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Abstract Deterministic branch-and-bound algorithms for continuous global optimization often visit a large
number of boxes in the neighborhood of a global minimizer, resulting in the so-called cluster problem (J Glob
Optim 5(3):253-265,1994). This article extends previous analyses of the cluster problem in unconstrained
global optimization (J Glob Optim 5(3):253-265,1994, J Glob Optim 58(3):429-438,2014) to the constrained
setting based on a recently-developed notion of convergence order for convex relaxation-based lower bounding
schemes. It is shown that clustering can occur both on nearly-optimal and nearly-feasible regions in the vicinity
of a global minimizer. In contrast to the case of unconstrained optimization, where at least second-order con-
vergent schemes of relaxations are required to mitigate thecluster problem when the minimizer sits at a point
of differentiability of the objective function, it is shownthat first-order convergent lower bounding schemes
for constrained problems may mitigate the cluster problem under certain conditions. Additionally, conditions
under which second-order convergent lower bounding schemes are sufficient to mitigate the cluster problem
around a global minimizer are developed. Conditions on the convergence order prefactor that are sufficient to
altogether eliminate the cluster problem are also provided. This analysis reduces to previous analyses of the
cluster problem for unconstrained optimization under suitable assumptions.

Keywords Cluster problem· Global optimization· Constrained optimization· Branch-and-bound·
Convergence order· Convex relaxation· Lower bounding scheme

Mathematics Subject Classification (2010)49M20 · 49M37 · 65K05 · 68Q25· 90C26· 90C46

1 Introduction

One of the key issues faced by deterministic branch-and-bound algorithms for continuous global optimiza-
tion [11] is the so-called cluster problem, where a large number of boxes may be visited by the algorithm in the
vicinity of a global minimizer [7, 21, 29]. Du and Kearfott [7, 13] were the first to analyze this phenomenon in
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the context of interval branch-and-bound algorithms for unconstrained global optimization. They established
that the accuracy with which the bounding scheme estimates the range of the objective function, as determined
by the notion of convergence order (see Definition7), dictates the extent of the cluster problem. Furthermore,
they determined that, in the worst case, at least second-order convergence of the bounding scheme is required
to mitigate ‘clustering’ [7]. Next, Neumaier [21] provided a similar analysis and concluded that even second-
order convergence of the bounding scheme might, in the worstcase, result in an exponential number of boxes
in the vicinity of an unconstrained global minimizer. In addition, Neumaier claimed that a similar situation
holds in a reduced manifold for the constrained case [21].

Recently, Wechsung et al. [29] provided a refined analysis of Neumaier’s argument for unconstrained global
optimization which corroborated the previous analyses. Inaddition, they showed that the number of boxes
visited in the vicinity of a global minimizer may scale differently depending on the convergence order prefactor.
As a result, second-order convergent bounding schemes withsmall-enough prefactors may altogether eliminate
the cluster problem, while second-order convergent bounding schemes with large-enough prefactors may result
in an exponential number of boxes being visited. Also note the analysis by Wechsung [28, Section 2.3] that
shows first-order convergence of the bounding scheme may be sufficient to mitigate the cluster problem in
unconstrained optimization when the optimizer sits at a point of nondifferentiability of the objective function.

As highlighted above, the convergence order of the boundingscheme plays a key role in the analysis of
the cluster problem. This concept, which is based on the rateat which the notion of excess width from interval
extensions [18] shrinks to zero, compares the rate of convergence of an estimated range of a function to its
true range. Bompadre and Mitsos [3] developed the notions of Hausdorff and pointwise convergence rates of
bounding schemes, and established sharp rules for the propagation of convergence orders of bounding schemes
constructed using McCormick’s composition rules [17]. In addition, Bompadre and Mitsos [3] demonstrated
second-order pointwise convergence of schemes of convex and concave envelopes of twice continuously dif-
ferentiable functions, second-order pointwise convergence of schemes ofαBB relaxations [1], and provided
a conservative estimate of the prefactor ofαBB relaxation schemes for the case of constantα . Scholz [25]
demonstrated second-order convergence of centered forms (also see, for instance, the article by Krawczyk and
Nickel [15]). Bompadre and coworkers [4] established sharp rules for the propagation of convergence orders
of Taylor and McCormick-Taylor models. Najman and Mitsos [20] established sharp rules for the propagation
of convergence orders of the multivariate McCormick relaxations developed in [19, 26]. Finally, Khan and
coworkers [14] developed a continuously differentiable variant of McCormick relaxations [17, 19, 26], and
established second-order pointwise convergence of schemes of the differentiable McCormick relaxations for
twice continuously differentiable functions. The above literature not only helps develop bounding schemes for
unconstrained optimization with the requisite convergence order, but also provides conservative estimates for
the convergence order prefactor (see Definition7). Also note the related definition for the rate of convergence
of (lower) bounding schemes for geometric branch-and-bound methods provided by Schöbel and Scholz [23].

This work provides an analysis of the cluster problem for constrained global optimization. It is shown that
clustering can occur both on feasible and infeasible regions in the neighborhood of a global minimizer. Akin to
the case of unconstrained optimization, both the convergence order of a lower bounding scheme and its corre-
sponding prefactor (see Definition8) may be crucial towards tackling the cluster problem; however, in contrast
to the case of unconstrained optimization, it is shown that first-order convergent lower bounding schemes with
small-enough prefactors may eliminate the cluster problemunder certain conditions. Additionally, conditions
under which second-order convergence of the lower boundingscheme may be sufficient to mitigate clustering
are developed.

This work assumes that boxes can be placed such that global minimizers are always in their relative in-
terior, otherwise an exponential number of boxes can contain global minimizers. Techniques such as epsilon-
inflation [16] or back-boxing [21, 27] can potentially be used to place boxes with global minimizers in their
relative interior.

This article is organized as follows. Section2 provides the problem formulation, describes the notions of
convergence used in this work, and sets up the framework for analyzing the cluster problem in Section3. Sec-
tion 3.1analyzes the cluster problem on the set of nearly-optimal feasible points in a neighborhood of a global
minimizer and determines conditions under which first-order and second-order convergent bounding schemes
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may be sufficient to mitigate clustering in such neighborhoods. Section3.2analyzes the cluster problem on the
set of nearly-feasible points in a neighborhood of a global minimizer that have a ‘good-enough’ objective func-
tion value, and develops conditions under which first-orderand second-order convergent bounding schemes
may be sufficient to mitigate clustering in such neighborhoods. Finally, Section4 lists the conclusions of this
work.

2 Problem Formulation and Background

Consider the problem

min
x

f (x) (P)

s.t. g(x) ≤ 0,

h(x) = 0,

x ∈ X,

whereX ⊂ Rnx is a nonempty open bounded convex set, the functionsf : X → R, g : X → RmI , andh : X → RmE

are continuous onX, and0 denotes a vector of zeros of appropriate dimension. The following assumptions are
enforced throughout this work.

Assumption 1 The constraints define a nonempty compact set

{x ∈ X : g(x) ≤ 0, h(x) = 0} ⊂ X.

Assumption 2 Let x∗ ∈ X be a global minimum for Problem (P), and assume that the branch-and-bound
algorithm has found the upper boundUBD = f (x∗) sufficiently early on. Letε be the termination tolerance for
the branch-and-bound algorithm, and suppose the algorithmfathoms nodek whenUBD− LBDk ≤ ε , where
LBDk is the lower bound on nodek.

When Assumption1 is enforced, Problem (P) attains its optimal solution onX by virtue of the assumption
that f is continuous onX. Note that the assumption thatX is an open set is made purely for ease of exposition,
particularly when differentiability assumptions on the functions in Problem (P) are made, and is not practically
implementable in general. As a result, we implicitly assumethroughout this work that finite bounds on the
variables (which define an interval in the interior ofX) are available for use in a branch-and-bound setting.

Assumption2 essentially assumes that the convergence of the overall lower bound is the limiting fac-
tor for the convergence of the branch-and-bound algorithm.This is usually a reasonable assumption in the
context of branch-and-bound algorithms for global optimization where most of the effort is typically spent
in provingε-optimality of feasible solutions found using (heuristic)local optimization-based techniques. The
cluster problem analysis in this work is asymptotic inε in general; we provide conservative estimates of the
worst-case number of boxes visited by the branch-and-boundalgorithm in nearly-optimal and nearly-feasible
neighborhoods of global minimizers for some sufficiently small ε > 0. The conservatism of the above estimates
decreases asε → 0. The asymptotic nature of our analysis with respect toε is not only a result of considering
the local behavior of the objective function in the vicinityof a global minimizer (which is also a limitation of
the analyses of the cluster problem in unconstrained optimization [7, 21, 28, 29]), but is also a consequence of
considering the local behavior of the constraints (and, therefore, the feasible region) in the vicinity of a global
minimizer. In practice, values ofε for which the analysis of the cluster problem provides a reasonable overesti-
mate of the number of boxes visited can be much larger than themachine precision (on the order of 10−1). This
is evidenced by the examples in Section3. Also note that the fathoming criterion for the branch-and-bound
algorithm in this work is different from the one considered by Wechsung et al. [29], who assume that nodek
is fathomed only whenLBDk > UBD; however, the worst-case estimates of the number of boxes visited by the
branch-and-bound algorithm are not affected by this difference in our assumptions.
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Throughout this work, we will usex∗ to denote a global minimizer of Problem (P), IZ to denote the set of
nonempty, closed and bounded interval subsets ofZ ⊂ Rn, ZC to denote the relative complement of a setZ ⊂ Rn

with respect toX, cl(Z) to denote the closure of a setZ ⊂ Rn, ‖z‖ to denote the Euclidean norm ofz ∈ Rn,
R− to denote the nonpositive orthant,zj to denote thej th component of a vectorz, (z1,z2, · · · ,zn) to denote a
vectorz ∈ Rn with entriesz1,z2, · · · ,zn ∈ R (note that(z1,z2) will be used to denote both an open interval inR

and a vector inR2; the intended use will be clear from the context),⌈·⌉ to denote the ceiling function,

[

g
h

]

to

denote a vector-valued function with domainY and codomainRm+n corresponding to vector-valued functions
g : Y → Rm andh : Y → Rn, f(Z) to denote the image ofZ ⊂Y under the functionf : Y → Rm, f ′(z;d) to denote
the directional derivative of a functionf : Z ⊂ Rn → R at a pointz ∈ Z (with Z open) in a directiond ∈ Rn,
and ‘differentiability’ to refer to differentiability in the Fréchet sense. The following definitions are in order.

Definition 1 (Width of an Interval) Let Z = [zL
1 ,zU

1 ]× ·· ·× [zL
n,zU

n ] be an element ofIRn. The width ofZ,
denoted byw(Z), is given by

w(Z) := max
i=1,··· ,n

(zU
i −zL

i ).

Definition 2 (Distance Between Two Sets)LetY,Z ⊂ Rn. The distance betweenY andZ, denoted byd(Y,Z),
is defined as

d(Y,Z) := inf
y∈Y,

z∈Z

‖y−z‖.

Note that the above definition of distance does not define a metric; however, it will prove useful in defining a
measure of infeasibility for points inX for Problem (P).

Definition 3 (Lipschitz Continuous Function) Let Z ⊂ Rn. A function f : Z → R is Lipschitz continuous
with Lipschitz constantM ≥ 0 if | f (z1)− f (z2)| ≤ M‖z1 −z2‖, ∀z1,z2 ∈ Z.

Since the cluster problem analysis is asymptotic inε , we will need the following asymptotic notations.

Definition 4 (Big O and Little o Notations)LetY ⊂ R, f : Y → R, andg : Y → R. We say thatf (y) = O(g(y))
asy → ȳ ∈ Y if and only if there existδ ,M > 0 such that

| f (y)| ≤ M|g(y)|, ∀y ∈ Y with |y− ȳ| < δ .

Similarly, we say thatf (y) = o(g(y)) asy → ȳ ∈ Y if and only if for all M′
> 0 there existsδ ′

> 0 such that

| f (y)| ≤ M′|g(y)|, ∀y ∈ Y with |y− ȳ| < δ ′
.

Note that unless otherwise specified, we consider ¯y = 0 in this work.

Definition 5 (Convex and Concave Relaxations)Given a convex setZ ⊂ Rn and a functionf : Z → R, a
convex functionf cv

Z : Z → R is called a convex relaxation off on Z if f cv
Z (z) ≤ f (z), ∀z ∈ Z. Similarly, a

concave functionf cc
Z : Z → R is called a concave relaxation off on Z if f cc

Z (z) ≥ f (z), ∀z ∈ Z.

The following definition introduces the notion of schemes ofrelaxations [3].

Definition 6 (Schemes of Convex and Concave Relaxations)Let Y ⊂ Rn be a nonempty convex set, and
let f : Y → R. Assume that for everyZ ∈ IY, we can construct functionsf cv

Z : Z → R and f cc
Z : Z → R that

are convex and concave relaxations, respectively, off on Z. The sets of functions( f cv
Z )Z∈IY and ( f cc

Z )Z∈IY

define schemes of convex and concave relaxations, respectively, of f in Y, and the set of pairs of functions
( f cv

Z , f cc
Z )Z∈IY defines a scheme of relaxations off in Y. The schemes of relaxations are called continuous

when f cv
Z and f cc

Z are continuous onZ for eachZ ∈ IY.

The next definition presents a notion of convergence order ofschemes of convex and concave relaxations [29]
based on the notion of Hausdorff convergence order of a scheme of relaxations [3].
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Definition 7 (Convergence Orders of Schemes of Convex and Concave Relaxations)Let Y ⊂ Rn be a
nonempty bounded convex set, andf : Y → R be a continuous function. Let( f cv

Z )Z∈IY and( f cc
Z )Z∈IY respec-

tively denote continuous schemes of convex and concave relaxations of f in Y.
The scheme of convex relaxations( f cv

Z )Z∈IY is said to have convergence of orderβ > 0 aty ∈ Y if there
existsτcv ≥ 0 such that

min
z∈Z

f (z)−min
z∈Z

f cv
Z (z) ≤ τcvw(Z)β

, ∀Z ∈ IY with y ∈ Z.

Similarly, the scheme of concave relaxations( f cc
Z )Z∈IY is said to have convergence of orderβ > 0 aty ∈ Y if

there existsτcc ≥ 0 such that

max
z∈Z

f cc
Z (z)−max

z∈Z
f (z) ≤ τccw(Z)β

, ∀Z ∈ IY with y ∈ Z.

( f cv
Z )Z∈IY and( f cc

Z )Z∈IY are said to have convergence of orderβ > 0 onY if they have convergence of order (at
least)β at eachy ∈ Y, with the constantsτcv andτcc independent ofy.

The following definition seeks to extend the notion of convergence order of a bounding scheme [3, 4, 29] to
constrained problems. Conditions under which specific lower bounding schemes are guaranteed to exhibit a
certain convergence order will be presented in a future article.

Definition 8 (Convergence Order of a Lower Bounding Scheme)Consider Problem (P). For anyZ ∈ IX,
let F (Z) = {x ∈ Z : g(x) ≤ 0,h(x) = 0} denote the feasible set of Problem (P) with x restricted toZ.

Let ( f cv
Z )Z∈IX and(gcv

Z )Z∈IX denote continuous schemes of convex relaxations off andg, respectively, in
X, and let(hcv

Z ,hcc
Z )Z∈IX denote a continuous scheme of relaxations ofh in X. For anyZ ∈ IX, let F cv(Z) =

{x ∈ Z : gcv
Z (x) ≤ 0,hcv

Z (x) ≤ 0,hcc
Z (x) ≥ 0} denote the feasible set of the convex relaxation-based lower bound-

ing scheme. The convex relaxation-based lower bounding scheme is said to have convergence of orderβ > 0
at

1. a feasible pointx ∈ X if there existsτ ≥ 0 such that for everyZ ∈ IX with x ∈ Z,

min
z∈F (Z)

f (z)− min
z∈F cv(Z)

f cv
Z (z) ≤ τw(Z)β

.

2. an infeasible pointx ∈ X if there existsτ̄ ≥ 0 such that for everyZ ∈ IX with x ∈ Z,

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
,

where

[

g
h

]

(Z) denotes the image ofZ under the vector-valued function

[

g
h

]

, andIC(Z) is defined by

(IC(Z))Z∈IX := ({(v,w) ∈ RmI ×RmE : v = gcv
Z (z),hcv

Z (z) ≤ w ≤ hcc
Z (z) for somez ∈ Z})Z∈IX .

The scheme of lower bounding problems is said to have convergence of orderβ > 0 onX if it has convergence
of order (at least)β at eachx ∈ X, with the constantsτ andτ̄ independent ofx.

