−2/3−cσ that would follow from (8.7) and
Sobolev embedding. We refer readers to [59] for proofs of analogs of (8.18a)-(8.18c) in the context
of the Einstein-stiff fluid system. The estimates stated in (8.18a) are analogs46 of the estimates
(7.1c) and (7.1d) from the linear problem while the estimates (8.18b) and (8.18c) are respectively
analogs of (7.1f) and (7.1g).

Contracting inequalities (8.18a) against the frame/dual frame, we find that they are approxi-

mately orthonormal relative to the metric g in the following weak sense (for t ∈ (T,1] and ∣I⃗ ∣ ≤ N−3):
∣∂I⃗ {gAB − δAB}∣ ≲ t−c√ε, ∣∂I⃗ {gAB − δAB}∣ ≲ t−c√ε,(8.19)

where δAB and δAB are standard Kronecker deltas.

45Note that the amplitude factors of
√
ε in (8.18a) are worse than the amplitude factor of ε that would follow

from (8.7) and Sobolev embedding. This is an artifact of some inefficiencies in our proof and is not important for

our main results; the t-dependent factors of t2/3−c
√
ε and t−2/3−c

√
ε in (8.18a) are what matters.

46Note that the estimates stated in (8.18a)-(8.18c) are of pointwise type while the estimates of Theorem 7.1 are
in terms of Sobolev norms. This is a minor point in the sense that we can obtain pointwise estimates from Sobolev
estimates via Sobolev embedding (at the cost of a few derivatives).
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In Subsect. 8.9, when we bound some representative energy error integrals, we will use the
following simple consequences of the above estimates:

∥∣γ∣g∥L∞ (t) ≲ t−1/3−c√ε,(8.20)

∥∣∂φ∣g∥L∞ (t) ≲ t−1/3−c√ε.(8.21)

To prove (8.20), we first note that (8.18a) with ∣I⃗ ∣ = 1 implies that

∣γACE ∣ ≲ t−1/3−c√ε,(8.22)

where in deriving (8.22), we have incurred three factors of t−1/3 relative to the estimate (8.18a),
one for each contraction against a frame vector belonging to {e′(A)}3A=1. We therefore deduce from

(8.19) and (8.22) that

∣γ∣2g = gABgCD(g−1)EFγACEγBDF ≲ t
−2/3−c√ε,(8.23)

which yields (8.20). To obtain (8.21), we note that (8.18c) with ∣I⃗ ∣ = 1 implies that

∣e′(A)φ∣ ≲ t−1/3−c√ε,(8.24)

where in deriving (8.24), we have incurred a factor of t−1/3 relative to the estimate (8.18c) due to
the contraction against the frame vector belonging to {e′(A)}3A=1. We therefore deduce from (8.19)

and (8.24) that

∣∂φ∣2g = gAB(e′(A)φ)e′(B)φ ≲ t−2/3−c√ε,(8.25)

which yields (8.21).
For future use, we also note the following relations, which follow in a straightforward fashion from

the definitions of the quantities involved:

∣gABgCDgEF (s∂I⃗γACE)(s∂I⃗γBDF )∣ = ∣s∂I⃗γ∣2g ≤ C ∣s∂∂I⃗g∣2g .(8.26)

8.8. Identifying some representative nonlinear error terms. In Subsect. 8.9, we will bound
three representative nonlinear error integrals and explain how they contribute to the terms on the
right-hand side of the energy integral inequality (8.9). In the present subsection, as a preliminary
step, we commute some of the nonlinear Einstein-scalar field equations with the spatial derivative
operator ∂I⃗ (as defined in Subsect. 2.3) and identify the representative nonlinear terms that lead to
the error integrals.

First, we commute the evolution equation (3.7b) with ∂I⃗ . Using (8.17), we see that relative to
the frame/dual frame (8.13), the commuted equation takes the form

∂t(t∂I⃗kAB) = gAEgCFgDHγCFD∂I⃗γEHB +⋯,(8.27)

where, for illustration, we have kept only one representative nonlinear product generated by the
right-hand side of (8.17).

Similarly, we commute the scalar field wave equation (3.19) with ∂I⃗ (as defined in Subsect. 2.3)
and, for illustration, retain two products generated by terms on the last two lines of (3.19), which
yields

∂t(t∂t∂I⃗φ) + n2tgab∂a∂b∂I⃗φ = ⎛⎝t∂tφ −
√

2

3

⎞⎠ (∂I⃗n)t − tgab(∂a∂I⃗n)∂bφ +⋯.(8.28)



I. Rodnianski and J. Speck

51

Note that in writing down (8.27)-(8.28), we have ignored various linearly small products in the
equations. Those terms are of crucial importance for deriving an analog of the approximate mono-
tonicity identity from Theorem 5.1 and for this reason, they are not part of the nonlinear error term
analysis that we are currently conducting.

8.9. Bounds for some representative nonlinear error integrals and a proof sketch of
Prop. 8.1. Recall that in Theorem 5.1, we derived an approximate monotonicity identity for linear
solutions, which was the main step in deriving the energy integral inequality for linear solutions
stated in (6.1). In the nonlinear problem, the analog of inequality (6.1) is the energy integral
inequality (8.9) provided by Prop. 8.1. The main difference between the linear estimate (6.1) and
the nonlinear estimate (8.9) is, of course, the presence of nonlinear error integrals, which arise in the
nonlinear analog of the approximate monotonicity identity. Ultimately, the nonlinear error integrals
generate terms that appear on the right-hand side of the nonlinear energy integral inequality (8.9).
In this subsection, to keep the discussion short, we consider only three representative error integrals
generated by the quadratic nonlinear terms highlighted in Subsect. 8.8. Our main goal is to show
that the corresponding error integrals (which are cubically47 small) are bounded by the right-
hand side of (8.9). In view of the above remarks, it follows that the discussion in this subsection
constitutes a proof sketch of Prop. 8.1. We note that the improved estimates at the lower derivative
levels from Subsect. 8.7 are essential for controlling the error integrals, especially the borderline one
that we control in (8.32).

8.9.1. A non-borderline error integral involving the scalar field. We start by explaining how the
error term tgab(∂a∂I⃗n)∂bφ on the right-hand side of (8.28) contributes to the right-hand side of
(8.9). Revisiting the proof of Prop. 5.2, we see that in the analog of the integral identity (5.3), the

error term generates the following spacetime integral (where we are assuming that 1 ≤ ∣I⃗ ∣ ≤M ≤ N):

∫ 1

s=t
∫
Σs

sgab(∂a∂I⃗n)(∂bφ)(s∂t∂I⃗φ)dxds.(8.29)

Using (8.21), Def. 8.3, and Cauchy-Schwarz relative to g, we bound the magnitude of the integral
in (8.29) as follows:

≤ ∫ 1

s=t
∥∣∂φ∣g∥L∞ (s)∫

Σs

∣s∂∂I⃗n∣g∣s∂t∂I⃗φ∣dxds(8.30)

≲ ∫ 1

s=t
s−1/3−c

√
ε
E

2

(Total);θ∗;I⃗(s)ds.
We now simply observe that the right-hand side of (8.30) is bounded by the non-borderline error
integral on the right-hand side of (8.9), as desired.

