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ABSTRACT
Shared expectations and mutual understanding are critical facets of
teamwork. Achieving these in human-robot collaborative contexts
can be especially challenging, as humans and robots are unlikely
to share a common language to convey intentions, plans, or jus-
tifications. Even in cases where human co-workers can inspect a
robot’s control code, and particularly when statistical methods are
used to encode control policies, there is no guarantee that mean-
ingful insights into a robot’s behavior can be derived or that a hu-
man will be able to efficiently isolate the behaviors relevant to the
interaction. We present a series of algorithms and an accompany-
ing system that enables robots to autonomously synthesize policy
descriptions and respond to both general and targeted queries by
human collaborators. We demonstrate applicability to a variety of
robot controller types including those that utilize conditional logic,
tabular reinforcement learning, and deep reinforcement learning,
synthesizing informative policy descriptions for collaborators and
facilitating fault diagnosis by non-experts.

1. INTRODUCTION
Collaboration between humans and robots is impossible with-

out shared expectations about teammates’ behaviors and intentions
[14, 28]. However, gaining insight into the processes that govern
the behaviors of autonomous agents can be prohibitively difficult,
requiring a worker to directly access and inspect a robot’s control
code — an especially challenging task if its logic is embedded in
modern machine learning model-based methods.

Such control software can be complex to parse and interpret [21],
particularly for modern robotics applications [20, 32]. Due to the
high dimensionality of process inputs (e.g., camera images, object
locations, etc.) or outputs (e.g., mechanical degrees of freedom),
it can quickly become infeasible to manually encode behaviors.
Methods that create robot controllers by learning behaviors from
demonstration or simulation have emerged as a reasonable alter-
native to manual encoding [37, 1]. However, understanding con-
trollers has become considerably more difficult as a result of in-
corporating these popular and effective machine learning methods,
with statistical models increasingly used as drivers of control logic.
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As a robot’s roles and responsibilities grow increasingly com-
plex, its controller can quickly become incomprehensible through
the necessary use of these methods, highlighting an implicit trade-
off between capability and transparency. Providing the robot’s con-
trol code or documentation to collaborators in advance is neither a
viable nor scalable alternative, with misinterpretations potentially
impeding team fluency or putting human workers in harm’s way.
Within a robot’s control software, the debugging process can be ex-
pensive and time-consuming [13], with no guarantees that anoma-
lous behavior will be identified and resolved prior to deployment.
Even modern systems that provide targeted, useful information about
their controllers typically require manual, task-specific annotation
in order to do so [38], indicating a technical gap in general methods
for automating this explanatory process.

Our aim in this work is to enable an autonomous agent to rea-
son over and answer questions about its underlying control logic,
independent of its internal representation. We demonstrate our ap-
proach’s utility within three representative domains (discrete, con-
tinuous, and multi-agent) that map to three important classes of
robot controllers, including hard-coded, conditional statement-driven
policies, and those that rely upon trained reinforcement learning
models [18] — demonstrating success with both tabular represen-
tation and neural network based Q-function approximation [26] in
particular. We show that our method accurately and succinctly
summarizes encoded control logic, providing a basis for establish-
ing shared expectations between a robot and its human co-workers.
The presented method also serves as a tool for debugging com-
plex control systems, as its generated explanations can also serve
to characterize undesired or mis-applied behaviors.

Our approach first involves learning a domain model of the sys-
tem’s operating environment from real or simulated demonstra-
tions, using programmer specified code annotations that provide
capabilities similar in spirit to a software debugger. Within this
learned domain model, we use statistics computed over data ex-
tracted from continued observations of the controller’s software
execution traces to construct a behavioral model that effectively
captures or finely approximates the agent’s control logic (Section
4). We use a Boolean algebra over planning predicates [11] as a
basis for grounding state regions in natural language (Section 5).
Leveraging these models and language groundings, we introduce
a series of algorithms that enables an agent to answer behavior-
related questions (Section 6), allowing for indication of environ-
mental conditions under which certain robot behaviors will occur
(“When do you do __?"), identification of which robot behaviors
will occur under a specified set of environmental conditions (“What
do you do when __?"), or an explanation for why a particular be-
havior did not occur (“Why didn’t you do __?"). In doing so, we
provide workers with the capability to develop and refine their ex-



pectations concerning the behaviors of otherwise-opaque autonomous
agents through direct inquiry. This interactive, targeted expectation
calibration is an important initial step toward understanding and de-
bugging robot behaviors, as it facilitates the precise identification
of the ways in which expected and realized actions do not align.

2. BACKGROUND AND RELATED WORK
Traditional methods for acquiring an understanding of control

logic typically involve some form of source code inspection and
documentation review [2, 13] or formal verification given proper
specifications [36, 23]. In order to resolve issues stemming from
logical errors, automated debugging methods have been introduced
[4, 3, 34] that seek to identify faulty program statements. These ap-
proaches maintain the critical assumption that identifying a faulty
statement is sufficient to allow a developer to detect, understand,
and correct the issue introduced by the error [31]. In their work,
Parnin and Orso elaborated that these approaches are not readily
applicable to complex systems with “imperfect” knowledge, such
as controllers that rely upon encoded data to make decisions (e.g.,
statistical models) or systems that interact with an external environ-
ment (e.g., collaborative robots).