Definition8 is motivated by the requirements of a lower bounding scheme to fathom feasible and infeasible
regions in a branch-and-bound procedure [11]. On nested sequences of intervals converging to a feasiblepoint
of Problem (P), we require that the corresponding sequences of lower bounds converge rapidly to the corre-
sponding sequences of minimum objective values. On the other hand, on nested sequences of intervals con-
verging to an infeasible point of Problem (P), we require that the corresponding sequences of lower bounding
problems rapidly detect the (eventual) infeasibility of the corresponding sequences of intervals for Problem (P).
The latter requirement is enforced by requiring that the measures of infeasibility of the corresponding lower
bounding problems, as determined by the distance functiond, converge rapidly to the measures of infeasibility
of the corresponding restricted Problems (P). Note that some intervals that only contain infeasible points may
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also potentially be fathomed by value dominance if the lowerbounds on those intervals obtained by solving the
corresponding relaxation-based lower bounding problems is greater than or equal toUBD−ε . This possibility
in considered later in this section (see, for instance, Lemma 3) and in Section3.2.

The following lemmata detail worst-case conditions under which nodes containing a global minimum and
infeasible points are fathomed.

Lemma 1 (Fathoming Nodes Containing Global Minimizers)Let X∗ ∈ IX, withx∗ ∈ X∗, correspond to the
domain of node k∗ in the branch-and-bound tree. Suppose the convex relaxation-based lower bounding scheme
has convergence of orderβ ∗ > 0 at x∗ with a prefactorτ∗ > 0 (see Definition8). For node k∗ to be fathomed,
we require, in that worst case, that

w(X∗) ≤
( ε

τ∗

)
1

β∗
.

Proof The condition for nodek∗ to be fathomed by value dominance isUBD−LBDk∗ = f (x∗)−LBDk∗ ≤ ε .
Since we are concerned about convergence at the feasible point x∗ ∈ X, we have from Definition8 that

min
z∈F (X∗)

f (z)− min
z∈F cv(X∗)

f cv
X∗(z) ≤ τ∗w(X∗)β∗

=⇒ LBDk∗ = min
z∈F cv(X∗)

f cv
X∗(z) ≥ f (x∗)− τ∗w(X∗)β∗

.

Therefore, in the worst case, nodek∗ is fathomed only when

LBDk∗ ≥ f (x∗)− τ∗w(X∗)β∗ ≥ f (x∗)− ε ⇐⇒ w(X∗) ≤
( ε

τ∗

)
1

β∗
.

⊓⊔
Lemma 2 (Fathoming Infeasible Nodes by Infeasibility)Let XI ∈ IX, with

XI ⊂
{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

> ε f
}

for someε f > 0, correspond to the domain of node kI in the branch-and-bound tree. Suppose the convex
relaxation-based lower bounding scheme has convergence oforder β I

> 0 at eachx ∈ XI with a prefactor
τ I > 0 that is independent ofx (see Definition8). For node kI to be fathomed by infeasibility, we require, in the
worst case, that

w(XI ) ≤
(

ε f

τ I

)

1
β I

.

Proof For nodekI to be fathomed by infeasibility, we require that the convex relaxation-based lower bounding
problem is infeasible onXI , i.e., d

(

IC(XI ),RmI
− ×{0}

)

> 0. Since we are concerned about convergence at
infeasible points, we have from Definition8 that

d

(

[

g
h

]

(XI ),RmI
− ×{0}

)

−d
(

IC(XI ),RmI
− ×{0}

)

≤ τ I w(XI )
β I

=⇒ d
(

IC(XI ),RmI
− ×{0}

)

≥ d

(

[

g
h

]

(XI ),RmI
− ×{0}

)

− τ I w(XI )
β I

.

Therefore, nodekI is fathomed, in the worst case, only when

d
(

IC(XI ),RmI
− ×{0}

)

≥ d

(

[

g
h

]

(XI ),RmI
− ×{0}

)

− τ I w(XI )
β I

> 0 ⇐⇒ ε f − τ I w(XI )
β I

≥ 0

⇐⇒ w(XI ) ≤
(

ε f

τ I

)

1
β I

.

⊓⊔
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Lemma 3 (Fathoming Infeasible Nodes by Value Dominance)Let XI ∈ IX, with

XI ⊂
{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

> 0

}

,

correspond to the domain of node kI in the branch-and-bound tree. Suppose∀x ∈ XI , f (x) ≥ f (x∗). Further-
more, suppose the scheme( f cv

Z )Z∈IX has convergence of orderβ f
> 0 at eachx ∈ XI with a prefactorτ f

> 0
that is independent ofx (see Definition7). If

w(XI ) ≤
( ε

τ f

)
1

β f
,

then node kI will be fathomed.

Proof A sufficient condition for nodekI to be fathomed is

min
z∈F cv(XI )

f cv
XI (z) ≥ f (x∗)− ε .

Since( f cv
Z )Z∈IX has convergence of orderβ f , we have from Definition7 that

min
z∈XI

f cv
XI (z) ≥ min

z∈XI
f (z)− τ f w(XI )β f

≥ min
z∈XI

f (z)− ε

≥ f (x∗)− ε ,

where Step 2 usesw(XI ) ≤
( ε

τ f

)
1

β f
, and Step 3 usesf (x) ≥ f (x∗), ∀x ∈ XI . Therefore,

min
z∈F cv(XI )

f cv
XI (z) ≥ min

z∈XI
f cv
XI (z) ≥ f (x∗)− ε .

The desired result follows. ⊓⊔

In what follows, we shall partition the setX into distinct regions with the aim of constructing regions that are
either relatively easy to fathom (based on Lemmata1 to 3), or are relatively hard to fathom. Suppose the convex
relaxation-based lower bounding scheme has convergence oforderβ ∗

> 0 onF (X) with prefactorτ∗
> 0, and

convergence of orderβ I
> 0 on(F (X))C with prefactorτ I

> 0 (note that it is sufficient for the lower bounding
scheme to have the requisite convergence orders on some neighborhood of the global minimizers of Problem (P)
for our analysis to hold, as will become clear in Section3). Furthermore, suppose the scheme( f cv

Z )Z∈IX has
convergence of orderβ f

> 0 on X with prefactorτ f
> 0. Pick a feasibility toleranceε f and an optimality

toleranceεo such that
(

ε f

τ I

)

1
β I

=

(

εo

τ f

)
1

β f

=
( ε

τ∗

)
1

β∗
, (TOL)

and consider the following partition ofX:

X1 :=

{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

> ε f
}

,

X2 :=

{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

∈ (0,ε f ] and f (x)− f (x∗) > εo
}

,

X3 :=

{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

∈ (0,ε f ] and f (x)− f (x∗) ≤ εo
}

,

X4 :=

{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

= 0 and f (x)− f (x∗) > ε
}

, and

X5 :=

{

x ∈ X : d

([

g
h

]

(x),RmI
− ×{0}

)

= 0 and f (x)− f (x∗) ≤ ε
}

.
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(c) Example3 (equality-constrained)

Fig. 1: Plots of the setsX1 through X5 for an unconstrained, an inequality-constrained, and an equality-
constrained problem. The dashed lines define the setsX, and the filled-in triangles denote the unique global
minimizers of the problems onX. All plots useε = εo = ε f = 0.1 for illustration.

The setX1 corresponds to the set of infeasible points for Problem (P) with the measure of infeasibility
greater thanε f . The setX2 corresponds to the set of infeasible points for Problem (P) with the measure of
infeasibility less than or equal toε f and with the objective function value greater thanf (x∗) + εo, while the
setX3 corresponds to the set of infeasible points for Problem (P) with the measure of infeasibility less than
or equal toε f and the objective function value less than or equal tof (x∗)+ εo. The setX4 corresponds to the
set of feasible points for Problem (P) with objective value greater thanf (x∗)+ ε , while the setX5 corresponds
to the set of feasible points for Problem (P) with objective value less than or equal tof (x∗)+ ε . The setsX1

throughX5 are illustrated in Figure1 for the three two-dimensional problems presented in Examples1 to 3.

Intuitively, we expect that nodes with domains contained inthe setsX1 andX2 can be fathomed relatively
easily (by infeasibility and value dominance, respectively) compared to nodes with domains contained in the
setX3. Similarly, we expect that nodes with domains contained in the setX4 can be fathomed relatively easily
(by value dominance) compared to nodes with domains contained in the setX5. This intuition is formalized
in Corollary 1. Consequently, the extent of clustering is dictated primarily by the number of boxes required
to cover the regionsX3 andX5. Section3 provides conservative estimates of the number of boxes of certain
widths that are required to coverX3 andX5 under suitable assumptions. As an aside, note that the condition
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specified by Equation (TOL) is used to roughly enforce that nodes with domains contained in the setsX1, X2,
andX4 can, in the worst case, be fathomed using a similar level of effort.

Example 1Let X = (0,1)× (0,1), mI = mE = 0, and f (x) = x4
1 +x4

2 −x2
1 −x2

2 with x∗ =
(

1√
2
,

1√
2

)

. We have:

X1 = X2 = X3 = /0,

X4 =
{

x ∈ X : x4
1 +x4

2 −x2
1 −x2

2 > f (x∗)+ ε
}

, and

X5 =
{

x ∈ X : x4
1 +x4

2 −x2
1 −x2

2 ≤ f (x∗)+ ε
}

.

The setsX1 throughX5 are depicted in Figure1afor ε = 0.1.

Example 2Let X = (2.2,2.5)×(2.9,3.3), mI = 3, mE = 0, f (x) = −x1−x2, g1(x) = x2−2x4
1 +8x3

1 −8x2
1 −2,

g2(x) = x2−4x4
1 +32x3

1 −88x2
1 +96x1 −36, andg3(x) = 3−x2 with x∗ ≈ (2.33,3.18) (based on Example 4.10

in [8]). We have:

X1 =







x ∈ X :

√

√

√

√

3

∑
j=1

(max{0,g j (x)})2
> ε f







,

X2 =







x ∈ X :

√

√

√

√

3

∑
j=1

(max{0,g j (x)})2 ∈ (0,ε f ], −x1 −x2 > f (x∗)+ εo







,

X3 =







x ∈ X :

√

√

√

√

3

∑
j=1

(max{0,g j (x)})2 ∈ (0,ε f ], −x1 −x2 ≤ f (x∗)+ εo







,

X4 = {x ∈ X : g(x) ≤ 0, −x1 −x2 > f (x∗)+ ε} , and

X5 = {x ∈ X : g(x) ≤ 0, −x1 −x2 ≤ f (x∗)+ ε} .

The setsX1 throughX5 are depicted in Figure1b for ε = εo = ε f = 0.1.

Example 3Let X = (0.4,1.0)×(0.5,2.0), mI = 2,mE = 1, f (x) = −12x1−7x2+x2
2, g1(x) = x1−0.9,g2(x) =

0.5−x1, andh(x) = x2 +2x4
1 −2 with x∗ ≈ (0.72,1.47) (based on Example 4.9 in [8]). We have:

X1 =







x ∈ X :

√

√

√

√

2

∑
j=1

(max{0,g j (x)})2 + |h(x)|2 > ε f







,

X2 =







x ∈ X :

√

√

√

√

2

∑
j=1

(max{0,g j (x)})2 + |h(x)|2 ∈ (0,ε f ], −12x1 −7x2 +x2
2 > f (x∗)+ εo







,

X3 =







x ∈ X :

√

√

√

√

2

∑
j=1

(max{0,g j (x)})2 + |h(x)|2 ∈ (0,ε f ], −12x1 −7x2 +x2
2 ≤ f (x∗)+ εo







,

X4 =
{

x ∈ X : g(x) ≤ 0, h(x) = 0, −12x1 −7x2 +x2
2 > f (x∗)+ ε

}

, and

X5 =
{

x ∈ X : g(x) ≤ 0, h(x) = 0, −12x1 −7x2 +x2
2 ≤ f (x∗)+ ε

}

.

The setsX1 throughX5 are depicted in Figure1c for ε = εo = ε f = 0.1.
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The following corollary of Lemmata1, 2, and3, similar to Lemma 2 in [29], provides sufficient conditions
under which nodes with domains contained inX1, X2, andX4 can be fathomed.

Corollary 1 (Fathoming Nodes Contained inX1, X2, and X4) Letδ =
( ε

τ∗

)
1

β∗
.

1. Suppose the convex relaxation-based lower bounding scheme has convergence of orderβ I
> 0 at each

x ∈ X1 with a prefactorτ I
> 0 that is independent ofx. ConsiderX̄1 ∈ IX1 corresponding to the domain of

node k1 in the branch-and-bound tree. If w(X̄1) ≤ δ , then node k1 will be fathomed by infeasibility.
2. Suppose the scheme of convex relaxations( f cv

Z )Z∈IX has convergence of orderβ f > 0 at eachx ∈ X2 with
a prefactorτ f

> 0 that is independent ofx. ConsiderX̄2 ∈ IX2 corresponding to the domain of node k2 in
the branch-and-bound tree. If w(X̄2) ≤ δ , then node k2 will be fathomed by value dominance.

3. Suppose the convex relaxation-based lower bounding scheme has convergence of orderβ ∗
> 0 at each

x ∈ X4 with a prefactorτ∗ > 0 that is independent ofx. ConsiderX̄4 ∈ IX4 corresponding to the domain of
node k4 in the branch-and-bound tree. If w(X̄4) ≤ δ , then node k4 will be fathomed by value dominance.

Corollary1 implies that nodes with domains̄X1, X̄2, andX̄4 such thatX̄1 ∈ IX1, X̄2 ∈ IX2, andX̄4 ∈ IX4 can be
fathomed when or before their widths areδ (in fact, nodes with domains inIX2 andIX4 can be fathomed when

or before their widths are
(

εo+ε
τ f

) 1
β f

and
(

2ε
τ∗
)

1
β∗ , respectively). However, nodes̄X5 ∈ IX5 may, in the worst

case, need to be covered by boxes of widthδ before they are fathomed. Furthermore, nodesX̄3 ∈ IX3 may
need to be covered by a large number of boxes depending on the convergence properties of the lower bounding
scheme onX3. The following example presents a case in which clustering may occur onX3 because the lower
bounding scheme does not have a sufficiently-large convergence order at infeasible points.

Example 4Let X = (−2,2), mI = 3, andmE = 0 with f (x) = x, g1(x) = x2, g2(x) = x−1, andg3(x) = −1−x.
We havex∗ = 0 (which is the only feasible point). For any[xL

,xU] =: Z ∈ IX, let

f cv
Z (x) = x,

gcv
1,Z(x) =

{

−(xU −xL), if 0 ∈ [xL ,xU]

min
(

(

xL
)2

,
(

xU
)2
)

− (xU −xL), otherwise
,

gcv
2,Z(x) = x−1,

gcv
3,Z(x) = −1−x.

We haveβ ∗ = β I = 1 andβ f arbitarily-large with prefactorsτ∗,τ I , andτ f , respectively, greater than zero.
Supposeε ,ε f ≪ 1. Pick γ > 0 andα ∈ (0,γ) such that(γ + α)2 = ε f . Let xL := −γ − α = −

√
ε f and

xU := −γ +α < 0. The width ofZ is w(Z) = 2α . Note thatg2 andg3 are feasible onZ; therefore, we need only
be concerned with the feasibility ofg1.

We haveg1(Z) = [(γ − α)2,(γ + α)2] andd(g(Z),RmI
− ) = (γ − α)2. This impliesg1 is infeasible at each

x∈ Z. Note thatX3 = [xL
,0)∪

(

0,min{εo
,
√

ε f }
]

(which follows, in part, from eachx∈ [xL
,0) being infeasible

with f (x) ≤ f (x∗) andd({g(x)},RmI
− ) ≤ ε f ).

We havegcv
1,Z(Z) = [(γ − α)2 − 2α ,(γ − α)2 − 2α ] and d(gcv

Z (Z),RmI
− ) = max{0,(γ − α)2 − 2α}. The

optimal objective value of the lower bounding problem onZ is −γ − α whend(gcv
Z (Z),RmI

− ) = 0, and is+∞
otherwise. Note that the lower bounding problem is infeasible on Z when(γ − α)2 − 2α > 0, which can be
achieved by choosingα to be sufficiently-small (and increasingγ accordingly).

The maximum width of the intervalZ for which it can be fathomed by infeasibility can be shown to be
w(Z) = 2α∗ := 2(1+ γ) − 2

√

1+2γ = O(γ2) = O(ε f ) (note thatγ ≪ 1 becauseε f ≪ 1). Forα > α∗, the
intervalZ cannot be fathomed by infeasibility and the optimal objective value of the lower bounding problem
on Z is −γ − α = −

√
ε f = O(

√
ε). Such an intervalZ cannot be fathomed by value dominance either since

ε ≪ 1.
Therefore, in the worst case, the intervalZ can be fathomed only whenw(Z) = O(γ2) = O(ε f ). This causes

clustering in the worst case sincew([xL,0)) = O(
√

ε f ) and[xL ,0) ⊂ X3.
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3 Analysis of the Cluster Problem

In this section, conservative estimates for the number of boxes required to coverX3 andX5 are provided based
on assumptions on Problem (P) (in particular, on its set of global minimizers), and characteristics of the branch-
and-bound algorithm. First, some requisite definitions areprovided [2].

Definition 9 (Neighborhood of a Point)Let x ∈ X ⊂ Rnx. For anyα > 0, p ∈ N, the set

N
p

α (x) :=
{

z ∈ X : ‖z−x‖p < α
}

is called theα-neighborhood ofx relative toX with respect to thep-norm.