8.9.2. A borderline error integral involving the scalar field. We now explain how the error term

(t∂tφ −√2
3
) (∂I⃗n)

t
on the right-hand side of (8.28) contributes to the right-hand side of (8.9). For

the same reasons given in Subsubsect. 8.9.1, this error term generates the error integral

∫ 1

s=t
s−1∫

Σs

⎛⎝s∂tφ −
√

2

3

⎞⎠(∂I⃗n)(s∂t∂I⃗φ)dxds.(8.31)

47Some of the error integrals that we treat here are similar to other error integrals that are generated by integration
by parts. For example, cubic error integrals similar to the one in (8.33) arise from the nonlinear analog of (5.15).
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Using (8.18b) and Def. 8.3, we bound the magnitude of the integral in (8.31) as follows (where we

are again assuming that 1 ≤ ∣I⃗ ∣ ≤M ≤ N):

≤ ∫ 1

s=t
s−1
XXXXXXXXXXXs∂tφ −

√
2

3

XXXXXXXXXXXL∞ (s)∫Σs

∣∂I⃗n∣∣s∂t∂I⃗φ∣dxds(8.32)

≤ cε∫ 1

s=t
s−1E 2

(Total);θ∗;I⃗(s)ds.
Note that the right-hand side of (8.30) is bounded by the borderline error integral on the right-hand
side of (8.9), as desired. We stress that the availability of the small coefficient ε is crucial since,
in the Gronwall estimate for E 2

(Total);θ∗;I⃗
, the right-hand side of (8.32) can cause E 2

(Total);θ∗;M(t) to
blowup like t−cε as t ↓ 0. Note also that for this argument, it is crucial that the singular integrand
factor on the right-hand side of (8.32) is not worse than s−1; a slightly worse factor of type s−1−Cε

would radically alter the Gronwall estimate and would prevent us from deriving an improvement
of the norm bootstrap assumption. For this reason, the “lossless” AVTD-type estimate (8.18b) is
critically important for the proof of nonlinear stability.

8.9.3. A non-borderline error integral involving the metric. Finally, we will consider the effect of
the error term gAEgCFgDHγCFD∂I⃗γEHB on the right-hand side of (8.27). Revisiting the proof of
Prop. 5.3, we see that in the analog of the metric energy identity (5.8), the error term generates
the following spacetime integral:

∫ 1

s=t
∫
Σs

gABgCFgDHγCFD(s∂I⃗γEHB)(s∂I⃗ k̂EA)dxds.(8.33)

Using (8.20), (8.26), Def. 8.3, and Cauchy-Schwarz relative to g, we bound the magnitude of the

integral in (8.33) as follows (where we are again assuming that 1 ≤ ∣I⃗ ∣ ≤M ≤ N):

≲ ∫ 1

s=t
∫
Σs

∣γ∣g ∣s∂I⃗γ∣g ∣s∂I⃗ k̂∣g dxds(8.34)

≲ ∫ 1

s=t
∥∣γ∣g∥L∞ (s)E2(Total);θ∗ ;I⃗(s)ds

≲ ∫ 1

s=t
s−1/3−c

√
ε
E

2

(Total);θ∗;I⃗(s)ds.
Like the right-hand side of (8.30), the right-hand side of (8.34) is bounded by the non-borderline
error integral on the right-hand side of (8.9), as desired. This completes our discussion of the three
representative nonlinear error integrals and finishes our proof sketch of Prop. 8.1.

9. Comments on realizing “end states”

The linear stability results of Theorem 7.1 show that for some time-rescaled versions of the linear
solution variables, there is a well-defined map from their “initial state” along the data hypersurface
Σ1 to their “end state” along Σ0. For example, the estimate (7.2d) exhibits this fact for t∂tϕ, in
which case the end state is ΨBang and the map is from HN to HN−1. It is natural to inquire whether
or not one can realize a given end state (more precisely, one in which time derivative terms in the
equations are dominant) by finding suitable initial data that lead to it. Although we do not give a
proof that one can “realize all end states in which time derivative terms dominate” in solutions to
the linearized equations of Prop. 3.2, we do point to some evidence in this direction by discussing
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some relevant results in a simplified context. Our discussion here is closely connected to the work
described in Subsect. 1.8 in which authors used Fuchsian methods to construct singular solutions
to various Einstein-matter systems under symmetry or analyticity assumptions. In this section, we
consider a model equation in 1 + 1 dimensions, obtained from the linearized scalar field equation
(3.17) in the case g̊ = gFLRW = t2/3∑3

i=1(dxi)2 by dropping the linearized lapse terms and making
the symmetry assumption that the solution depends only on t and a single spatial variable x1 ∈ T.
We have made the symmetry assumption only to shorten the presentation; the arguments we sketch
below remain valid without it. For convenience, in the rest of this section, we will write x instead
of x1. We caution that ignoring the lapse and its elliptic PDE is tantamount to sidestepping new
difficulties not found in the standard Fuchsian framework, which applies to hyperbolic equations.
Specifically, our model equation in ϕ = ϕ(t, x) on the domain (t, x) ∈ (0,1] ×T is

−∂t(t∂tϕ) + t1/3∂2xϕ = 0.(9.1)

The methods of [15, 16] (see also the many other related works cited in Subsect. 1.8), can be used
to show that given an asymptotic expansion for the end state of the form ln tΨ1(x)+Ψ2(x) (where
the Ψi have sufficient Sobolev regularity), one can construct a solution ϕ to (9.1) existing on a slab
of the form (0,1] ×T such that

ϕ = ln tΨ1(x) +Ψ2(x) +R(t, x).(9.2)

Furthermore, there is a suitably strong t-dependent Sobolev norm on the time slices Σt such that
the norm of the remainder term R vanishes as t ↓ 0. In particular, R becomes negligible relative to
ln tΨ1(x) +Ψ2(x) as t ↓ 0. We now sketch the proof of these phenomena by following the approach
outlined in Subsect. 1.8. We note that our analysis involves much simpler t weights in the energies
compared to the weights of [15,16] because we are treating a simple linear scalar equation. We recall
that the overall strategy of the proof is to construct a sequence of standard initial value problems
that approximate the “singular initial value problem with vanishing Cauchy data for R given along
Σ0.” To begin our sketch of a proof, we use equation (9.1) and the ansatz (9.2) to deduce the
following equation for R(t, x):

