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David Ilcinkas4 · Ralf Klasing4 · Tomasz Kociumaka5 · Dominik Pająk6
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Abstract Two mobile robots are initially placed at the same point on an infinite
line. Each robot may move on the line in either direction not exceeding its maximal
speed. The robots need to find a stationary target placed at an unknown location on
the line. The search is completed when both robots arrive at the target point. The
target is discovered at the moment when either robot arrives at its position. The robot
knowing the placement of the target may communicate it to the other robot. We look
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for the algorithm with the shortest possible search time (i.e. the worst-case time at
which both robots meet at the target) measured as a function of the target distance
from the origin (i.e. the time required to travel directly from the starting point to the
target at unit velocity). We consider two standard models of communication between
the robots, namely wireless communication and communication by meeting. In the
case of communication by meeting, a robot learns about the target while sharing the
same location with a robot possessing this knowledge. We propose here an optimal
search strategy for two robots including the respective lower bound argument, for
the full spectrum of their maximal speeds. This extends the main result of Chrobak
et al. (in: Italiano, Margaria-Steffen, Pokorný, Quisquater, Wattenhofer (eds) Current
trends in theory and practice of computer science, SOFSEM, 2015) referring to the
exact complexity of the problem for the case when the speed of the slower robot is at
least one third of the faster one. In the wireless communication model, a message sent
by one robot is instantly received by the other robot, regardless of their current positions
on the line. For this model, we design a strategy which is optimal whenever the faster
robot is at most

√
17 + 4 ≈ 8.123 times faster than the slower one. We also prove

that otherwise the wireless communication offers no advantage over communication
by meeting.

Keywords Linear search · Mobile robots · Group search · Different speeds

1 Introduction

Searching is awell-studiedproblem inwhichmobile robots need tofinda specific target
placed at some a priori unknown location. In some cases, a team of robots is involved,
trying to coordinate their efforts in order to minimize the time. The complexity of the
multi-robot searching is usually defined as the time when the first searcher arrives at
the target position whose location is controlled by an adversary.

In distributed computing, one of the central problems is rendezvous when two
mobile robots collaborate in order to meet in the smallest possible time. The efficiency
of the rendezvous strategy is expressed as the timewhen the last involved robot reaches
the meeting point, and the meeting point is arbitrary, i.e., the robots may choose the
most convenient one.
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In the linear search problem studied in the present paper, a pair of robots has tomeet
at an unknown fixed target point of the environment and the time complexity of the
process is determined by the arrival of the second robot.More specifically, we consider
two mobile robots placed at the origin of an infinite line. Each robot has its maximal
speed that it cannot exceed while moving in either direction along the line. There is a
stationary target, placed at an unknown point of the line, that a robot discovers when
arriving at its placement. The robot which possesses the knowledge of the target posi-
tion may communicate it to the other robot. We consider two communication models
of the robots: communication by meeting when the robots can exchange information
only while being located at the same position, and wireless communication when the
robot finding the target may instantaneously inform the other robot of its position. We
want to schedule the movement of both robots so that eventually each of them arrives
at the target location. The cost of the schedule is the first time when both robots are
present at the target position. We express it as a function of the distance between the
target and the origin.

1.1 Previous Work

The linear search problem for a single robot was introduced by Beck [7] and Bellman
[8]. (The original problem of [7,8] involves a probability distribution of placements
of the target that the robot knows.) They proposed an optimal online algorithm with
competitive ratio 9 (i.e., the worst-case ratio of its cost with respect to the offline
cost). A variant of this question is the cow-path problem in [3], in which the searcher
has more than two directions to follow. The original problem was also extended to
searching in the plane [4], and numerous other variations [12,15,20,22,28,29,31,32,
34]. Bose et al. [11] recently studied a variant of these problemswhere upper and lower
bounds on the distance to the target are given. On a line, without this information
several observations and partial results hint to the fact that the competitive ratio 9
cannot be improved even if the search is performed by a team of same-speed robots
communicating by meeting if all robots have to reach the target [13]; see also [5].
Surprisingly, the same search time can still be achieved by distinct-speed robots if the
slowest robot is at most 3 times slower than the fastest one [13].

1.2 Our Results

In this paper, we consider the linear search problem for two robots equipped with
distinct maximal speeds. For the convenience of presentation we scale their speeds so
that the speed of the faster robot is 1 and the slower one is 0 < v ≤ 1.

In the model with communication by meeting, we propose an optimal strategy for
any value of v. In particular, our strategy works in time 1+3v

v−v2
d, for any v ≤ 1

3 for
the target being placed at unknown distance d from the origin, which yields a com-
petitive ratio 1+3v

1−v
. The remaining part of the spectrum has been partially covered

in [13] where the authors provide an argument for the lower bound 9d − o(d) when
the robots share the maximal speed 1, under certain conditions on the algorithm, and
they show that this bound can be met from above when the slower robot’s maximal
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speed is at least 1
3 . We complement these results by providing the full formal proof

of the lower bound 9d − o(d) for any set of robots with maximal speed at most 1. In
the model with wireless communication, we design a simple strategy achieving search

time 2+v+√
v2+8v

2v d and competitive ratio 2+v+√
v2+8v

2 . This algorithm for wireless
communication outperforms the optimal strategy for communication by meeting for
v >

√
17 − 4 ≈ 0.123, which shows that the feature of wireless communication is

useful in this range of parameters. Interestingly, this threshold is not an artifact of
the particular algorithms we designed. We prove that for any v the optimum com-
petitive ratio in the wireless communication model is achieved either by our strategy
for wireless communication, or by the trivial adaptation of the optimal strategy for
communication by meeting. Hence, for v ≤ √

17 − 4, the wireless communication
gives no advantage over communication by meeting.

1.3 Related Work

Numerous papers have beenwritten on the searching problem, studying diversemodels
involving stationary or mobile targets, graph or geometric terrain, known or unknown
environment, one ormany searchers, etc. (cf. [1,2,4,26,35]). Depending on the setting,
the problem is known under the name of treasure hunting, pursuit-evasion, cops and
robbers, fugitive search games, etc. Sometimes the searching robot is not looking for
an individual target point, attempting rather to evacuate being lost in an unknown
environment or determine its position within a known map (e.g. [18,24]). Several
of these research papers offer exciting challenges of combinatorial or algorithmic
nature (see [26]). In most papers studying algorithmic issues, the objective is either to
determine the feasibility of the search, (i.e., whether the search will succeed under all
adversarial choices) or to minimize its cost represented by the search time, assuming
some given speeds of searchers (and perhaps evaders).

Many searching algorithms are studied in the online setting (cf. [30]), where the
information about the environment is acquired as the search progresses. The perfor-
mance of an online algorithm is measured by its competitive ratio, i.e., the worst-case
ratio of its cost with respect to the offline cost, which is the search time of the optimal
algorithm with full a priori knowledge of the environment and the target placement.
Many search problems, especially for geometric environments, are analyzed from this
perspective, in particular when the cost of the offline solution is just the distance to
the target; see [4,13,25,30].

