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1 Introduction

Suppose G is a compact Lie group, with identity component G0. There
is a beautiful and complete structure theory for G0, based on the notion
of maximal tori and root systems introduced by Élie Cartan and Hermann
Weyl. The purpose of this paper is to introduce a parallel structure theory
using “finite maximal tori.” A maximal torus is by definition a maximal
connected abelian subgroup of G0. We define a finite maximal torus to be a
maximal finite abelian subgroup of G.

It would be etymologically more reasonable to use the term finite maxi-
mally diagonalizable subgroup, but this name seems not to roll easily off the
∗The first author was supported by NSFC Grant No. 10801116, and the second author

in part by NSF grant DMS-0967272.
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tongue. A more restrictive notion is that of Jordan subgroup, introduced by
Alekseevskĭı in[1]; see also[6], Definition 3.18. Also very closely related is
the notion of fine grading of a Lie algebra introduced in [14], and studied
extensively by Patera and others.

The classical theory of root systems and maximal tori displays very
clearly many interesting structural properties of G0. The central point is
that root systems are essentially finite combinatorial objects. Subroot sys-
tems can easily be exhibited by hand, and they correspond automatically to
(compact connected) subgroups of G0; so many subgroups can be described
in a combinatorial fashion. A typical example visible in this fashion is the
subgroup U(n)×U(m) of U(n+m). A more exotic example is the subgroup
(E6 × SU(3))/µ3 of E8 (with µ3 the cyclic group of third roots of 1).

Unfortunately, there is so far no general “converse” to this correspon-
dence: it is not known how to relate the root system of an arbitrary (compact
connected) subgroup of G0 to the root system of G0. (Many powerful partial
results in this direction were found by Dynkin in[5].) Consequently there
are interesting subgroups that are more or less invisible to the theory of root
systems.

In this paper we will describe an analogue of root systems for finite
maximal tori. Again these will be finite combinatorial objects, so it will
be easy to describe subroot systems by hand, which must correspond to
subgroups of G. The subgroups arising in this fashion are somewhat different
from those revealed by classical root systems. A typical example is the
subgroup PU(n) of PU(nm), arising from the action of U(n) on Cn ⊗ Cm.
A more exotic example is the subgroup F4 ×G2 of E8 (see Example 4.5).

In Section 2 we recall Grothendieck’s formulation of the Cartan-Weyl
theory in terms of “root data.” His axiomatic characterization of root data
is a model for what we seek to do with finite maximal tori.

One of the fundamental classical theorems about maximal tori is that if T
is a maximal torus in G0, and G̃0 is a finite covering of G0, then the preimage
T̃ of T in G̃0 is a maximal torus in G̃0. The corresponding statement about
finite maximal tori is false (see Example 4.1); the preimage often fails to
be abelian. In order to keep this paper short, we have avoided any serious
discussion of coverings.

In Section 3 we define root data and Weyl groups for finite maximal
tori. We will establish analogues of Grothendieck’s axioms for these finite
root data, but we do not know how to prove an existence theorem like
Grothendieck’s (saying that every finite root datum arises from a compact
group).

In Section 4 we offer a collection of examples of finite maximal tori. The
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examples (none of which is original) are the main point of this paper, and are
what interested us in the subject. Reading this section first is an excellent
way to approach the paper.

Of course it is possible and interesting to work with maximal abelian
subgroups which may be neither finite nor connected. We have done nothing
about this.

Grothendieck’s theory of root data was introduced not for compact Lie
groups but for reductive groups over algebraically closed fields. The theory
of finite maximal tori can be put into that setting as well, and this seems like
an excellent exercise. It is not clear to us (for example) whether one should
allow p-torsion in a “finite maximal torus” for a group in characteristic p;
excluding it would allow the theory to develop in a straightforward parallel
to what we have written about compact groups, but allowing p-torsion could
lead to more very interesting examples of finite maximal tori.

Much of the most interesting structure and representation theory for a
connected reductive algebraic group G0 (over an algebraically closed field)
can be expressed in terms of (classical) root data. For example, the irre-
ducible representations of G0 are indexed (following Cartan and Weyl) by
orbits of the Weyl group on the character lattice; and Lusztig has defined a
surjective map from conjugacy classes in the Weyl group to unipotent classes
in G. It would be fascinating to rewrite such results in terms of finite root
data; but we have done nothing in this direction.

2 Root data

In this section we introduce Grothendieck’s root data for compact connected
Lie groups. As in the introduction, we begin with

G = compact connected Lie group (2.1a)

The real Lie algebra of G and its complexification are written

g0 = Lie(G), g = g0 ⊗R C. (2.1b)

The conjugation action of G on itself is written Ad:

Ad: G→ Aut(G), Ad(g)(x) = gxg−1 (g, x ∈ G). (2.1c)

The differential (in the target variable) of this action is an action of G on
g0 by Lie algebra automorphisms

Ad: G→ Aut(g0). (2.1d)
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This differential of this action of G is a Lie algebra homomorphism

ad: g0 → Der(g0), ad(X)(Y ) = [X,Y ] (X,Y ∈ g0). (2.1e)

Analogous notation will be used for arbitrary real Lie groups. The kernel of
the adjoint action of G on G or on g0 is the center Z(G):

Z(G) = {g ∈ G | gxg−1 = x, all x ∈ G}
= {g ∈ G | Ad(g)(Y ) = Y, all Y ∈ g0}

(2.1f)

So far all of this applies to arbitrary connected Lie groups G. We will also
have occasion to use the existence of a nondegenerate symmetric bilinear
form B on g0, with the invariance properties

B(Ad(g)X,Ad(g)Y ) = B(X,Y ) (X,Y ∈ g0, g ∈ G). (2.1g)

We may arrange for this form to be negative definite: if for example G is a
group of unitary matrices, so that the Lie algebra consists of skew-Hermitian
matrices, then

B(X,Y ) = tr(XY )

will serve. (Since X has purely imaginary eigenvalues, the trace of X2

is negative.) We will also write B for the corresponding (nondegenerate)
complex-linear symmetric bilinear form on g.

Definition 2.2. A maximal torus of a compact connected Lie group G is a
maximal connected abelian subgroup T of G.

We now fix a maximal torus T ⊂ G. Because of Corollary 4.52 of[11], T
is actually a maximal abelian subgroup of G, and therefore equal to its own
centralizer in G:

T = ZG(T ) = GT = {g ∈ G | Ad(t)(g) = g, (all t ∈ T )}. (2.3a)

Because T is a compact connected abelian Lie group, it is isomorphic to
a product of copies of the unit circle

S1 = {e2πiθ|θ ∈ R}, Lie(S1) = R; (2.3b)

the identification of the Lie algebra is made using the coordinate θ. The
character lattice of T is

X∗(T ) = Hom(T, S1)

= {λ : T → S1 continuous, λ(st) = λ(s)λ(t) (s, t ∈ T )}.
(2.3c)
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The character lattice is a (finitely generated free) abelian group, written
additively, under multiplication of characters:

(λ+ µ)(t) = λ(t)µ(t) (λ, µ ∈ X∗(T )).

The functor X∗ is a contravariant equivalence of categories from compact
abelian Lie groups to finitely generated torsion-free abelian groups. The
inverse functor is given by Hom into S1:

T ' Hom(X∗(T ), S1), t 7→ (λ 7→ λ(t)). (2.3d)

The cocharacter lattice of T is

X∗(T ) = Hom(S1, T )

= {ξ : S1 → T continuous, ξ(zw) = ξ(z)ξ(w) (z, w ∈ S1)}.
(2.3e)

There are natural identifications

X∗(S1) = X∗(S1) = Hom(S1, S1) ' Z, λn(z) = zn (z ∈ S1).