−∂t(t∂tR) + t1/3∂2xR = −t1/3 ln t∂2xΨ1(x) − t1/3∂2xΨ2(x).(9.3)

We now derive an estimate for the energy E [R](t) ≥ 0 defined by

E
2[R](t) ∶= ∫

Σt

(t1/3∂tR)2 + (∂xR)2 dx.(9.4)

A straightforward integration by parts argument, based on multiplying equation (9.3) by t−1/3∂tR,
yields that for 0 < t1 < t2 ≤ 1, we have

E [R](t2) ≤ E [R](t1) + {∥∂2xΨ1∥L2
+ ∥∂2xΨ2∥L2

}∫ t2

s=t1
(1 + ln s)s−1/3 ds(9.5)

≤ E [R](t1) +C {∥∂2xΨ1∥L2
+ ∥∂2xΨ2∥L2

}{tp2 − tp1} ,
where p is a constant chosen to be slightly smaller than 2/3. Inequality (9.5) is the main ingredient
that one needs to deduce the desired existence result and estimates for R. Note that the estimate
(9.5) loses one derivative relative to Ψ1 and Ψ2. In a detailed proof of the desired results (see the
methods of [16]), one considers a sequence {Rn}∞n=0 of solutions to (9.3), where Rn has 0 Cauchy
data on Σtn (and thus E [Rn](tn) = 0) and is a classical solution on [tn,1]. Here, {tn}∞n=0 is a
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sequence of times in (0,1] that decreases to 0 as n → ∞. An argument similar to the one used to
prove (9.5) yields that for m < n, we have

sup
t∈[tm,1]

E [Rn −Rm](t) ≤ C {∥∂2xΨ1∥L2
+ ∥∂2xΨ2∥L2

}{tpm − tpn} .(9.6)

It follows from (9.6) that for any ǫ > 0, {Rn}∞n=0 is Cauchy in the norm48

f → sup
t∈(ǫ,1]

{∥t1/3∂tf(t)∥L2 + ∥∂xf(t)∥L2}
and thus converges49 to the desired solution R.

Remark 9.1. We could have instead derived energy estimates by multiplying equation (9.3) by
t−P∂tR for any choice of P ∈ [1/3,5/3), and a similar argument would yield a uniform bound for

the energy ∫Σt
(t 1−P2 ∂tR)2 + (t 1/3−P2 ∂xR)2 dx for t ∈ (0,1]. We could even have allowed P to mildly

depend on x. This illustrates the freedom (mentioned in Subsect. 1.8) in choosing viable t-weights
in the Fuchsian approach.

It is not difficult to modify the above arguments so that they apply if one includes the semilinear
term50 t1/3(∂xϕ)2 on the right-hand side of (9.1); this term is a model for the kinds of semilinear
terms that one finds in the Einstein-scalar field system. It would be interesting to know to what
extent the arguments can be extended to apply to the full linearized system of Prop. 3.2 and the full
nonlinear Einstein-scalar field system in three spatial dimensions. The framework of [2] provides
a possible starting point for establishing such an extension. However, that framework applies only
to symmetric hyperbolic Fuchsian systems and thus it would need to be modified to treat the
Einstein-scalar field system in gauges involving an elliptic or parabolic lapse PDE.

10. Parabolic lapse gauges

In this section, we introduce a new family of gauges for the Einstein-scalar field system. We show
that a version of the approximate monotonicity identity also holds in solutions to linearized (around
the Kasner backgrounds) versions of the corresponding equations; see Theorem 10.1. We also show
that mildly singular energy estimates without derivative loss hold for the linear solutions when
the Kasner backgrounds are nearly spatially isotropic; see Theorem 10.2. Using these results, one
could also prove linear stability results when the Kasner backgrounds are nearly spatially isotropic,
that is, an analog of Theorem 7.1. However, for brevity, we do not explicitly provide such a result
here; given the results of Theorems 10.1 and 10.2, one could prove linear stability by making minor
modifications to the proof of Theorem 7.1.

The gauge that we study in this section involves a parabolic equation for the lapse variable n that
depends on a real parameter λ. The mildly singular energy estimates of Theorem 10.2 are valid
for near-FLRW Kasner backgrounds when 2 < λ <∞. As we will see, for λ > 0, the parabolic lapse
PDEs are locally well-posed only in the past direction, that is, for t decreasing. Formally, λ = ∞
corresponds to the CMC lapse equation. However, our proofs in this section are somewhat different

48Higher-order energy estimates for the sequence {Rn}∞n=0 can be obtained in a similar fashion.
49In the fully detailed construction of the analog of R for the nonlinear problems treated in [15, 16], the authors

extend the Rn to be 0 on [0, tn) and show that this extension implies that Rn is a weak solution on an interval [0,δ).
50More precisely, when the term t1/3(∂xϕ)2 is present, one can show that the remainder term R exists and verifies

estimates similar to the ones derived above on a small slab (0,δ]×T, where δ > 0 depends on a Sobolev norm of Ψ1

and Ψ2. This argument requires higher-order energy estimates because of the nonlinearity.



I. Rodnianski and J. Speck

55

compared to our proofs in CMC gauge and do not allow us to directly recover the CMC gauge
results by taking a limit λ→∞.

10.1. Choice of a gauge and the corresponding formulation of the Einstein-scalar field
equations. In formulating the nonlinear Einstein-scalar field equations in the new gauge, we con-
tinue to use transported spatial coordinates and to decompose g = −n2dt2 + gabdxadxb as in (1.5).

10.1.1. Fixing the gauge. We now fix the lapse gauge.

Definition 10.1 (Choice of a parabolic lapse gauge). Let λ ≠ 0 be a real number. We now
impose the following relation, which fixes the lapse gauge:

λ−1(n − 1) = tkaa + 1.(10.1)

Remark 10.1. Note that the CMC-transported spatial coordinates gauge of Sect. 3 corresponds
to λ =∞.

10.1.2. Formulation of the Einstein-scalar field equations. We now provide the (nonlinear) Einstein-
scalar field equations relative to the gauge (10.1) with transported51 spatial coordinates.

Proposition 10.1 (The Einstein-scalar field equations in the gauge (10.1) with trans-
ported spatial coordinates). Under the gauge condition (10.1) and with transported spatial co-
ordinates, the Einstein-scalar field system consists of the following equations.