Note that all norms onRnx are equivalent.

Definition 10 (Strict Local Minimum) Let F (X) denote the feasible set of Problem (P). A point x̄ ∈ F (X) is
called a strict local minimum if̄x is a local minimum, and∃α > 0 such thatf (x) > f (x̄), ∀x ∈ N 2

α (x̄)∩F (X)
such thatx 6= x̄.

Definition 11 (Nonisolated Feasible Point)A feasible pointx ∈ F (X) is said to be nonisolated if∀α > 0,
∃z ∈ N 2

α (x)∩F (X) such thatz 6= x.

Definition 12 (Set of Active Inequality Constraints)Let x ∈ F (X) be a feasible point for Problem (P). The
set of active inequality constraints atx, denoted byA (x), is given by

A (x) :=
{

j ∈ {1, · · · ,mI} : g j(x) = 0
}

.

Definition 13 (Tangent and Cone of Tangents)Let x ∈ F (X) ⊂ Rnx be a feasible point for Problem (P). A
vectord ∈ Rnx is said to be a tangent ofF (X) at x if there exists a sequence{λk} → 0 with λk > 0, and a
sequence{xk} → x with xk ∈ F (X) such that

d = lim
k→∞

xk −x
λk

.

The set of all tangents ofF (X) atx, denoted byT(x), is called the tangent cone ofF (X) atx.

3.1 Estimates for the number of boxes required to coverX5

This section assumes that Problem (P) has a finite number of global minimizers (which implies eachglobal
minimum is a strict local minimum), andε is small enough thatX5 is guaranteed to be contained in neigh-
borhoods of global minimizers under additional assumptions. An estimate for the number of boxes of widthδ
required to cover some neighborhood of a minimumx∗ that contains the subset ofX5 aroundx∗ is provided
under suitable assumptions. An estimate for the number of boxes required to coverX5 can be obtained by
summing the above estimates over the set of global minimizers. Throughout this section, we assume thatx∗ is
a nonisolated feasible point; otherwise,∃α > 0 such thatN 2

α (x∗)∩ X5 = {x∗}, which can be covered using a
single box.

We begin with a necessary condition forx∗ to be a local minimum.

Theorem 1 (First-Order Necessary Optimality Condition) Consider Problem(P), and suppose f is differ-
entiable atx∗. Then

{

d : ∇ f (x∗)Td < 0
}

∩T(x∗) = /0.

Proof See Theorem 5.1.2 in [2]. ⊓⊔
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Lemma 4 Consider Problem(P). Supposex∗ is nonisolated and f is differentiable atx∗. Then∀θ > 0, ∃α > 0
such that

inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
∇ f (x∗)Td > min

{d:‖d‖1=1,d∈T(x∗)}
∇ f (x∗)Td−θ .

Proof See AppendixA.1. ⊓⊔

The following result, inspired by Lemma 2.4 in [28], provides a conservative estimate of the subset ofX5

around a nonisolatedx∗ under the assumption that the objective function grows linearly on the feasible region
in some neighborhood ofx∗. The reader can compare the assumptions of Lemma5 with what follows from
Lemma4 and the necessary optimality conditions in Theorem1 (see Remark1 for details).

Lemma 5 Consider Problem(P). Supposex∗ is nonisolated, f is differentiable atx∗, and∃α > 0 such that

L := inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
∇ f (x∗)Td > 0.

Then,∃α̂ ∈ (0,α ] such that the regionN 1
α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
1

α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε
}

.

Proof Let x = x∗ + td ∈ N 1
α (x∗)∩F (X) with ‖d‖1 = 1 andt = ‖x−x∗‖1 > 0. We have

f (x) = f (x∗ + td)

= f (x∗)+∇ f (x∗)T(x−x∗)+o(‖x−x∗‖1)

= f (x∗)+ t∇ f (x∗)Td+o(t)

≥ f (x∗)+Lt +o(t),

where Step 2 follows from the differentiability off at x∗. Consequently, there existŝα ∈ (0,α ] such that for
all x = x∗ + td ∈ F (X) with ‖d‖1 = 1 andt ∈ [0, α̂):

f (x) ≥ f (x∗)+Lt +o(t) ≥ f (x∗)+
L
2

t.

Therefore,∀x ∈ N 1
α̂ (x∗)∩X5 we havex = x∗ + td ∈ F (X) with ‖d‖1 = 1 andt = ‖x−x∗‖1 < α̂ , and

ε ≥ f (x)− f (x∗) ≥ L
2

t =⇒ Lt = L‖x−x∗‖1 ≤ 2ε .

⊓⊔

A conservative estimate of the number of boxes of widthδ required to coverN 1
α̂ (x∗)∩X5 can be obtained

by estimating the number of boxes of widthδ required to cover̂X5 (see Theorem2). The following remark is
in order.

Remark 1

1. Lemma5 is not applicable whenL = 0. This can occur, for instance, whenx∗ is an unconstrained minimum,
in which case other techniques have to be employed to analyzethe cluster problem [7, 21, 28, 29] under
alternative assumptions. This is because whenf is differentiable at an unconstrained minimizerx∗, it grows
slower than linearly aroundx∗ as a result of the first-order necessary optimality condition ∇ f (x∗) = 0 (note
that if f is twice-differentiable atx∗ and∇2 f (x∗) is positive definite, thenf grows quadratically around
x∗). The assumptions of Lemma5 may be satisfied for a constrained problem, however, becausethey only
require that the objective function grow linearly in the setof directions that lead to feasible points in some
neighborhood ofx∗. An example ofL = 0 whenx∗ is not an unconstrained minimum is:X = (−2,2),
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mI = 2, mE = 0, f (x) = x3, g1(x) = x− 1, andg2(x) = −x with x∗ = 0. In this example, the objective
function only grows cubically aroundx∗ in the direction fromx∗ that leads to feasible points.
From Lemma4, we have that a sufficient condition for the key assumption ofLemma5 to be satisfied
is min

{d:‖d‖1=1,d∈T(x∗)}
∇ f (x∗)Td > 0. It is not hard to show that this condition is also necessarywhen f

is differentiable atx∗. Proposition2 shows that the assumptions of Lemma5 will not be satisfied when
Problem (P) does not contain any active inequality constraints and theminimizer corresponds to a KKT
point for Problem (P).

2. α̂ depends on the local behavior off aroundx∗, but is independent ofε since it is determined by the
subset ofN 1

α (x∗) ∩ F (X) on which the affine functionf (x∗) + L
2t underestimatesf (x). Consequently,

for sufficiently smallε , X̂5 = {x ∈ X : L‖x−x∗‖1 ≤ 2ε} since{x ∈ X : L‖x−x∗‖1 ≤ 2ε} will then be a

subset ofN 1
α̂ (x∗). Note that the factor ‘2’ in the denominator of

‘ L
2t

’
is arbitrarily chosen; any factor> 1

can instead be chosen with a correspondingα̂. Furthermore,x∗ is necessarily the unique global minimizer
of Problem (P) onN 1

α̂ (x∗) sinceL > 0.
3. If, in addition to the assumptions of Lemma5, f is assumed to be convex onN 1

α (x∗), then we can choose
α̂ = α . Additionally,N 1

α̂ (x∗)∩X5 can be conservatively approximated by{x ∈ X : L‖x−x∗‖1 ≤ ε} when
ε is small enough.

4. The estimatêX5 becomes less conservative asε is decreased since the higher order termo(t) → 0 asε → 0.
Simply put, this is because the affine approximationf (x∗)+Lt provides a better description off asε → 0.

In fact, under the assumptions of Lemma5, a less conservative estimate ofX5 can be obtained by accounting
for the fact that not all pointsx ∈

{

x ∈ N 1
α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε

}

satisfy∇ f (x∗)T(x−x∗) ≥ L‖x−x∗‖1.

Proposition 1 Consider Problem(P), and suppose the assumptions of Lemma5 are satisfied. Then,∃α̂ ∈ (0,α ]
such that the regionN 1

α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
1

α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε , L‖x−x∗‖1 ≤ ∇ f (x∗)T(x−x∗)
}

.

Proof The desired result follows from Lemma5 and the fact that

∇ f (x∗)T(x−x∗) ≥ L‖x−x∗‖1, ∀x ∈ N
1

α (x∗)∩F (X),

from the assumptions of Lemma5. ⊓⊔

As an illustration of the application of Lemma5, let us reconsider Example2. Recall thatX = (2.2,2.5)×
(2.9,3.3), mI = 3, mE = 0, f (x) = −x1 − x2, g1(x) = x2 − 2x4

1 + 8x3
1 − 8x2

1 − 2, g2(x) = x2 − 4x4
1 + 32x3

1 −
88x2

1+96x1−36, andg3(x) = 3−x2 with x∗ ≈ (2.33,3.18). Letε ≤ 0.07. We haveF (X)= {x ∈ X : g(x) ≤ 0},
∇ f (x∗) = (−1,−1), α = +∞, L ≈ 0.649, andX5 = {x ∈ X : g(x) ≤ 0,−x1 −x2 ≤ f (x∗)+ ε}. Chooseα̂ = +∞
in Lemma5. From Lemma5 and Remark1, we haveX̂5 = {x : 0.649‖x−x∗‖1 ≤ ε} (since f is convex).

Figure2aplotsX5 andX̂5 for ε = 0.07, and Figure2bshows the improvement in the estimate when Proposi-
tion 1 is used, in which case we obtainX̂5 = {x : 0.649‖x−x∗‖1 ≤ ε , 0.649‖x−x∗‖1 ≤ −(x1 −x∗

1)− (x2 −x∗
2)}.

Note that an even better estimate ofX5 may be obtained by using knowledge of the local feasible setN 1
α (x∗)∩

F (X). However, other than in some special cases (see Lemma6), we shall stick with the estimatêX5 from
Lemma5 since we are mainly concerned with the dependence of the extent of clustering on the convergence
rate of the lower bounding scheme.

Before we provide an estimate of the number of boxes of widthδ required to coverN 1
α̂ (x∗)∩X5, we provide a

few more examples that satisfy the assumptions of Lemma5 and present an approach that could help determine
if its assumptions are satisfied. Example5 illustrates another inequality-constrained case which satisfies the
assumptions of Lemma5. Note that the minimizerx∗ does not satisfy the KKT conditions in this case.

Example 5Let ε ≤ 1, X = (−2,2), mI = 3, andmE = 0 with f (x) = −x, g1(x) = x3, g2(x) = x−1, g3(x) =
−1−x, andx∗ = 0. We haveF (X) = [−1,0], ∇ f (x∗) = −1,α = +∞, L = 1, andX5 = [−ε ,0]. Chooseα̂ = +∞
in Lemma5. From Lemma5 and Remark1, we haveX̂5 = [−ε ,+ε ] (since f is convex).
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(a) X5 and estimatêX5 from Lemma5
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(b) X5 and estimatêX5 from Proposition1

Fig. 2: Plots ofX5 (solid regions) and̂X5 (the areas between the dotted lines) for Example2 for ε = 0.07 (note
that we do not useε = 0.1 as in Figure1b because the correspondingX̂5 are not contained inX). The dashed
lines define the setX, the filled-in triangles correspond to the minimizerx∗, and the dash-dotted lines represent
the axes translated tox∗.

The reader may conjecture, based on Example5 and other examples of low dimension, that every noniso-
lated minimizerx∗ which does not satisfy the KKT conditions will automatically satisfy the main assumption
of Lemma5. Example6, inspired by [10, Section 4.1], however illustrates a case when the assumptions of
Lemma5 are not satisfied even thoughx∗ does not satisfy the KKT conditions.

Example 6Let X = (−2,2)3, mI = 5, andmE = 0 with f (x) = x1+x2
3, g1(x) = x1−1, g2(x) = x2−x1, g3(x) =

x2
2, g4(x) = −x3, g5(x) = x3−1, andx∗ = (0,0,0). We haveF (X) =

{

x ∈ [0,1]3 : x2 = 0
}

, ∇ f (x∗) = (1,0,0),

andL = 0 for everyα > 0 since(0,0,1) ∈ T(x∗) and∇ f (x∗)T(0,0,1) = 0.

The next result provides conditions under which the assumptions of Lemma5 will not be satisfied. In
particular, it is shown that the assumptions of Lemma5 will not be satisfied if Problem (P) is purely equality-
constrained and all the functions in Problem (P) are differentiable at a nonisolatedx∗.

Proposition 2 Consider Problem(P) with mE ≥ 1. Supposex∗ is nonisolated, f is differentiable atx∗, func-
tions hk, k = 1, · · · ,mE, are differentiable atx∗, andA (x∗) = /0. Furthermore, suppose there exist multipliers
λλλ∗ ∈ RmE corresponding to the equality constraints such that(x∗

,0,λλλ ∗) is a KKT point. Then

min
{d:‖d‖1=1,d∈T(x∗)}

∇ f (x∗)Td = 0.

Proof See AppendixA.2. ⊓⊔
Note that the above result can naturally be extended to accommodate weakly active inequality constraints

(see [2, Section 4.4]). The ensuing examples illustrate that the assumptions of Lemma5 may be satisfied when
individual assumptions of Proposition2 do not hold.

Example 7Let ε ≤ 0.5,X =(−2,2)×(−2,2), mI = 1, andmE = 1 with f (x)= x1+10x2
2, g(x) = x1−1,h(x) =

x1 −|x2|, andx∗ = (0,0). We haveF (X) = {x ∈ X : x1 = |x2|,x1 ≤ 1}, ∇ f (x∗) = (1,0), α = +∞, L = 0.5,
andX5 =

{

x ∈ [0,ε ]× [−ε ,ε ] : x1 = |x2|,x1 +10x2
2 ≤ ε

}

. Chooseα̂ = +∞ in Lemma5. From Lemma5 and
Remark1, we haveX̂5 = {x ∈ X : ‖x‖1 ≤ 2ε} (since f is convex).

Example 8Let ε ≤ 0.5, X = (−2,2)×(−2,2), mI = 4, andmE = 1 with f (x) = x1+x2, g1(x) = −x1, g2(x) =
−x2, g3(x) = x1 −1, g4(x) = x2 −1, h(x) = x2 −x3

1, andx∗ = (0,0). We haveF (X) =
{

x ∈ [0,1]2 : x2 = x3
1

}

,
∇ f (x∗) = (1,1), α = +∞, L = 1, andX5 =

{

x ∈ [0,ε ]× [0,ε ] : x2 = x3
1,x1 +x2 ≤ ε

}

. Chooseα̂ = +∞ in
Lemma5. From Lemma5 and Remark1, we haveX̂5 = {x ∈ X : ‖x‖1 ≤ ε} (since f is convex).
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(a) X5 and estimatêX5 from Lemma5
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(b) X5 and estimatêX5 from Lemma6

Fig. 3: Plots ofX5 (solid curves) and̂X5 (left figure: area between the dotted lines, right figure: curve depicted
by the circles) for Example8 for ε = 0.5. The filled-in triangles correspond to the minimizerx∗, and the
dash-dotted lines represent the axes translated tox∗.

Figure3aplots X5 andX̂5 for Example8 for ε = 0.5. It is seen that the estimatêX5 does not capture the
one-dimensional nature ofX5 (which is a consequence of the equality constraint in Example 8). This issue
is addressed in Lemma6. Note thatX5 for Example7 also resides in a reduced-dimensional manifold, but
Lemma6 does not apply in this case sinceh is not differentiable atx∗ (the discussion after Lemma6 proposes
a modification of the assumptions of Lemma6 that addresses this issue).

While Lemma5 provides a conservative estimate ofN 1
α̂ (x∗) ∩ X5 under suitable assumptions, verifying

the satisfaction of its assumptions is not straightforward. The following proposition provides a conservative
approach for determining whether the assumptions of Lemma5 are satisfied.

Proposition 3 Let L(α) denote the constant L in Lemma5 for a givenα > 0. When the active constraints are
differentiable atx∗, a lower bound on L0 := lim

α→0+
L(α) can be obtained by solving

min
d

∇ f (x∗)Td

s.t.‖d‖1 = 1,

d ∈ L (x∗),

whereL (x∗) :=
{

d ∈ Rnx : ∇g j(x∗)Td ≤ 0,∀ j ∈ A (x∗),∇hk(x∗)Td = 0,∀k ∈ {1, · · · ,mE}
}

denotes the lin-

earized cone atx∗. If x∗ corresponds to a KKT point, the above formulation provides the exact value of L0.

So far in this section, we have established conditions underwhich a conservative estimate of the subset
of X5 around a minimizerx∗ can be obtained, presented examples for which the above conditions hold, and
isolated a class of problems for which the above conditions are not satisfied. The following theorem follows
from Corollary 2.1 in [28], the proof of which is rederived in AppendixA for completeness. It provides a
conservative estimate of the number of boxes of widthδ required to cover̂X5 from Lemma5. Therefore, from
Lemma1 and the result below, we can get an upper bound on the worst-case number of boxes required to cover
N 1

α̂ (x∗)∩X5 and estimate the extent of the cluster problem on that region(recall from Remark1 that the subset
of X5 aroundx∗ will be contained inN 1

α̂ (x∗) for sufficiently smallε).