The composition of a character with a cocharacter is a homomorphism from
S1 to S1, which is therefore some nth power map. In this way we get a
biadditive pairing

〈·, ·〉 : X∗(T )×X∗(T )→ Z, (2.3f)

defined by

〈λ, ξ〉 = n⇔ λ(ξ(z)) = zn (λ ∈ X∗(T ), ξ ∈ X∗(T ), z ∈ S1). (2.3g)

This pairing identifies each of the lattices as the dual of the other:

X∗ ' HomZ(X∗,Z), X∗ ' HomZ(X∗,Z). (2.3h)

The functor X∗ is a covariant equivalence of categories from compact abelian
Lie groups to finitely generated torsion-free abelian groups. The inverse
functor is given by ⊗ with S1:

X∗(T )⊗Z S
1 ' T, ξ ⊗ z 7→ ξ(z). (2.3i)

The action by Ad of T on the complexified Lie algebra g of G, like any
complex representation of a compact group, decomposes into a direct sum
of copies of irreducible representations; in this case, of characters of T :

g =
∑

λ∈X∗(T )

gλ, gλ = {Y ∈ g | Ad(t)Y = λ(t)Y (t ∈ T )}. (2.3j)
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In particular, the zero weight space is

g(0) = {Y ∈ g | Ad(t)Y = 0 (t ∈ T )}
= Lie(GT )⊗R C = Lie(T )⊗R C = t,

(2.3k)

the complexified Lie algebra of T ; the last two equalities follow from (2.3a).
We define the roots of T in G to be the non-trivial characters of T appearing
in the decomposition of the adjoint representation:

R(G,T ) = {α ∈ X∗(T )− {0} | gα 6= 0}. (2.3l)

Because of the description of the zero weight space in (2.3k), we have

g = t⊕
∑

α∈R(G,T )

gα, (2.3m)

We record two elementary facts relating the root decomposition to the Lie
bracket and the invariant bilinear form B:

[gα, gβ] ⊂ gα+β, (2.3n)

B(gα, gβ) = 0, α+ β 6= 0. (2.3o)

Example 2.4. Suppose G = SU(2), the group of 2 × 2 unitary matrices of
determinant 1. We can choose as a maximal torus

SD(2) =
{(

e2πiθ 0
0 e−2πiθ

)
| θ ∈ R

}
' S1.

We have given this torus a name in order to be able to formulate the defini-
tion of coroot easily. The “D” is meant to stand for “diagonal,” and the “S”
for “special” (meaning determinant one, as in the “special unitary group”).
The last identification gives canonical identifications

X∗(SD(2)) ' Z, X∗(SD(2)) ' Z.

The Lie algebra of G is

su(2) = {2× 2 complex matrices X | tX = −X, tr(X) = 0}.

The obvious map identifies

su(2)C ' {2× 2 complex matrices Z | tr(Z) = 0} = sl(2,C).
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The adjoint action of SD(2) on g is

Ad
(
e2πiθ 0

0 e−2πiθ

)(
a b
c −a

)
=
(

a e4πiθb
e−4πiθc −a

)
.

This formula shows at once that the roots are

R(SU(2), SD(2)) = {±2} ⊂ X∗(SD(2)) ' Z,

with root spaces

sl(2)2 =
{(

0 t
0 0

)
| t ∈ C

}
, sl(2)−2 =

{(
0 0
s 0

)
| s ∈ C

}
.

When we define coroots in a moment, it will be clear that

R∨(SU(2), SD(2)) = {±1} ⊂ X∗(SD(2)) ' Z.

Now we are ready to define coroots in general. For every root α, we
define

g[α] = Lie subalgebra generated by root spaces g±α. (2.5a)

It is easy to see that g[α] is the complexification of a real Lie subalgebra g
[α]
0 ,

which in turn is the Lie algebra of a compact connected subgroup

G[α] ⊂ G. (2.5b)

This subgroup meets the maximal torus T in a one-dimensional torus T [α],
which is maximal in G[α]. There is a continuous surjective group homomor-
phism

φα : SU(2)→ G[α] ⊂ G, (2.5c)

which we may choose to have the additional properties

φα(SD(2)) = Tα ⊂ T (dφα)C (sl(2)2) = gα. (2.5d)

The homomorphism φα is then unique up to conjugation by T in G (or by
SD(2) in SU(2)). In particular, the restriction to SD(2) ' S1, which we
call α∨, is a uniquely defined cocharacter of T :

α∨ : S1 → T, α∨(e2πiθ) = φα

(
e2πiθ 0

0 e−2πiθ

)
. (2.5e)

The element α∨ ∈ X∗(T ) is called the coroot corresponding to the root α.
We write

R∨(G,T ) = {α∨ | α ∈ R(G,T )} ⊂ X∗(T )− {0}. (2.5f)
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Essentially because the positive root in SU(2) is +2, we see that

〈α, α∨〉 = 2 (α ∈ R(G,T )). (2.5g)

We turn now to a description of the Weyl group (of a maximal torus in
a compact group). Here is the classical definition.

Definition 2.6. Suppose G is a compact connected Lie group, and T is a
maximal torus in G. The Weyl group of T in G is

W (G,T ) = NG(T )/T,

the quotient of the normalizer of T by its centralizer. From this definition, it
is clear that W (G,T ) acts faithfully on T by automorphisms (conjugation):

W (G,T ) ↪→ Aut(T ).

By acting on the range of homomorphisms, W (G,T ) may also be regarded
as acting on cocharacters:

W (G,T ) ↪→ Aut(X∗(T )), (w · ξ)(z) = w · (ξ(z))
(w ∈W, ξ ∈ X∗(T ) = Hom(S1, T ), z ∈ S1).

Similarly,

W (G,T ) ↪→ Aut(X∗(T )), (w · λ)(t) = λ(w−1 · t))
(w ∈W, λ ∈ X∗(T ) = Hom(T, S1), t ∈ T ).

The actions on the dual lattices X∗(T ) and X∗(T ) are inverse transposes of
each other. Equivalently, for the pairing of (2.3g),

〈w · λ, ξ〉 = 〈λ,w−1 · ξ〉 (λ ∈ X∗(T ), ξ ∈ X∗(T )).

We recall now how to construct the Weyl group from the roots and the
coroots, this is the construction that we will seek to extend to finite maximal
tori. We begin with an arbitrary root α ∈ R(G,T ), and φα as in (2.5c). The
element

σα = φα

(
0 1
−1 0

)
∈ NG(T ) (2.7a)

is well-defined (that is, independent of the choice of φα) up to conjugation
by T ∩G[α]. Consequently the coset

sα = σαT ∈ NG(T )/T = W (G,T ) (2.7b)
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is well-defined; it is called the reflection in the root α. Because it is con-
structed from the subgroup Gα, we see that

σα commutes with ker(α) ⊂ T , (2.7c)

and therefore that

sα acts trivially on ker(α) ⊂ T . (2.7d)

A calculation in SU(2) shows that(
0 1
−1 0

)
acts by inversion on SD(2), (2.7e)

and therefore that

sα acts by inversion on im(α∨) ⊂ T . (2.7f)

The two properties (2.7d) and (2.7f) are equivalent to

sα(t) = t · α∨(α(t))−1 (t ∈ T ). (2.7g)

From this formula we easily deduce

sα(λ) = λ− 〈λ, α∨〉α (λ ∈ X∗(T )) (2.7h)

and similarly
sα(ξ) = ξ − 〈α, ξ〉α∨ (ξ ∈ X∗(T )). (2.7i)

Here is the basic theorem about the Weyl group.