The Hamiltonian and momentum constraint equations are respectively:

R − kabk
b
a + (kaa)2²

t−2{λ−1(n−1)−1}2

=
2T(N̂,N̂)³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(n−1∂tφ)2 + gab∇aφ∇bφ,(10.2a)

∇ak
a
i − ∇ik

a
a²

λ−1t−1∇in

= −n−1∂tφ∇iφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−T(N̂,∂i)

,(10.2b)

R denotes the scalar curvature of gij.
The metric evolution equations are:

∂tgij = −2ngiakaj,(10.3a)

∂tk
i
j = −gia∇a∇jn + n{Rici j + kaak

i
j²

t−1{λ−1(n−1)−1}ki
j

−gia∇aφ∇jφ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−T i

j
+(1/2)Ii

j
T

},(10.3b)

where Rici j denotes the Ricci curvature of gij, I
i
j = diag(1,1,1) denotes the identity transformation,

and T ∶= (g−1)αβTαβ denotes the trace of the energy-momentum tensor (1.2).
The volume form factor

√
detg verifies the auxiliary equation52

∂t ln (t−1√detg) = (1 − λ−1)n − 1
t

.(10.4)

51By “transported,” we mean in the sense described below equation (1.5).
52This equation, which we do not use in the present article, is implied by (3.7a) and the gauge condition (10.1).
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The scalar field wave equation is:

−D
N̂
D

N̂
φ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

−n−1∂t(n−1∂tφ)+gab∇a∇bφ =
−kaaDN̂

φ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1

t
n−1 {1 − λ−1(n − 1)}∂tφ−n−1gab∇an∇bφ.(10.5)

The parabolic lapse equation is:

λ−1
1

t
∂t(n − 1) + gab∇a∇b(n − 1) = (n − 1){ 1

t2
(1 − λ−1) +R − gab∇aφ∇bφ}(10.6)

+ λ−1(λ−1 − 2) 1
t2
(n − 1)2 + λ−2 1

t2
(n − 1)3 +R − gab∇aφ∇bφ.

When λ > 0, the gauge condition (10.1) and the constraint equations (10.2a)-(10.2b) are preserved
by the past flow of the remaining equations if they are verified by the data.

Remark 10.2. We are primarily interested in the gauge (10.1) when λ > 2 since our main results
rely on this inequality. Note that when λ > 0, the parabolic equation (10.6) is locally well posed
only in the past direction.

Remark 10.3 (Data for the lapse). In order to solve the equations of Prop. 10.1, we must
prescribe the lapse along the initial Cauchy hypersurface Σ1. That is, n∣Σ1

is not determined by the
geometric data (see Subsect. 1.4 for discussion of the geometric data). This is in contrast to the
CMC-transported spatial coordinates gauge, in which n∣Σ1

is determined by the geometric data via
the elliptic PDE (3.10). A natural choice in the context of proving the nonlinear stability of the
FLRW solution’s Big Bang singularity would be n∣Σ1

= 1.
Proof of Prop. 10.1. The proposition can be proved by making simple modifications to the standard
arguments that yield Prop. 3.1. �

10.2. Linearizing around the Kasner solutions. In the next proposition, we linearize the equa-
tions of Prop. 10.1 around a Kasner solution (1.6). See Subsect. 3.3 for some remarks on the
linearization procedure.

Proposition 10.2 (The linearized Einstein-scalar field equations in the gauge (10.1) with
transported spatial coordinates). Consider the equations of Prop. 10.1 linearized around a
Kasner solution (1.6). The linearized equations in the unknowns (ν, h,κ, ϕ), which are functions of(t, x) ∈ (0,∞)×T3, take the following form (see Def. 3.1 for the definitions of some of the quantities).

The linearized parabolic gauge condition (10.1) is:

tκa
a = λ−1ν.(10.7)

The linearized versions of the Hamiltonian and momentum constraint equations

(10.2a)-(10.2b) are:

t2(h)R − 2(tˆ̊kab)(tκb
a) − 2A(t∂tϕ) + 2(A2 − λ−1)ν = 0,

(10.8a)

∂a(tκa
i) = λ−1∂iν −A∂iϕ − (h)Γ a

a b(tˆ̊kbi) + (h)Γ b
a i(tˆ̊kab),(10.8b)

g̊ab∂a(tκi
b) = λ−1g̊ia∂aν −Ag̊ia∂aϕ(10.8c)

− g̊ab(h)Γ i
a c(tˆ̊kcb) + g̊ab(h)Γ c

a b(tˆ̊kic).
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The linearized version of the lapse equation (10.6) can be expressed in either of the fol-
lowing two forms:

2A(t∂tϕ) + 2(tˆ̊kab)(tκb
a) = λ−1t∂tν + t2g̊ab∂a∂bν + (2A2 − 1 − λ−1)ν,(10.9a)

λ−1t∂tν + t
2g̊ab∂a∂bν − (1 − λ−1)ν = t2(h)R.(10.9b)

Equation (10.8a) can be used to show that (10.9a) is equivalent to (10.9b).
The linearized versions of the metric evolution equations (10.3a)-(10.3b) are:

∂thij = −2t−1(t̊kaj)hia − 2t−1g̊ia(tκa
j) − 2t−1g̊ia(t̊kaj)ν,(10.10a)

∂t(tκi
j) = −t̊gia∂a∂jν − (1 − λ−1)t−1(t̊ki j)ν + t(h)Rici j.(10.10b)

The linearized version of the scalar field wave equation (10.5) is:

−∂t(t∂tϕ) + t̊gab∂a∂bϕ = −A∂tν +A(1 − λ−1)t−1ν.(10.11)

Proof. The proof is essentially the same as that of Prop. 3.2 and we therefore omit the details. We
point out that in the gauge (10.1) (and therefore in Prop. 10.2 too), the linearly small quantities

are the same as the ones from Def. 3.1, except that tκa
a ∶= tkaa − t̊kaa = λ−1(n − 1) = λ−1ν is now

linearly small rather than completely vanishing as it did in Prop. 3.2. �

10.3. Energies and norms. In our analysis of solutions, we will use the energies and norms
featured in the next two definitions. These controlling quantities lead to slightly different estimates
for the lapse compared to the CMC gauge. The main point is that we are no longer able to obtain
control of the highest-order analog of ∥∂2ν∥L2

g̊
because of the nature of parabolic energy estimates.

We are, however, able to control a spacetime integral of the highest-order analog of ∂2ν, which is
provided by the highest-order analog of the first term on the second line of the right-hand side of
(10.28).

Definition 10.2 (Energies). In terms of the energies defined in Def. 4.4, we define the following
energy E(Almost Total);θ(t) ≥ 0 for t ∈ (0,1]:

E
2
(Almost Total);θ(t) ∶= E

2
(Scalar)(t) + E

2
(Lapse)(t) + θE

2
(Metric)(t).(10.12)

As in Theorem 6.1, θ is a small positive constant that we will choose below in order in to obtain
the desired energy estimates.