One major limitation of code inspection tools in general is that
their effective use requires that the code itself be interpretable to
the user attempting to understand it. Novices in particular tend to
have a difficult time both understanding the intended operation of
a program and identifying connections between malformed logic
and actual execution behavior [12]. Fitzgerald et al. found that be-
ginner programmers had substantial difficulty identifying errors in
the conditional logic of simple programs, with repair rates reach-
ing only 50%. In robotics domains, where such logic is often
implicitly embedded in high-dimensional statistical or graphical
models, classical, code inspection-based debugging approaches are
largely inapplicable. Given the potential physical consequences of
model-borne bugs in robot controllers and the remote likelihood of
a novice interpreting such representations via inspection, it is im-
perative to introduce tools that do not rely upon comprehension of
source code.

Verbal statements have been shown in prior work to be a pre-
ferred mechanism for summarizing and conveying information re-
lated to control logic and decision making [44, 46]. Automated
methods utilizing natural language-based explanations (rather than
source code analysis) have been effective for instilling appropriate
levels of understanding and confidence regarding expected robot
behavior [22]. Study results have indicated that achieving compre-
hension of control logic leads to improved team performance [46,
28, 39] and prevention of automation abuse [30]. Even in situa-
tions in which robots’ explanations are neither exhaustive nor pre-
cise, the corresponding increase in transparency can improve the
decision-making capabilities of collaborators [45, 29, 47].

Strategies for verbal human-robot communication that involve
conveying intention and resolving ambiguity have yielded effective
collaborations. Tellex et al. [42] investigated scenarios in which
a human was relied upon to debug a robot’s behaviors during live
task execution, and contributed an algorithm enabling the robot to
identify parts or obstacles that had to be manipulated in order to al-
low nominal operation to continue. In their work, varying levels of
specificity within verbal communication were investigated for re-
ducing collaborator uncertainty about the robot’s needs when assis-
tance was required, indicating that targeted, unambiguous requests
for help were far more effective than imprecise requests. Devin et
al. [9] incorporated a theory of mind that reasons about a partner’s
knowledge to guide a robot’s behaviors and information-sharing ac-
tivities, and reported an increase in collaboration efficiency when

appropriate knowledge was communicated. Both works support the
premise that robots capable of identifying and communicating rele-
vant details about their operation are better teammates that are more
useful and are more capable than robots lacking this capability.

Complementing human-robot interaction literature focused on
generating content and determining the relevance of information to
communicate, prior work in the expert systems community has in-
vestigated and characterized the principal components of effective
explanations [41]: constructing an expository story relating internal
knowledge to general facts, plans, and goals in a comprehensible
manner. Explanation-based approaches that justify their decisions
have proven capable of increasing user acceptance of and confi-
dence in autonomous systems [48]. As ideal model summaries are
precise, concise, and interpretable [24, 35], the quality of a given
response is measured by its accuracy (faithfulness to the underly-
ing model), succinctness (minimization of information transferred),
and legibility (ability to be interpreted by a human). While these
works provide guidance toward a necessary capability, its realiza-
tion is an ongoing effort, due in part to the difficulty of generating
relevant and meaningful summaries of complex controllers.

Researchers have identified Markov decision processes [33] as
a promising basis for the design and implementation of these de-
sired diagnostic and explanatory capabilities. Elizalde et al. [10]
detailed a system for articulating the primary decision factors of a
program, helping to direct an operator’s attention to minimize fail-
ures or surprises. They accomplished this through an analysis of
the principal variables composing the model’s state space, simulta-
neously evaluating both a variable’s impact on the utility function
that the program is attempting to maximize and its impact on ac-
tion selection at a given state. Khan et al. [19] introduce the notion
of a minimally sufficient explanation for action selection at a given
world state, using the fewest possible terms. Results from a human-
subjects study confirmed that operators of their system utilized the
advice and the minimally sufficient explanation it provided, result-
ing in positive subjective measures scores for the interaction. St.
Clair and Matarić [38] investigated communication during a col-
laborative task in which a human and robot were in close proximity
to one another, using pre-scripted self-narrative (“I’ll do X"), role-
allocative (“You do X"), and empathetic (“Oh no..." or “Great!")
feedback. They found that feedback contributed to a significant de-
crease in task completion time, as well as more favorable subjective
responses related to performing the collaborative task.

While these existing works enable certain classes of robot con-
troller to describe or justify individual decisions from the perspec-
tive of a single state, techniques enabling general behavior summa-
rization across state regions, independent of task or internal repre-
sentation, are notably absent. Our work provides a mechanism that
generalizes across application domains and controller implementa-
tions for modeling, summarizing, and communicating relevant be-
havioral information from robots to humans.