Theorem 2 Suppose the assumptions of Lemma5 hold. Letδ =
( ε

τ∗

)
1

β∗
, r =

2ε
L

.

1. If δ ≥ 2r, let N = 1.
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2. If
2r

m−1
> δ ≥ 2r

m
for some m∈ N with m≤ nx and2 ≤ m≤ 5, then let

N =
m−1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

m−3
3

⌉

.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉nx−1(⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉

+2nx

⌈

(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉)

.

Then, N is an upper bound on the number of boxes of widthδ required to coverX̂5.

Proof See AppendixA.3. ⊓⊔

Remark 2Under the assumptions of Lemma5, the dependence ofN on ε disappears when the lower bound-
ing scheme has first-order convergence onN 1

α̂ (x∗) ∩ F (X), i.e., β ∗ = 1. Therefore, the cluster problem on
X5 may be eliminated even using first-order convergent lower bounding schemes with sufficiently small pref-
actors. This is in contrast to unconstrained global optimization where at least second-order convergent lower
bounding schemes are required to eliminate the cluster problem (see Remark1 for an intuitive explanation for
this qualitative difference in behavior). Note that the dependence ofN on the prefactorτ∗ can be detailed in a
manner similar to Table 1 in [29].

The above scaling has also been empirically observed by Goldsztejn et al. [9], who reason “· · · removes the
tangency between the feasible set and the objective level set, and therefore should prevent the cluster effect.”

The next result refines the analysis of Lemma5 when Problem (P) contains equality constraints that can
locally be eliminated using the implicit function theorem [22].

Lemma 6 Consider Problem(P) with 1 ≤ mE < nx. Supposex∗ is nonisolated, f is differentiable atx∗, and
∃α > 0 such thath is continuously differentiable onN 1

α (x∗) and

L := inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
∇ f (x∗)Td > 0.

Furthermore, suppose the variablesx can be reordered and partitioned into dependent variablesz ∈ RmE and
independent variablesp ∈ Rnx−mE , with x ≡ (z,p), such that∇zh((z,p)) is nonsingular onN 1

α ((z∗
,p∗)),

wherex∗ ≡ (z∗,p∗). Then,∃αp,αz ∈ (0,α ], a continuously differentiable functionφφφ : N 1
αp

(p∗) → N 1
αz

(z∗),

andα̂ ∈ (0,αp) such that the region
(

N 1
αz

(z∗)×N 1
α̂ (p∗)

)

∩X5 can be conservatively approximated by

X̂5 =
{

(z,p) ∈ N
1

αz
(z∗)×N

1
α̂ (p∗) : z = φφφ(p), L‖p−p∗‖1 ≤ 2ε

}

.

Proof The result follows from the proof of Lemma5 and the implicit function theorem [22, Chapter 9]. ⊓⊔

Lemma6 effectively states that, under suitable conditions, the subset ofX5 aroundx∗ resides in a reduced-
dimensional manifold. Figure3b compares the estimatêX5 obtained from Lemma6 (when we assume precise
knowledge of the implicit function) with the one obtained from Lemma5 for Example8. The reason for dis-
tinguishing betweenαp and α̂ is so that we can haveφφφ to be continuously differentiable on cl

(

N 1
α̂ (p∗)

)

;
this fact will be used shortly. Note that the assumptions that h is continuously differentiable onN 1

α (x∗) and
∇zh((z,p)) is nonsingular onN 1

α ((z∗,p∗)) can be relaxed based on a nonsmooth variant of the implicit func-
tion theorem [6, Chapter 7] (which can be used to derive a less conservative estimate ofX5 for Example7, for
instance).

The following corollary of Theorem2 refines the estimate of the number of boxes of widthδ required to
cover X̂5 under the assumptions of Lemma6. It provides an upper bound on the number of boxes of width

δ required to coverX5 that scales asO

(

ε (nx−mE)
(

1− 1
β∗
))

in contrast to the scalingO

(

εnx

(

1− 1
β∗
))

from

Theorem2.
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Corollary 2 Suppose the assumptions of Lemma6 hold. Letδ =
( ε

τ∗

)
1

β∗
, r =

2ε
L

. Define

Mk :=

(

max
p∈cl(N 1

α̂ (p∗))
‖∇φk(p)‖

)

√
nx −mE, ∀k ∈ {1, · · · ,mE},

K := {k ∈ {1, · · · ,mE} : Mk > 1} .

1. If δ ≥ 2r, let N = ∏
k∈K

Mk.

2. If
2r

m−1
> δ ≥ 2r

m
for some m∈ N with m≤ nx −mE and2 ≤ m≤ 5, then let

N =

(

m−1

∑
i=0

2i
(

nx −mE

i

)

+2(nx −mE)

⌈

m−3
3

⌉

)

∏
k∈K

Mk.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉nx−mE−1

(

⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉

+

2(nx −mE)

⌈

(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉

)

∏
k∈K

Mk.

Then, N is an upper bound on the number of boxes of widthδ required to coverX̂5.

Proof Theorem2 can be used to obtain an overestimate of the number of boxes ofwidth δ required to cover
the projection ofX̂5, as defined by Lemma6, on p, i.e.,

{

p ∈ N 1
α̂ (p∗) : L‖p−p∗‖1 ≤ 2ε

}

, by replacingnx

with nx −mE in the expressions forN. This estimate can be extended to obtain a conservative estimate of the
number of boxes of widthδ required to cover̂X5 as follows.

Note thatφk is Lipschitz continuous on cl
(

N 1
α̂ (p∗)

)

with Lipschitz constant Mk√
nx−mE

, ∀k ∈ {1, · · · ,mE}.

Consider any boxB of width δ that is used to cover the projection ofX̂5 onp. We have

w
(

φk
(

B∩cl
(

N
1

α̂ (p∗)
)))

≤ Mkδ , ∀k ∈ {1, · · · ,mE},

from the Lipschitz continuity ofφk. Therefore, we can replace the boxB using∏
k∈K

Mk such boxes and translate

them appropriately to cover the region
{

(z,p) ∈ N
1

αz
(z∗)×

(

B∩N
1

α̂ (p∗)
)

: L‖p−p∗‖1 ≤ 2ε , z = φφφ(p)
}

.

Since
⋃

B

{

B∩N 1
α̂ (p∗)

}

covers the projection of̂X5 onp, the desired result follows by multiplying the estimate
obtained from Theorem2 (with nx replaced bynx −mE) by ∏

k∈K

Mk. ⊓⊔

The next result provides a natural extension of Lemma5 to the case when the objective function is not
differentiable at the minimizerx∗ [28]. Note that a similar result was derived for the case of unconstrained
optimization in [28, Section 2.3] under alternative assumptions.

Lemma 7 Consider Problem(P). Supposex∗ is nonisolated, f is locally Lipschitz continuous on X and direc-
tionally differentiable atx∗, and∃α > 0 such that

L := inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
f ′(x∗;d) > 0.

Then,∃α̂ ∈ (0,α ] such that the regionN 1
α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
1

α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε
}

.
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Proof The proof is relegated to AppendixA.4 since it is similar to the proof of Lemma5. ⊓⊔

Remark 3Theorem2 can be extended to the case when the assumption that the function f is differentiable
at x∗ is relaxed by using Lemmata1 and7 and Corollary 2.1 in [28] (also see Theorem2). Similar to the
differentiable case, the dependence ofN on ε disappears when the lower bounding scheme has first-order
convergence onN 1

α̂ (x∗)∩F (X), i.e.,β ∗ = 1. Additionally, Lemma6 and Corollary2 can also be extended to
the case whenf is not differentiable atx∗ under suitable assumptions.

Thus far, we have established conditions under which first-order convergence of the lower bounding scheme
at feasible points is sufficient to mitigate the cluster problem onX5. In the remainder of this section, we will
present conditions under which second-order convergence of the lower bounding scheme is sufficient to miti-
gate clustering onX5. The first result in this regard provides a conservative estimate of the subset ofX5 around
a nonisolatedx∗ under the assumption that the objective function grows quadratically (or faster) on the feasible
region in some neighborhood ofx∗.

Lemma 8 Consider Problem(P), and suppose f is twice-differentiable atx∗. Suppose∃α > 0,γ > 0 such that

∇ f (x∗)Td+
1
2

dT∇2 f (x∗)d ≥ γdTd, ∀d ∈
{

d : (x∗ +d) ∈ N
2

α (x∗)∩F (X)
}

.

Then∃α̂ ∈ (0,α ] such that the regionN 2
α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε
}

.

Furthermore,x∗ is the unique global minimizer for Problem(P) onN 2
α̂ (x∗).

Proof Let x = x∗ +d ∈ N 2
α (x∗)∩F (X). We have

f (x) = f (x∗ +d)

= f (x∗)+∇ f (x∗)Td+
1
2

dT∇2 f (x∗)d+o(‖d‖2)

≥ f (x∗)+ γdTd+o(‖d‖2).

Consequently, there existŝα ∈ (0,α ] such that for allx = x∗ +d ∈ F (X) with ‖d‖ ∈ [0, α̂):

f (x) ≥ f (x∗)+ γdTd+o(‖d‖2) ≥ f (x∗)+
γ
2

dTd. (1)

Therefore,∀x ∈ N 2
α̂ (x∗)∩X5 we havex = x∗ +d ∈ F (X) with ‖d‖ < α̂ , and

ε ≥ f (x)− f (x∗) ≥ γ
2

dTd =⇒ γ‖d‖2 = γ‖x−x∗‖2 ≤ 2ε .

The conclusion thatx∗ is the unique global minimizer for Problem (P) onN 2
α̂ (x∗) follows from Equation (1).

⊓⊔

Remark 4

1. Lemma8 is not applicable when∄α > 0 andγ > 0, for exampleX = (−2,2)× (−2,2), mI = 2, mE = 0,
f (x) = x2, g1(x) = x4

1−x2, g2(x) = x2−1, andx∗ = (0,0). In this case, for anyα > 0, there exist directions
from x∗ to feasible points in whichf grows slower than quadratically nearx∗.
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2. For the case of unconstrained global optimization, the assumption of Lemma8 reduces to the assumption
that∇2 f (x∗) is positive definite, andγ can be taken to be equal to half the smallest eigenvalue of∇2 f (x∗)
(see Theorem 1 in [29]). When the minimum is constrained,γ may potentially be estimated as follows. The
first possibility is to directly estimateγ using a quadratic underestimator off onN 2

α (x∗)∩F (X). If such
an underestimator cannot be constructed easily,γ may still be estimated relatively easily when additional
assumptions are satisfied.
Suppose(x∗

,µµµ∗
,λλλ ∗) is a KKT point, whereµµµ∗ and λλλ ∗ correspond to Lagrange multipliers forg and

h, respectively, atx∗. Consider the restricted LagrangianL(x; µµµ∗,λλλ ∗), and suppose it is positive definite
for all x ∈ cl(N 2

α (x∗) ∩ F (X)) (cf. [2, Section 4.4]). Thenγ may be estimated from the eigenvalues
of ∇2L(x; µµµ∗,λλλ ∗) on cl(N 2

α (x∗) ∩ F (X)). This is a consequence of the fact thatf (x) ≥ L(x; µµµ∗,λλλ ∗),
∀x ∈ F (X), by weak duality,f (x∗) = L(x∗; µµµ∗

,λλλ ∗), and the stationarity condition∇xL(x; µµµ∗
,λλλ ∗) = 0.

Otherwise, if(x∗,µµµ∗,λλλ ∗) is a KKT point and some convex combination off and L(·; µµµ∗,λλλ ∗) grows
quadratically or faster onN 2

α (x∗) ∩ F (X), thenγ can be estimated using one of its quadratic underes-
timators onN 2

α (x∗)∩F (X).
3. The key assumption of Lemma8, which assumes thatf grows quadratically or faster on the feasible region

in some neighborhood ofx∗, is a relaxation of the key assumption of Lemma5, which assumes thatf grows
linearly on the feasible region in some neighborhood ofx∗. While it was shown in Theorem2 that first-
order convergence of the lower bounding scheme at feasible points may be sufficient to mitigate clustering
onX5 under the assumptions of Lemma5, Theorem3, which will be presented shortly, shows that second-
order convergence of the lower bounding scheme at feasible points may be sufficient to mitigate clustering
on X5 under the assumptions of Lemma8. Consequently, the assumptions of Lemmata5 and 8 can be
viewed as belonging to a hierarchy of conditions for certainconvergence orders of the lower bounding
scheme at feasible points being sufficient to mitigate clustering onX5, with the condition for third-order
convergence of the lower bounding scheme at feasible pointsto be sufficient to mitigate clustering onX5

amounting to the third-order Taylor expansion off growing faster than cubically on the feasible region in
some neighborhood ofx∗, and so on.

4. Along the line of discussion in Remark1, α̂ depends on the local behavior off aroundx∗, but is indepen-
dent ofε . Consequently, for sufficiently smallε we can conservatively approximate the setN 2

α̂ (x∗)∩ X5

by
{

x ∈ X : γ‖x−x∗‖2 ≤ 2ε
}

. Additionally, if the objective functionf is either an affine or a quadratic

function ofx, then its second-order Taylor expansion aroundx∗ equalsf itself and we can choosêα = α .

Furthermore,N 2
α̂ (x∗)∩X5 can be conservatively approximated by the setX̂5 =

{

x ∈ X : γ‖x−x∗‖2 ≤ ε
}

.

5. Similar to Proposition1, a less conservative estimate ofN 2
α̂ (x∗)∩X5 can be obtained as

X̂5 =

{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε , ∇ f (x∗)T (x−x∗)+
1
2
(x−x∗)T∇2 f (x∗) (x−x∗) ≥ γ‖x−x∗‖2

}

.

As an illustration of the application of Lemma8, let us reconsider Example3. Recall thatX = (0.4,1.0)×
(0.5,2.0), mI = 2,mE = 1, f (x) = −12x1−7x2+x2

2, g1(x) = x1−0.9,g2(x) = 0.5−x1, andh(x) = x2+2x4
1−2

with x∗ ≈ (0.72,1.47). Let ε ≤ 0.1. We haveF (X) = {x ∈ X : g(x) ≤ 0,h(x) = 0}. Chooseα = 0.1, γ = 2,
and α̂ = 0.1 in Lemma8. We haveX5 =

{

x : x2 = 2−2x4
1, −12x1 −7x2 +x2

2 ≤ f (x∗)+ ε
}

. From Lemma8

and Remark4, we haveX̂5 =
{

x ∈ N 2
0.1(x

∗) : ‖x−x∗‖2 ≤ 0.5ε
}

(since f is quadratic). Note that an even

better estimate ofX5 may be obtained using Lemma9 by accounting for the fact thatX5 resides in a reduced-
dimensional manifold.

The following examples illustrate two additional cases forwhich the assumptions of Lemma8 hold.

Example 9Let ε ≤ 0.5, X = (−2,2)× (−2,2), mI = 2, andmE = 0 with f (x) = x2, g1(x) = x2
1 −x2, g2(x) =

x2 − 1, andx∗ = (0,0). We haveF (X) =
{

x : x2 ≥ x2
1, x2 ≤ 1

}

. Chooseα = 1, γ = 0.5, andα̂ = 1. From

Remark4, we haveX5 =
{

x ∈ [−√
ε,+

√
ε]× [0,ε ] : x2 ≥ x2

1

}

⊂
{

x : ‖x‖2 ≤ 2ε
}

= X̂5.
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(a) X5 and estimatêX5 from Lemma8 for ε = 0.5
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(b) X5 and estimatêX5 from Remark4 for ε = 0.5
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(c) X5 and estimatêX5 from Lemma10 for ε = 0.5
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(d) X5 and estimatêX5 from Remark4 for ε = 0.1
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(e) X5 and estimatêX5 from Lemma10 for ε = 0.1

-0.5 0 0.5
x

1

-0.5

0

0.5

x
2

(f) X5 and estimatêX5 from Lemma10 and Remark4 for ε = 0.1

Fig. 4: Plots ofX5 (solid regions) and̂X5 (area between the dotted lines) for Example10. The filled-in triangles
correspond to the minimizerx∗, and the dash-dotted lines represent the axes translated tox∗.

Example 10Let ε ≤ 0.5, X = (−2,2)× (−2,2), mI = 3, andmE = 0 with f (x) = 2x2
1 +x2, g1(x) = −x2

1 −x2,
g2(x) = −x1, g3(x) = x2

1 +x2
2 −1, andx∗ = (0,0). We haveF (X) =

{

x : x2 ≥ −x2
1, x1 ≥ 0, x2

1 +x2
2 ≤ 1

}

with

α = 1, γ = 0.5, α̂ = 1, andX5 =
{

x : x2 +2x2
1 ≤ ε ,x2 ≥ −x2

1,x1 ≥ 0
}

⊂
{

x : ‖x‖2 ≤ 2ε
}

= X̂5 (see Remark4).