We will also use an up-to-orderM energy. Specifically, we view the energy E(Almost Total);θ defined
in (10.12) as a functional of κ, ∂h, ∂tϕ,∂ϕ,ν (that is, E(Almost Total);θ = E(Almost Total);θ[κ, ∂h, ∂tϕ,∂ϕ,ν]),
and we define

E
2
(Almost Total);θ;M(t) ∶= ∑

∣I⃗ ∣≤M
E

2
(Almost Total);θ[∂I⃗κ, ∂∂I⃗h, ∂t∂I⃗ϕ,∂∂I⃗ϕ,∂I⃗ν](t).(10.13)

Definition 10.3 (Solution norms). In terms of the Sobolev norms of Def. 4.2, we define the
solution norms

S(Parabolic F rame);M(t) ∶= ∥tκ∥HM
Frame

+ ∥∂h∥HM
Frame

+ ∥t∂tϕ∥HM
Frame

+ t2/3∥∂ϕ∥HM
Frame

+
1∑

p=0

t(2/3)p ∥ν∥HM+p .

(10.14)

Remark 10.4. Note that S(Parabolic F rame);0 controls one derivative of ν while E(Almost Total);θ does
not.
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10.4. The approximate monotonicity identity. We now state our approximate monotonicity
identity theorem for solutions to the linear equations of Prop. 10.2. The theorem is a direct analog
of Theorem 5.1 in the CMC gauge.

Theorem 10.1 (The approximate monotonicity identity in the parabolic lapse gauge).
Assume that the parabolic gauge parameter verifies λ ≠ 0. Then for any constant θ > 0, solutions to
the linearized equations of Prop. 10.2 verify the following identity for t ∈ (0,1]:
∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx + {A2 +
1

2
λ−1(1 − λ−1)}∫

Σt

ν2 dx + θ∫
Σt

∣tκ∣2g̊ + 14 ∣t∂h∣2g̊ dx +∫Σt

N1 dx

(10.15)

= ∫
Σ1

(∂tϕ)2 + t2∣∂ϕ∣2g̊ dx + {A2 +
1

2
λ−1(1 − λ−1)}∫

Σ1

ν2 dx + θ∫
Σ1

∣κ∣2g̊ + 14 ∣t∂h∣2g̊ dx +∫Σ1

N1 dx

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds − (1 + 2θλ−1 − λ−1)∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds − {1 − λ−2}∫ 1

s=t
s−1∫

Σs

ν2 dxds

−
1

2
θ∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds
+

4∑
i=2
∫ 1

s=t
s−1∫

Σs

Ni dxds + θ
12∑
i=5
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where the constant 0 ≤ A ≤√2/3 is defined by (1.8b) and along Σs, we have

N1 = N1(s∂tϕ,ν) ∶= −2A(s∂tϕ)ν,(10.16a)

N2 = N2(sˆ̊k, sκ,ν) ∶= −2(1 − λ−1)(sˆ̊kab)(sκb
a)ν,(10.16b)

N3 = N3(s̊k, s∂ϕ, s∂ϕ) ∶= −2s2g̊ab(s̊kcb)∂aϕ∂cϕ,(10.16c)

N4 = N4(s∂ϕ, s∂ν) ∶= −2As2g̊ab∂aϕ∂bν,(10.16d)

N5 = N5(s̊k, s∂h, s∂h) ∶= −1
2
s2g̊abg̊ij g̊cf(s̊kec)∂ehai∂fhbj ,(10.16e)

N6 = N6(sˆ̊k, sκ, sκ) ∶= 2̊gicg̊ab(sˆ̊kcj)(sκi
a)(sκj

b) − 2̊gij g̊ac(sˆ̊kbc)(sκi
a)(sκj

b),(10.16f)

N7 = N7(sˆ̊k, s∂h, s∂h) ∶= s2g̊abg̊ef g̊ij(sˆ̊kac)(h)Γ c
i j
(h)Γ b

e f − s
2g̊abg̊

ef g̊ij(sˆ̊kcj)(h)Γ a
i c
(h)Γ b

e f(10.16g)

+ s2g̊ef(sˆ̊kac)(h)Γ c
a b
(h)Γ b

e f − s
2g̊ef(sˆ̊kcb)(h)Γ a

a c
(h)Γ b

e f ,

N8 = N8(sˆ̊k, s∂h, s∂ν) ∶= 2s2g̊ij(sˆ̊kbi)(h)Γ a
a b∂jν − 2s

2g̊ij(sˆ̊kab)(h)Γ b
a i∂jν(10.16h)

+ s2g̊ij g̊ef(s̊kaj)∂ehai∂fν,
N9 = N9(sˆ̊k, sκ,ν) ∶= 2(1 − λ−1)̊gabg̊ij(sˆ̊kai)(sκb

j)ν,(10.16i)

N10 = N10(s∂ϕ, s∂ν) ∶= 2As2g̊ij∂iϕ∂jν,(10.16j)

N11 = N11(s∂h, s∂ϕ) ∶= −2As2g̊ef (h)Γ a
e f∂aϕ,(10.16k)

N12 = N12(s∂h, s∂ν) ∶= 2λ−1t̊gef (h)Γ a
e f∂aν.(10.16l)

Remark 10.5. The terms Ni defined in (10.16a)-(10.16l) have different definitions than their coun-
terparts from Sects. 5-6.
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Proof of Theorem 10.1. We will derive the identities (10.17) and (10.22) below using independent
arguments. To obtain (10.1), we simply add (10.17) to θ times (10.22). �

As in the proof of Theorem 5.1, the most important step in the proof of Theorem 10.1 is an
energy identity for the linearized scalar field and lapse that simultaneously yields favorably signed
(to the past) integrals for both variables. We provide this identity in the next proposition.

Proposition 10.3 (The key integral identity for the linearized scalar field and linearized
lapse in the parabolic lapse gauge). Assume that the parabolic gauge parameter verifies λ ≠ 0.
Then solutions to the linearized equations of Prop. 10.2 verify the following identity for t ∈ (0,1]:

∫
Σt

(t∂tϕ)2 + ∣t∂ϕ∣2g̊ dx + {A2 +
1

2
λ−1(1 − λ−1)}∫

Σt

ν2 dx +∫
Σt

N1 dx

(10.17)

= ∫
Σ1

(∂tϕ)2 + t2∣∂ϕ∣2g̊ dx + {A2 +
1

2
λ−1(1 − λ−1)}∫

Σ1

ν2 dx + ∫
Σ1

N1 dx

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds − (1 − λ−1)∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds − (1 − λ−2)∫ 1

s=t
s−1∫

Σs

ν2 dxds

+
4∑
i=2
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where the constant 0 ≤ A ≤√2/3 is defined by (1.8b) and the terms N1, N2, N3, and N4 are defined
in (10.16a)-(10.16d).