3. POLICY EXPLANATION
In collaborative settings, it is imperative for teammates to have

compatible mental models of their task and the way in which it
will be performed [28, 15, 5]. Particularly in scenarios in which
humans and robots share a common environment, divergence in
understanding can lead to unexpected behaviors, increasing injury
risks and reducing team fluency. However, as a robot’s behaviors
become more complex, the ability to communicate its control logic
becomes increasingly challenging. This work introduces a frame-
work that can be used by robot programmers to provide the required
level of transparency, enabling co-workers to synchronize their ex-
pectations and identify faulty behavior in robot controllers.



Given software control logic L (e.g., executable program code),
a natural language inquiry Q, and a natural language response R,
policy explanation requires a function f : Q × L → R. We con-
strain the space of these variables in our implementation for prac-
tical purposes, limiting the domain and range to values relevant to
the task at hand. As further described in Section 4.2, code annota-
tions are used as heuristics for specifying the program variables and
functions to be incorporated into f , constraining the space of L to
only include variables containing useful state information and func-
tions that represent actions. Q is limited to the scope of the ques-
tions described in Section 6 regarding when behaviors will occur,
which behaviors will occur in specified situations, and why certain
behaviors did not occur. Finally, R is constrained to a template-
based approach, explained in Section 5.

4. APPROACH
We frame our approach to policy explanation in a manner that

facilitates the four operational goals outlined in Vessey’s study on
debugging processes [43]: problem identification, familiarity ac-
quisition, program structure exploration, and error repair. Our pro-
posed solution frames f as a composition of functions — a pro-
cess summarized in Figure 1. With L,Q, and R as defined above,
we introduce a set of question templates T (e.g., “When do you
do {action}?”) and binary classifiers to characterize aspects of
the world state, known as predicates [11], C (e.g., “Robot is in
Loading Dock”). We compute f through functions that: identify
the question being posed and its arguments (Identify_question :
Q → T ), resolve the question template to a relevant set of pro-
gram states (Resolve_states : T × L → L̂, L̂ ⊆ L), summarize
the relevant attributes of these states into a concise representation
(Summarize_attributes : T × L→ Cn), and, finally, compose
these summaries into a natural language form that can be expressed
to the inquiring human (Compose_summary : Cn → R). Thus,
we define the following:

f = Compose_summary ◦ Summarize_attributes
◦Resolve_states ◦ Identify_question

(1)

4.1 Behavioral Modeling
We formulate a general diagnostic approach to behavior expla-

nation that involves simultaneously learning a model of the envi-
ronment (domain model) and the robot’s underlying control logic
(its policy). These models are learned from demonstration, during
which observations are derived from information gained through
inspection of running code (much like a software debugger). These
observations are composed of annotations derived from the logging
of function calls and their parameterizations alongside the current
values of state variables at run-time. We compile the logged ob-
servations — both the domain and action models — into a single
graphical model, capturing the important relational information be-
tween states and actions.

Given a unified domain and policy model, we frame the prob-
lem of behavior explanation as a four step process. First, a given
query must be mapped to a context, or relevant set of states. This
corresponds to the Identify_question and Resolve_states functions,
where the input text is mapped to a query template and the query
template is resolved to a set of states. Next, the relevant attributes
of these states must be summarized and converted into a form in-
terpretable by the interaction partner, corresponding to Summa-
rize_attributes and Compose_summary. To make this natural lan-
guage generation and interpretation tractable, we employ communi-
cable predicates: Boolean classifiers similar to traditional STRIPS-
style [11] planning predicates with associated natural language de-

scriptions. It is through communicable predicates that our method
is able to convert attributes from sets of states into natural language
and vice versa.

We use the Markov decision process (MDP) framework as a ba-
sis for constructing the domain and policy models of the control
software, described by the 4-tuple (S,A, T,R) [40]. Within this
framework, a domain is specified as a set of environment states S.
The actions available to an agent are specified in a set, A. An agent
in a state s ∈ S can select an action a ∈ A, after which the agent
transitions to another state s′ ∈ S according to a probability dis-
tribution given by the transition function T (s, a, s′) = [0, 1]. This
transition results in a reward given by the reward function R(s, a).
A decision rule for selecting actions as a function of state is termed
a policy π : S× A −→ [0, 1]. An optimal policy, π∗, is the policy
which maximizes total reward from every state of the MDP.

A state s ∈ S is a vector containing values for internal variables
in the controller’s logic. To mitigate an unnecessary, tremendous
increase in state dimensionality, we describe a process for limit-
ing the scope of S in Section 4.2. An action a ∈ A represents a
parameterized function call from within the robot controller soft-
ware, such as move(“north”, 10). The transition dynamics T are
learned from experience, connecting function calls (actions) with
changes in the environment (program state).