The overconservatism of the estimateX̂5 in the above two examples (with regards to its dependence onε)
is primarily due to the fact that the linear growth of the objective function in the direction of its gradient is
not taken into account. This observation is formalized and taken advantage of in Lemma10 to obtain a less
conservative estimate. Figure4 plots X5 and X̂5, obtained using different estimation techniques, forε = 0.5
andε = 0.1 in Example10. The benefit of using the estimate in Remark4 over that of Lemma8 is seen from
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Figures4a and4b, and the benefit of using the estimate from Lemma10 (usingρ1 = 3, ρ2 = 1.5) over that
of Lemma8 is seen from Figures4a and4c. It can be observed from Figure4c that the constraint−ρ1ε ≤
∇ f (x∗)T (x−x∗) in Lemma10 is not active on the region

{

x : γ‖x−x∗‖2 ≤ ε
}

for ε = 0.5. To illustrate the

benefit of this constraint in Lemma10, we considerε = 0.1. Figures4d and4e demonstrate the advantages
of using the estimates in Remark4 and Lemma10, respectively, over the estimate in Lemma8, and Figure4f
combines the benefits of the estimates from Lemma10 and Remark4 by using the estimate

X̂5 =
{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε , −ρ1ε ≤ ∇ f (x∗)T (x−x∗) ≤ ρ2ε ,

∇ f (x∗)T (x−x∗)+
1
2
(x−x∗)T∇2 f (x∗) (x−x∗) ≥ γ‖x−x∗‖2

}

.

The following theorem follows from Lemma 3 in [29], and provides a conservative estimate of the number
of boxes of widthδ required to cover the estimatêX5 from Lemma8. Consequently, from Lemma1 and the
theorem below, we can get a conservative estimate of the number of boxes required to coverN 2

α̂ (x∗)∩X5 and
estimate the extent of the cluster problem on that region.

Theorem 3 Consider Problem(P), and suppose the assumptions of Lemma8 hold. Letδ =
( ε

τ∗

)
1

β∗
and

r =

√

2ε
γ

.

1. If δ ≥ 2r, let N = 1.

2. If
2r√
m−1

> δ ≥ 2r√
m

for some m∈ N with m≤ nx and2 ≤ m≤ 18, then let

N =
m−1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

m−9
9

⌉

.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉nx−1(⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉

+2nx

⌈

(
√

2−1) (τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉)

.

Then, N is an upper bound on the number of boxes of widthδ required to coverN 2
α̂ (x∗)∩X5.

Proof From Lemma8, we have that the set̂X5 =
{

x ∈ N 2
α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε

}

provides a conservative

estimate ofN 2
α̂ (x∗)∩X5. The desired result follows from Lemma 3 in [29]. ⊓⊔

For the case of unconstrained global optimization, Theorem3 effectively reduces to Theorem 1 in [29]
with γ equal to half the smallest eigenvalue of∇2 f (x∗)

(

note that there is a ‘factor of two difference’ from the
analysis in [29] because we consider an appropriateα̂ ∈ (0,α ]

)

.

Remark 5Under the assumptions of Theorem3, the dependence ofN onε disappears when the lower bounding
scheme has second-order convergence onN 2

α̂ (x∗)∩F (X). This is similar to the case of unconstrained global
optimization where at least second-order convergent lowerbounding schemes are required to eliminate the
cluster problem.

Finally, we present two sets of additional assumptions overthose of Lemma8 under which less conservative
estimates of the cluster problem onX5 can be obtained. The first result in this regard, similar to Lemma6, refines
the analysis of Lemma8 when Problem (P) contains equality constraints that can locally be eliminated using
the implicit function theorem [22].
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Lemma 9 Consider Problem(P) with 1 ≤ mE < nx. Suppose f is twice-differentiable atx∗, and∃α > 0, γ > 0
such thath is continuously differentiable onN 2

α (x∗) and

∇ f (x∗)Td+
1
2

dT∇2 f (x∗)d ≥ γdTd, ∀d ∈
{

d : (x∗ +d) ∈ N
2

α (x∗)∩F (X)
}

.

Furthermore, suppose the variablesx can be reordered and partitioned into dependent variablesz ∈ RmE and
independent variablesp ∈ Rnx−mE , with x ≡ (z,p), such that∇zh((z,p)) is nonsingular onN 2

α ((z∗
,p∗)),

wherex∗ ≡ (z∗
,p∗). Then,∃αp,αz ∈ (0,α ], a continuously differentiable functionφφφ : N 2

αp
(p∗) → N 2

αz
(z∗),

andα̂ ∈ (0,αp) such that the region
(

N 2
αz

(z∗)×N 2
α̂ (p∗)

)

∩X5 can be conservatively approximated by

X̂5 =
{

(z,p) ∈ N
2

αz
(z∗)×N

2
α̂ (p∗) : z = φφφ(p), γ‖p−p∗‖2 ≤ 2ε

}

.

Proof The result follows from the proof of Lemma8 and the implicit function theorem [22, Chapter 9]. ⊓⊔

Lemma9 can be used to obtain a less conservative estimate of the number of boxes of widthδ required to
coverX̂5 as shown in the following corollary of Theorem3. It provides an upper bound on the number of boxes

of width δ required to coverX5 that scales asO

(

ε (nx−mE)
(

1
2− 1

β∗
))

in contrast to the scalingO

(

εnx

(

1
2− 1

β∗
))

from Theorem3.

Corollary 3 Suppose the assumptions of Lemma9 hold. Letδ =
( ε

τ∗

)
1

β∗
and r=

√

2ε
γ

. Define

Mk :=

(

max
p∈cl(N 2

α̂ (p∗))
‖∇φk(p)‖

)

√
nx −mE, ∀k ∈ {1, · · · ,mE},

K := {k ∈ {1, · · · ,mE} : Mk > 1} .

1. If δ ≥ 2r, let N = ∏
k∈K

Mk.

2. If
2r√
m−1

> δ ≥ 2r√
m

for some m∈ N with m≤ nx −mE and2 ≤ m≤ 18, then let

N =

(

m−1

∑
i=0

2i
(

nx −mE

i

)

+2(nx −mE)

⌈

m−9
9

⌉

)

∏
k∈K

Mk.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉nx−mE−1
(

⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉

+

2(nx −mE)

⌈

(
√

2−1) (τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉

)

∏
k∈K

Mk.

Then, N is an upper bound on the number of boxes of widthδ required to coverX̂5.

Proof The proof is similar to the proof of Corollary2, and is therefore omitted. ⊓⊔

The next result refines the analysis of Lemma8 further, in part by accounting for the fact thatf grows
linearly aroundx∗ in the direction of its gradient.

Lemma 10 Consider Problem(P), and suppose the assumptions of Lemma8 hold. Then∃α̂ ∈ (0,α ] and
constantsρ1,ρ2 ≥ 0 such that the regionN 2

α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε , −ρ1ε ≤ ∇ f (x∗)T (x−x∗) ≤ ρ2ε
}

.
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Proof See AppendixA.5. ⊓⊔

The previous lemma can be used to obtain a less conservative estimate of the number of boxes of widthδ
required to cover̂X5 whenε is sufficiently-small and the convergence orderβ ∗ > 1. This is presented in the
following Corollary of Theorem3, which provides an upper bound on the number of boxes of widthδ required

to coverX5 that scales asO

(

ε (nx−1)
(

1
2− 1

β∗
))

in contrast to the scalingO

(

εnx

(

1
2− 1

β∗
))

from Theorem3.

Corollary 4 Suppose the assumptions of Lemma10hold. Letδ =
( ε

τ∗

)
1

β∗
and r=

√

2ε
γ

. Supposeβ ∗
> 1, ε

is sufficiently-small that(ρ1 +ρ2)ε ≪ δ , and∇ f (x∗) 6= 0.

1. If δ ≥ 2r, let N = 1.

2. If
2r√
m−1

> δ ≥ 2r√
m

for some m∈ N with m≤ nx −1 and2 ≤ m≤ 18, then let

N =
m−1

∑
i=0

2i
(

nx −1
i

)

+2(nx −1)

⌈

m−9
9

⌉

.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉nx−2
(

⌈

2(τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉

+

2(nx −1)

⌈

(
√

2−1) (τ∗)
1

β∗ ε
(

1
2− 1

β∗
)

γ− 1
2

⌉

)

.

Then, N is an upper bound on the number of boxes of widthδ required to coverX̂5.

Proof We have from Lemma10thatX̂5 is conservatively estimated by a sphere with radius= O(
√

ε) truncated
by the hyperplanes∇ f (x∗)T (x−x∗) ≤ ρ2ε and∇ f (x∗)T (x−x∗) ≥ −ρ1ε . Therefore, whenε is chosen to be
small enough that(ρ1+ρ2)ε ≪ δ , the desired result follows from Theorem3 and the fact that any covering of
the projection ofX̂5 on to the subspace perpendicular to∇ f (x∗) with boxes of widthδ can be directly extended
to coverX̂5 without using additional boxes. ⊓⊔

Note that Corollary4 can also be extended to the case when 0< β ∗ ≤ 1, in which case the estimateN may
additionally depend on the values ofρ1 andρ2.

3.2 Estimates for the number of boxes required to coverX3\Bδ

This section assumes that Problem (P) has a finite number of global minimizers, andε is small enough thatX3

is guaranteed to be contained in neighborhoods of constrained global minimizers under additional assumptions.
An estimate for the number of boxes of certain widths required to cover some neighborhood of a constrained
minimumx∗ that contains the subset ofX3 aroundx∗ is provided under suitable assumptions. An estimate for
the number of boxes required to coverX3 can be obtained by summing the above estimates over the set of
constrained global minimizers. Throughout this section, we assume thatx∗ is a constrained global minimizer;
otherwise∃α > 0 such thatN 2

α (x∗)∩X3 = /0. Furthermore, we assume thatx∗ is at the center of a single box

Bδ of width δ =
( ε

τ∗

)
1

β∗
placed while coverinĝX5 (see Remark6 for the reason for this assumption).
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The first result in this section provides a conservative estimate of the subset ofX3 around a constrained mini-
mizerx∗ under the following assumption: the infeasible region in some neighborhood ofx∗ can be split into two
subregions such that the objective function grows linearlyin the first subregion and the measure of infeasibility
grows linearly in the second subregion.

Lemma 11 Consider Problem(P). Supposex∗ is a constrained minimizer, and the functions f , gj , ∀ j ∈ A (x∗),
and hk, ∀k ∈ {1, · · · ,mE}, are locally Lipschitz continuous on X and directionally differentiable atx∗. Further-
more, suppose∃α > 0 and a setD0 such that

L f = inf
d∈D0∩DI

f ′(x∗;d) > 0,

LI = inf
d∈DI \D0

max

{

max
j∈A (x∗)

g′
j(x

∗;d), max
k∈{1,··· ,mE}

∣

∣h′
k(x

∗;d)
∣

∣

}

> 0,

whereDI is defined as

DI =
{

d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ N
1

α (x∗)∩ (F (X))C
}

.

Then,∃α̂ ∈ (0,α ] such that the region

X1
3 := N

1
α̂ (x∗)∩X3∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI , t > 0
}

can be conservatively approximated as

X̂1
3 =

{

x ∈ N
1

α̂ (x∗) : L f ‖x−x∗‖1 ≤ 2εo}
,

and the region

X2
3 := N

1
α̂ (x∗)∩X3 ∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0, t > 0
}

can be conservatively approximated as

X̂2
3 =

{

x ∈ N
1

α̂ (x∗) : LI ‖x−x∗‖1 ≤ 2ε f}
.

Furthermore, supposex∗ is at the center of a box, Bδ , of widthδ =
( ε

τ∗

)
1

β∗
placed while coverinĝX5. Then,

the region

X2
3\Bδ = N

1
α̂ (x∗)∩X3∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0, t > 0
}∖

Bδ

is conservatively characterized by
{

x ∈ N
1

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
(

LI

4
δ ,ε f

]}

whenever LI δ < 4ε f .

Proof Let x = x∗ + td ∈ N 1
α (x∗) ∩ (F (X))C with ‖d‖1 = 1, d ∈ D0, andt = ‖x − x∗‖1 > 0. We have (see

Theorem 3.1.2 in [24])

f (x) = f (x∗ + td)

= f (x∗)+ f ′(x∗;(x−x∗))+o(‖x−x∗‖1)

= f (x∗)+ t f ′(x∗;d)+o(t)

≥ f (x∗)+L f t +o(t).
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Consequently, there existŝα0 ∈ (0,α ] such that for allx = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d ∈ D0 and
t ∈ [0, α̂0):

f (x) ≥ f (x∗)+L f t +o(t) ≥ f (x∗)+
L f

2
t.

Next, considerx = x∗ + td ∈ N 1
α (x∗)∩ (F (X))C with ‖d‖1 = 1, d 6∈ D0, andt = ‖x−x∗‖1 > 0. We have

max

{

max
j∈A (x∗)

{

g j(x)
}

, max
k∈{1,··· ,mE}

{|hk(x)|}
}

=max

{

max
j∈A (x∗)

{

g j(x∗ + td)
}

, max
k∈{1,··· ,mE}

{|hk(x∗ + td)|}
}

=max

{

max
j∈A (x∗)

{

tg′
j(x

∗;d)+o(t)
}

, max
k∈{1,··· ,mE}

{∣

∣th′
k(x

∗;d)+o(t)
∣

∣

}

}

.

Consequently, there existŝα1 ∈ (0,α ] such that for allx = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d 6∈ D0 and
t ∈ [0, α̂1):

d

([

g
h

]

(x),RmI
− ×{0}

)

≥max

{

max
j∈A (x∗)

{

g j(x)
}

, max
k∈{1,··· ,mE}

{|hk(x)|}
}

=max

{

max
j∈A (x∗)

{

tg′
j(x

∗;d)+o(t)
}

, max
k∈{1,··· ,mE}

{∣

∣th′
k(x

∗;d)+o(t)
∣

∣

}

}

≥LI

2
t,

where Step 1 follows from the fact that‖z‖ ≥ ‖z‖∞, ∀z ∈ RmI ×RmE .

Setα̂ = min{α̂0, α̂1}. Then

∀x ∈ X1
3 := N

1
α̂ (x∗)∩X3∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI , t > 0
}

we havex = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d ∈ D0 andt = ‖x−x∗‖1 < α̂ , and

εo ≥ f (x)− f (x∗) ≥ L f

2
t =⇒ L f t = L f ‖x−x∗‖1 ≤ 2εo

.

Furthermore,

∀x ∈ X2
3 := N

1
α̂ (x∗)∩X3 ∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0, t > 0
}

we havex = x∗ + td ∈ (F (X))C with ‖d‖1 = 1, d 6∈ D0 andt = ‖x−x∗‖1 < α̂ , and

ε f ≥ d

([

g
h

]

(x),RmI
− ×{0}

)

≥ LI

2
t =⇒ LI t = LI‖x−x∗‖1 ≤ 2ε f

.

Finally, for everyx ∈ N 1
α̂ (x∗) ∩ X3 ∩

{

x = (x∗ + td) ∈ N 1
α̂ (x∗)∩ (F (X))C : d ∈ DI\D0, t > 0

}

with t ≤ δ
2

,

we havex ∈ Bδ . Consequently, for each

x ∈ N
1

α̂ (x∗)∩X3 ∩
{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0, t > 0
}∖

Bδ ,

we havet >
δ
2

and therefore,

d

([

g
h

]

(x),RmI
− ×{0}

)

≥ LI

2
t >

LI

4
δ .
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The desired result follows whenLI δ < 4ε f ; otherwise, ifLI δ ≥ 4ε f , then

N
1

α̂ (x∗)∩X3∩
{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0, t > 0
}

⊂ Bδ .

⊓⊔

A conservative estimate of the number of boxes of certain widths required to cover
(

N 1
α̂ (x∗)∩X3

)

\Bδ
can be obtained by estimating the number of boxes of certain widths required to cover̂X1

3 and X̂2
3\Bδ (see

Theorem4). The following remark is in order.

Remark 6

1. Lemma11 does not hold when∄α > 0, D0 such that bothL f andLI are positive. Example4 illustrates
a case when no valid partition ofDI exists (since[xL

,0), which is a subset ofX3, corresponds tod = −1
which has an empty intersection with every valid choice ofD0, and∇g1(x∗) = 0). Note thatD0 may be
chosen to be /0, but it cannot be chosen to beDI when the objective function is differentiable atx∗. This
is because when∇ f (x∗) 6= 0, the direction−∇ f (x∗) leads to infeasible points aroundx∗. One potential
choice ofD0 is

D0 =
{

d :‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ N
1

α (x∗)∩ (F (X))C
,

max

{

max
j∈A (x∗)

{

g′
j(x

∗;d)
}

, max
k∈{1,··· ,mE}

{∣

∣h′
k(x

∗;d)
∣

∣

}

}

≤ θ
}

for some choice ofθ > 0, so long as inf
d∈D0

f ′(x∗;d) > 0. Proposition4 shows that the assumptions of

Lemma11 will not be satisfied when Problem (P) does not contain any active inequality constraints and
the minimizer corresponds to a KKT point for Problem (P).