Theorem 2.8. Suppose G is a compact connected Lie group, and T ⊂ G is a
maximal torus. Then the Weyl group of T in G (Definition 2.6) is generated
by the reflections described by any of the equivalent conditions (2.7g), (2.7h),
or (2.7i):

W (G,T ) = 〈sα | α ∈ R(G,T )〉 .

The automorphisms sα of X∗(T ) must permute the roots R(G,T ), and the
automorphisms sα of X∗(T ) must permute the coroots R∨(G,T ).

Grothendieck’s understanding of the classification of compact Lie groups
by Cartan and Killing is that the combinatorial structure of roots and Weyl
group determines G completely. Here is a statement.

Definition 2.9 (Root datum; see[16], 7.4). An abstract (reduced) root datum
is a quadruple Ψ = (X∗, R,X∗, R∨), subject to the requirements
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a) X∗ and X∗ are lattices (finitely generated torsion-free abelian groups),
dual to each other (cf. (2.3h)) by a specified pairing

〈, 〉 : X∗ ×X∗ → Z;

b) R ⊂ X∗ andR∨ ⊂ X∗ are finite subsets, with a specified bijection α 7→ α∨

of R onto R∨.

These data define lattice endomorphisms (for every root α ∈ R)

sα : X∗ → X∗, sα(λ) = λ− 〈λ, α∨〉α,

sα : X∗ → X∗, sα(ξ) = ξ − 〈α, ξ〉α∨,

called root reflections. It is easy to check that each of these endomorphisms
is the transpose of the other with respect to the pairing 〈, 〉. We impose the
axioms

RD 0 if α ∈ R, then 2α /∈ R;

RD 1 〈α, α∨〉 = 2 (α ∈ R); and

RD 2 sα(R) = R, sα(R∨) = R∨ (α ∈ R).

Axiom (RD 0) is what makes the root datum reduced. Axiom (RD 1) implies
that s2

α = 1, so sα is invertible. The Weyl group of the root datum is the
group generated by the root reflections:

W (Ψ) = 〈sα (α ∈ R)〉 ⊂ Aut(X∗).

The definition of root datum is symmetric in the two lattices: the dual
root datum is

Ψ∨ = (X∗, R∨, X∗, R).

The inverse transpose isomorphism identifies the Weyl group with

W (Ψ∨) = 〈sα (α∨ ∈ R∨)〉 'W (Ψ).

Theorem 2.8 (and the material leading to its formulation) show that if
T is a maximal torus in a compact connected Lie group G, then

Ψ(G,T ) = (X∗(T ), R(G,T ), X∗(T ), R∨(G,T )) (2.10)

is an abstract reduced root datum. The amazing fact—originating in the
work of Cartan and Killing, but most beautifully and perfectly formulated
by Grothendieck—is that the root datum determines the group, and that
every root datum arises in this way. Here is a statement.
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Theorem 2.11 ([4], exp. XXV; see also[16], Theorems 9.6.2 and 10.1.1).
Suppose Ψ = (X∗, R,X∗, R∨) is an abstract reduced root datum. Then there
is a maximal torus in a compact connected Lie group T ⊂ G so that

Ψ(G,T ) ' Ψ

(notation (2.10)). The pair (G,T ) is determined by these requirements up
to an inner automorphism from T . We have

W (G,T ) = NG(T )/T 'W (Ψ).

Sketch of proof. What is proved in[4] is that to Ψ there corresponds a com-
plex connected reductive algebraic group G(Ψ). There is a correspondence
between complex connected reductive algebraic groups and compact con-
nected Lie groups obtained by passage to a compact real form (see for ex-
ample[13], Theorem 5.12 (page 247)). Combining these two facts proves the
theorem.

3 Finite maximal tori

Throughout this section we write

G = (possibly disconnected) compact Lie group
G0 = identity component of G.

(3.1)

We use the notation of (2.1), especially for the identity component G0.

Definition 3.2. A finite maximal torus for G is a finite maximal abelian
subgroup

A ⊂ G. (3.3)

The definition means that the centralizer in G of A is equal to A:

ZG(A) = A. (3.3a)

The differentiated version of this equation is

Zg(A) = {X ∈ g | Ad(a)X = X, all a ∈ A} = Lie(A) = {0}; (3.3b)

the last equality is because A is finite. We define the large Weyl group of A
in G0 to be

Wlarge(G0, A) = NG0(A)/ZG0(A) = NG0(A)/(A ∩G0). (3.3c)

Clearly
Wlarge(G0, A) ⊂ Aut(A), (3.3d)

a finite group.
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The term “large” should be thought of as temporary. We will introduce
in Definition 3.8 a subgroup Wsmall(G,A), given by generators analogous to
the root reflections in a classical Weyl group. We believe that the two groups
are equal; but until that is proved, we need terminology to talk about them
separately.

In contrast to classical maximal tori, finite maximal tori need not exist.
For example, if G = U(n), then any abelian subgroup must (after change
of basis) consist entirely of diagonal matrices; so the only maximal abelian
subgroups are the connected maximal tori, none of which is finite.

For the rest of this section we fix a (possibly disconnected) compact Lie
group G, and a finite maximal torus

A ⊂ G. (3.4a)

Our goal in this section is to introduce roots, coroots, and root transvections,
all by analogy with the classical case described in Section 2.

The character group of A is

X∗(A) = Hom(A,S1)

= {λ : A→ S1 λ(ab) = λ(a)λ(b) (a, b ∈ A)}.
(3.4b)

The character group is a finite abelian group, written additively, under mul-
tiplication of characters:

(λ+ µ)(a) = λ(a)µ(a) (λ, µ ∈ X∗(A)).

In particular, we write 0 for the trivial character of A. We can recover A
from X∗(A) by a natural isomorphism

A ' Hom(X∗(A), S1), a 7→ [λ 7→ λ(a)]. (3.4c)

As a consequence, the functor X∗ is a contravariant exact functor from
the category of finite abelian groups to itself. The group X∗(A) is always
isomorphic to A, but not canonically.

For any positive integer n, define

µn = {z ∈ C | zn = 1}, (3.4d)

the group of nth roots of unity in C. We identify

X∗(Z/nZ) ' µn, λω(m) = ωm (ω ∈ µn,m ∈ Z/nZ). (3.4e)
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Similarly we identify

X∗(µn) ' Z/nZ, λm(ω) = ωm (m ∈ Z/nZ, ω ∈ µn). (3.4f)

Of course we can write

µn = {e2πiθ | θ ∈ Z/nZ} ' Z/nZ,

and so identify a particular generator of the cyclic group µn; but (partly
with the idea of working with reductive groups over other fields, and partly
to to see what is most natural) we prefer to avoid using this identification.