4.2 Heuristics for Model Generation
The state space of program variables is likely to be too large

to practically model purely through observation on any reasonable
timescale. In order to accelerate our model learning, we introduce
a set of heuristics that can be incorporated directly into the con-
troller code without affecting its execution. We identify and in-
troduce two important heuristics to accelerate model learning: one
to provide a mechanism for specifying which variables should be
tracked, and one to specify which functions are relevant actions.
These heuristics take the form of self-modifying code added within
the robot controller to track important variables and function calls.
In keeping with the software debugger analogy for monitoring the
robot controller’s execution, these code-level modifications can in-
tuitively be thought of as similar to function monitors or setting
a variable watch, as they do not interfere with the code’s normal
function, but provide important usage information.

Reducing the dimensionality of the state space S is critical for
minimizing model complexity. Toward this end, the first code-level
heuristic we introduce reduces the amount of unnecessary program
variables included. To accomplish this, we provide a wrapper for
important program state variables. These variables are captured
at each state snapshot taken during the modeling process (pre- and
post-function call) and constitute the elements of the feature vectors
represented as vertices in the generated MDP.

The second code-level heuristic is implemented as a series of
function decorators1, a form of metaprogramming that modifies
functions at definition time, used to indicate important functions
to be considered as actions within A (Figure 2). These indicators
minimize the amount of noise in the learned transition function, al-
lowing for more rapid convergence to a feasible domain and policy
model. This decorator is intended for use on robot control functions
that correspond to actions or effects in the physical world. Within
our Python implementation, decorated functions are dynamically
re-written at runtime to provide detailed execution logs, capturing
the program state before and after function calls. Settable flags
on the function decorators indicate whether to also capture the pa-
rameter set or any return values from the function call. In order

1https://en.wikipedia.org/wiki/Python_syntax_and_semantics



Figure 1: An illustration of our approach for mapping an action query to a policy explanation. First, the input query language is matched
against pre-defined query templates. Then, a graph-search algorithm is run to find state regions fulfilling the query criteria. A set cover is
found using logical combinations of communicable predicates. Finally, the cover is minimized and converted back to language via template.

Figure 2: A snippet of code showing an example of a function dec-
orator for the inspection task, annotating the inspect_part function
in the robot’s Python control program as a high level action.

to facilitate references to and from these functions that are more
natural than the function names themselves, our implementation
incorporates an optional parameter to specify a natural-language
description to use instead.

As the control program executes, state information is recorded
from the annotated variables before and after annotated function
calls occur. Each time an annotated function is called, T is mod-
ified to reflect the observed (state,action,state) tuple. Actions are
recorded as a combination of function name, serialized parame-
ters, and serialized return value, depending on the parameters the
decorator was initialized with, as seen in Figure 2. This process
constructs an MDP from the observed code execution paths. To ex-
tend this observation-based model to work with previously unseen
states, a simulator is required.

5. LANGUAGE GROUNDING
In order to provide interpretable explanations of an agent’s needs,

behaviors, or intentions, it is necessary to have a framework that
can ground its output in terms that the system’s interaction partners
can understand. We use collections of boolean classifiers that we
term communicable predicates to provide a meaningful abstraction
over low-level information, such as feature vectors. These clas-
sifiers, when paired with string templates describing the meaning
of true or false classifications, offer a means of translating internal
knowledge into natural-language responses.

We identify three primary predicate types that may be neces-
sary for expressing knowledge related to behavioral inquiries: gen-
eral, robot-specific, and domain-specific. One example of a gen-
eral, scenario-agnostic predicate that spans many application do-
mains is a classifier that articulates a spatial relation — for exam-
ple, the predicate “nearby(A,B),” which returns true when entity A
is near to entity B and false otherwise, can be used across a vari-
ety of tasks or situations. Robot-specific predicates, such as ‘is-
Powered(component)’, which would return true if component were
powered and false otherwise, may be required to allow an agent to
communicate details about itself. Finally, there may be domain-

specific characteristics that are not covered by general spatial re-
lations or robot attributes — such as “isWidgetStockFeedOn()”,
which may relay information about a particular component of the
robot’s specialized environment. Importantly, the predicates that
are used neither need to exist within the robot’s code nor rely on
input from the robot’s sensors, as they are only used for grounding
world state information in language.

5.1 Grounding State Regions
We approached the challenge of succinctly describing state re-

gions as a minimal set cover problem, seeking the smallest logi-
cal expression of communicable predicates that precisely cover the
target states. Algorithm 1 provides such a solution, resolving an
arbitrary set of states into a natural language description by using
a Boolean algebra over the space of defined predicates. States are
projected onto the corners of the unit hypercube defined by the vec-
tor comprising predicate classification values (Algorithm 1, lines
7-8, 13-14). The resultant hypercube vertices are equivalent to dis-
junctive normal form (DNF) clauses, with predicate value assign-
ments as literals.