2. The inequalityLI δ < 4ε f is equivalent to

LI δ = LI

(

ε f

τ I

)

1
β I

< 4ε f
.

Sinceε f can be taken to be sufficiently-small, the above inequality holds only when

(ε f )
1

β I ≤ ε f ⇐⇒ β I ≤ 1,

i.e., if β I
> 1, we can chooseε f to be small-enough so thatLI δ ≥ 4ε f . Note that ifLI δ ≥ 4ε f , the region

N
1

α̂ (x∗)∩X3 ∩
{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0, t > 0
}

has already been covered while coveringX̂5 since

LI δ
4

≥ ε f ≥ LI

2
t =⇒ t ≤ δ

2
,

which impliesx = x∗ + td ∈ Bδ .
The motivation for excluding the regionBδ from X3 is as follows. Lemma2 shows that if the measure of
infeasibility, as determined by the distance functiond, is strictly greater thanε f at each point in the domain
of a node, the node can be fathomed by a box of widthδ . However, ifx∗ is a constrained minimizer, we will
have points inX3 which are arbitrarily close tox∗ and have a measure of infeasibility that is arbitrarily close
to 0. Such points will then have to be fathomed by boxes of width much smaller thanδ (and arbitrarily
close to 0). To avoid this issue, such points are assumed to beeliminated whenX5 is covered by boxes of
width δ .
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3. α̂ depends on the local behavior off , g j , ∀ j ∈ A (x∗), andhk, ∀k ∈ {1, · · · ,mE}, aroundx∗, but is in-
dependent ofε . Consequently, for sufficiently smallε we haveX̂1

3 =
{

x ∈ X : L f ‖x−x∗‖1 ≤ 2εo
}

and
X̂2

3 =
{

x ∈ X : LI‖x−x∗‖1 ≤ 2ε f
}

. Additionally, if f andg j , ∀ j ∈ A (x∗), are convex onN 1
α (x∗) andhk,

∀k ∈ {1, · · · ,mE}, are affine onN 1
α (x∗), we can choosêα = α . Furthermore,

X1
3 := N

1
α̂ (x∗)∩X3 ∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI , t > 0
}

can be conservatively approximated asX̂1
3 =

{

x ∈ X : L f ‖x−x∗‖1 ≤ εo
}

,

X2
3 := N

1
α̂ (x∗)∩X3 ∩

{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0, t > 0
}

can be conservatively approximated asX̂2
3 =

{

x ∈ X : LI ‖x−x∗‖1 ≤ ε f
}

, and the region

N
1

α̂ (x∗)∩X3∩
{

x = (x∗ + td) ∈ N
1

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0, t > 0
}∖

Bδ

is conservatively characterized by

{

x ∈ N
1

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
(

LI

2
δ ,ε f

]}

wheneverLI δ < 2ε f .
4. Similar to Proposition1, the following less conservative estimates ofX1

3 andX2
3 can be obtained:

X̂1
3 =

{

x ∈ N
1

α̂ (x∗) : L f ‖x−x∗‖1 ≤ 2εo
, f ′(x∗;x−x∗) ≥ L f ‖x−x∗‖1

}

,

X̂2
3 =

{

x ∈ N
1

α̂ (x∗) : LI‖x−x∗‖1 ≤ 2ε f
,

max

{

max
j∈A (x∗)

g′
j(x

∗;x−x∗), max
k∈{1,··· ,mE}

∣

∣h′
k(x

∗;x−x∗)
∣

∣

}

≥ LI‖x−x∗‖1

}

.

As an illustration of the application of Lemma11, let us reconsider Example2. Recall thatX = (2.2,2.5)×
(2.9,3.3), mI = 3, mE = 0, f (x) = −x1 − x2, g1(x) = x2 − 2x4

1 + 8x3
1 − 8x2

1 − 2, g2(x) = x2 − 4x4
1 + 32x3

1 −
88x2

1 +96x1 −36, andg3(x) = 3−x2 with x∗ ≈ (2.33,3.18). Let εo ≤ 0.03 andε f ≤ 0.05. We haveF (X) =
{x ∈ X : g(x) ≤ 0}, ∇ f (x∗) = (−1,−1), ∇g1(x∗) ≈ (−8.164,1), and∇g2(x∗) ≈ (4.700,1). Chooseα = +∞.

DI =
{

d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C
}

. ChooseD0 =
{

d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 0.298
}

and

α̂ = +∞ in Lemma11. From Lemma11 and Remark6, we haveL f = 0.298 andLI = 1 with the estimates
X̂1

3 = {x : 0.298‖x−x∗‖1 ≤ εo} (since f is convex), andX̂2
3 =

{

x : ‖x−x∗‖1 ≤ 2ε f
}

. Figure5 illustrates the
setD0, and plots the setsX1

3 andX2
3 along with their estimateŝX1

3 andX̂2
3 for εo = 0.03 andε f = 0.05.

The next result provides conditions under which the assumptions of Lemma11 will not be satisfied. In
particular, it is shown that the assumptions of Lemma11will not be satisfied if Problem (P) is purely equality-
constrained and all the functions in Problem (P) are differentiable at a nonisolated constrained minimizer x∗.

Proposition 4 Consider Problem(P) with mE ≥ 1. Supposex∗ is a nonisolated constrained minimizer, f is
differentiable atx∗, functions hk, k= 1, · · · ,mE, are differentiable atx∗, andA (x∗) = /0. Furthermore, suppose
there exist multipliersλλλ ∗ ∈ RmE corresponding to the equality constraints such that(x∗

,0,λλλ ∗) is a KKT point.
Then6 ∃α > 0, D0 such that the assumptions of Lemma11 are satisfied.

Proof See AppendixA.6. ⊓⊔

The above result can be extended to the case when there exist active inequality constraints if all such
constraints are strongly active atx∗ (see [2, Section 4.4]) and there existsd ∈ T(x∗) such that∇ f (x∗)Td = 0.
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Fig. 5: Illustration of the setsD0 andDI\D0, the setsX1
3 andX2

3 , and their estimateŝX1
3 andX̂2

3 for Example2.
The dashed lines represent the setX, and the filled-in triangles represent the minimumx∗. (Top Plot) The
solid region represents the feasible region and the solid vectors represent the gradients of the objective and the
constraints. The set of directions between the dot-dashed lines (the part in which the feasible region resides)
defines the setD0, and the remaining directions define the setDI\D0. The dotted line represents the direction
in DI \D0 in which both constraints grow equally quickly in a first-order sense. (Other Plots) The solid regions
represent the setX1

3 or X2
3 , the area between the dotted lines represent the estimateX̂1

3 or X̂2
3 , and the dash-dotted

lines represent the axes translated tox∗. All plots useεo = 0.03 andε f = 0.05.
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Next, we revisit two equality-constrained examples from Section 3.1 for which the assumptions of Lemma11
hold, and which do not satisfy individual assumptions of Proposition4. Consider Example7, and recall that
X = (−2,2) × (−2,2), mI = 1, andmE = 1 with f (x) = x1 + 10x2

2, g1(x) = x1 − 1, h(x) = x1 − |x2|, and
x∗ = (0,0). Let εo,ε f ≤ 0.25. We haveF (X) = {x ∈ X : x1 = |x2|,x1 ≤ 1}, ∇ f (x∗) = (1,0), andh′(x∗;d) =

d1 − |d2|. Chooseα = +∞. We haveDI =
{

d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C
}

. ChooseD0 =
{

d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 0.25
}

and α̂ = +∞ in Lemma 11. From Lemma11 and Remark6, we have

L f = 0.25 andLI = 0.5 with the estimateŝX1
3 = {x : 0.25‖x−x∗‖1 ≤ εo} (since f is convex), andX̂2

3 =
{

x : 0.5‖x−x∗‖1 ≤ 2ε f
}

.

Consider Example8, and recall thatX = (−2,2)× (−2,2), mI = 4, andmE = 1 with f (x) = x1 +x2, g1(x) =
−x1, g2(x) = −x2, g3(x) = x1 − 1, g4(x) = x2 − 1, h(x) = x2 − x3

1, andx∗ = (0,0). Let εo,ε f ≤ 1
3. F (X) =

{

x ∈ [0,1]2 : x2 = x3
1

}

, ∇ f (x∗) = (1,1), ∇g1(x∗) = (−1,0), ∇g2(x∗) = (0,−1), and∇h(x∗) = (0,1). Choose

α = +∞. DI =
{

d : ‖d‖1 = 1, ∃t > 0 : (x∗ + td) ∈ (F (X))C
}

. ChooseD0 =
{

d : ‖d‖1 = 1, ∇ f (x∗)Td ≥ 1
3

}

andα̂ = +∞ in Lemma11. From Lemma11 and Remark6, we haveL f = 1
3 andLI = 1

3 with the estimates
X̂1

3 = {x : ‖x−x∗‖1 ≤ 3εo} (since f is convex), and̂X2
3 =

{

x : ‖x−x∗‖1 ≤ 3ε f
}

(sinceg1 andg2 are convex).

The next example illustrates a simple one-dimensional casewhich satisfies the assumptions of Lemma11with
D0 = /0.

Example 11Let ε f ≤ 0.5, X = (−2,2), mI = 2, andmE = 0 with f (x) = x3, g1(x) = x−1, g2(x) = −x, and
x∗ = 0. We haveF (X) = [0,1], ∇ f (x∗) = 0, ∇g2(x∗) = −1, andX3 = [−ε f ,0). Chooseα = +∞. We have
DI = {−1}. ChooseD0 = /0 andα̂ = +∞ in Lemma11. From Lemma11 and Remark6, we haveLI = 1 and
X̂2

3 = [−ε f ,+ε f ] (sinceg2 is convex).

The following result follows from Corollary 2.1 in [28] (also see the proof of Theorem2). It provides a con-
servative estimate of the number of boxes of certain widths required to cover̂X1

3 andX̂2
3\Bδ from Lemma11.

Therefore, from Lemmata2 and3 and the result below, we can get an upper bound on the worst-case number
of boxes required to coverN 1

α̂ (x∗)∩X3 and estimate the extent of the cluster problem on that region.

Theorem 4 Suppose the assumptions of Lemma11 hold. Letδ = δ f =
( ε

τ∗

)
1

β∗
=

(

εo

τ f

) 1
β f

=

(

ε f

τ I

)

1
β I

,

δI =

(

LI δ
4τ I

)
1

β I

=

(

LI

4τ I

)
1

β I
(

ε f

τ I

)

1
(β I )2

, rI =
2ε f

LI
, r f =

2εo

L f
.

1. If δI ≥ 2rI , let NI = 1.

2. If
2rI

m̄I −1
> δI ≥ 2rI

m̄I
for somem̄I ∈ N with m̄I ≤ nx and2 ≤ m̄I ≤ 5, then let

NI =
m̄I −1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

m̄I −3
3

⌉

.

3. Otherwise, let

NI =
⌈

2BI (ε f ;β I
,LI ,τI )

⌉nx−1(⌈
2BI (ε f ;β I

,LI ,τI )
⌉

+2nx
⌈

BI (ε f ;β I
,LI ,τI)

⌉)

,

where

BI (ε f ;β I
,LI ,τI ) := 4

1
β I
(

τ I)

(

1
β I + 1

(β I)
2

)

(

ε f )

(

1− 1

(β I)
2

)

L
−
(

1+ 1
β I

)

I .

4. If δ f ≥ 2r f , let Nf = 1.
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5. If
2r f

mf −1
> δ f ≥ 2r f

mf
for some mf ∈ N with mf ≤ nx and2 ≤ mf ≤ 5, then let

Nf =

mf −1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

mf −3
3

⌉

.

6. Otherwise, let

Nf =

⌈

2
(

τ f )
1

β f (εo)

(

1− 1
β f

)

L−1
f

⌉nx−1(⌈

2
(

τ f )
1

β f (εo)

(

1− 1
β f

)

L−1
f

⌉

+2nx

⌈

(

τ f )
1

β f (εo)

(

1− 1
β f

)

L−1
f

⌉)

.

Then, NI is an upper bound on the number of boxes of widthδI required to coverX̂2
3\Bδ , and Nf is an upper

bound on the number of boxes of widthδ f required to coverX̂1
3 .

Proof The result onNf follows from Lemmata3 and 11 and Corollary 2.1 in [28] (also see the proof of

Theorem2). To deduce the result onNI , note that we cover̂X2
3\Bδ with boxes of widthδI =

(

LI δ
4τ I

)
1

β I

since,

from Lemma11, we have

X̂2
3\Bδ ⊂

{

x ∈ N
1

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
(

LI

4
δ ,ε f

]}

and, from Lemma2, we have that a boxBδI
of width δI with eachx ∈ BδI

satisfyingd

([

g
h

]

(x),RmI
− ×{0}

)

>

LI

4
δ can be fathomed by infeasibility. The desired result then follows from Corollary 2.1 in [28]. ⊓⊔

Remark 7Under the assumptions of Lemma11, the dependence ofNI onε f disappears when the lower bound-
ing scheme has first-order convergence onN 1

α̂ (x∗)∩ (F (X))C, i.e.,β I = 1, and the dependence ofNf on εo

disappears when the scheme( f cv
Z )Z∈IX has first-order convergence onX, i.e., β f = 1. Therefore, the cluster

problem onX3 can be eliminated even using first-order convergent schemeswith sufficiently small prefactors.
Note that the dependence ofNf andNI on the prefactorsτ f andτ I , respectively, can be detailed in a manner
similar to Table 1 in [29].

The following results illustrate one set of assumptions under which second-order convergence of the lower
bounding scheme at infeasible points is sufficient to eliminate the cluster problem onX3\Bδ . First, we provide
a conservative estimate of the subset ofX3 around a constrained minimizerx∗ under the following assumption:
the infeasible region in some neighborhood ofx∗ can be split into two subregions such that the objective func-
tion grows quadratically (or faster) in the first subregion and the measure of infeasibility grows quadratically
(or faster) in the second subregion. Note that better estimates ofX3 may be derived either under the (stronger)
assumption that the objective function grows linearly in the directionsD0∩DI , or under the (stronger) assump-
tion that the measure of infeasibility grows linearly in thedirectionsDI \D0.

Lemma 12 Consider Problem(P). Supposex∗ is a constrained minimizer, functions f , gj , ∀ j ∈ A (x∗), and
hk, ∀k ∈ {1, · · · ,mE}, are twice-differentiable atx∗, and∃α > 0,γ1 > 0,γ2 > 0 and a setD0 such that

∇ f (x∗)Td+
1
2

dT∇2 f (x∗)d ≥ γ1dTd, ∀d ∈ D0 ∩DI ,

max

{

max
j∈A (x∗)

{

∇g j (x∗)Td+
1
2

dT∇2g j(x∗)d
}

, max
k∈{1,··· ,mE}

{
∣

∣

∣

∣

∇hk(x
∗)Td+

1
2

dT∇2hk(x
∗)d

∣

∣

∣

∣

}}

≥ γ2dTd, ∀d ∈ DI\D0,
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whereDI is defined as

DI =
{

d : (x∗ +d) ∈ N
2

α (x∗)∩ (F (X))C
}

.

Then,∃α̂ ∈ (0,α ] such that the region

X1
3 := N

2
α̂ (x∗)∩X3∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI

}

can be conservatively approximated as

X̂1
3 =

{

x ∈ N
2

α̂ (x∗) : γ1‖x−x∗‖2 ≤ 2εo
}

,

and the region

X2
3 := N

2
α̂ (x∗)∩X3 ∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0

}

can be conservatively approximated as

X̂2
3 =

{

x ∈ N
2

α̂ (x∗) : γ2‖x−x∗‖2 ≤ 2ε f
}

.

Furthermore, supposex∗ is at the center of a box, Bδ , of widthδ =
( ε

τ∗

)
1

β∗
placed while coverinĝX5. Then,

the region

X2
3\Bδ = N

2
α̂ (x∗)∩X3∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0

}∖

Bδ

is conservatively characterized by

{

x ∈ N
2

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
( γ2

8
δ 2

,ε f
]

}

,

wheneverγ2δ 2 < 8ε f .

Proof From Lemma8, we have the existence ofα̂0 > 0 such that

N
2

α̂0
(x∗)∩X3 ∩

{

x = (x∗ +d) ∈ N
2

α̂0
(x∗)∩ (F (X))C : d ∈ D0 ∩DI

}

can be conservatively approximated as
{

x ∈ N 2
α̂0

(x∗) : γ1‖x−x∗‖2 ≤ 2εo
}

.