Most of the papers study the searching problem for a single robot. As a single
searching robot usually cannot fully explore and map an arbitrary unknown graph
(unless e.g., by leaving pebbles at some nodes; see [9]), a second searching robot is
often necessary (and sufficient) in order to make the task feasible (cf. [10]). However,
optimization of the search by the use of multiple robots often involves coordination
issues, where the searchers need to communicate in order to synchronize their efforts
and adequately split the entire task into portions assigned to individual robots (cf.
[13,23,25,27]). As this objective is often not easy to achieve, some multi-robot search
problems turn out to be NP-hard (e.g., see [27]).
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In previous research on the searching problem usually robots traveling at the same
speed were considered (cf. [13,14,17,18,21]). For other problems considering robots
with distinct speeds (e.g., the patrolling problem studied in [16,19,33]), only partial
results were obtained. Optimal patrolling using more than two robots on a ring [19],
or more than three robots on a segment [33], is unknown in general and all intuitive
solutions have been proved sub-optimal for some configurations of the speeds of the
robots. Another example is the long-standing lonely runner conjecture [37], concern-
ing k entities moving with constant speeds around a circular track of unit-length. If the
speeds are pairwise different, the conjecture states that at some moment all runners
are located equidistantly on the cycle. The conjecture is open in general, having been
verified for up to 7 runners [6].

A closely related problem, the rendezvous problem, has been central to distributed
computing for many years. It was studied in various settings (cf. [36]), but even for
environments as simple as a line or a ring, optimal solutions are not always known.
Feasibility of the rendezvous problem is often determined by a symmetry breaking
process, which must prevent the robots from falling into an infinite pattern avoiding
the meeting. Searching and rendezvous may be viewed as problems with opposite
objectives. Searching is a game between a searcher, who tries to find the target as
fast as possible and the adversary, who knows the searching strategy and attempts to
maximize the search timeby its choice of the environment parameters, target placement
(or its escape route), etc. Hence in searching, the two players have contradictory goals.
In rendezvous the two players collaborate, trying to quickly find one another (see [2]).
Contrary to the searching problem, the rendezvous destination is not given in advance
but it may be decided by the robots.

2 Preliminaries

For any algorithmA, we denote by t (A, p) the search time of algorithmA if the target
is located at point p. In other words, this is the time at which all robots meet at the
target p. As it is standard in the literature, we assume that the target is at a distance of
at least 1 away from the origin.

In the offline setting, if the robots know the target, the search time is clearly 1
v
|p|,

where v is the speed of the slowest robot. We use the competitive ratio CR(A) of
algorithm A, equal to

CR(A) = sup
|p|≥1

v·t (A,p)
|p| ,

as the main efficiency measure of the algorithms. In what concerns lower bounds, we
actually prove stronger lower bounds for the quantity

τ(A) = lim sup
|p|→∞

t (A, p)

|p| .

They imply lower bounds for the competitive ratio due to CR(A) ≥ v · τ(A).
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Having fixed an algorithmA for a setR of robots, each robotΓ ∈ R follows a fixed
trajectory as long as it is unaware of the location of the target. We use Γ (t) to denote
the position of robot Γ at time t provided that the target location is not known to the
robot. Our lower bounds rely on the analysis of the progress speeds lim supt→∞

|Γ (t)|
t .

The largest of these values over Γ ∈ R is called the overall progress speed. For each
point p, the time T (p) = min{t : ∃Γ ∈ R Γ (t) = p} is called the discovery time
of p (it is the first moment when any robot visits p). For each time t , we denote
D(t) = {p : T (p) ≤ t} the segment of points discovered until time t . We call the
value lim inf t→∞ |D(t)|

t the discovery speed.
Our results are primarily designed for a setR of two robots, denoted R and r . Their

speed limits are 1 and v (0 < v ≤ 1), respectively.

3 Communication by Meeting

In this model, once a robot finds the target, it must walk to meet the other robot, and
then the robots travel to the target. Naturally, the schedule consists of three phases: the
exploration phase while the target is unknown, the pursuit phase where the informed
robot chases after the other one in order to tell it about the target, and the target phase
when both robots walk to the target location. Recall that for robots with equal speeds,
one of the possible (optimal) solutions consists in all the robots following together the
same cow-path trajectory [5,13], thus the pursuit and target phasesmay be nonexistent.

3.1 The Upper Bound

Let us first recall the structure of the cow-path trajectory. A robot visits, for subsequent
integers k ∈ N, the points pk := (− 2)k on alternating sides of the origin, traveling
at full speed between consecutive points pk . In this strategy, the robot discovers new
locations after it passes pk on the way from pk+1 to pk+2. This happens from time
tk := |pk |+2

∑k+1
j=0 |p j | = 9 ·2k −2 = 9|pk |−2 to t ′k+2 := |pk+2|+2

∑k+1
j=0 |p j | =

12·2k−2 = 3|pk+2|−2. Consequently, the search time is bounded fromabove by 9|p|.
As observed by Chrobak et al. [13], this strategy generalizes to a collection of two

robots with speed limits 1 and 1
3 . Both robots follow the cow-path trajectory at their

maximal speed, which means that they meet in pk at time tk = 3t ′k . When the faster
robot R discovers the target at a point p between pk and pk+2, it pursues the slower
robot r and brings it to the target, which turns out to be feasible within time 9|p|; see
Fig. 1.

We extend this strategy to allow v < 1
3 as the speed limit of the slower robot r . We

insist on the two robots meeting in points pk at times tk for adjusted values pk and
tk . The smaller speed v of r allows R to travel further before going back to pk . More
formally, we increase the ratio |pk+1|/|pk | and instead of taking pk = (− 2)k , we set
pk = (− c)k for some c > 2. We still make both robots visit consecutive points pk at
their full speeds, and we choose c so that they meet in pk while r is there for the first
time and R for the second time. A condition inductively forcing the meeting at pk to
be followed by a meeting in pk+1 can be expressed as 1

v
|pk+1 − pk | = tk+1 − tk =
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t

0
pkpk+1 pk+2

R
r

t

0
pkpk+1 pk+2

R r

Fig. 1 Illustration of algorithm A∗ before target detection (left), and when the target has been located
(right). The horizontal axis represents the line searched and the vertical axis represents the time. The empty
circle denotes the target discovery. Double and single solid lines represent the trajectories of the faster and
the slower robot, respectively. Dashed lines correspond to the overall progress speed and dotted lines to the
search time

Algorithm A∗ [for two robots with communication by meeting]
1. Until the target is located, both robots visit, in order of increasing k, the points pk = (−c)k for all
k ∈ N, where c = 1+ṽ

2ṽ and ṽ = min(v, 1
3 ). Robot R moves with speed 1 between consecutive

points, and robot r with speed ṽ. Robot R starts its trajectory at time 0, whereas robot r initially
waits at the origin for 4 time units.

2. When R finds the target, it moves with speed 1 to meet and notify r .
3. After the meeting, the robots move together to the target at speed ṽ.

|pk+1 − pk+2|+ |pk+2 − pk |, i.e., 1v (c+1) = 2c2 + c−1. This gives c = 1+v
2v , which

we use for our algorithmA∗. The meeting at p0 is guaranteed by delaying r for 4 time
units: Indeed, r arrives at p0 for the first time at time t0 = 4 + 1

v
and R arrives at p0

for the second time at time 3 + 2c, which is equal to t0 for our choice of c.
The following theorem bounds the search time by robots using this strategy.