DNF formulae are an ideal representation for describing com-
binations of predicates, providing a product-of-sums logical ex-
pression satisfying a state region descriptor function f(s ∈ S) →
{0, 1}. f(s) is equal to 1 when predicate values for s fulfill the
Boolean logic encoded in f and is 0 otherwise. Thus, each tar-
get state’s hypercube projection is added as a minterm in f , caus-
ing the function to return 1 when tested on any state in the tar-
get region. For example, given the communicable predicate set
C = {C1, C2}, a formula that describes a region containing a
state s0 for which {C1(s0)=True, C2(s0)=False} and a state s1 for
which {C1(s1)=False, C2(s1)=False}, the resulting f is specified
as follows:

f(s) = (C1¬C2) + (¬C1¬C2)

Once the region is expressed as a logical formula, our approach
calls for application of the Quine-McCluskey algorithm [25, 17]
(Algorithm 1, line 16) to perform Boolean logic minimization on
the collection of minterms in f . Continuing the previous example,
the resulting formula becomes the following:

f(s) = ¬C2

As the Quine-McCluskey algorithm has memory and runtime re-
quirements that are exponential according to the size of the predi-
cate set, an approximate algorithm, such as ESPRESSO or its vari-
ants [8], can be used instead for large collections of predicates.



Algorithm 1: Convert State Region to Language

Input: Target state set S, Non-target state set S̄,
Communicable predicate set C

Output: String representations for clauses in DNF Formula of
S grounded in elements of C

assert S ∩ S̄ = ∅;
include_list← {};
exclude_list← {};
foreach s ∈ S do

state_val = 0;
i = 0;
foreach c ∈ C do

state_val | = (c(s) == True) << i++;
end
include_list← include_list ∪ state_val;

end
foreach s ∈ S̄ do

state_val = 0;
i = 0;
foreach c ∈ C do

state_val | = (c(s) == True) << i++;
end
exclude_list← exclude_list ∪ state_val;

end
qm_minimization← Quine_McCluskey(ones=include_list,

zeros=exclude_list);
clauses← [];
foreach minterm ∈ qm_minimization do

str← ‘’;
foreach literal ∈ minterm do

if literal is False then str += c.negative_string;
else str += c.positive_string;
str += ‘ and ’;

end
clauses.append(str);

end
return ‘or ’.join(clauses);

With a minimized logical form, our algorithm generates expla-
nations through application of predicate-specific string templates to
each element of the formula. Consider two predicates, X and Y ,
representing whether a robot is active or idle and whether the fac-
tory line is running or not, respectively. Given the logical product-
of-sums output X ∗ ¬Y + ¬X or equivalent logical expression
(X ∧ ¬Y ) ∨ (¬X) representing conditions under which a robot
performs a critical behavior, natural-language templates allow our
algorithm to verbalize these outputs, producing outputs like “The
robot is idle and the widget is not present or the robot is active.”

Our formulation also affords the ability to quantify linguistic
overstatement and understatement, mapping to false positive and
false negative rates, respectively. A robot can use this informa-
tion to modulate its interaction partners’ confidence in its output,
as overstatements and understatements provide upper and lower
bounds on the conditions being approximated by the generated log-
ical expression of predicates.

6. QUERIES FOR POLICY ANALYSIS
We focused on a set of question types derived from a survey of

literature related to human-computer interaction and software de-
bugging, fulfilling expert-derived debugging criteria [43]. These

Figure 3: Visualization of an inspection task for a robot on an as-
sembly line, used as a representative example for motivating our
selected query types. When a part is loaded onto the conveyor belt,
the robot receives a stock feed signal and must locate and pick the
part before it is out of range, inspect it, and place it back on the
conveyor.

questions allow for insight into when a robot will perform a behav-
ior, identification of a robot’s behaviors under specified conditions,
and explanation of the differences between a robot’s demonstrated
behavior and its expected behavior. We identified a query template,
representative use case, and response resolution algorithm for each
question type. In order to build intuition about situations in which
our selected queries are useful, we grounded our examples in a sce-
nario in which an industrial robot is tasked with inspecting parts on
a conveyor belt cued by a stock feed signal (Figure 3).

6.1 Identifying Conditions for Actions
We utilized the template “When [do | will] you {action}?” to

identify queries related to specifying conditions under which a par-
ticular action would be executed. Once the relevant regions of state
space are identified, Algorithm 1 can summarize them using natu-
ral language (for example, “When will you pick up the widget?”).
Given a reasonable specification of language templates for robot
actions (e.g., pick(x)→ “pick up x”), we can functionally resolve
the intention of the query to “Describe the states where the most
likely action is pick(‘widget’).” Algorithm 2 describes the process
for identifying the relevant state region to be described in the query
response. Our algorithm, given an appropriate library of communi-
cable predicates, produces the response, “I get the widget when the
stock feed signal is on and my camera has detected a widget and
the widget is within reach.”

Once a state region is identified1, it can be summarized via Al-
gorithm 1 and inserted into the following template: “I perform {ac-
tion} in {region}.” Explanation size can be bounded by imposing
a threshold on the number of descriptive clauses returned by Al-
gorithm 1 (as in Algorithm 4 lines 6-7), with the queried agent
providing a default response indicating the infeasibility of answer-
ing the question (e.g., “I perform {action} in too many contexts to
succinctly describe.”).