A character λ ∈ X∗(A) is said to be of order dividing n if nλ = 0;
equivalently, if

λ : A→ µn. (3.4g)

We will say “character of order n” to mean a character of order dividing n.
We write

X∗(A)(n) = {λ ∈ X∗(A) | nλ = 0}
= Hom(A,µn),

(3.4h)

for the group of characters of order n. Therefore

X∗(A) =
⋃
n≥1

X∗(A)(n). (3.4i)

We say that λ has order exactly n if n is the smallest positive integer
such that nλ = 0; equivalently, if

λ : A � µn (3.4j)

is surjective.
The action by Ad of A on the complexified Lie algebra g of G decomposes

into a direct sum of characters:

g =
∑

λ∈X∗(A)

gλ, gλ = {Y ∈ g | Ad(a)Y = λ(a)Y (a ∈ A)}. (3.4k)

According to (3.3b), the trivial character does not appear in this decompo-
sition; that is, g0 = 0. We define the roots of A in G to be the characters of
A that do appear:

R(G,A) = {α ∈ X∗(A)} | gα 6= 0} ⊂ X∗(A)− {0}. (3.4l)
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The analogue of the root decomposition (2.3m) has no term like the Lie
algebra of the maximal torus:

g =
∑

α∈R(G,A)

gα. (3.4m)

Just as for classical roots, we see immediately

[gα, gβ] ⊂ gα+β, (3.4n)

and
B(gα, gβ) = 0, α+ β 6= 0. (3.4o)

Fix a positive integer n. An cocharacter of order dividing n is a homo-
morphism

ξ : µn → A. (3.5a)

We will say “cocharacter of order n” to mean a cocharacter of order dividing
n. The cocharacter has order exactly n if and only if ξ is injective.

If we fix a primitive nth root ω, then a cocharacter ξ of order n is the
same thing as an element x ∈ A of order n, by the correspondence

x = ξ(ω). (3.5b)

We write
X∗(A)(n) = Hom(µn, A) (3.5c)

for the group of cocharacters of order n. The natural surjection

µmn � µn, ω 7→ ωm

gives rise to a natural inclusion

Hom(µn, A) ↪→ Hom(µmn, A), X∗(A)(n) ↪→ X∗(A)(mn). (3.5d)

Using these inclusions, we can define the cocharacter group of A⋃
n

X∗(A)(n). (3.5e)

The functor X∗ is a covariant functor equivalence of categories from the
category of finite abelian groups to itself; but the choice of a functorial
isomorphism A ' X∗(A) requires compatible choices of primitive nth roots
ωn for every n. (The compatibility requirement is ωn = (ωmmn.) Partly
to maintain the analogy with cocharacters of connected tori, and partly for
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naturality, we prefer not to make such choices, and to keep X∗(A) as a group
distinct from A.

Suppose λ ∈ X∗(A) is any character and ξ ∈ X∗(A)(n) is an order n
cocharacter. The composition λ ◦ ξ is a homomorphism µn → S1. Such a
homomorphism must take values in µn, and is necessarily raising to the mth
power for a unique m ∈ Z/nZ ' (1/n)Z/Z. In this way we get a natural
pairing

X∗(A)×X∗(A)(n)→ (1/n)Z/Z,

λ(ξ(ω)) = ωn〈λ,ξ〉 (λ ∈ X∗(A)(n), ξ ∈ X∗(A)(n), ω ∈ µn).
(3.5f)

Taking the union over n defines a biadditive pairing

X∗(A)×X∗(A)→ Q/Z (3.5g)

which identifies

X∗(A) ' Hom(X∗(A),Q/Z), X∗(A) ' Hom(X∗(A),Q/Z). (3.5h)

Before defining coroots in general, we need an analog of Example 2.4.

Example 3.6. Suppose A ⊂ H is a finite maximal torus, in a compact Lie
group H of strictly positive dimension N . Assume that the roots of A in H
lie on a single line; that is, that there is a character α so that

R(H,A) ⊂ {mα | m ∈ Z} ⊂ X∗(A). (3.6a)

(We do not assume that α itself is a root.) Since H is assumed to have
positive dimension, there must be some (necessarily nonzero) roots; so α
must have some order exactly n > 0:

α : A � µn. (3.6b)

Fix now a primitive nth root of unity ω, and an element y ∈ A so that

µ(y) = ω. (3.6c)

Then
hmα = {X ∈ h | Ad(y)X = ωmX}. (3.6d)

From this description (or indeed from (3.4m) and (3.4n)) it is clear that
h[m] = hmα is a Z/nZ-grading of the complex reductive Lie algebra h, and
that h[0] = 0. According to the Kač classification of automorphisms of finite

15



order (see for example[10], pp. 490–515; what we need is Lemma 10.5.3 on
page 492)

h is necessarily abelian, (3.6e)

so the identity component H0 is a compact torus.
We chose y so that α(y) generates the image of α. From this it follows

immediately that A is generated by y and the kernel of α:

A = 〈ker(α), y〉. (3.6f)

Because of the definition of roots and (3.6a), Ad(ker(α)) must act trivially
on h, and therefore on H0. It follows that

ZH0(A) = Hy
0 ,

the fixed points of the automorphism Ad(y) on the torus H0. Since A is
assumed to be maximal abelian, we deduce

A ∩H0 = Hy
0 . (3.6g)

We are therefore going to analyze this fixed point group.
Because

Aut(H0) = Aut(X∗(H0)), (3.6h)

the automorphism Ad(y) is represented by a lattice automorphism

y∗ ∈ Aut(X∗(H0)), (y∗)n = 1 (3.6i)

and therefore (after choice of a lattice basis) by an invertible N ×N integer
matrix

Y∗ ∈ GL(N,Z), (Y∗)n = I. (3.6j)

Because 0 is not a root, the matrix Y∗ does not have one as an eigenvalue.
Every eigenvalue must be a primitive dth root of 1 for some d dividing n
(and not equal to 1). Define

my(d) = multiplicity of primitive dth roots as eigenvalues of Y∗
= dim(hmα), all m such that gcd(m,n) = n/d

(3.6k)

Then the characteristic polynomial of the matrix Y∗ is

det(xI − Y∗) =
∏

d|n, d>1

Φd(x)my(d). (3.6l)
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The number of fixed points of Ad(y) is easily computed to be

|Hy
0 | = | det(I − Y∗)|

=
∏

d|n, d>1

Φd(1)my(d) (3.6m)

Here Φd is the dth cyclotomic polynomial

Φd(x) =
∏

ω∈µd primitive

(x− ω). (3.6n)

Evaluating cyclotomic polynomials at 1 is standard and easy:

Φd(1) =


0 d = 1
p d = pm, (p prime, m ≥ 1)
1 d divisible by at least two primes.

(3.6o)

Inserting these values (3.6m) gives

|Hy
0 | =

∏
pm|n

p prime, m ≥ 1

pdim h(n/pm)α . (3.6p)

It is easy to see that every element of Hy
0 has order dividing n.

Definition 3.7. Suppose A is a finite maximal torus in the compact Lie
group G, and α ∈ R(G,A) is a root of order exactly n:

1 −→ kerα −→ A
α−→µn −→ 1. (3.7a)

The characters of A that are trivial on kerα are precisely the multiples of
α. If we define

G[α] = ZG(kerα), (3.7b)

(a compact subgroup of G) then its complexified Lie algebra is

g[α] =
∑
m∈Z

gmα. (3.7c)

That is, the pair (G[α], A) is of the sort considered in Example 3.6. We now
use the notation of that example, choosing in particular a primitive nth root
ω ∈ µn, and an element y ∈ A so that

α(y) = ω. (3.7d)
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As we saw in the example, (G[α])0 is a (connected) torus, on which y acts
as an automorphism of order n; and

A ∩ (G[α])0 = ((G[α])0)y. (3.7e)

The outer parentheses are included for clarity: first take the identity com-
ponent, then compute the fixed points of Ad(y). Reversing this order would
give (G[α])y = A, which has trivial identity component. But we will omit
them henceforth. We define the group of coroots for α to be

R∨(α) = {ξ : µn → (G[α])y0 ⊂ kerα ⊂ A} ⊂ X∗(kerα)(n) ⊂ X∗(n), (3.7f)

the cocharacters taking values in the group of fixed points of Ad(y) on
(G[α])0. Choosing a primitive nth root of 1 identifies R∨(α) with (G[α])y0.
Its cardinality may therefore be computed in terms of root multiplicities
using (3.6p):

|R∨(α)| = |(G[α])y0|

=
∏
pm|n

p prime, m ≥ 1

pdim g(n/pm)α . (3.7g)

There are nontrivial coroots for α if and only if there is a nontrivial prime
power pm dividing n so that (n/pm)α is a root.