Proposition 3.1 For the algorithmA∗ and every point p ∈ R with |p| ≥ 1, we have:

t (A∗, p) < 1+3v
v−v2

|p| if v ≤ 1
3 , (1)

t (A∗, p) < 9|p| if 1
3 ≤ v ≤ 1. (2)

Proof First, let us show (1). Assuming that there exists k so that the target p is located
between pk (exclusive) and pk+2 (inclusive), the meeting time in pk is

tk = 4 + 1
v

⎛

⎝|pk | + 2
k−1∑

j=0

|p j |
⎞

⎠ = 4 + 1
v
ck c+1

c−1 − 2
v(c−1) = ck 1+3v

v−v2
− 4 v

1−v
.

123



Algorithmica

Suppose that |p− pk | = δ. After meeting r in pk , robot R needs time δ to discover the
target. At that time, the distance between the robots is δ(1+ v) since they are going in
opposite directions with their maximal speeds until time tk + δ. Then, the faster robot
pursues the slower one. With the speed difference of 1 − v this takes δ(1+v)

1−v
units of

time. Next, the robots go back to the target at speed v which requires time δ(1+v)

v−v2
, i.e.,

1
v
times more than the pursuit. In total, the time between tk and the moment when both

robots reach the target is

δ + δ(1 + v)

1 − v
+ δ(1 + v)

v − v2
= δ

v − v2 + v + v2 + 1 + v

v − v2
= δ

1 + 3v

v − v2
.

Since tk < |pk | 1+3v
v−v2

, the total search time is t (A∗, p) < (|pk | + δ) 1+3v
v−v2

= |p| 1+3v
v−v2

,
as claimed.

If no such k exists, then we must have p = 1 or −c ≤ p ≤ −1. It is easy to
verify that t (A∗, 1) = 2 + 1

v
< 1+3v

v−v2
. Moreover, if −c ≤ p ≤ −1, R discovers

the target and comes back to the origin at time 2 + 2|p|. At the same time, r is
at point 2(|p| − 1)v and it is moving away from R. Therefore, it takes an additional
2(|p|−1)v

1−v
(1+ 1

v
)+|p|

v
timebefore both robots evacuate.Overall, in this case, t (A∗, p) =

2(|p| + 1) + 2(|p|−1)v
1−v

(1 + 1
v
) + |p|

v
= 1+3v

v−v2
|p| − 4v

1−v
.

To show (2), we simply observe that, for v = 1
3 , we have

1+3v
v−v2

= 9. Note that for

v > 1
3 , the searchermoving at velocity 1

3 could increase its speed to v, but no additional
gain in efficiency is possible (see the lower bounds in [5,13] and in Sect. 3.2). �

Corollary 3.2 For the algorithm A∗, CR(A∗) ≤ 1+3v
1−v

if v ≤ 1
3 , and CR(A∗) ≤ 9v

if v ≥ 1
3 .

3.2 The Lower Bound

Below, we show that the strategy from Sect. 3.1 achieves the best possible competitive
ratio. We first present a sketch of the arguments behind the intermediate results used
for this aim. In fact, some of these lemmas are stated so that they work in more general
settings.

We first study a hypothetical algorithm A for a collection R of any number of
robots, each with maximum speed not exceeding 1. In Lemma 3.3, we analyze it from
the perspective of a robot Γ ∈ R with maximum speed vΓ and progress speed wΓ

(not exceeding the overall progress speed w). By definition of the progress speed, the
robotΓ sometimes visits points p = Γ (t)with |p| ≈ t ·wΓ . We fix such a point p and
choose a point q on the opposite side of the origin, with deadline t (A, q) ≈ τ(A) · |q|
sufficiently early that the robot Γ , starting in p at time t , cannot reach q before
the deadline. We deduce that the robot Γ must already know that the target is not
located at q. Such an information, conveyed by one or more robots, can be transferred
with maximum speed 1, which yields an upper bound on the discovery time T (q) of
the point q. On the other hand, the overall progress speed implies a lower bound of
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approximately |q|
w

on T (q); see Fig. 2. Combining these two constraints, after some
calculations we obtain the inequality τ(A) ≥ vΓ +wΓ +w+vΓ w

vΓ w(1−wΓ )
.

We examine the consequences of this result in Corollaries 3.4, 3.5 and 3.6. Set-
ting Γ as the robot with progress speed wΓ = w, we derive τ(A) ≥ 1+3w

w−w2 ≥ 9
(Corollary 3.4). This immediately shows that any algorithm A with τ(A) < τ(A∗)
must have its overall progress speed w strictly smaller than the overall progress speed
1−v
1+3v of A∗ (Corollary 3.5). On the other hand, setting Γ as the slowest robot r with
maximum speed v, we conclude that unless τ(A) ≥ τ(A∗), the progress speed wr of
r is also strictly smaller than the progress speed of the slower robot r in A∗, equal to

1
τ(A∗) . Consequently, the robot r may only discover points at bounded distance from
the origin (Corollary 3.6). Thus, in the final part of the proof we analyze a hypothet-
ical two-robot algorithm A in which only the faster robot R discovers sufficiently
far points. (Note that A∗ satisfies this condition.) Since the slower robot r does not
participate in the exploration, the discovery speed depends on the trajectory of the
faster robot R only. This lets us relate the discovery speed vd to the progress speed w

(Lemma 3.7). ByCorollary 3.4, there are points pwith discovery time T (p) exceeding
approximately ( 1+3w

w−w2 )
−1|p|. To bound the length of D(T (p)), we observe that the

other endpoint q of this segment has its discovery time T (q) bounded from below due
to the progress speedw and from above due to the maximum speed 1; see Fig. 3. After
some calculations we achieve vd ≤ 2w

1+3w .
Finally, we prove a lower bound on the discovery speed vd in terms of τ(A) and

the speed limit v of the slower robot r (Lemma 3.8). For this, we just note that at any
time t , the robot r must take into account that the target is located arbitrarily close
to either endpoint of the segment D(t) (see Fig. 4), which yields vd ≥ 2v

vτ(A)−1 . We
combine the two bounds on discovery speed vd with the upper bound on the overall
progress speed w to prove that if the set of points discovered by r is bounded, then
τ(A) ≥ τ(A∗). Interestingly, our proof remains valid in the wireless communication
model; we exploit this fact in Sect. 4.2. We conclude with the lower bound on τ(A)

in Proposition 3.10. In Theorem 3.11, we deduce that the algorithm A∗ has optimal
competitive ratio.

We will now formally prove all these results. First, let us relate the search time and
the progress speeds in an algorithm A for any collection R of robots.

Lemma 3.3 Let A be a line search algorithm with overall progress speed w for a
collection R of robots with speeds not exceeding 1, communicating by meeting. If
there is a robot Γ ∈ R with speed limit vΓ and progress speed wΓ , then τ(A) is
unbounded provided that w = 0 or wΓ = 1, and τ(A) ≥ vΓ +wΓ +w+vΓ w

vΓ w(1−wΓ )
otherwise.

Proof Let us choose τ̄ , ε ∈ R so that τ̄ > τ(A) and ε > 0. Then, there exists d0 > 0
such that 1

τ̄
t (A, p) < |p| < (w + ε)T (p) for |p| ≥ d0. Also, there are arbitrarily

large times t such that |Γ (t)|
t ≥ wΓ − ε; we fix one with t ≥ τ̄d0.