6.2 Explaining Differences in Expectation
We utilized the template “Why (didn’t | aren’t) you {action}?”

to identify queries related to divergence in expected and observed
behaviors. For example, if the robot in Figure 3 fails to pick a
part up off the conveyor belt, a collaborator may ask “Why didn’t

1For domains involving large state spaces where full enumeration
is infeasible, sampling based approaches can provide substitutions
for V in our query algorithms.



Figure 4: Visualizations of each application domain evaluated in Table 1. Left: A GridWorld-style parts delivery task, in which a robot
must pick and deliver parts whilst avoiding human-only areas. Middle: The CartPole stabilization task [7], wherein a robot must attempt to
balance and stabilize a pole placed on the middle of a mobile cart. Right: A parts inspection task, in which an inspection robot cued by a
stock feed signal must locate and inspect parts placed by a separate loading robot.

Algorithm 2: Identify Dominant-action State Region
Input: Behavioral Model G = {V,E}, Target Action a
Output: Set of target states Sπa where at is the dominant

action, Set of non-target states Sπ∗\a
Sπa ← {};
Sπ∗\a ← {};
foreach s ∈ V do

a∗ ← most frequent action executed from s;
if a∗ == a then Sπa ← Sπa ∪ s;
else Sπ∗\a ← Sπ∗\a ∪ s ;

end
return Sπa , Sπ∗\a ;

you inspect the part?” In this case, an explanation is desired that
characterizes the difference between the current state and nearby
states where the indicated action is performed. In Algorithm 3,
pseudocode is provided to extract and characterize the difference
between the current state and state regions where the desired be-
havior occurs. The describe function is specified in Algorithm 1.

Algorithm 3 outputs a list of predicate values that differ between
the robot’s previous state and nearby states where the desired be-
havior occurs. In our implementation, we utilized the template “I
didn’t {action} because {difference between current state and states
where action is executed}. I {action} when {action region descrip-
tion}.” to communicate these differences. For example, consider
the case of a stock feed signal malfunction during the part inspec-
tion scenario (Figure 3), wherein a part is both present on the con-
veyor belt and detected by the robot, but the stock feed signal is
off. Using the predicates defined in Section 7.3, this query type
produces the following output: “I didn’t inspect the part because
the stock feed signal is off. I inspect the part when the stock feed
signal is on and I have detected a part and the part is within reach.”
facilitating rapid fault diagnosis.

6.3 Understanding Situational Behavior
While the previous query type produces explanations for behav-

ior that does not match expectations, a more proactive approach
would involve communicating policy details in advance. The third
and final query type we addressed is the inverse of the first: a means
of summarizing how a robot will behave under specific circum-
stances. We used the template “What will you do when {DNF state
region description}?” to designate these queries. This allows a col-
laborator to ask a variety of safety- and productivity-critical ques-

Algorithm 3: Identify Behavioral Divergences
Input: Behavioral Model G = {V,E}, Target Action a,

Previous state sp, Distance threshold Dconst
Output: Explanation of difference between current state and

state region where at is performed, explanation of
where at is performed locally.

Sπa ← {};
Sπ∗\a ← {};
foreach D ∈ {1, ..., Dconst} do

foreach s ∈ {v ∈ V | distance(v, sp) ≤ D} do
a∗ ← most frequent action executed from s;
if a∗ == a then Sπa ← Sπa ∪ s;
else Sπ∗\a ← Sπ∗\a ∪ s ;

end
end
expected_region← describe(Sπa , Sπ∗\a , C);
current_region← describe({sp}, Sπa , C);
return diff(expected_region, current_region), expected_region;

tions, such as “What will you do when a human is near you?” or
“What will you do when the stock feed signal is on and a part is
detected?” Algorithm 4 provides a description for each action type
typically performed within the provided state region description.
These descriptions are then individually applied to the template, “I
{action} when {state region description}.”

With respect to the first example inquiring about a nearby hu-
man, given a “humans nearby” predicate, if Algorithm 4 returns
an empty set (descriptions = ∅) our system would generate a
standard response, “I perform no action under those conditions,”
helping to confirm the safety of a human entering its work cell. For
the second example, assuming the robot had the ability to signal its
human co-workers for assistance, our approach may return, “I will
inspect the part when the part is within reach. I will contact an
associate for assistance when the widget is not within reach.”

7. CASE STUDIES
We report results for three representative application domains

that cover three different types of robot controller. For each do-
main, we provide a description of the environment, the controller
implementation (and corresponding state space), and the predicate
library we defined. We report algorithm output for each descriptive
query type, providing autonomously generated policy summaries



Algorithm 4: Characterize Situational Behavior
Input: Behavioral Model G = {V,E}, Communicable

Predicate Library C, State region description d, Max
action threshold cluster_max

Output: Explanation of policy behavior in d per action and its
accompanying state region

S ← dict();
descriptions← dict();
DNF_description← convert_to_DNF_formula(d, C);
foreach s ∈ {v ∈ V | test_dnf(v,DNF_description) is True }

do
S[π(s)]← S[π(s)] ∪ s;
if |S| > cluster_max then

return too_many_actions_error
end

end
foreach a ∈ S do

descriptions[a]← describe(S[a], V \ S[a], C);
end
return descriptions;

for each controller. We report results for a parts delivery task (Grid-
World [40]) to show application to general planning tasks with dis-
crete state spaces, a stabilization task (CartPole [6]) to show appli-
cation to control policies with continuous state spaces, and a multi-
agent parts inspection task in which agents did not communicate to
showcase application within a complex dynamic environment.