Definition 3.8. Suppose A is a finite maximal torus in the compact Lie
group G, and α ∈ R(G,A) is a root of order n, and

ξ : µn → (G[α])y0 ⊂ kerα ⊂ A (3.8a)

is a coroot for α (Definition 3.7). A transvection generator for (α, ξ) is an
element

σ(α, ξ) ∈ (G[α])0 (3.8b)

with the property that

Ad(y−1)(σ(α, ξ)) = σ(α, ξ)ξ(ω). (3.8c)

We claim that there is a transvection generator for each coroot. To see this,
write the abelian group (G[α])0 additively. Then the equation we want to
solve looks like

[Ad(y−1)− I]σ = ξ(ω).

Because the determinant of the Lie algebra action is

|det(Ad(y−1)− I)| = | det(I −Ad(y))| = |det(I − Y∗)|
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which is equal to the number of coroots (see (3.6m)), we see that (3.8c) has
a solution σ(α, ξ), and that in fact σ(α, ξ) is unique up to a factor from
(G[α])y0.

The defining equation for a transvection generator may be rewritten as

σ(α, ξ) y σ(α, ξ)−1 = y ξ(α(y)). (3.8d)

Because σ(α, ξ) is built from exponentials of root vectors for roots that are
multiples of α, σ(α, ξ) must commute with kerα:

σ(α, ξ) a0 σ(α, ξ)−1 = a0 (a0 ∈ kerα ⊂ A). (3.8e)

Combining the last two formulas, and the fact that A is generated by kerα
and y, we find

σ(α, ξ) a σ(α, ξ)−1 = a ξ(α(a)) (a ∈ A). (3.8f)

In particular,
σ(α, ξ) ∈ NG0(A), (3.8g)

and the root transvection is the coset

s(α, ξ) = σ(α, ξ)(A ∩G0) ∈ NG0(A)/(A ∩G0) = Wlarge(G,A). (3.8h)

We define the small Weyl group of A in G to be the subgroup

Wsmall(G,A) =
〈
s(α, ξ) (α ∈ R(G,A), ξ ∈ R∨(α)

〉
. (3.8i)

generated by root transvections.

Conjecture 3.9. If A is a finite maximal torus in a compact Lie group G
(Definition 3.2), the normalizer of A in G0 is generated by A ∩G0 and the
transvection generators σ(α, ξ) described in Definition 3.8. Equivalently,

Wsmall(G,A) = Wlarge(G,A)

(Definitions 3.2 and 3.8).

In case G is the projective unitary group PU(n), then it is shown in[9]
that A must be one of the subgroups described in (4.3) below. In these cases
the conjecture is established in[8].

We want to record explicitly one of the conclusions of Example 3.6.

Proposition 3.10. Suppose A is a finite maximal torus in a compact Lie
group G (Definition 3.2), and that α and β are roots of A in G.
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1. If α and β are both multiples of the same root γ, then [gα, gβ] = 0.

2. If α and β have relatively prime orders, then [gα, gβ] = 0.

Proof. Part (1) is (3.6e) (together with the argument used in Definition 3.7
to get into the setting of Example 3.6). If α and β have orders m and n,
then the hypothesis of (2) produces integers x and y so that mx + ny = 1.
Consequently

β = (mx+ ny)β = mxβ = mx(α+ β),

and similarly
α = ny(α+ β).

So (2) follows from (1) (with γ = α+ β).

We conclude this section with a (tentative and preliminary) analogue of
Grothendieck’s notion of root datum.

Definition 3.11 (Finite root datum). An abstract finite root datum is a
quadruple Ψ = (X∗, R,X∗, R∨), subject to the requirements

a) X∗ and X∗ are finite abelian groups, dual to each other (cf. (3.5h)) by a
specified pairing

〈, 〉 : X∗ ×X∗ → Q/Z;

b) R ⊂ X∗ − {0}

c) R∨ is a map from R to subgroups of X∗; we call R∨(α) the group of
coroots for α.

We impose first the axioms

FRD 0 If α has order n, and k is relatively prime to n, then kα is also a
root and R∨(α) = R∨(kα) ⊂ X∗(n); and

FRD 1 If ξ ∈ R∨(α), then 〈α, ξ〉 = 0.

(The condition about k is a rationality hypothesis, corresponding to some
automorphism being defined over Q. The rest of (FRD)(0) says that the
order of a coroot must divide the order of the corresponding root. Axiom
(FRD)(1) says that a coroot must take values in the kernel of the corre-
sponding root.)

For each root α of order n and coroot ξ ∈ R∨(α) we get homomorphisms
of abelian groups

s(α, ξ) : X∗ → X∗, s(α, ξ)(λ) = λ− n〈λ, ξ〉α,
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s(α, ξ) : X∗ → X∗, s(α, ξ)(τ) = τ − n〈α, τ〉ξ,

called root transvections. The coefficients of α and of ξ in these formulas
are integers because of axiom (FRD)(0); so the formulas make sense. It is
easy to check that each of these endomorphisms is the transpose of the other
with respect to the pairing 〈, 〉. The axiom (FRD)(1) means that s(α, ξ) is
the identity on multiples of α, and clearly s(α, ξ) induces the identity on the
quotient X∗/〈α〉. Therefore s(α, ξ) is a transvection, and

s(α, ·) : R∨(α) ↪→ Aut(X∗)

is a group homomorphism.
We impose in addition the axioms

FRD 2 If α ∈ R and ξ ∈ R∨(α), then s(α, ξ)(R) = R.

FRD 3 If α ∈ R and ξ ∈ R∨(α), then s(α, ξ)(R∨(β)) = R∨(s(α, ξ)(β)).

The Weyl group of the root datum is the group generated by the root
transvections:

W (Ψ) = 〈s(α, ξ) (α ∈ R, ξ ∈ R∨(α))〉 ⊂ Aut(X∗).

The inverse transpose isomorphism identifies the Weyl group with a group
of automorphisms of X∗.

We have shown in this section that the root datum

Ψ(G,A) = (X∗(A), R(G,A), X∗(A), R∨) (3.12)

of a finite maximal A torus in a compact Lie group G is an abstract finite
root datum. The point of making these observations is the hope of finding
and proving a result analogous to Theorem 2.11: that an abstract finite root
datum determines a pair (G,A) uniquely.

We do not yet understand precisely how to formulate a reasonable con-
jecture along these lines. First, in order to avoid silly counterexamples from
finite groups, we should assume

G = G0A; (3.13)

that is, that A meets every component of G.
To see a more serious failure of the finite root datum to determine G,

consider the finite root datum

(Z/6Z, {1, 5}, (1/6)Z/Z, R∨), (3.14a)
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in which R∨(1) = R∨(5) = {0}. Write

A = Z[x]/〈Φ6(x)〉 = Z[x]/〈x2 − x+ 1〉, (3.14b)

the ring of integers of the cyclotomic field Q[ω6], with ω6 a primitive sixth
root of unity. The choice of ω6 defines an inclusion µ6 ↪→ A sending ω6 to
the image of x. Therefore the rank two free abelian group A acquires an
action of A = µ6. If we write T 1 for the two-dimensional torus with

X∗(T 1) = A, (3.14c)

then the equivalence of categories (2.3i) provides an action of µ6 on T 1.
Explicitly, the action of ω6 on T 1 is

ω6 · (z, w) = (w−1, zw) (z, w ∈ S1). (3.14d)

The roots for this action are 1 and 5. According to (3.6p) (or by inspection
of (3.14d)) the action of A on T 1 has no fixed points. It follows that A is a
maximal abelian subgroup of

G1 = T 1 oA, (3.14e)

and that the corresponding finite root datum is exactly the one described
by (3.14a).