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq = vΓ t+dp
vΓ τ̄−1 from

the origin, opposite to p; see Fig. 2. Note that dq ≥ t
τ̄

≥ d0, so 1
τ̄
t (A, q) < dq <

(w + ε)T (q).
Suppose that the robot Γ at time t cannot exclude the possibility that the target is

located at q. Then, it must be able to reach q by the deadline, at t (A, q) < τ̄dq . Since
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1
τ̄

≈ w≈ wΓ

Γ

vΓ

t

t

τ̄dq

dp dqp

1

0 q

Fig. 2 Illustration of notions used in the proof of Lemma 3.3. Rays starting from the origin as well as thick
lines representing constraints are all annotated with the corresponding speeds. Here, robot Γ , while in p at
time t , must know that the target is not in q, or it must be able to reach q before the deadline

Γ (t) = p and the robot Γ cannot exceed the speed limit of vΓ , we conclude that
t+ 1

vΓ
(dp +dq) < τ̄dq . However, the distance dq is defined so that t+ 1

vΓ
(dp +dq) =

τ̄dq , a contradiction.
Consequently, the robot Γ must already know at time t that the target is not at point

q. The robots can only communicate by meeting and their speeds are limited by 1, so
this information needs at least dq + dp time to be transferred from q to p. In other
words, some robot Γ ′ must have visited q at time T (q) ≤ t − dp − dq .

Combined with dq < (w + ε)T (q), this implies dq < (w + ε)(t − dp − dq), i.e.,

dq <
(w+ε)(t−dp)

1+w+ε
. By definition of dq , this further yields

vΓ t+dp
vΓ τ̄−1 <

(w+ε)(t−dp)
1+w+ε

,

(vΓ t + dp)(1 + w + ε) < (w + ε)(t − dp)(vΓ τ̄ − 1),

dp(1 + w + ε + (w + ε)(vΓ τ̄ − 1)) < t ((w + ε)(vΓ τ̄ − 1) − vΓ (1 + w + ε)),

dp(1 + (w + ε)vΓ τ̄ ) < t ((w + ε)(vΓ τ̄ − 1 − vΓ ) − vΓ ),

dp
t <

(w+ε)(vΓ τ̄−1−vΓ )−vΓ

(w+ε)vΓ τ̄+1 .

However, recall that time t was chosen so that dp ≥ (wΓ − ε)t . Therefore,

wΓ − ε <
(w+ε)(vΓ τ̄−1−vΓ )−vΓ

(w+ε)vΓ τ̄+1 .
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As ε > 0 can be chosen arbitrarily close to 0, we conclude that

wΓ ≤ w(vΓ τ̄−1−vΓ )−vΓ

wvΓ τ̄+1 ,

wΓ wvΓ τ̄ + wΓ ≤ w(vΓ τ̄ − 1 − vΓ ) − vΓ ,

wΓ + w + vΓ w + vΓ ≤ τ̄ vΓ w(1 − wΓ ).

If w = 0 or wΓ = 1, this is a contradiction: 0 = wvΓ τ̄ (1 − wΓ ) ≥ vΓ +
wΓ + w + vΓ w ≥ vΓ > 0. Hence, τ(A) cannot be bounded from above. Otherwise,
wvΓ (1− wΓ ) > 0, so τ̄ ≥ vΓ +wΓ +w+vΓ w

vΓ w(1−wΓ )
. Since τ̄ can be chosen arbitrarily close to

τ(A), we conclude that τ(A) ≥ vΓ +wΓ +w+vΓ w
vΓ w(1−wΓ )

. �
The following immediate corollary gives a complete proof of the lower bound 9

in the general case; it also proves the optimality of A∗ for v ≥ 1
3 . (Recall the partial

arguments of the lower bound of 9 in [13]; see also [5].)

Corollary 3.4 For any algorithmA with overall progress speedw and any collection
R of robots with speeds not exceeding 1 and communicating by meeting, we have
τ(A) ≥ 1+3w

w−w2 ≥ 9.

Proof We apply Lemma 3.3 for the robot Γ with progress speedw and speed vΓ ≤ 1.
We obtain

τ(A) ≥ vΓ +2w+vΓ w

vΓ (w−w2)
= 1+ 2w

vΓ
+w

w−w2 ≥ 1+3w
w−w2 .

Finally, we observe that

1+3w
w−w2 − 9 = 1+3w−9w+9w2

w−w2 = (1−3w)2

w−w2 ≥ 0,

so τ(A) ≥ 9. �
Another straightforward corollary proves the optimality of A∗ provided that the

progress speed w is sufficiently large.

Corollary 3.5 Let A be a line search algorithm for any collection R of robots with
speeds not exceeding 1 and communicating by meeting. If the overall progress speed
satisfies w ≥ 1−v

1+3v , then τ(A) ≥ τ(A∗).

Proof Observe that the function f (v) = 1+3v
v−v2

is decreasing for 0 < v ≤ 1
3 and

increasing for 1
3 ≤ v < 1. For v ≤ 1

3 , we havew ≥ 1−v
1+3v >

1− 1
3

1+1 = 1
3 , soCorollary 3.4

yields

τ(A) ≥ f (w) ≥ f ( 1−v
1+3v ) = 1+3v

v−v2
≥ τ(A∗).

On the other hand, for v ≥ 1
3 , Corollary 3.4 implies

τ(A) ≥ f (w) ≥ f ( 13 ) = 9 ≥ τ(A∗).
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In both cases we derived the claimed inequality. �
Next, we conclude that in any algorithm beating A∗, the slowest robot r cannot

discover arbitrarily far points.

Corollary 3.6 Let A be a line search algorithm for a collection R of robots with
speeds not exceeding 1 and communicating by meeting. If the set of points discovered
by the slowest robot r with speed v is unbounded, then τ(A) ≥ τ(A∗).

Proof For a proof by contradiction, suppose that τ(A) < τ ∗, where τ ∗ = τ(A∗). By
Corollary 3.5, this yields a bound w < 1−v

1+3v ≤ 1
vτ∗ on the overall progress speed.

Moreover, if r discovers arbitrarily far points, then its progress speed wr satisfies
wr ≥ 1

τ(A)
> 1

τ∗ . Hence, Lemma 3.3 applied for the slowest robot r yields

τ ∗ > τ(A) ≥ v+wr+w+vw
vw(1−wr )

≥ v + 1
τ∗ + 1

vτ∗ + v
vτ∗

v 1
vτ∗

(
1 − 1

τ∗
) = τ ∗ v2τ∗+2v+1

v(τ∗−1) .

In other words,

vτ ∗ − v > v2τ ∗ + 2v + 1,

τ ∗ > 1+3v
v−v2

.

This contradiction concludes the proof. �
Next, we aim at showing that τ(A) ≥ τ(A∗) provided that the set of points discov-

ered by the slower robot r is bounded. Our proof does not rely on the communication
by meeting model, so we state this result in the wireless communication model. We
start with two bounds on the discovery speed and then deduce the claimed inequality
with some calculations.

Lemma 3.7 LetA be a line search algorithm for a single robot with maximum speed
1, progress speed w, and discovery speed vd . Then vd ≤ 2w

1+3w .

Proof Let ε > 0; then |p| < (w+ε)T (p) for points p sufficiently far from the origin.
Moreover, let τ̄ < 1+3w

w−w2 and observe that, by Corollary 3.4, τ(A) > τ̄ ; thus, there
are arbitrarily far points p with t (A, p) > τ̄ |p|.