For each domain, we detail the training process for the robot’s
controller. Once a final controller was obtained, we froze the op-
erating parameters and began logging any annotated function calls
that occurred, building our external graphical model for querying.
We show that, for each application domain, our approach was able
to capture and explain the robot’s policy, allowing collaborators to
extract relevant behavior summaries. To generate the summaries
in Table 1, we concatenate results from queries of “When do you
{action}?” for each action in the domain.

7.1 Delivery Task
During the parts delivery task (Figure 4-left), the robot began in

the bottom-left position of a 4x4 GridWorld and was required to
pick up a part at that location, navigate to the delivery area, and
place the part on the conveyor belt, while avoiding any zones des-
ignated “human-only.” The world reset and a negative reward was
applied if the robot delivered the part anywhere other than the de-
livery area, or if an episode extended beyond 15 actions. A negative
reward was also applied to any actions inside a human-only zone,
but the world did not reset. Positive rewards were applied if the
robot successfully delivered the part, and the world was then reset.
Invalid actions, such as navigating into a wall, resulted in no state
change.

The delivery task’s state space included the robot’s position on
the grid and whether it was carrying a part. The robot had six avail-
able actions, each implemented as a separate function (for ease of
code annotation) in the controller program: “pick,” “place,” “north,”
“south,” “east,” and “west.” We used nine predicates, encoded as
binary classifiers over the state space: “near human zone,” “at hu-
man zone,” “near delivery area,” “at delivery area,” “north of goal,”
“south of goal,” “east of goal,” “west of goal,” and “has part.”

Reinforcement learning was used to train a tabular agent policy
with ε−greedy exploration (ε = .75). Once the agent could suc-
cessfully complete the task more than 90% of the time, we ceased

further training and froze the model parameters. With a mathemat-
ical model governing the robot’s action decisions, we applied our
code-level annotations and built our queryable model of the robot
over the course of 250 action observations.

7.2 Stabilization Task
During the stabilization task (Figure 4-middle), an agent oper-

ating in a continuous state space attempted to balance a pole on a
moving base. The task state was represented using a 4-tuple encod-
ing cart position, cart velocity, pole angle, and pole angular veloc-
ity. The agent had two available actions — move left or move right
— which affected the momentum of both the cart and pole. Each
episode began with a random initialization of the cart and pole po-
sitions, with zero initial velocity. We trained a 2-layer, fully con-
nected neural network with a rectified linear activation function to
approximate the Q-function, producing a difficult-to-interpret con-
troller capable of solving the CartPole domain. Each episode lasted
up to 200 steps or until the pole fell.

We defined 10 predicates to describe states in this domain: “pole
falling left/right,” “pole stabilizing left/right,” “pole standing up,”
“cart moving left/right,” “cart positioned far left/right,” and “cart
near middle.” The predicates describing a pole falling indicate that
the pole is off-center and has a velocity driving it away from an up-
right position. Predicates describing the pole as stabilizing indicate
an off-center pole moving toward an upright position.

Our method was able to summarize a successful policy that was
approximated with initially random parameters, despite the occa-
sional presence of incorrect actions taken by the controller, pro-
ducing approximately correct explanations with overstatement and
understatement. The description provided was close to the expert
description of a successful task strategy (Table 1).

7.3 Inspection Task
We implemented the inspection task used as the running example

in Section 6 to motivate our query types, depicted in Figures 3 and
4-right. The state space for this task included the part’s 2D position
on the conveyor belt when in sight of the robot (otherwise, a de-
fault value of -1,-1 was reported), the robot’s head orientation (an
angle between −60 and−20 degrees from the robot’s axial plane),
and a Boolean stock feed variable that indicated whether the robot
should expect a part to be in sight. The head orientation of the robot
was divided into three ranges (low, middle, and high), and dictated
whether a part was detected based on its position on the conveyor
belt. Any orientation in the “high” position ((−30,−20]) allowed
detection for parts in the top 20% of the belt, the “middle” position
([−50,−30]) enabled detection for the middle 60% of the belt, and
the “low” position ([−60, 50)) enabled detection for parts in the
bottom 20% of the belt. The robot’s starting head orientation was
−40. The true position of the part was a hidden variable, dictated
by its placement by another robot in the environment. Once a part
was placed on the conveyor belt, the stock feed signal was acti-
vated. The part was not detectable to the inspection robot for a ran-
dom duration between 1 and 3 timesteps after it was placed. Due
to the conveyor belt moving the part down the line, the inspection
robot had a window of four timesteps (plus the 1-3 timestep delay)
to detect and inspect a part once the stock feed signal was activated
before the part would advance beyond the robot’s reach, causing
task failure. Once a part was inspected, the stock feed signal was
deactivated.