So far so good. But we could equally well use the 2m-dimensional torus

Tm = T 1 × · · · × T 1

with the diagonal action of µ6, and define

Gm = Tm oA, (3.14f)

Again A = µ6 is a maximal abelian subgroup, and the root datum is exactly
(3.14a). So in this case there are many different G, of different dimensions,
with the same finite root datum.

The most obvious way to address this particular family of counterexam-
ples is to include root multiplicities as part of the finite root datum, and to
require that they compute the cardinalities of the coroot groups R∨(α) by
(3.7g). (If A is an elementary abelian p-group, then the coroot groups de-
termine the root multiplicities: if α has multiplicity m, then |R∨(α)| = pm.
That is why we needed A of order 6 to have make an easy example where
many multiplicities are possible.) But the root multiplicities alone do not
determine G; one can make counterexamples with G0 a torus and A cyclic
using cyclotomic fields of class number greater than one. Perhaps the finite
root datum should be enlarged to include the tori G[α]

0 (or rather the corre-
sponding lattices), equipped with the action of µn constructed in Definition
3.7.
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4 Examples

Example 4.1. The simplest example of a finite maximal torus is in the three-
dimensional compact group

G = SO(3)

of three by three real orthogonal matrices. We can choose

A = {

ε1 0 0
0 ε2 0
0 0 ε3

 | εi = ±1,
∏
i

εi = 1}.

This is the “Klein four-group,” the four-element group in which each non-
identity element has order 2. We can identify characters with subsets of
S ⊂ {1, 2, 3}, modulo the equivalence relation that each subset is equivalent
to its complement: S ∼ Sc. The formula is

λS(ε1, ε2, ε3) =
∏
i∈S

εi.

Thus the trivial character of A is λ∅ = λ{1,2,3}, and the three non-trivial
characters correspond to the three two-element subsets {i, j} (or equivalently
to their three one-element complements):

λ{i,j}(ε1, ε2, ε3) = εiεj .

The Lie algebra g = so(3) consists of 3 × 3 skew-symmetric matrices. The
root spaces of A are one-dimensional:

gλ{i,j} = C(eij − eji) (1 ≤ i 6= j ≤ 3),

the most natural and obvious lines of skew-symmetric matrices. Therefore

R(G,A) = {λ{i,j} ∈ X∗(A) | (1 ≤ i 6= j ≤ 3),

the set of all three non-zero characters of A.
Each root space is the Lie algebra of one of the three obvious SO(2)

subgroups of SO(3), and these are the tori G[α]
0 used in Definition 3.7. The

automorphism y of each torus is inversion, so the coroots are the two ele-
ments of order (1 or) 2 in each torus. If ξ is the nontrivial coroot attached to
the root (i, j), then the transvection s(α, ξ) acts on {1, 2, 3} by transposition
of i and j. The (small) Weyl group is therefore

Wsmall(G,A) = S3.

Since this is the full automorphism group of A, it is also equal to the large
Weyl group.
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It is a simple and instructive matter to make a similar definition for O(n),
taking for A the group of 2n diagonal matrices. The whole calculation is
exactly parallel to that for the root system of U(n), with the role of the
complex units S1 played by the real units {±1}; or, on the level of X∗, with
Z replaced by Z/2Z.

Example 4.2. We begin with the unitary group

G̃ = U(n) = n× n unitary matrices. (4.2a)

The center of G̃ consists of the scalar matrices

Z(n) = {zI | z ∈ S1} ' S1 (4.2b)

(notation (2.3b)). We are going to construct a finite maximal torus A inside
the projective unitary group

G = PU(n) = U(n)/Z(n). (4.2c)

It is convenient to construct a preimage Ã ⊂ G̃ = U(n).
The Lie algebra of U(n) consists of skew-Hermitian n× n complex ma-

trices:
g̃0 = u(n) = {X ∈Mn(C | tX = −X}. (4.2d)

An obvious map identifies its complexification with all n× n matrices:

g̃ = Mn(C) = gl(n,C). (4.2e)

The adjoint action is given by conjugation of matrices. Dividing by the
center gives

g0 = pu(n) = u(n)/iRI, (4.2f)

g = pgl(n,C) = Mn(C)/CI. (4.2g)

It will be convenient to think of U(n) as acting on the vector space

Cn = functions on Z/nZ,

functions on the cyclic group of order n. We will call the standard basis

e0, e1, . . . , en−1

with ei the delta function at the group element i+ nZ. It is therefore often
convenient to regard the indices as belonging to Z/nZ.
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We are going to define two cyclic subgroups

τ : Z/nZ→ U(n), σ : µn → U(n). (4.2h)

of U(n). We will also be interested in

ζ : µn → Z(n), ζ(ω) = ωI. (4.2i)

The map τ comes from the action of Z/nZ on itself by translation; the
generator 1 = 1 + nZ acts by

τ(1) =


0 1 0 · · · 0
0 0 1 · · · 0

...
0 0 0 · · · 1
1 0 0 · · · 0

 . (4.2j)

Often it is convenient to compute with the action on basis vectors:

τ(m)ei = ei−m,

as usual with the subscripts interpreted modulo n. The map σ is from the
character group of Z/nZ. The element ω ∈ µn is realized as multiplication
by the character m 7→ ωm:

σ(ω) =


1 0 · · · 0
0 ω · · · 0

...
0 0 · · · ωn−1

 . (4.2k)

This time the formula on basis vectors is

σ(ω)ei = ωiei.

Each of σ and τ has order n, and their commutator is

σ(ω)τ(m)σ(ω−1)τ(−m) = ωmI = ζ(ωm) ∈ Z(G).

The three cyclic groups σ, τ , and ζ generate a group

Ã = 〈τ(Z/nZ), σ(µn), ζ(µn)〉 (4.2l)

of order n3, with defining relations

σ(ω)τ(m)σ(ω−1)τ(−m) = ζ(ωm), σζ = ζσ, τζ = ζτ ; (4.2m)
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this group is a finite Heisenberg group of order n3. (One early appearance of
such groups is in[12], pp. 294–297. There is an elementary account of their
representation theory in[17], Chapter 19.)

The “finite maximal torus” we consider is

A = image of Ã in PU(n)

= Ã/ζ(µn) ' (Z/nZ)× µn.
(4.2n)

We will explain in a moment why A is maximal abelian. The adjoint action
of A on the Lie algebra is easily calculated to be

Ad(τ(m))(ers) = er−m,s−m, (4.2o)

with the subscripts interpreted modulo n. Similarly

Ad(σ(ω))(ers) = ωr−sers. (4.2p)

The character group of A is

X∗(A) ' µn × Z/nZ λφ,j(τ(m)σ(ω)) = φmωj .