Let us choose such a point p discovered at time t := T (p) = t (A, p) > τ̄ |p|,
and let q be the furthest point on the opposite side of the origin, discovered at time
t ′ := T (q) < t . Denote dp = |p| and dq = |q|; see Fig. 3. The distance dq can be
arbitrarily large provided that p is chosen sufficiently far; therefore, dq < (w + ε)t ′.
Furthermore, the speed limit yields t ≥ t ′ + dp + dq , so

dq < (w + ε)(t − dp − dq)

dq(1 + w + ε) < (w + ε)(t − dp)

dq <
(w+ε)(t−dp)

1+w+ε
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1
τ̄

≈ w

t

t
D(t)

dp q0

1

p dq

Fig. 3 Illustration of notions used in the proof of Lemma 3.7

Now, observe that

|D(t)|
t = dp+dq

t <
dp+ (w+ε)(t−dp)

1+w+ε
t = dp+(w+ε)t

t (1+w+ε)
<

1+τ̄ (w+ε)
τ̄ (1+w+ε)

.

Since t can be chosen arbitrarily large, we obtain vd ≤ 1+τ̄ (w+ε)
τ̄ (1+w+ε)

. Because ε can

be chosen arbitrarily close to 0 and τ̄ can be chosen arbitrarily close to 1+3w
w−w2 , we

furthermore conclude that

vd ≤ 1 + 1+3w
w−w2 w

1+3w
w−w2 (1 + w)

= w−w2+w(1+3w)
(1+3w)(1+w)

= 2w+2w2

(1+3w)(1+w)
= 2w

1+3w ,

as claimed. �

Lemma 3.8 Let A be a line search algorithm for a collection R of robots, using
wireless communication or communication by meeting. If R contains a robot r with
speed v, then the discovery speed vd must satisfy vd ≥ 2v

vτ(A)−1 .

Proof Let τ̄ be a real number such that τ̄ > τ(A); then t (A, p) < τ̄ |p| for points p
sufficiently far from the origin.

Let p and q be furthest points on the opposite sides of the origin discovered at
or before some time t . Moreover, let dp = |p| and dq = |q|; see Fig. 4. Note that
dp and dq are arbitrarily large provided that t is chosen sufficiently large. At time t ,
there are undiscovered points arbitrarily close to p and q. Hence, the robot r must
be able to reach p before τ̄dp and q before τ̄dq , i.e., τ̄dp ≥ t + 1

v
|p − r(t)| and

τ̄dq ≥ t + 1
v
|q − r(t)|. The point r(t) is located between p and q, so these two

inequalities yield
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1
τ̄

1
τ̄

r
v

v

D(t)
t

τ̄dq

τ̄dp

d pq0
q dp

Fig. 4 Illustration of notions used in the proof of Lemma 3.8. The slowest robot r must be able to reach p
by τ̄dp and q by τ̄dq

τ̄ (dp + dq) ≥ 2t + 1
v

(
dp + dq

)
,

(dp + dq)(vτ̄ − 1) ≥ 2tv,

|D(t)|
t = dp+dq

t ≥ 2v
vτ̄−1 .

This inequality holds for each sufficiently large t , so we have

vd = lim inf
t→∞

|D(t)|
t ≥ 2v

vτ̄−1 .

To derive the claimed bound on vd , we note that τ̄ can be chosen arbitrarily close to
τ(A). �
Corollary 3.9 LetA be a line search algorithm for two robots R and r with speeds 1
and v, respectively, using wireless communication or communication by meeting. If
the set of points discovered by r is bounded, then τ(A) ≥ τ(A∗).

Proof For a proof by contradiction, suppose that τ(A) < τ(A∗). The trajectory of
R can be interpreted as a line search algorithm A′ for a collection R = {R} of one
robot. Since the set of points discovered by r is bounded, the discovery speeds of A
andA′ are the same, say vd . For the same reason, we have τ(A′) ≤ τ(A), and, due to
Corollary 3.5, w < 1−v

1+3v . By Lemma 3.7, this yields

vd ≤ 2w
1+3w <

2 1−v
1+3v

1+3 1−v
1+3v

= 2(1−v)
1+3v+3(1−v)

= 2(1−v)
4 = 1−v

2 .

On the other hand, Lemma 3.8 implies

vd ≥ 2v
vτ(A)−1 > 2v

vτ(A∗)−1 ≥ 2v

v 1+3v
v−v2

− 1
= 2v(1−v)

1+3v−(1−v)
= 1−v

2 .
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This is a contradiction. �
Corollaries 3.6 and 3.9 prove τ(A) ≥ τ(A∗) under complementary assumptions.

Hence, we obtain the main result of this section.

Proposition 3.10 Any algorithm A in the communication by meeting model for two
robots with speeds 1 and v, respectively, satisfies τ(A) ≥ τ(A∗).

We conclude that A∗ is an optimum algorithm for the communication by meeting
model.

Theorem 3.11 Consider the line search problem in the communication by meeting
model for two robots with speeds 1 and v, respectively. For each 0 < v ≤ 1, the
algorithm A∗ achieves the optimum competitive ratio:

CR(A∗) =
{

1+3v
1−v

if 0 < v ≤ 1
3 ,

9v if 1
3 ≤ v ≤ 1.

4 Wireless Communication

In this model, we have only the exploration phase and the target phase. Nevertheless,
it turns out that the algorithmA∗ presented in Sect. 3.1 is still optimal if the maximum
speeds of the two robots are very different: if v ≤ √

17 − 4 ≈ 0.123. An algorithm
B∗ optimal for v ≥ √

17 − 4 is described in Sect. 4.1. As opposed to A∗, in B∗ both
robots participate in the exploration phase. By Corollary 3.9, this is actually necessary
to improve upon A∗.

4.1 The Upper Bound

The optimal strategy for two robots traveling at the same speed [5] is very simple:
Both robots explore in opposite directions at full speeds. When a robot learns that the
other robot has found the target, it changes its direction towards the target.

Let us analyze the performance of this strategy for robots with distinct speeds. The
total search time is a sum of three terms: the time for a robot to discover the target, the
time for the other robot to go back to the origin and the time for that robot to reach the
target.We consider two cases. First, suppose that the faster robot R discovers the target
at distance d from the origin. Then the total search time is d + d + 1

v
d = (2 + 1

v
)d.

On the other hand, if the slower robot r discovers the target, the search time is worse:
1
v
d + 1

v
d + d = ( 2

v
+ 1)d.

Intuitively, the faster robot explores too fast and it thus spends too much time going
back to the origin. Hence, we limit the progress speed of R to v′ ≤ 1. When it already
knows the target, the faster robot is still allowed to use its full speed equal to 1. Now,
the total search times are 1

v′ d + 1
v′ d + 1

v
d = ( 2

v′ + 1
v
)d and 1

v
d + v′

v
d + d = 1+v′+v

v
d,

respectively. We choose v′ to minimize the maximum of these two quantities. As they
are, respectively, a decreasing and an increasing function of v′, for the optimal value
v′ these terms are equal to each other, i.e., v′ satisfies 1+v′+v

v
= 2

v′ + 1
v
.
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t

0

r R

t

0

r R

t

0
Rr

Fig. 5 Illustration of algorithmB∗ before target discovery (left),when the target is discovered by r (middle),
and by R (right). The horizontal axis represents the line searched and the vertical axis represents the time.
The empty circle denotes the target discovery. Double and single solid lines represent the trajectories of the
faster and the slower robot, respectively. Dashed lines correspond to the progress speeds of the two robots
and dotted lines to the search time

Algorithm B∗ [for two robots with wireless communication]
1. Until the target is discovered, the two robots move in opposite directions. Robot r moves with its

maximal speed v and robot R with speed v′ = 1
2 (

√
v2 + 8v − v) ≤ 1.