Considerx = x∗ +d ∈ N 2
α (x∗)∩ (F (X))C with d ∈ DI\D0. We have

max

{

max
j∈A (x∗)

{

g j(x)
}

, max
k∈{1,··· ,mE}

{|hk(x)|}
}

=max

{

max
j∈A (x∗)

{

g j(x∗ +d)
}

, max
k∈{1,··· ,mE}

{|hk(x∗ +d)|}
}

=max

{

max
j∈A (x∗)

{

∇g j(x∗)Td+
1
2

dT∇2g j(x∗)d+o(‖d‖2)

}

,

max
k∈{1,··· ,mE}

{∣

∣

∣

∣

∇hk(x
∗)Td+

1
2

dT∇2hk(x
∗)d+o(‖d‖2)

∣

∣

∣

∣

}}

.
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Consequently, there existŝα1 ∈ (0,α ] such that for allx = x∗ +d ∈ (F (X))C with ‖d‖ ∈ [0, α̂1), d 6∈ D0:

d

([

g
h

]

(x),RmI
− ×{0}

)

≥max

{

max
j∈A (x∗)

{

g j(x)
}

, max
k∈{1,··· ,mE}

{|hk(x)|}
}

=max

{

max
j∈A (x∗)

{

∇g j(x∗)Td+
1
2

dT∇2g j(x∗)d+o(‖d‖2)

}

,

max
k∈{1,··· ,mE}

{∣

∣

∣

∣

∇hk(x∗)Td+
1
2

dT∇2hk(x∗)d+o(‖d‖2)

∣

∣

∣

∣

}}

≥γ2

2
‖d‖2

,

where Step 1 follows from the fact that‖z‖ ≥ ‖z‖∞, ∀z ∈ RmI ×RmE .

Chooseα̂ = min{α̂0, α̂1}. The region

X1
3 := N

2
α̂ (x∗)∩X3 ∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI

}

can be conservatively approximated as

X̂1
3 =

{

x ∈ N
2

α̂ (x∗) : γ1‖x−x∗‖2 ≤ 2εo
}

,

and
∀x ∈ X2

3 := N
2

α̂ (x∗)∩X3 ∩
{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0

}

,

we havex = x∗ +d ∈ (F (X))C with d 6∈ D0, ‖d‖ < α̂, and

ε f ≥ d

([

g
h

]

(x),RmI
− ×{0}

)

≥ γ2

2
‖x−x∗‖2 =⇒ γ2‖x−x∗‖2 ≤ 2ε f

.

Finally, for everyx ∈ N 2
α̂ (x∗) ∩ X3 ∩

{

x = (x∗ +d) ∈ N 2
α̂ (x∗)∩ (F (X))C : d ∈ DI \D0

}

with ‖d‖ ≤ δ
2

, we

havex ∈ Bδ . Consequently, for each

x ∈ N
2

α̂ (x∗)∩X3 ∩
{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0

}∖

Bδ ,

we have‖d‖ >
δ
2

and therefore,

d

([

g
h

]

(x),RmI
− ×{0}

)

>
γ2

8
δ 2

.

The desired result follows whenγ2δ 2 < 8ε f ; otherwise, ifγ2δ 2 ≥ 8ε f , then

N
2

α̂ (x∗)∩X3 ∩
{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0

}

⊂ Bδ .

⊓⊔

A conservative estimate of the number of boxes of certain widths required to cover
(

N 2
α̂ (x∗)∩X3

)

\Bδ
can be obtained by estimating the number of boxes of certain widths required to cover̂X1

3 and X̂2
3\Bδ (see

Theorem5). The following remark is in order.

Remark 8

1. Lemma12 does not hold when∄α ,γ1,γ2 > 0, andD0, for exampleX = (0,2) × (0,2), mI = 0, mE = 2,
f (x) = −x1, h1(x) = x2−(1−x1)

3, h2(x) = −x2−(1−x1)
3, andx∗ = (1,0) (see [2, Example 4.3.5]). Note

thatD0 may be chosen to be /0, but it cannot be chosen to beDI (see Remark6 for an explanation).
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2. The inequalityγ2δ 2
< 8ε f is equivalent to

γ2δ 2 = γ2

(

ε f

τ I

)

2
β I

< 8ε f
.

Sinceε f can be taken to be sufficiently-small, the above inequality holds only when

(ε f )
2

β I ≤ ε f ⇐⇒ β I ≤ 2,

i.e., if β I
> 2, we can chooseε f to be small-enough so thatγ2δ 2 ≥ 8ε f . Note that ifγ2δ 2 ≥ 8ε f , the region

N
2

α̂ (x∗)∩X3∩
{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI \D0

}

has already been covered while coveringX̂5 since

γ2δ 2

8
≥ ε f ≥ γ2‖d‖2

2
=⇒ ‖d‖ ≤ δ

2
,

which impliesx = x∗ +d ∈ Bδ .
3. α̂ depends on the local behavior off , g j , ∀ j ∈ A (x∗), andhk, ∀k ∈ {1, · · · ,mE}, aroundx∗, but is in-

dependent ofε . Consequently, for sufficiently smallε we haveX̂1
3 =

{

x ∈ X : γ1‖x−x∗‖2 ≤ 2εo
}

and

X̂2
3 =

{

x ∈ X : γ2‖x−x∗‖2 ≤ 2ε f
}

. Additionally, if the objective function and the active constraints are

all either affine or quadratic functions ofx, then their second-order Taylor expansions aroundx∗ equal
themselves and we can chooseα̂ = α . Furthermore,

X1
3 := N

2
α̂ (x∗)∩X3 ∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ D0 ∩DI

}

can be conservatively approximated asX̂1
3 =

{

x ∈ X : γ1‖x−x∗‖2 ≤ εo
}

, the region

X2
3 := N

2
α̂ (x∗)∩X3∩

{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0

}

can be conservatively approximated asX̂2
3 =

{

x ∈ X : γ2‖x−x∗‖2 ≤ ε f
}

, and the region

N
2

α̂ (x∗)∩X3 ∩
{

x = (x∗ +d) ∈ N
2

α̂ (x∗)∩ (F (X))C : d ∈ DI\D0

}∖

Bδ

is conservatively characterized by
{

x ∈ N
2

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
( γ2

4
δ 2

,ε f
]

}

wheneverγ2δ 2 ≥ 4ε f .
4. Similar to Proposition1, the following less conservative estimates ofX1

3 andX2
3 can be obtained:

X̂1
3 =

{

x ∈ N
2

α̂ (x∗) : γ1‖x−x∗‖2 ≤ 2εo
,

∇ f (x∗)T(x−x∗)+
1
2
(x−x∗)T∇2 f (x∗)(x−x∗) ≥ γ1‖x−x∗‖2

}

,

X̂2
3 =

{

x ∈ N
2

α̂ (x∗) : γ2‖x−x∗‖2 ≤ 2ε f
,

max

{

max
j∈A (x∗)

{

∇g j(x∗)T(x−x∗)+
1
2
(x−x∗)T∇2g j(x∗)(x−x∗)

}

,

max
k∈{1,··· ,mE}

{∣

∣

∣

∣

∇hk(x
∗)T(x−x∗)+

1
2
(x−x∗)T∇2hk(x

∗)(x−x∗)

∣

∣

∣

∣

}}

≥ γ2‖x−x∗‖2
}

.
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To illustrate the application of Lemma12, let us reconsider Example4 with εo
,ε f ≤ 1. Recall thatX =

(−2,2), mI = 3, mE = 0, f (x) = x, g1(x) = x2, g2(x) = x− 1, andg3(x) = −1− x with x∗ = 0. We have

F (X) = {0} andX3 = [−
√

ε f ,0) ∪
(

0,min{εo
,
√

ε f }
]

. Chooseα = 1. We haveDI = (−1,1)\{0}. Choose

D0 = {d ∈ DI : d > 0}, γ1 = 1, γ2 = 1, andα̂ = 1 in Lemma12. From Lemma12 and Remark8, we have
X̂1

3 =
{

x : x2 ≤ εo
}

andX̂2
3 =

{

x : x2 ≤ ε f
}

(since f is linear andg1 is quadratic). In fact, for this example, we
can get a better estimate ofX1

3 by taking into account the fact thatf grows linearly onD0 ∩DI .

Next, we revisit two examples from Section3.1 for which the assumptions of Lemma12 hold. First, con-
sider Example9 with εo ≤ 0.6, ε f ≤ 0.5, and recall thatX = (−2,2) × (−2,2), mI = 2, andmE = 0 with
f (x) = x2, g1(x) = x2

1 − x2, g2(x) = x2 − 1, andx∗ = (0,0). We haveF (X) =
{

x : x2 ≥ x2
1, x2 ≤ 1

}

and
X3 =

{

x : x2
1 − ε f ≤ x2 < x2

1,x2 ≤ εo
}

. Chooseα = 1. We haveDI =
{

d ∈ N 2
1 (0) : d2 < d2

1

}

. ChooseD0 =
{

d ∈ DI : d2 ≥ 0.5d2
1

}

, γ1 = 0.3, γ2 = 0.25 andα̂ = 1 in Lemma12. From Lemma12 and Remark8, we

haveX̂1
3 =

{

x ∈ N 2
1 (x∗) : 0.3‖x‖2 ≤ εo

}

andX̂2
3 =

{

x ∈ N 2
1 (x∗) : ‖x‖2 ≤ 4ε f

}

(since f is linear andg1 is

quadratic).

Finally, consider Example10 with εo
,ε f ≤ 0.1, and recall thatX = (−2,2) × (−2,2), mI = 3, andmE = 0

with f (x) = 2x2
1 +x2, g1(x) = −x2

1 −x2, g2(x) = −x1, g3(x) = x2
1 +x2

2 −1, andx∗ = (0,0). We haveF (X) =
{

x : x2 ≥ −x2
1, x1 ≥ 0, x2

1 +x2
2 ≤ 1

}

and

X3 =

{

x ∈ X :
√

(

max{0,−x2
1 −x2}

)2
+(max{0,−x1})2 +

(

max{0,x2
1 +x2

2 −1}
)2 ∈ (0,ε f ],2x2

1 +x2 ≤ εo
}

.

Chooseα = 2
3. We haveDI =

{

d ∈ N 2
2
3
(0) : (x∗ +d) ∈ (F (X))C

}

. ChooseD0 =
{

d ∈ DI : d2 ≥ −1.5d2
1

}

,

γ1 = 0.25,γ2 = 0.25 andα̂ = 2
3 in Lemma12. From Lemma12and Remark8, we haveX̂1

3 =
{

x : ‖x‖2 ≤ 4εo
}

andX̂2
3 =

{

x : ‖x‖2 ≤ 4ε f
}

(since f andg2 are quadratic, andg1 is linear). Figure6 plots the setsX1
3 andX2

3

along with their estimateŝX1
3 andX̂2

3 for εo = ε f = 0.1. The benefit of using the estimates in Remark8 over
that of Lemma12 is seen from Figure6.

The following result follows from Lemma 3 in [29]. It provides a conservative estimate of the number of boxes
of certain widths required to cover̂X1

3 andX̂2
3\Bδ from Lemma12. Therefore, from Lemmata2 and3 and the

result below, we can get an upper bound on the worst-case number of boxes required to coverN 2
α̂ (x∗) ∩ X3

and estimate the extent of the cluster problem on that region.

Theorem 5 Suppose the assumptions of Lemma12 hold. Letδ =
( ε

τ∗

)
1

β∗
= δ f =

(

εo

τ f

)
1

β f

=

(

ε f

τ I

)

1
β I

,

δI =

(

γ2δ 2

8τ I

)

1
β I

=
( γ2

8τ I

)
1

β I
(

ε f

τ I

)

2
(β I )2

, rI =

√

2ε f

γ2
, r f =

√

2εo

γ1
.

1. If δI ≥ 2rI , let NI = 1.

2. If
2rI√

m̄I −1
> δI ≥ 2rI√

m̄I
for somem̄I ∈ N with m̄I ≤ nx and2 ≤ m̄I ≤ 18, then let

NI =
m̄I −1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

m̄I −9
9

⌉

.
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Fig. 6: Plots ofX1
3 andX2

3 (solid regions) and their estimatesX̂1
3 andX̂2

3 (area between the dotted lines) for
Example10. The filled-in triangles correspond to the minimizerx∗, and the dash-dotted lines represent the axes
translated tox∗. All plots useεo

,ε f = 0.1.

3. Otherwise, let

NI =
⌈

2BI (ε f ;β I
,γ2,τI )

⌉nx−1
(

⌈

2BI (ε f ;β I
,γ2,τI )

⌉

+2nx

⌈

(
√

2−1)BI (ε f ;β I
,γ2,τI )

⌉)

,

where

BI (ε f ;β I
,γ2,τI ) := 8

1
β I
(

τ I)

(

1
β I + 2

(β I)
2

)

(

ε f )

(

1
2− 2

(β I )
2

)

γ
−
(

1
2+ 1

β I

)

2 .

4. If δ f ≥ 2r f , let Nf = 1.

5. If
2r f

√

mf −1
> δ f ≥ 2r f√

mf
for some mf ∈ N with mf ≤ nx and2 ≤ mf ≤ 18, then let

Nf =

mf −1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

mf −9
9

⌉

.

6. Otherwise, let

Nf =

⌈

2
(

τ f )
1

β f (εo)

(

1
2− 1

β f

)

γ− 1
2

1

⌉nx−1(⌈

2
(

τ f )
1

β f (εo)

(

1
2− 1

β f

)

γ− 1
2

1

⌉

+

2nx

⌈

(
√

2−1)
(

τ f )
1

β f (εo)

(

1
2− 1

β f

)

γ− 1
2

1

⌉)

.
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Then, NI is an upper bound on the number of boxes of widthδI required to coverX̂2
3\Bδ , and Nf is an upper

bound on the number of boxes of widthδ f required to coverX̂1
3 .

Proof The result onNf follows from Lemmata3 and12, and Lemma 3 in [29]. To deduce the result onNI ,

note that we cover̂X2
3\Bδ with boxes of widthδI =

(

γ2δ 2

8τ I

)

1
β I

since, from Lemma12, we have

X̂2
3\Bδ ⊂

{

x ∈ N
2

α̂ (x∗) : d

([

g
h

]

(x),RmI
− ×{0}

)

∈
( γ2

8
δ 2

,ε f
]

}

and, from Lemma2, we have that a boxBδI
of width δI with eachx ∈ BδI

satisfyingd

([

g
h

]

(x),RmI
− ×{0}

)

>

γ2

8
δ 2 can be fathomed by infeasibility. The desired result then follows from Lemma 3 in [29]. ⊓⊔

Remark 9

1. Under the assumptions of Lemma12, the dependence ofNI on ε f disappears when the lower bounding
scheme has second-order convergence onN 2

α̂ (x∗)∩ (F (X))C, i.e.,β I = 2, and the dependence ofNf on
εo disappears when the scheme( f cv

Z )Z∈IX has second-order convergence onX, i.e.,β f = 2. Therefore, the
cluster problem onX3 can be eliminated using second-order convergent schemes with sufficiently small
prefactors.

2. The dependence ofNI on ε f for β I = 1, i.e.,NI ∝
(

ε f
)−1.5nx , scales worse than the corresponding depen-

dence ofN on ε for β ∗ = 1 when second-order convergence onX5 is required to mitigate clustering, i.e.,
N ∝ ε−0.5nx (see Theorem3). Note, however, that this worse scaling may be an artifact of the conservative
requirement that all of̂X2

3\Bδ has to be covered using boxes of sizeδI instead of simply requiring that the
subset ofX̂2

3 that is not fathomed by value dominance (the rest ofX̂2
3 , including Bδ , would have already

been accounted for while coverinĝX5 andX̂1
3 ) be covered using boxes of appropriate size.

3. Similar to Lemma10, less conservative estimates (with respect to the dependence onεo andε f ) may be
obtained forX1

3 and X2
3 by taking into account the fact that the objective function and the measure of

infeasibility grow linearly in certain directions.

Remark 10The main assumptions of Lemmata5 and11, which assume that the objective function and the
measure of infeasibility grow linearly on certain regions in some neighborhood ofx∗, are similar to the linear
growth condition in [12], and the main assumptions of Lemmata8 and12, which assume that the objective
function and the measure of infeasibility grow quadratically on certain regions in some neighborhood ofx∗,
are similar to the quadratic growth condition in [5, 12]. Furthermore, the assumptions of Lemmata5, 8, 11,
and12may be weakened based on the linear and quadratic growth conditions in [5, 12] to account for cases in
whichx∗ is not a strict local minimum.

4 Conclusion

This work provides an analysis of the cluster problem for constrained problems. The analysis indicates different
scaling of the number of boxes required to cover regions close to a global minimizer based on the convergence
order and corresponding prefactor of the lower bounding scheme on nearly-optimal and nearly-feasible regions
in the vicinity of the global minimizer.

It is shown that lower bounding schemes with first-order convergence may eliminate the cluster problem
at a constrained minimizer if: i. the objective function grows linearly in directions leading to feasible points
in some neighborhood of the minimizer, ii. either the objective function, or a measure of constraint violation
grows linearly in directions leading to infeasible points in some neighborhood of the minimizer, and iii. the
corresponding convergence order prefactors are sufficiently-small. This is shown to be possible because nodes
containing nearly-optimal and nearly-feasible points maybe fathomed relatively easily, by value dominance or
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by infeasibility, even using first-order convergent lower bounding schemes when the objective function or the
measure of constraint violation grows linearly in directions around the minimizer. The above result is in contrast
to the case of unconstrained minimization where at least second-order convergence is required to eliminate the
cluster problem at a point of differentiability of the objective function. When the objective function is twice-
differentiable at an unconstrained minimizer, this is a consequence of the fact that the objective function grows
quadratically or slower around the minimizer.