We now describe the roots of A in the Lie algebra g = Mn(C)/CI. Fix

j ∈ Z/nZ, φ ∈ µn,

and define
Xφ,j =

∑
r−s=j

φrers = σ(φ)τ(−j). (4.2q)

(That is, the root vectors as matrices can be taken equal to the group
elements as matrices.) It follows from (4.2o) and (4.2p) that

Ad(τ(m))(Xφ,j) = φmXφ,j , Ad(σ(ω))(Xφ,j) = ωjXφ,j , (4.2r)

That is, Xφ,j is a weight vector for the character (φ, j) ∈ X∗(A). The weight
vector X1,0 is the identity matrix, by which we are dividing to get g; so (1, 0)
is not a root. Therefore

R(G,A) = {(φ, j) 6= (1, 0) ∈ X∗(A)} ' [µn × Z/nZ]− (1, 0), (4.2s)

the set of n2 − 1 non-trivial characters of Z/nZ× µn.
There remains the question of why A is maximal abelian in PU(n).

Suppose g ∈ PU(n)A. Choose a preimage g̃ ∈ U(n) ⊂ Mn(C). Then the
fact that g commutes with the images of τ and σ in PU(n) means that

τ(m)g̃τ(−m) = b(m)g̃, σ(ω)g̃σ(ω−1) = c(ω)g̃.
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If we write g̃ in the matrix basis Xφ,j of (4.2q), the conclusion is that
b(m) = φ is an nth root of unity, that c(ω) = ωj , and that

g̃ = zXφ,j = zσ(φ)τ(−j). (4.2t)

Therefore g = σ(φ)τ(−j) ∈ A, as we wished to show.
We want to understand, or at least to count, the coroots corresponding

to each root α of order d. Since every (nontrivial) character of A has mul-
tiplicity one as a root, we conclude from (3.7g) that there are precisely d
coroots ξ attached to α. In particular, if pm is the largest power of some
prime dividing n, and α has order pm, then (since A ' (Z/nZ)2)

kerα ' Z/nZ)× Z/(n/pm)Z.

So in this case there are exactly pm homomorphisms from µpm into kerα,
and all of them must be coroots. We conclude that the root transvections
include all transvections of A attached to characters of order exactly pm.
One can show that these transvections generate SL(2,Z/nZ), so

Wsmall(G,A) ' SL(2,Z/nZ). (4.2u)

We conclude this example by calculating the structure constants of g in
the root basis. Using the relation Xφ,j = σ(φ)τ(−j) from (4.2q), and the
commutation relation (4.2m), we find

Xφ,jXψ,k = σ(φ)τ(−j)σ(ψ)τ(−k)

= ψjσ(φ)σ(ψ)τ(−j)τ(−k)

= ψjσ(φψ)τ(−j − k) = ψjXφψ,j+k.

Similarly
Xψ,kXφ,j = φkXφψ,j+k.

Therefore
[Xφ,j , Xψ,k] = (ψj − φk)Xφψ,j+k. (4.2v)

A fundamental fact about classical roots in reductive Lie algebras (critical
to Chevalley’s construction of reductive groups over arbitrary fields; see[16],
Chapter 10) is that the structure constants may be chosen to be integers.
Here we see that the structure constants are integers in the cyclotomic field
Q[µn].
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The preceding example can be generalized by replacing the cyclic group
Z/nZ with any abelian group F of order n, and A by the “symplectic space”
A = F ×X∗(F ) ([18], page 148). If D is the largest order of an element of
F , then the symplectic form takes values in µD:

Σ((f1, λ1), (f2, λ2)) = λ1(f2)[λ2(f1)]−1. (4.3a)

Characters of A may be indexed by elements of A using the symplectic form:

αx(a) = Σ(a, x).

The transvection generators are precisely the symplectic transvections

a 7→ a+ ξ(〈a, x〉) (4.3b)

on A. Here x is any element of A of order d, and

ξ : µd → 〈x〉

is any homomorphism. They generate the full symplectic group

Wsmall(G,A) = Sp(A,Σ); (4.3c)

a proof may be found in[8], Theorem 3.16. (When F is a product of ele-
mentary abelian p groups for various primes p, the assertion that symplectic
transvections generate the full symplectic group comes down to the (finite)
field case, and there it is well known.)

Here is a very different example.

Example 4.4. We begin with the compact connected Lie group G of type E8;
this is a simple group of dimension 248, with trivial center. We are going to
describe a finite maximal torus

A = Z/5Z× µ5 × µ5. (4.4a)

The roots will be the 124 nontrivial characters of A, each occurring with
multiplicity 2. The group A is described in detail in[7], Lemma 10.3. We
present here another description, taken from[2], p. 231.

An element of the maximal torus T of G may be specified by specifying
its eigenvalue γi (a complex number of absolute value 1) on each of the eight
simple roots αi (the white vertices in Figure 4.4. Then the eigenvalue γ0 on
the lowest root α0 (the black vertex) is specified by the requirement

γ−1
0 =

8∏
i=1

γnii , (4.4b)
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c c c c c c c s2 4 6 5 4 3 2 1

c3

Figure 1: extended Dynkin diagram for E8

with ni the coefficient of αi in the highest root (the vertex labels in the
figure). Equivalently, we require

8∏
i=0

γnii = 1. (4.4c)

There is a map
ρ : µ5 → T (4.4d)

in which the element ρ(ω) corresponds to the diagram of Figure 4.4. The

c c c c c c c s1 1 1 ω 1 1 1 1

c1

Figure 2: Toral subgroup µ5 ⊂ E8

eight roots labeled 1 in this diagram are simple roots for a subsystem of
type A4 × A4. As is explained in[3], page 219, this subsystem corresponds
to a subgroup

H = (SU(5)× SU(5))/(µ5)∆, (4.4e)

the quotient by the diagonal copy of µ5 in the center.
We have

Gρ(µ5) = H, ρ(µ5) = Z(H). (4.4f)

Because of this, the rest of the calculations we want to do can be performed
inside H. It is convenient to label the two SU(5) factors as L and R (for
“left” and “right”)

We now recall the maps σ, τ , and ζ of Example 4.2. Because 5 is
odd, they are actually maps into SU(5) (rather than just U(5)). We use
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subscripts L and R to denote the maps into the two factors of H, so that
for example

σL × σR : µ5 × µ5 → H.

Taking the diagonal copies of these maps gives

σ∆ : µ5 → SU(5)× SU(5), τ∆ : Z/5Z→ SU(5)× SU(5). (4.4g)

The diagonal map ζ∆ is trivial. According to (4.2m), we have

σ∆(ω)τ∆(m)σ∆(ω−1)τ∆(−m) = ζ∆(ωm) (4.4h)

in SU(5)× SU(5); so in the quotient group H, we get

τ∆ × σ∆ × ρ : Z/5Z× µ5 × µ5 → H ⊂ G; (4.4i)

the image is our abelian group A of order 125. Because of (4.4f), we have

GA = Hτ∆,σ∆ , (4.4j)

and an easy calculation in SU(5) × SU(5) (parallel to the one leading to
(4.2t)) shows that this is exactly A. So A is indeed a finite maximal torus.

We turn next to calculation of the roots. The character group of A is

X∗(A) = µ5 × Z/5Z× Z/5Z.

The roots (φ, j, 0) are those in the centralizer H of ρ(µ5); so they are the
roots of A in

h = sl(5,C)L × sl(5,C)R.

These were essentially calculated in Example 4.2. We have

gφ,j,0 = 〈XL
φ,j , X

R
φ,j〉 ((φ, j) 6= (1, 0).

Here the root vectors are the ones defined in (4.2q). In particular, each of
these 24 roots has multiplicity two.