Proof. The proof has some features in common with our proof of Prop. 5.2, but other aspects of it
are different. Again, the main idea is to combine three integration by parts identities in the right
way. Throughout, we silently use the identities in (4.10). To obtain the first identity, we divide
equation (10.9a) by t and then replace t with the integration variable s, multiply by (1−λ−1)ν, and
integrate by parts over (s, x) ∈ [t,1] ×T3 (we stress that t ≤ 1) to deduce that

1

2
λ−1(1 − λ−1)∫

Σt

ν2 dx = 1

2
λ−1(1 − λ−1)∫

Σ1

ν2 dx(10.18)

− (1 − λ−1)∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds
+ (2A2 − 1 − λ−1)(1 − λ−1)∫ 1

s=t
s−1∫

Σs

ν2 dxds

− 2A(1 − λ−1)∫ 1

s=t
s−1∫

Σs

(s∂tϕ)νdxds
− 2(1 − λ−1)∫ 1

s=t
s−1∫

Σs

(sˆ̊kab)(sκb
a)νdxds.

To obtain the second identity, we replace t with the integration variable s in equation (10.11),
multiply by −s∂tϕ, and integrate by parts over (s, x) ∈ [t,1] × T3 (we again stress that t ≤ 1) to
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deduce that

∫
Σt

(t∂tϕ)2 + t2∣∂ϕ∣2g̊ dx = ∫
Σ1

(∂tϕ)2 + ∣∂ϕ∣2g̊ dx
(10.19)

− 2∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ + s2g̊ab(s̊kcb)∂aϕ∂cϕdxds
− 2A∫ 1

s=t
∫
Σs

(s∂tϕ)∂tνdxds + 2A(1 − λ−1)∫ 1

s=t
s−1∫

Σs

(s∂tϕ)νdxds.
Next, we multiply equation (10.11) by ν to obtain the following identity:

(t∂tϕ)∂tν = ∂t(t∂tϕν) − 1

2
A∂t(ν2) − tνg̊ab∂a∂bϕ +A(1 − λ−1)t−1ν2.(10.20)

To obtain the third identity, we replace t with the integration variable s in equation (10.20),
multiply by 2A, and integrate by parts over (s, x) ∈ [t,1] ×T3 to deduce that

− 2A∫
Σt

(t∂tϕ)νdx +A2∫
Σt

ν2 dx(10.21)

= −2A∫
Σ1

∂tϕνdx +A
2∫

Σ1

ν2 dx

+ 2A∫ 1

s=t
∫
Σs

(s∂tϕ)∂tνdxds
− 2A∫ 1

s=t
s−1∫

Σs

s2g̊ab∂aϕ∂bνdxds − 2A
2(1 − λ−1)∫ 1

s=t
s−1∫

Σs

ν2 dxds.

Adding (10.18), (10.19), and (10.21), and noting the cancellation of the integrals ±2A ∫ 1

s=t ∫Σs
(s∂tϕ)∂tνdxds

and ±2A(1 − λ−1) ∫ 1

s=t s
−1 ∫Σs

(s∂tϕ)νdxds, we arrive at the desired identity (10.17). �

In the next proposition, we derive an energy identity for the linearized metric solution variables.
It is a direct analog of Prop. 5.3.

Proposition 10.4 (Energy identity for the linearized metric variables in the parabolic
lapse gauge). Assume that the parabolic gauge parameter verifies λ ≠ 0. Then solutions to the
linearized equations of Prop. 10.2 verify the following identity for t ∈ (0,1]:

∫
Σt

∣tκ∣2g̊ + 14 ∣t∂h∣2g̊ dx = ∫Σ1

∣κ∣2g̊ + 14 ∣∂h∣2g̊ dx(10.22)

−
1

2 ∫
1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds − 2λ−1∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds
+

12∑
i=5
∫ 1

s=t
s−1∫

Σs

Ni dxds,

where the constant 0 ≤ A ≤ √2/3 is defined by (1.8b) and the terms N5, ⋯, N12 are defined in
(10.16e)-(10.16l).

Proof of Prop. 10.4. We repeat the proof of Prop. 5.3 and take into account the few differences be-
tween the linearized equations of Prop. 3.2 and the linearized equations of Prop. 10.2. In particular,

the identity (5.18) holds in the present context, but with the next-to-last term −2t−1g̊ab̊gij(tˆ̊kai)(tκb
j)ν
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multiplied by the factor 1 − λ−1 (coming from the second term on the right-hand side of (10.10b))
and two additional terms: i) the term 2λ−1t∣∂ν∣2g̊ coming from the analog of the step (5.13) and

the presence of the term λ−1∂iν on the right-hand side of equation (10.8b) and ii) the cross term
−2λ−1t̊gef (h)Γ a

e f∂aν coming from the analog of steps (5.16) and (5.17) and the presence of the term

λ−1∂iν on the right-hand side of equation (10.8b) and the term λ−1g̊ia∂aν on the right-hand side of
(10.8c). �

10.5. Mildly singular energy estimates without derivative loss for the linearized equa-
tions in the parabolic lapse gauge. In this subsection, we use the approximate monotonicity
identity provided by Theorem 10.1 to derive mildly singular energy estimates for the linear so-
lution when the Kasner background is nearly spatially isotropic. The results are contained in
Theorem 10.2, which is a direct analog of Theorem 6.1. We provide the proof of Theorem 10.2 in
Subsubsect. 10.5.2.

Theorem 10.2 (Mildly singular energy estimates without derivative loss for solutions
to the linearized equations in the parabolic lapse gauge). Consider a solution to the linear
equations of Prop. 10.2 corresponding to the data (κ(1), h(1), ∂tϕ(1), ∂ϕ(1),ν(1)) (given on Σ1 ={1} × T3). Assume that the parabolic gauge parameter verifies λ ≥ λ0, where λ0 > 2. There exist
constants θλ0 > 0, ηλ0 > 0, Cλ0 > 0, cλ0 > 0, and Pλ0 > 0 (depending on λ0) such that if 0 ≤ η ≤ ηλ0

and if the solution norm S(Parabolic F rame);0(t) defined in (10.14) verifies S(Parabolic F rame);0(1) <∞,
then the energy E(Almost Total);θλ0(t) defined in (10.12) verifies the following inequality for t ∈ (0,1]:

E
2
(Almost Total);θλ0

(t) ≤ Cλ0E
2
(Almost Total);θλ0

(1)(10.23)

−Pλ0θλ0 ∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−Pλ0 ∫ 1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−Pλ0 ∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

−Pλ0 ∫ 1

s=t
s−1∫

Σs

ν2 dxds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Past-favorable sign

+ cλ0η∫ 1

s=t
s−1E 2

(Almost Total);θλ0
(s)ds´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Error integral that can create energy blowup

.