2. When either robot finds the target, it notifies the other one using wireless communication and the
other robot moves to the target using its maximal speed.

The following fact gives the right values of v′ and of the search time τ ∗. This lets
us complete the description of the algorithm B∗ (see Fig. 5), whose analysis follows
immediately from the discussion above.

Fact 4.1 For any speed v ∈ (0, 1], let us define τ ∗ = 2+v+√
v2+8v

2v and v′ =√
v2+8v−v

2 . We have τ ∗ = 1+v+v′
v

and τ ∗ = 1
v

+ 2
v′ . Moreover, v′ is an increasing

function of v.

Proof By definition of τ ∗ and v′,

1+v+v′
v

= 2+2v+2v′
2v = 2+2v+√

v2+8v−v
2v = 2+v+√

v2+8v
2v = τ ∗.

Similarly,

1
v

+ 2
v′ = 1

v
+ 4√

v2+8v−v
= 1

v
+ 4(

√
v2+8v+v)

(
√

v2+8v−v)(
√

v2+8v+v)
= 1

v
+ 4(

√
v2+8v+v)
8v = τ ∗.

Finally, note that

v′ = 4v√
v2+8v+v

= 4√
1+8/v+1

indeed is an increasing function of v. �
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Recall that t (B∗, p) = |p|( 2
v′ + 1

v
) or t (B∗, p) = |p| 1+v′+v

v
, depending on which

robot visits p first. Setting v′ according to Fact 4.1, in both cases we obtain t (B∗, p) =
τ ∗|p|. In other words:
Proposition 4.2 For every point p ∈ R, the algorithm B∗ satisfies t (B∗, p) =
2+v+√

v2+8v
2v |p|.

Corollary 4.3 For the algorithm B∗, CR(B∗) = 2+v+√
v2+8v

2 .

4.2 The Lower Bound

In this section, we show that for each v, the optimum competitive ratio is achieved by
either A∗ or B∗. Below, we give an overview of this proof.

The argument starts with Lemma 4.4, which is a counterpart of Lemma 3.3. Com-
pared to Lemma 3.3, we allow for the wireless communication, but restrict to the case
of two robots and analyze the situation only from the perspective of a robot Γ whose
progress speed is equal to the overall progress speedw. As in the original proof, we fix
a point p = Γ (t) with |p| ≈ t · w, choose a point q on the opposite side of the origin
so that Γ cannot reach q before the deadline, and conclude that Γ must already know
at time t that the target is not located at q. Then, the reasoning becomes different and
to proceed, we consider two cases. If q has been discovered by Γ (which then traveled
to p), we obtain the familiar upper bound on T (q), which is then combined with a
lower bound following from the limited progress speed. Otherwise, the other robot
Γ ′ may have used the wireless communication to notify Γ , so we can only deduce
T (q) ≤ t . However, we observe that the progress speed of Γ ′ is at most v, so in this
case we get a better lower bound on T (q); see Fig. 6. Combining all the constraints,
after some calculations we obtain the inequality τ(B) ≥ min( 1+3w

w−w2 ,
1+v+w

v
).

Our next aim is to prove that a large progress speed excludes improving upon A∗
and B∗. Mimicking the idea behind Corollary 3.5, in Corollary 4.5 we use Lemma 4.4
to show that any algorithmBwith progress speedw ≥ max(v′, 1−v

1+3v ) satisfies τ(B) ≥
min(τ (A∗), τ (B∗)).

Next, in Lemma 4.6 we prove the optimality of A∗ or B∗ assuming that w <

max(v′, 1−v
1+3v ). The proof of this lemma is by far the most intricate reasoning in this

paper. We consider a hypothetical algorithm B with τ(B) < min(τ (A∗), τ (B∗)). At
the beginning, we note that Corollary 3.9 lets us assume that the slower robot r must
actively participate in the exploration phase; otherwise, there is no hope to defeatA∗.
Thus, we consider a time t when the slower robot r discovers a point p = r(t), and
we define q to be the other endpoint of D(t). If q was too close to the origin, then the
robot r would not have enough time to reach the target located in the vicinity of q.
On the other hand, the point q cannot be too far since the robot (r or R) discovering
q cannot exceed the overall progress speed and must be able to reach the target if it
was located in the vicinity of p; see Fig. 7.

A combination of these constraints lets us conclude that v′ < w < 1−v
1+3v , that R

must have discovered q, and that no robot can visit q at time t ′ ≥ t before the vicinity
of p has been explored. If the robot r discovers any point p′ before q is visited again,
then we may replace t with T (p′) and p with p′, while preserving the point q. Thus,
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1
τ̄

≈ v≈ w ≈ w

Γ

1

t

t

τ̄dq

dp0

1

qp dq

Fig. 6 Illustration of notions used in the proof of Lemma 4.4. Here, robot Γ , while in p at time t , must be
able to reach q before the deadline or know that the target is not in q. For the latter, one of the robots must
have already visited q

an appropriate choice of t (and p) lets us guarantee that the slower robot r does not
discover any further point until q has been visited again.

Consequently, we examine the earliest time t ′ ≥ t when some robot visits q. Note
that both endpoints of segment D(t ′) must have been discovered by the faster robot
R. We consider two cases depending on the identity of the robot visiting q. If this
is the faster robot R, we bound the length of the segment D(t ′) relative to the time
t ′. The resulting value contradicts the lower bound of Lemma 3.8 on the discovery
speed. Otherwise, we repeat the whole reasoning with t ′ instead of t ; see Fig. 8. After
sufficiently many iterations, we contradict Lemma 3.8. More precisely, we work with
the function Δ(t) := |D(t)| − t · 2v

vτ(A∗)−1 : we show that it decreases each time we
change t , whereas the lower bound of Lemma 3.8 on the discovery speed implies that
it tends to infinity in the limit.

Corollary 4.5 and Lemma 4.6 cover the complementary cases of large and small
progress speeds, respectively, so Proposition 4.7 and Theorem 4.8 immediately follow.

In the remainder of this section, we provide formal proofs of the aforementioned
claims. First, we relate the progress speed w of a strategy B with its limit search time
τ(B).

Lemma 4.4 Let B be a line search algorithm in the wireless communication model
for two robots with speeds 1 and v, respectively. If the overall progress speed is w,
then τ(B) ≥ min( 1+3w

w−w2 ,
1+v+w

v
).
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Proof Let us choose τ̄ , ε ∈ R so that τ̄ > τ(B) and ε > 0. Then, there exists d0 > 0
such that 1

τ̄
t (B, p) < |p| < (w + ε)T (p) for |p| ≥ d0. Also, there is a robot Γ and

arbitrarily large times t such that |Γ (t)|
t ≥ w − ε; we fix one with t ≥ τ̄d0.

Let p = Γ (t) and dp = |p|. Also, consider a point q at distance dq = t+dp
τ̄−1 from

the origin, opposite to p, and denote t ′ = T (q); see Fig. 6. Observe that dq ≥ t
τ̄

≥ d0,
so 1

τ̄
t (B, q) < dq < (w + ε)t ′.