To study the root vectors for the 100 roots (φ, j, k) with k 6= 0 modulo
5, one can analyze the representation of H on g/h, which has dimension
200. We will not do this here; the conclusion is that every root space has
dimension two.

Since all 124 characters of A have multiplicity two, it follows from (3.7g)
that each root α has exactly 25 coroots; these are all the homomorphisms

ξ : µ5 → kerα ⊂ A.
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The corresponding transvections

s(α, ξ)(λ) = λ− 〈λ, ξ〉α (4.4k)

are all the transvections moving λ by a multiple of α; the multiple is given
by the linear functional ξ which is required only to vanish on α. The (small)
Weyl group generated by all of these transvections is therefore

Wsmall(G,A) = SL(A) ' SL(3,F5), (4.4l)

the special linear group over the field with five elements. Its cardinality is

|Wsmall(G,A)| = (52 + 5 + 1)(5 + 1)(1)(53)(5− 1)2 = 372000.

Precisely parallel discussions can be given for G = F4, A = Z3×µ3×µ3,
and for G = G2, A = Z2×µ2×µ2. We omit the details. The next example,
however is sufficiently different to warrant independent discussion.

Example 4.5. We begin as in Example 4.4 with G a compact connected
group of type E8. We are going to describe a finite maximal torus

A = Z/6Z× µ6 × µ6. (4.5a)

The roots will be the 215 nontrivial characters of A. The 7 characters of
order 2 will have multiplicity two; the 26 characters of order 3 will have
multiplicity two; and the 182 characters of order 6 will have multiplicity
one. To begin, we define

ρ : µ6 → T (4.5b)

so that the element ρ(ω) corresponds to the diagram of Figure 3. This time

c c c c c c c s1 1 ω 1 1 1 1 1

c1

Figure 3: Toral subgroup µ5 ⊂ E8

the eight roots labeled 1 are those for a subsystem of type A5 × A2 × A1.
As we learn in[3], page 220, the corresponding subgroup of G is

H = (SU(6)× SU(3)× SU(2))/ζ∆(µ6); (4.5c)
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here

ζ∆ : µ6 → µ6×µ3×µ2 = Z(SU(6)×SU(3)×SU(2)), ζ∆(ω) = (ω, ω2, ω3).

Because the centralizer of a single element of a compact simply connected
Lie group is connected, we conclude that

Gρ(µ6) = H, ρ(µ6) = Z(H). (4.5d)

Again we want to make use of the maps defined in Example 4.2. The first
difficulty is that, because 6 and 2 are even, the maps σSU(2), τSU(2), σSU(6),
and τSU(6) take some of their values in matrices of determinant −1. In order
to correct this, we fix a primitive twelfth root γ of 1, and define

τ̃SU(6) : Z/12Z→ SU(6), τ̃SU(6)(m) = γm · τU(6)(2m),

τ̃SU(3) : Z/12Z→ SU(3), τ̃SU(3)(m) = τU(3)(4m),

τ̃SU(2) : Z/12Z→ SU(2), τ̃SU(2)(m) = γ3m · τU(2)(6m).

(4.5e)

It is easy to check that these three maps are well-defined. If we form the
diagonal

τ̃∆ : Z/12Z→ SU(6)× SU(3)× SU(2), (4.5f)

then
τ̃∆(6) = (γ6, 1, γ18) = (−1, 1,−1) = ζ∆(−1).

The image in H of this element is trivial; so τ̃∆ descends to

τ∆ : Z/6Z→ H. (4.5g)

In exactly the same way we can define

σ̃∆ : µ12 → SU(6)× SU(3)× SU(2), (4.5h)

descending to
σ∆ : µ6 → H. (4.5i)

Just as in Example 4.4, we find a group homomorphism

τ∆ × σ∆ × ρ : Z/6Z× µ6 × µ6 → H ⊂ G; (4.5j)

the image is our abelian group A of order 216. Because of (4.5d), we have

GA = Hτ∆,σ∆ , (4.5k)
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and a calculation in SU(6)× SU(3)× SU(2) (parallel to the one leading to
(4.2t)) shows that this is exactly A. So A is indeed a finite maximal torus.

We turn next to the roots. The character group of A is

X∗(A) = µ6 × Z/6Z× Z/6Z. (4.5l)

The roots (φ, j, 0) are those in the centralizer H of ρ(µ6); so they are the
roots of A in

h = sl(6,C)× sl(3,C)× sl(2,C).

These were essentially calculated in Example 4.2. We have

gφ,j,0 =
〈
X

sl(6)
φ,j , X

sl(3)
φ,j , X

sl(2)
φ,j

〉
(φ, j) 6= (1, 0). (4.5m)

The meaning of the first of these root vectors (defined in (4.2q) for n = 6) is
clear. The second root vector makes sense if both φ and j have order 3; that
is, if φ is the square of a sixth root of 1, and j is twice an integer modulo
6. Similarly, the third root vector makes sense if φ and j both have order 2.
The second and third root vectors cannot both make sense, for in that case
(φ, j) would be trivial.

We have therefore shown that, among the 35 roots α vanishing on ρ(µ6),

dim gα =


1 if α has order 6
2 if α has order 3
2 if α has order 2.

(4.5n)

By analyzing the action of A in the 202-dimensional representation of H on
g/h, one can see that the same statements hold for all 215 roots.

We now calculate the coroots. If α is a root of order 6, then (3.6p) says
that the number of coroots is

2dim g(6/2)α · 3dim g(6/3)α = 22 · 32 = 36;

so the coroots are all the 36 homomorphisms

ξ : µ6 → kerα ' (Z/6Z)2. (4.5o)

The corresponding root transvections are all the transvections associated to
the character α.

If β is a root of order 3, then (3.6p) says that the number of coroots is

3dim g(3/3)β = 32 = 9;
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so the coroots are all the 9 homomorphisms

ξ : µ3 → kerβ ' (Z/3Z)2 × (Z/2Z)3. (4.5p)

The corresponding root transvections are all the transvections associated to
the character β.

Similarly, if γ is a root of order 2, there are 4 coroots, and the root
transvections are all of the 4 transvections associated to γ.

We see therefore that the (small) Weyl group of A in G contains all the
transvection automorphisms of A ' (Z/6Z)3; so

Wsmall(G,A) ' SL(3,Z/6Z) ' SL(3,Z/2Z)× SL(3,Z/3Z), (4.5q)

a group of order 168 · 13392 = 2249856.
The 27 characters of A of order 3 are exactly the characters trivial on

the 8-element subgroup A[2] of elements of order 2 in A; so G[3] = GA[2] has
Lie algebra

g[3] =
∑
3β=0

gβ. (4.5r)

The 26 roots here all have multiplicity 2, so G[3] has dimension 52. It turns
out that

G[3] ' F4 ×A[2]. (4.5s)

Similarly, if we define G[2] = GA[3], then

G[2] ' G2 ×A[3]. (4.5t)

Now Proposition 3.10 guarantees that G[2] and G[3] commute with each
other, so we get a subgroup

G[2]×G[3] ⊂ G, G2 × F4 ⊂ E8. (4.5u)

Perhaps most strikingly

W (G,A) = W (G[2], A)×W (G[3], A); (4.5v)

this is just the product decomposition noted in (4.5q).
The construction also shows (since A[2] ⊂ G2 and A[3] ⊂ F4) that each of

the subgroups G2 and F4 is the centralizer of the other in E8. The existence
of these subgroups has been known for a long time (going back at least to
[5], Table 39 on page 233; see also[15], pages 62–65); but it is not easy to
deduce from the classical theory of root systems alone.
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