Furthermore, the following estimate holds for t ∈ (0,1]:
E(Almost Total);θλ0(t) ≤ Cλ0E(Almost Total);θλ0(1)t−cλ0η.(10.24)

In addition, if N ≥ 0 is an integer and the solution norm S(Parabolic F rame);N(t) defined in (10.14)
verifies S(Parabolic F rame);N(1) < ∞, then the energy E(Total);θλ0 ;N(t) defined in (4.7) verifies the

following estimate for t ∈ (0,1]:
E(Total);θλ0 ;N(t) ≤

⎧⎪⎪⎨⎪⎪⎩
Cλ0

η
S(Parabolic F rame);N(1)t−cλ0η if η ≠ 0,

Cλ0S(Parabolic F rame);N(1)(1 + ∣ ln t∣) if η = 0.(10.25)
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In addition, if N ≥ 0 is an integer and S(Parabolic F rame);N(1) < ∞, then the following inequality
holds for t ∈ (0,1]:

S(Parabolic F rame);N(t) ≤ ⎧⎪⎪⎨⎪⎪⎩
Cλ0

η
S(Parabolic F rame);N(1)t−cλ0η if η ≠ 0,

Cλ0S(Parabolic F rame);N(1)(1 + ∣ ln t∣) if η = 0.(10.26)

Remark 10.6. See the estimate (10.45) for more a more precise inequality that shows how the
constants in the estimate (10.23) depend on λ0 and on each other.

10.5.1. Preliminary estimates and identities for the proof of Theorem 10.2. In our proof of Theo-
rem 10.2, we use the following comparison lemma, which can be proved by using arguments similar
to the ones we used to prove Lemma 4.3 (except that clearly we no do not use the elliptic estimate
provided by Lemma 4.2); we omit the simple proof.

Lemma 10.5 (Parabolic energy-norm comparison lemma). Let N ≥ 0 be an integer and let
η ≥ 0 be as defined in (1.9b). There exist constants C > 0 and c > 0, depending on θ, such that the
following comparison estimates hold for the norm S(Parabolic F rame);N(t) defined in (10.14) and the
energy E(Total);θ;N(t) defined in (4.7) for t ∈ (0,1]:

E(Total);θ;N(t) ≤ Ct−cηS(Parabolic F rame);N(t),(10.27a)

S(Parabolic F rame);N(t) ≤ Ct−cηE(Total);θ;N(t).(10.27b)

�

We will also use the following simple parabolic energy estimate, which can be used to derive
top-order L2 estimates for the linearized lapse variable.

Lemma 10.6 (Parabolic energy estimate for ν). There exists a constant C > 0 such that if
η ≥ 0 (see definition 1.9b) and if the parabolic gauge parameter verifies λ ≥ 1, then solutions ν to
the linear parabolic equation (10.9a) verify the following inequality for t ∈ (0,1]:

λ−1∫
Σt

∣t∂ν∣2g̊ dx ≤ λ−1∫
Σ1

∣∂ν∣2g̊ dx(10.28)

− ∫ 1

s=t
s−1∫

Σs

∣s2∂2ν∣2g̊ dxds − λ−1 (43 − 2η)∫
1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds
+C ∫ 1

s=t
s−1∫

Σs

∣(sˆ̊kab)(sκb
a)∣2 dxds +C ∫ 1

s=t
s−1∫

Σs

(s∂tϕ)2 dxds
+C ∫ 1

s=t
s−1∫

Σs

ν2 dxds.

Proof. Integrating by parts over [t,1] × T3 (we stress that t ≤ 1) we deduce (without using any
equation)

λ−1∫
Σt

∣t∂ν∣2g̊ dx = λ−1∫
Σ1

∣∂ν∣2g̊ dx − 2λ−1∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ + s2g̊ab(s̊kcb)∂aν∂cνdxds(10.29)

+ 2∫ 1

s=t
∫
Σs

s̊gef∂e∂fν(λ−1s∂tν)dxds.
Using equation (10.9a) to substitute for the product λ−1s∂tν in the last integrand on the right-hand

side of (10.29) and integrating by parts over Σs on the resulting integrand product {̊gef∂e∂fν}2, we
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deduce

λ−1∫
Σt

∣t∂ν∣2g̊ dx = λ−1∫
Σ1

∣∂ν∣2g̊ dx(10.30)

− 2λ−1∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ + s2g̊ab(s̊kcb)∂aν∂cνdxds
− 2∫ 1

s=t
s−1∫

Σs

∣s2∂2ν∣2g̊ dxds
− (2A2 − 1 − λ−1)∫ 1

s=t
s−1∫

Σs

ν(s2g̊ef∂e∂fν)dxds
+ 4A∫ 1

s=t
s−1∫

Σs

(s∂tϕ)(s2g̊ef∂e∂fν)dxds
+ 4∫ 1

s=t
s−1∫

Σs

(sˆ̊kab)(sκb
a)(s2g̊ef∂e∂fν)dxds.

Arguing as in the proof of (6.5) (in particular using the fact that the eigenvalues of t̊kij are ≥
−qMax ≥ −{ 13 + η}), we estimate the second integral on the right-hand side of (10.30) as follows:

−2λ−1∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ + s2g̊ab(s̊kcb)∂aν∂cνdxds ≤ −λ−1 (43 − 2η)∫
1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds.(10.31)

Using the simple estimate A ≤ √2
3
, Young’s inequality, and the simple estimate ∥̊gef∂e∂fν∥L2 ≲∥∂2ν∥L2

g̊
, we deduce that the four integrals on the third through sixth lines of the right-hand side

of (10.30) are collectively bounded by

≤ −∫ 1

s=t
s−1∫

Σs

∣s2∂2ν∣2g̊ dxds(10.32)

+C ∫ 1

s=t
s−1∫

Σs

ν2 dxds +C ∫ 1

s=t
s−1∫

Σs

(s∂tϕ)2 dxds +C ∫ 1

s=t
s−1∫

Σs

∣(sˆ̊kab)(sκb
a)∣2 dxds.

The desired inequality (10.28) now follows easily from (1.9b) and (10.30) and inequalities (10.31)
and (10.32).

�

10.5.2. Proof of Theorem 10.2. We first note that the following pointwise estimates hold for the
integrand terms Ni, i = 1,2,⋯,12 defined in (10.16a)-(10.16l), where the constants C > 0 are
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independent of λ ≥ 1 and θ:

∣N1∣ ≤ A2

A2 + 1
4
λ−1(1 − λ−1)(t∂tϕ)2 + {A2 +

1

4
λ−1(1 − λ−1)}ν2,(10.33)

∣N2∣ ≤ (1 − λ−1)ηθ∣sκ∣2g̊ + (1 − λ−1)ηθν2,(10.34)

N3 ≤ (2
3
+ 2η) ∣∂ϕ∣2g̊,(10.35)

∣N4∣ ≤ { λ

λ − 2 + 1
A2

} ∣s∂ϕ∣2g̊ + {A2λ − 2A2 + 1

λ
} ∣s∂ν∣2g̊,(10.36)

θN5 ≤ (1
6
+
1

2
η)θ∣s∂h∣2g̊,(10.37)

θ∣N6∣ ≤ Cηθ∣sκ∣2g̊,(10.38)