The robot had four actions it could take: “inspect part,” “look
high,” “look middle,” and “look low.” The “inspect part” action
failed if it was taken when the part was not detected (e.g., at posi-
tion -1,-1) or if it was out of reach, which only occurred if it was



Domain Expert Description Autonomous Description

Delivery

Move north when south of a delivery area and holding the
part. Move east when west of a delivery area and not near
a human zone. Move west when in a human zone. Pick the
part when near a human zone and west of a delivery area
and south of the delivery area. Place the part when at a
delivery zone.

I move north when I am south of a delivery area and have
the part. I move east when I am west of a delivery area
and have the part and not near a human zone. I move west
when I am at a human zone. I do not perform move south. I
pick the part when I am near a human zone and west of the
delivery area and south of the delivery area. I place the part
when I am at the delivery zone.

Stabilization
Move left when the pole is falling left and the pole is not
stabilizing right. Move right when the pole is falling right
and the pole is not stabilizing left.

I move left when the cart is not at the far left and the pole
is falling left. I move right when the cart is at the far left or
when the cart is in the middle and the pole is falling right
or when the cart is in the far right and the pole is stabilizing
left.

Inspection

Inspect the part when the stock feed is on and a part is de-
tected and the part is reachable. Look low when looking
in the middle and the stock feed is on and a part is not de-
tected. Look high when looking low and the stock feed is
on and a part is not detected. Look in the middle when the
stock feed is off.

I inspect the part when the stock feed is on and I can reach
the part. I look low when the stock feed is on and I have not
detected a part and I am looking in the middle. I look in the
middle when the stock feed is off or when the stock feed is
on and I have not detected a part and I am looking high. I
look high when the stock feed is on and I have not detected
a part and I am looking low.

Table 1: Autonomously generated policy summaries learned from the three application domains, presented alongside expert summaries of
successful solutions given in terms of the available predicates for each domain.

placed in the top 10% of the conveyor belt. The “look high”, “look
middle”, and “look low” actions rotated the robot’s head to pre-set
positions of −20,−40, and − 60 degrees respectively. We imple-
mented six predicates for abstracting over the state space: “stock
feed on,” “part detected,” “part reachable,” “looking high,” “look-
ing middle,” and “looking low.” The robot controller for this task
was manually coded with standard conditional logic, employing a
middle/low/high scanning pattern when searching for parts to in-
spect after the stock feed signal was activated. Our method accu-
rately summarized the behavior of the policy defined by the Python
program that controlled the inspection robot (Table 1).

Given that this domain contained a potential failure case that was
outside the inspection robot’s control, we additionally probed why
an action did not occur in order to gain insight into unexpected be-
havior. We introduced a fault into the controller of robot loading
the conveyor belt, such that it placed its parts only in the top 10%
of the belt, out of reach of the inspection robot. At the time step
after the robot detected the part but did not inspect it, we queried
our model with the following: “Why didn’t you inspect the part?”
Using Algorithm 3, the model was able to identify the issue, re-
sponding with the following: “I did not inspect the part because I
cannot reach the part. I inspect the part when the stock feed is on
and I have detected a part and I can reach the part.” This ability
to actively probe the robot’s controller facilitates the isolation of
factors contributing to task failures.

8. CONCLUSIONS AND FUTURE WORK
In this work, we have presented a novel mechanism for model-

ing and explaining robot control policies. Our methods allow non-
experts to gain insights into the operation of autonomous agents and
to better calibrate their expectations of the agents’ behaviors, mak-
ing robot controllers more transparent. The approach we present
generalizes to arbitrary control logic, allowing for wide application
across a variety of contexts.

By introducing an abstraction over the state space with commu-
nicable predicates, we present a novel framing of the explanation
process as a minimal set cover and subsequent Boolean logic min-
imization problem. As a result of this, we are able to produce suc-

cinct behavioral explanations grounded in language that humans
can understand. The algorithms we introduce allow collaborators
to extract useful pieces of information without requiring a full un-
derstanding of an agent’s logic, as well as facilitate the debugging
of aberrant behaviors by providing a mechanism to explain differ-
ences between the conditions under which particular actions oc-
cur. We demonstrated the applicability of our method within three
representative robotics domains using three different types of con-
trollers: a tabular Q-Learner, a neural network based Q-Learner,
and a controller based on hard-coded conditional logic.

A natural extension to the method we describe is to perform
guided policy learning, using parsed natural language descriptions
of valid task strategies to map advice down to state regions (as re-
wards or penalties) for biasing exploration during policy learning.
Autonomous symbol abstraction techniques [16, 27] may also be
applied to the learned domain MDPs, reducing the programmer’s
workload with respect to annotating actions within the control soft-
ware. We also see applications of this work to human behavior
explanation, as inverse reinforcement learning can be used to learn
a policy which can then be explained with our technique.
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