First, suppose that t ′ > t . Then, the robotΓ must be able to reach q by the deadline,
at t (B, q) < τ̄dq . Since Γ (t) = p and the robot Γ cannot exceed the speed limit of
1, we conclude that t + dp + dq < τ̄dq . However, the distance dq is defined so that
t + dp + dq = τ̄dq , a contradiction.

Thus, t ′ ≤ t . Now, we consider two possibilities for the robot which discovered q.
If Γ (t ′) = q, then t ′ ≤ t − dp − dq by the speed limit of Γ . Consequently,

dq
w+ε

< t − dp − dq ,

dq(1 + w + ε) < (w + ε)(t − dp).

By definition of dq , this further yields

t+dp
τ̄−1 (1 + w + ε) < (w + ε)(t − dp),

(t + dp)(1 + w + ε) < (w + ε)(t − dp)(τ̄ − 1),

dp(1 + w + ε + (w + ε)(τ̄ − 1)) < t ((w + ε)(τ̄ − 1) − (1 + w + ε)),

dp(1 + (w + ε)τ̄ ) < t ((w + ε)(τ̄ − 2) − 1),
dp
t <

(w+ε)(τ̄−2)−1
1+(w+ε)τ̄

.

Otherwise, either Γ = R and r discovered q, or Γ = r in which case w ≤ v. In
both sub-cases, we have dq < T (q)(v + ε) = t ′(v + ε) ≤ t (v + ε). Combining this
inequality with the definition of dq , we obtain

t+dp
τ̄−1 < t (v + ε),

t + dp < t (v + ε)(τ̄ − 1),

dp < t (v + ε)(τ̄ − 1) − t,
dp
t < (v + ε)(τ̄ − 1) − 1.

Summing up, the two cases yield

dp
t ≤ max

(
(v + ε)(τ̄ − 1) − 1, (w+ε)(τ̄−2)−1

(w+ε)τ̄+1

)
.

However, recall that the time t was chosen so that dp
t ≥ w − ε. Therefore,

w − ε ≤ max
(
(v + ε)(τ̄ − 1) − 1, (w+ε)(τ̄−2)−1

(w+ε)τ̄+1

)
.
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As ε > 0 can be chosen arbitrarily close to 0, we conclude that

w ≤ v(τ̄ − 1) − 1 or w ≤ w(τ̄−2)−1
wτ̄+1 ,

w + 1 ≤ v(τ̄ − 1) or w2τ̄ + w ≤ w(τ̄ − 2) − 1,

w + 1 + v ≤ vτ̄ or 1 + 3w ≤ (w − w2)τ̄ ,

w+1+v
v

≤ τ̄ or 1+3w
w−w2 ≤ τ̄ ,

i.e., τ̄ ≥ min( 1+3w
w−w2 ,

1+v+w
v

) for each τ̄ > τ(B). Consequently,

τ(B) ≥ min
(
1+3w
w−w2 ,

1+v+w
v

)
,

as claimed. �
We apply Lemma 4.4 to derive a tight lower bound on τ(B) provided that the overall

progress speed w is sufficiently large.

Corollary 4.5 Let B be a line search algorithm in the wireless communication model
for two robots with speeds 1 and v, respectively. If the overall progress speed is
w ≥ max(v′, 1−v

1+3v ), then τ(B) ≥ min(τ (A∗), τ (B∗)).

Proof Let us recall that the function f (v) = 1+3v
v−v2

is decreasing for 0 < v ≤ 1
3

and increasing for 1
3 ≤ v < 1. For v ≤ 1

3 , we have 1−v
1+3v ≥ 1

3 . Hence, due to

w ≥ max(v′, 1−v
1+3v ) ≥ 1

3 , Lemma 4.4 yields

τ(B) ≥ min
(
f (w), 1+v+w

v

) ≥ min
(
f ( 1−v

1+3v ), 1+v+v′
v

)
≥ min(τ (A∗), τ (B∗)).

On the other hand, for v ≥ 1
3 Lemma 4.4 implies

τ(B) ≥ min
(
f (w), 1+v+w

v

) ≥ min
(
f ( 13 ),

1+v+v′
v

)
≥ min

(
τ(A∗), τ (B∗)

)
.

In both cases we derived the claimed inequality. �
In the next lemma, we prove the same lower bound on τ(B) for the complementary

case of small progress speed.

Lemma 4.6 LetB be a line search algorithm in the wireless communication model for
two robots with speeds 1 and v, respectively. If the overall progress speed w satisfies
w < max(v′, 1−v

1+3v ), then τ(B) ≥ min(τ (A∗), τ (B∗)).

Proof For a proof by contradiction, suppose that τ(B) < τ ∗, where τ ∗ =
min(τ (A∗), τ (B∗)). Consequently, also due to the upper bound on w, there exists
d0 > 0 such that 1

τ∗ t (B, p) < |p| < T (p)max(v′, 1−v
1+3v ) for |p| ≥ d0.

By Corollary 3.9, τ(B) < τ(A∗) implies that the set of points discovered by the
slower robot r is unbounded. Thus, the set T := {t : T (r(t)) = t} of times when the
slower robot r discovers some point is also unbounded.
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By Lemma 3.8, the discovery speed is at least vd ≥ 2v
vτ(B)−1 > 2v

vτ∗−1 , i.e.,

lim inf t→∞ |D(t)|
t > 2v

vτ∗−1 . Consequently, the function

Δ(t) := |D(t)| − t 2v
vτ∗−1

satisfies limt→∞ Δ(t) = ∞.
Hence, for each threshold δ, the set Tδ := {t ∈ T : Δ(t) ≤ δ} is bounded. Due

to the structure of the set T , this implies tδ := sup Tδ ∈ Tδ . As a result, we obtain
arbitrarily large times t = tδ ∈ T such that Δ(t) < Δ(t ′) for each t ′ ∈ T with t ′ > t ;

Let us take t = tδ for some δ ≥ 0 such that t ≥ τ ∗d0. Moreover, let p = r(t) and
let q the other endpoint of the segment D(t). Let us denote dp = |p| and dq = |q|;
see Fig. 7. Observe that dp, dq ≥ d0 because t ≥ τ ∗d0 yields [−d0, d0] ⊆ D(t).
(Otherwise, the target at distance d0 from the origin would not be discovered prior to
the deadline, which does not exceed τ̄d0.)

At time t , there are undiscovered points arbitrarily close to q, so the robot r must be
able to reach q before τ ∗dq . Consequently, t + 1

v
(dp + dq) < τ ∗dq , i.e., dq >

tv+dp
vτ∗−1 .

By the speed limit on r , we have dp ≤ tv, and therefore

dq >
tv+dp
vτ∗−1 ≥ 2dp

vτ∗−1 ≥ 2dp
vτ(B∗)−1 ≥ 2dp

v
( 1

v
+ 2

v′
)
−1

= v′
v
dp.