θ∣N7∣ ≤ Cηθ∣s∂h∣2g̊,(10.39)

θ∣N8∣ ≤ 1

18
θ∣s∂h∣2g̊ +Cθ∣s∂ν∣2g̊,(10.40)

θ∣N9∣ ≤ C(1 − λ−1)ηθ∣sκ∣2g̊ +C(1 − λ−1)ηθν2,(10.41)

θ∣N10∣ ≤ Cθ∣s∂ϕ∣2g̊ +Cθ∣s∂ν∣2g̊,(10.42)

θ∣N11∣ ≤ 1

18
θ∣s∂h∣2g̊ +Cθ∣s∂ϕ∣2g̊,(10.43)

θ∣N12∣ ≤ 1

18
λ−1θ∣s∂h∣2g̊ +Cλ−1θ∣s∂ϕ∣2g̊.(10.44)

The estimates (10.33)-(10.44) can be derived by using essentially the same reasoning that we used
to prove (6.4)-(6.13) and we therefore omit the details. Note, however, that the Ni have different
definitions in (10.33)-(10.44) than they do in (6.4)-(6.13).
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We now claim that there exist constants C > 0 and c > 0 such that the following estimate holds
when θ > 0 and λ ≥ 1:

{ 1
4
λ−1(1 − λ−1)

A2 + 1
4
λ−1(1 − λ−1)}∫Σt

(t∂tϕ)2 dx +∫
Σt

∣t∂ϕ∣2g̊ dx + 14λ−1(1 − λ−1)∫Σt

ν2 dx(10.45)

+ θ∫
Σt

∣tκ∣2g̊ dx + 1

4
θ∫

Σt

∣t∂h∣2g̊ dx
≤ {1 + A2

A2 + 1
4
λ−1(1 − λ−1)}∫Σ1

(∂tϕ)2 dx +∫
Σ1

∣∂ϕ∣2g̊ dx + {2A2 +
3

4
λ−1(1 − λ−1)}∫

Σ1

ν2 dx

+ θ∫
Σ1

∣κ∣2g̊ dx + 1

4
θ∫

Σ1

∣∂h∣2g̊ dx
− { A2λ − 8A2 + 4

3 [A2(λ − 2) + 1] −Cη −Cθ}∫
1

s=t
s−1∫

Σs

∣s∂ϕ∣2g̊ dxds
− {(λ − 2)1 −A2

λ
+ 2θλ−1 −Cθ}∫ 1

s=t
s−1∫

Σs

∣s∂ν∣2g̊ dxds
− {1 − λ−2 −C(1 − λ−1)ηθ − (1 − λ−1)η

θ
}∫ 1

s=t
s−1∫

Σs

ν2 dxds

− θ{2
9
− λ−1

1

18
−Cη}∫ 1

s=t
s−1∫

Σs

∣s∂h∣2g̊ dxds
+ {C(1 − λ−1)ηθ +Cηθ}∫ 1

s=t
s−1∫

Σs

∣sκ∣2g̊ dxds.
To obtain (10.45), we simply substitute the estimates (10.33)-(10.44) into the approximate mono-
tonicity identity (10.15) and keep careful track of the coefficients.

Next, we note that by (1.9b), if 2 < λ0 ≤ λ and η is sufficiently small in a manner that is

independent of λ0, then the factor A2λ−8A2+4
3[A2(λ−2)+1] in front of the integral ∫ 1

s=t s
−1 ∫Σs

∣s∂ϕ∣2g̊ dxds on the

right-hand side of (10.45) is uniformly positive (with a lower bound that does depend on λ0) and
increases to 1

3
as λ → ∞. From this observation and definition (10.12), we see that if 2 < λ0 ≤ λ,

then the desired estimate (10.23) follows from (10.45) by first choosing θ ∶= θλ0 to be sufficiently
small in a manner that depends on λ0 and then choosing η to be sufficiently small in a manner that
depends on λ0 and θλ0 .

The estimate (10.24) then follows from (10.23) and Gronwall’s inequality.
Our next goal is to prove the estimate (10.25) for E(Total);θλ0 ;N(t). As a first step, we will use

the estimate (10.24) to control the top-order terms in E(Total);θλ0 ;0 (see definition (4.7)) that are

not present in the definition (10.13) of E(Almost Total);θλ0 ;0, namely the term E 2
(∂Lapse)(t) defined in

(4.6c). To this end, we insert the estimates implied by (10.24) into the last three integrals on the
right-hand side of (10.28), carry out straightforward computations, and use Lemma 10.5 at t = 1,
thereby deducing that

E(Total);θλ0 ;0(t) ≤
⎧⎪⎪⎨⎪⎪⎩

Cλ0

η
S(Parabolic F rame);0(1)t−cλ0η if η ≠ 0,

Cλ0S(Parabolic F rame);0(1)(1 + ∣ ln t∣) if η = 0.(10.46)

Next, we note that since the ∂I⃗-differentiated quantities ∂I⃗κ, ∂∂I⃗h, ∂I⃗ϕ,∂I⃗ν verify the same linear
equations as their non-differentiated counterparts (for reasons similar to the ones given in the proof
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of Cor. 5.1), it follows the energy of the ∂I⃗-differentiated linear solution variables verifies an analog

of the estimate (10.46). Summing these estimates for ∣I⃗ ∣ ≤ N and appealing to the definition (4.7)
of E(Total);θλ0 ;N(t), we arrive at the desired estimate (10.25). Finally, we note that inequality (10.26)

follows from inequality (10.25) and Lemma 10.5. This completes the proof of Theorem 10.2.
�
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singularity, Ž. Èksper. Teoret. Fiz. 63 (1972), 1121–1134. MR0363384 (50 #15822)
[14] V.A. Belinsky, I.M. Khalatnikov, and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic

cosmology, Adv.Phys. 19 (1970), 525–573.
[15] F. Beyer and P. G. LeFloch, Second-order hyperbolic Fuchsian systems. General theory, ArXiv e-prints (April

2010), available at 1004.4885.
[16] Florian Beyer and Philippe G. LeFloch, Second-order hyperbolic Fuchsian systems and applications, Classical

Quantum Gravity 27 (2010), no. 24, 245012, 33. MR2739968 (2011h:35167)

1004.4885


I. Rodnianski and J. Speck

67

[17] Y. Choquet-Bruhat, J. Isenberg, and V. Moncrief, Topologically general U(1) symmetric vacuum space-times
with AVTD behavior, Nuovo Cimento Soc. Ital. Fis. B 119 (2004), no. 7-9, 625–638. MR2136898 (2006k:83043)

[18] Yvonne Choquet-Bruhat and Robert Geroch, Global aspects of the Cauchy problem in general relativity, Comm.
Math. Phys. 14 (1969), 329–335. MR0250640 (40 #3872)

[19] Yvonne Foures (Choquet)-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées par-
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