By time t and, in general, as long as there are undiscovered points arbitrarily close
to p, any robot Γ visiting q must be able to reach p before τ ∗dp. Such a visit of q is
possible only at times t ′ which satisfy t ′ + (dp + dq) < τ ∗dp. Hence,

1
τ∗

1
τ∗v ≈ w

r R

v

1

t = tq

τ∗dp

τ∗dq

dp0 qp dq

Fig. 7 Illustration of notions used in the first part of the proof of Lemma 4.6. The slower robot r , while
discovering p at time t , must be able to reach q before τ∗dq . Similarly, the robot discovering q at time tq
must be able to reach p before τ∗dp
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t ′
dp

< τ ∗ − 1 − dq
dp

< τ ∗ − 1 − v′
v

≤ τ(B∗) − 1 − v′
v

= 1+v+v′
v

− 1 − v′
v

= 1
v
,

which yields t ′ <
dp
v

≤ t . In other words, after time t , no robot can visit point q again
until the neighborhood of p has been discovered.

Moreover, the discovery time tq := T (q) satisfies

tq
dq

< (τ ∗ − 1) dpdq − 1 < (τ ∗ − 1) v
v′ − 1 ≤ (τ (B∗) − 1) v

v′ − 1

= ( 1+v+v′
v

− 1) v
v′ − 1 = 1

v′ .

Due to v′ ≥ v, this means that q has been discovered by the faster robot R. We also
have dq < tq max(v′, 1−v

1+3v ), which lets us conclude that

tqv
′ < dq < tq

1−v
1+3v .

Next, we shall prove that, after time t , the slower robot r cannot discover any new
point until q is visited again. For a proof by contradiction, suppose that it discovers
point p′ (at distance |p′| = dp′ from the origin, on the same side as p) at time t ′ > t ,
t ′ ∈ T , and q is not visited between time t and t ′. Note that t ′ ≥ t + 1

v
(dp′ − dp),

D(t ′) = p′q , and D(t) = pq . By the choice of t ∈ T , we have Δ(t) < Δ(t ′), i.e.,

|D(t)| − t 2v
vτ∗−1 < |D(t ′)| − t ′ 2v

vτ∗−1 ≤ |D(t ′)| − t 2v
vτ∗−1 − (dp′ − dp)

2
vτ∗−1 ,

and therefore

dp′ − dp = |D(t ′)| − |D(t)| >
2(dp′−dp)

vτ∗−1 ≥ 2(dp′−dp)
vτ(B∗)−1 = v′(dp′−dp)

v
≥ dp′ − dp,

a contradiction. Consequently, the robot r cannot discover any point before q is visited
again after time t . As we have already proved, the latter may happen only after R visits
p (and discovers its neighborhood).

Let t ′ > t be the time when q is visited for the first time after t . Let p′ be the
furthest point opposite to q discovered (by R) prior to time t ′, and let dp′ = |p′|; see
Fig. 8. There are undiscovered points arbitrarily close to q, so t ′ < τ ∗dq ≤ τ(A∗)dq ≤
1+3v
v−v2

dq ≤ tq
v
.

Now, we consider two cases depending on which robot first visits q at time t ′. First,
suppose that it is the faster robot R. By the speed limit, we have t ′ ≥ tq +2(dp′ +dq).
Since t ′ > t = tδ for δ ≥ 0, we have Δ(t) > 0, i.e.,

|D(t ′)|
t ′ > 2v

vτ∗−1 ≥ 2v
vτ(A∗)−1 ≥ 2v

1+3v
1−v

−1
= 1−v

2 .
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1
τ∗

1
τ∗ ≈ w

r
R

p p q

v

1

t

t

tq

τ∗dp

τ∗dq

dp dq

D(t)

D(t )

d

0

p

Fig. 8 Illustration of notions used in the last part of the proof of Lemma 4.6

On the other hand,

|D(t ′)|
t ′ = dp′+dq

t ′ ≤ t ′−tq
2t ′ = 1

2 − tq
2t ′ < 1

2 − v
2 = 1−v

2 .

These two inequalities contradict each other.
Consequently, itmust be the slower robot r which visitsq at time t ′ ≥ t+ 1

v
(dp+dq).

Hence, t ′ ∈ T and, by definition of t ∈ T , this yields Δ(t) < Δ(t ′), i.e.,

|D(t)| − t 2v
vτ∗−1 < |D(t ′)| − t ′ 2v

vτ∗−1 ≤ |D(t ′)| − t 2v
vτ∗−1 − (dp + dq)

2
vτ∗−1 .

Consequently,

dp′ − dp = |D(t ′)| − |D(t)| ≥ (dp + dq)
2

vτ∗−1 ≥ (dp + dq)
2

vτ(A∗)−1

≥ (dp + dq)
1−v
2v ,

and therefore dp 1+v
2v +dq

1−v
2v ≤ dp′ . However, since R must be able to reach q before

τ ∗dq , we have

tq + 2(dq + dp′) < τ ∗dq ≤ τ(A∗)dq ≤ 1+3v
v−v2

dq ,
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and thus

d ′
p <

1+3v
v−v2

dq−tq
2 − dq = 1+3v

2(v−v2)
dq − dq − tq

2 .

Moreover, R must be able to reach p before τ ∗dp, so

tq + (dq + dp) < τ ∗dp ≤ τ(A∗)dp ≤ 1+3v
v−v2

dp,

and therefore

dp ≥ tq+dq
1+3v
v−v2

−1
= (tq+dq )(v−v2)

(1+v)2
.

Hence,

(tq+dq )(v−v2)

(1+v)2
1+v
2v + dq

1−v
2v < 1+3v

2(v−v2)
dq − dq − tq

2 ,

(tq+dq )(1−v)

2(1+v)
+ dq

1−v
2v < 1+3v

2(v−v2)
dq − dq − tq

2 ,

tq
(
1
2 + 1−v

2(1+v)

)
< dq

(
1+3v

2(v−v2)
− 1 − 1−v

2v − 1−v
2(1+v)

)
,

tq
1+v+1−v
2(1+v)

< dq
(

1+3v
2v(1−v)

− 1+v
2v − 1−v

2(1+v)

)
,

tq
2

2(1+v)
< dq

(
1+3v

2v(1−v)
− (1+v)2+v(1−v)

2v(1+v)

)
,

tq
1

1+v
< dq

(
1+3v

2v(1−v)
− 1+2v+v2+v−v2

2v(1+v)

)
,

tq < dq
(

(1+3v)(1+v)
2v(1−v)

− 1+3v
2v

)
,

tq < dq
(1+3v)((1+v)−(1−v))

2v(1−v)
,

tq < dq
1+3v
1−v

.

However, this contradicts dq < tq
1−v
1+3v . �

Corollary 4.5 and Lemma 4.6 let us conclude the tight lower bound.

Proposition 4.7 Any algorithmB in the wireless communication model for two robots
with speeds 1 and v, respectively, satisfies τ(B) ≥ min(τ (A∗), τ (B∗)).

Weconclude that for eachv, eitherA∗ orB∗ is anoptimumalgorithm for thewireless
communication model. Simple calculations show thatA∗ is optimal for v ≤ √

17−4,
whereas B∗ is optimal for v ≥ √

17 − 4.

Theorem 4.8 Consider the line search problem in the wireless communication model
for two robots with speeds 1 and v, respectively. For each 0 < v ≤ 1, either the
algorithm A∗ or B∗ achieves the optimum competitive ratio:

min(CR(A∗),CR(B∗)) =
{
CR(A∗) = 1+3v

1−v
if 0 < v ≤ √

17 − 4,

CR(B∗) = 2+v+√
v2+8v

2 if
√
17 − 4 ≤ v ≤ 1.
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