It is also shown that at least second-order convergence is required to mitigate the cluster problem at a non-
isolated constrained minimizer that satisfies certain regularity conditions when the problem is purely equality-
constrained. Conditions under which second-order convergence of the lower bounding scheme is sufficient to
mitigate clustering are also presented. This analysis reduces to previous analyses for unconstrained problems
under suitable assumptions.
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helped improve the readability of this article, and Dr. Johannes Jäschke for helpful discussions (in particular, for bring references [5]
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proof of Theorem2.

A Proofs

A.1 Proof of Lemma4

Lemma 4 Consider Problem(P). Supposex∗ is nonisolated and f is differentiable atx∗. Then∀θ > 0, ∃α > 0 such that

inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
∇ f (x∗)Td > min

{d:‖d‖1=1,d∈T(x∗)}
∇ f (x∗)Td−θ .

Proof We proceed by contradiction. Define

L(α) := inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
∇ f (x∗)Td,

L∗ := min
{d:‖d‖1=1,d∈T(x∗)}

∇ f (x∗)Td,

and note thatL(α) is monotonically nonincreasing on(0,+∞). Suppose∃θ > 0 such that∀α > 0, we haveL(α) ≤ L∗ −θ . Consider
a sequence{αk} → 0 with αk > 0, and a corresponding sequence{dk} such that

dk ∈
{

d : ‖d‖1 = 1, ∃tk > 0 : (x∗ + tkd) ∈ N
1

αk
(x∗)∩F (X),∇ f (x∗)Td ≤ L∗ − θ

2

}

.

The existence ofdk follows from the assumption thatL(α)≤ L∗ −θ , ∀α > 0. Since‖dk‖1 = 1,∀k, we have the existence ofd∗ ∈ Rnx

with d∗ = lim
kq→∞

dkq and‖d∗‖1 = 1 for some convergent subsequence{dkq}. Furthermore,d∗ ∈ T(x∗) and∇ f (x∗)Td∗ ≤ L∗ − θ
2

,

since∀kq we have∇ f (x∗)Tdkq ≤ L∗ − θ
2

, which contradicts the definition ofL∗. ⊓⊔

A.2 Proof of Proposition2

Proposition 2 Consider Problem(P) with mE ≥ 1. Supposex∗ is nonisolated, f is differentiable atx∗, functions hk, k= 1, · · · ,mE ,
are differentiable atx∗, and A (x∗) = /0. Furthermore, suppose there exist multipliersλλλ ∗ ∈ RmE corresponding to the equality
constraints such that(x∗,0,λλλ ∗) is a KKT point. Then

min
{d:‖d‖1=1,d∈T(x∗)}

∇ f (x∗)Td = 0.
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Proof Since(x∗,0,λλλ ∗) is a KKT point, we have

∇ f (x∗)+
mE

∑
k=1

λ ∗
k ∇hk(x

∗) = 0.

From the assumption thatx∗ is a nonisolated feasible point, we have that the set{d : ‖d‖1 = 1,d ∈ T(x∗)} is nonempty. Addition-
ally, we have

T(x∗) ⊂ L (x∗) :=
{

d ∈ Rnx : ∇hk(x
∗)Td = 0,∀k ∈ {1, · · · ,mE}

}

,

whereL (x∗) denotes the linearized cone atx∗ (see, for instance, [2]). Consequently, for eachd ∈ T(x∗) with ‖d‖1 = 1, we have
∇ f (x∗)Td = 0. ⊓⊔

A.3 Proof of Theorem2

Theorem 2 Suppose the assumptions of Lemma5 hold. Letδ =
( ε

τ∗

)
1

β∗
, r =

2ε
L

.

1. If δ ≥ 2r, let N = 1.

2. If
2r

m−1
> δ ≥ 2r

m
for some m∈ N with m≤ nx and2 ≤ m≤ 5, then let

N =
m−1

∑
i=0

2i
(

nx

i

)

+2nx

⌈

m−3
3

⌉

.

3. Otherwise, let

N =

⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉nx−1(⌈

2(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉

+2nx

⌈

(τ∗)
1

β∗ ε
(

1− 1
β∗
)

L−1
⌉)

.

Then, N is an upper bound on the number of boxes of widthδ required to coverX̂5.

Proof This proof is rederived based on Corollary 2.1 in [28] and the proof of Lemma 3 in [29]. Note that the condition in the second
case is corrected to ‘2≤ m≤ 5’ as opposed to ‘2≤ m≤ 6’ in [28].

From Lemma5, we haveX̂5 =
{

x ∈ N 1
α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε

}

⊂
{

x : ‖x−x∗‖1 ≤ 2ε
L

}

=: B̃. Therefore, an upper bound

on the number of boxes of widthδ required to cover̂X5 can be obtained by conservatively estimating the number of boxes of width
δ required to cover̃B. In what follows, we will assume without loss of generality thatx∗ = 0.

1. Supposeδ ≥ 2r . Consider the boxBδ of width δ centered atx∗ = 0. We have

x ∈ B̃ =⇒ ‖x‖1 ≤ 2ε
L

=⇒ ‖x‖∞ ≤ 2ε
L

= r ≤ δ
2

=⇒ x ∈ Bδ ,

where we have used the fact that‖x‖∞ ≤ ‖x‖1, ∀x ∈ Rnx . Therefore,Bδ is sufficient to coverB̃.
2. Supposem≤ nx with m∈ {2, · · · ,5} andδ ≥ 2r

m . Place a boxBδ of width δ centered atx∗ = 0 (the condition onδ ensures that
Bδ intersects the boundary ofB̃). Let

Ei :=

{

e∈ Rnx : ej ∈
{

− δ
2

,0,
δ
2

}

, ∀ j ∈ {1, · · · ,nx},
nx

∑
j=1

I0(ej ) = i

}

,

whereI0 : R → {0,1} is defined asI0(x) :=

{

0, if x = 0

1, otherwise
, denote the set of midpoints of the(nx− i)-dimensional faces ofBδ

(each element ofEi has exactlyi nonzero components, each of which is± δ
2 ). Note that|Ei | = 2i

(nx
i

)

, ∀i ∈ {1, · · · ,nx}. Under
the assumptionδ ≥ 2r

m , we will show that, in addition toBδ , it is sufficient to place one box besideBδ along the directions
in E1, · · · ,Em−1 whenm= 2 or m= 3, and two boxes besideBδ along the directions inE1 and one box besideBδ along the
directions inE2, · · · ,Em−1 whenm= 4 or m= 5 in order to cover̃B.

First, we show that we need not place any boxes besideBδ along the directions inEm, · · · ,Enx . Let e ∈ Ei with i ∈
{m, · · · ,nx}. We have‖e‖1 = δ

2 i ≥ i
mr ≥ r , which impliese∈ ∂ B̃∪ B̃C (where∂ B̃ denotes the boundary of̃B). Consequently,

boxes placed besideBδ along the directions inEm, · · · ,Enx do not intersect the interior of̃B and are not required to coverB̃.
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Supposeδ ≥ 2r
m , and lete∈ Ei for somei ∈ {1, · · · ,m− 1}. The distance frome, which is the midpoint of an(n− i)-

dimensional face ofBδ , to 2r
δ i e, which is a point on the boundary ofB̃ in the directione, in the∞-norm is r

i − δ
2 ≤ r

i − r
m. If

this distance is less thanδ for eachi ∈ {1, · · · ,m−1}, then one box besideBδ along the directions inE1, · · · ,Em−1 is sufficient
to coverB̃. This amounts to requiring

r
i
− r

m
≤ 2r

m
, ∀i ∈ {1, · · · ,m−1} ⇐⇒ m≤ 3i, ∀i ∈ {1, · · · ,m−1} ⇐⇒ m= 2 or m= 3.

Note that ifm= 4 orm= 5, we still havem≤ 3i, ∀i ∈ {2, · · · ,m−1}. Additionally, r
1 − r

m ≤ 4r
m ≤ 2δ in such cases. Therefore,

whenm= 4 or m= 5, two boxes along the directions inE1 and one box along the directions inE2, · · · ,Em−1 are sufficient to
coverB̃.

3. If the previous assumptions onδ are not satisfied, a box of widthδ centered atx∗ may not intersect∂ B̃. To estimate the number
of boxes of widthδ required to cover̃B, we first estimate the number of boxes,Nr , of width r = 2ε

L required to cover̃B using the
previous analysis, and then estimate the number of boxes of width δ required to cover the intersection of theseNr boxes withB̃.

The number of boxes of widthr required to cover̃B is Nr := 1+2nx, where‘1’ corresponds to the box centered atx∗ = 0,
and‘2nx’ corresponds to the boxes along the directions inE1. Note thatE1 is now defined as

E1 :=

{

e∈ Rnx : ej ∈
{

− r
2
,0,

r
2

}

, ∀ j ∈ {1, · · · ,nx},
nx

∑
j=1

I0(ej ) = 1

}

sinceB̃ is first covered using boxes of widthr . The box of widthr centered atx∗ can be covered using
⌈

r
δ
⌉nx boxes of width

δ . Note that the entire volume of the 2nx boxes along the directions inE1 need not be covered using boxes of widthδ since
parts of those boxes have no intersection withB̃. To estimate the extent to which each of the 2nx boxes need to be covered with
boxes of widthδ , we compute the distance between anye∈ E1 (which is a midpoint of a one-dimensional face of the box of
width r centered atx∗) and 2r

r×1e= 2e (which is a point on the boundary of̃B in the directione) in the∞-norm. This distance
turns out to be equal tor2 . This implies at most half the volumes of the 2nx boxes need to be covered using boxes of widthδ ,

which yields the estimate of 2nx
⌈

r
δ
⌉nx−1⌈ r

2δ
⌉

boxes of widthδ that are required to cover the 2nx boxes of widthr along the
directions inE1.

⊓⊔

A.4 Proof of Lemma7

Lemma 7 Consider Problem(P). Supposex∗ is nonisolated, f is locally Lipschitz continuous on X and directionally differentiable
at x∗, and∃α > 0 such that

L := inf
{d:‖d‖1=1,∃t>0 :(x∗+td)∈N 1

α (x∗)∩F (X)}
f ′(x∗;d) > 0.

Then,∃α̂ ∈ (0,α ] such that the regionN 1
α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
1

α̂ (x∗) : L‖x−x∗‖1 ≤ 2ε
}

.

Proof Let x = x∗ + td ∈ N 1
α (x∗)∩F (X) with ‖d‖1 = 1 andt = ‖x−x∗‖1 > 0. We have (see Theorem 3.1.2 in [24])

f (x) = f (x∗ + td)

= f (x∗)+ f ′(x∗;(x−x∗))+o(‖x−x∗‖1)

= f (x∗)+ t f ′(x∗;d)+o(t)

≥ f (x∗)+Lt +o(t),

where Step 2 follows from the directional differentiability of f at x∗. Consequently, there existŝα ∈ (0,α ] such that for allx =
x∗ + td ∈ F (X) with ‖d‖1 = 1 andt ∈ [0, α̂):

f (x) ≥ f (x∗)+Lt +o(t) ≥ f (x∗)+
L
2

t.

Therefore,∀x ∈ N 1
α̂ (x∗)∩X5 we havex = x∗ + td ∈ F (X) with ‖d‖1 = 1 andt = ‖x−x∗‖1 < α̂ , and

ε ≥ f (x)− f (x∗) ≥ L
2

t =⇒ Lt = L‖x−x∗‖1 ≤ 2ε .

⊓⊔
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A.5 Proof of Lemma10

Lemma 10 Consider Problem(P), and suppose the assumptions of Lemma8 hold. Then∃α̂ ∈ (0,α ] and constantsρ1,ρ2 ≥ 0 such
that the regionN 2

α̂ (x∗)∩X5 can be conservatively approximated by

X̂5 =
{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε , −ρ1ε ≤ ∇ f (x∗)T (x−x∗) ≤ ρ2ε
}

.

Proof The result trivially follows from Lemma8 when∇ f (x∗) = 0.
Suppose∇ f (x∗) 6= 0. From Lemma8, we have

N
2

α̂ (x∗)∩X5 ⊂
{

x ∈ N
2

α̂ (x∗) : γ‖x−x∗‖2 ≤ 2ε
}

. (2)

Suppose we represent eachx ∈ N 2
α̂ (x∗)∩F (X) by x := x∗ + β1∇ f (x∗)+ β2d, whereβ1,β2 ∈ R andd ⊥ ∇ f (x∗) with ‖d‖ = 1.

Consider the case whenβ1 ≥ 0. We have

f (x)− f (x∗) = ∇ f (x∗)T(x−x∗)+
1
2
(x−x∗)T∇2 f (x∗)(x−x∗)+o

(

‖x−x∗‖2
)

= ∇ f (x∗)T (β1∇ f (x∗)+β2d)+
1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)+o

(

β2
1 +β2

2

)

= β1‖∇ f (x∗)‖2 +
1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)+o

(

β2
1 +β2

2

)

.

Therefore,∀x ∈ N 2
α̂ (x∗)∩X5 with x = x∗ +β1∇ f (x∗)+β2d, β1 ≥ 0,β2 ∈ R andd ⊥ ∇ f (x∗) with ‖d‖ = 1, we have

β1‖∇ f (x∗)‖2 +
1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)+o

(

β2
1 +β2

2

)

≤ ε

=⇒ β1‖∇ f (x∗)‖2 ≤ ε − 1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)−o

(

β2
1 +β2

2

)

=⇒ β1‖∇ f (x∗)‖2 ≤ ε − 1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)+

γ
2

(

β2
1 ‖∇ f (x∗)‖2 +β2

2

)

, (3)

where the last step uses the fact thatα̂ is chosen such thato
(

β2
1 +β2

2

)

≥ − γ
2

(

β2
1 ‖∇ f (x∗)‖2 +β2

2

)

(see Equation1). Note that

β1 ≤
√

2ε
γ‖∇ f (x∗)‖2 and|β2| ≤

√

2ε
γ

follow from Equation2. The right hand side of Equation3 is O(ε) sinceβ1 = β2 = O(
√

ε),

thereby establishing the existence ofρ2 ≥ 0.

Next, supposeβ1 ≤ 0. From the assumptions of Lemma8, we have for eachx ∈ N 2
α̂ (x∗) ∩ X5 with x = x∗ + β1∇ f (x∗) + β2d,

β1 ≤ 0,β2 ∈ R andd ⊥ ∇ f (x∗) with ‖d‖ = 1:

∇ f (x∗)T(x−x∗)+
1
2
(x−x∗)T∇2 f (x∗)(x−x∗) ≥ γ‖x−x∗‖2

=⇒ ∇ f (x∗)T (β1∇ f (x∗)+β2d)+
1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d) ≥ γ

(

β2
1 ‖∇ f (x∗)‖2 +β2

2

)

=⇒ β1‖∇ f (x∗)‖2 +
1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d) ≥ γ

(

β2
1 ‖∇ f (x∗)‖2 +β2

2

)

=⇒ 1
2
(β1∇ f (x∗)+β2d)T∇2 f (x∗)(β1∇ f (x∗)+β2d)− γ

(

β2
1 ‖∇ f (x∗)‖2 +β2

2

)

≥ −β1‖∇ f (x∗)‖2
, (4)

andβ1 ≥ −
√

2ε
γ‖∇ f (x∗)‖2 , |β2| ≤

√

2ε
γ

from Equation2. The left hand side of Equation4 is O(ε) sinceβ1 = β2 = O(
√

ε), thereby

establishing the existence ofρ1 ≥ 0. ⊓⊔

A.6 Proof of Proposition4

Proposition 4 Consider Problem(P) with mE ≥ 1. Supposex∗ is a nonisolated constrained minimizer, f is differentiable at x∗,
functions hk, k = 1, · · · ,mE , are differentiable atx∗, and A (x∗) = /0. Furthermore, suppose there exist multipliersλλλ ∗ ∈ RmE

corresponding to the equality constraints such that(x∗,0,λλλ ∗) is a KKT point. Then6 ∃α > 0, D0 such that the assumptions of
Lemma11 are satisfied.
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Proof Since(x∗,0,λλλ ∗) is a KKT point, we have

∇ f (x∗)+
mE

∑
k=1

λ ∗
k ∇hk(x∗) = 0.

From the assumption thatx∗ is a nonisolated feasible point, we have that the set{d : ‖d‖1 = 1,d ∈ T(x∗)} is nonempty. Addition-
ally, we have from the proof of Proposition2 that for eachd ∈ T(x∗) with ‖d‖1 = 1, ∇ f (x∗)Td = 0 and∇hk(x∗)Td = 0,∀k ∈
{1, · · · ,mE}.

Assume, by way of contradiction that∃α > 0 and a setD0 satisfying the assumptions of Lemma11. Consequently,∃L f ,LI > 0
such that

L f = inf
d∈D0∩DI

∇ f (x∗)Td

and
LI = inf

d∈DI \D0

max
k∈{1,··· ,mE}

∣

∣

∣
∇hk(x∗)Td

∣

∣

∣
.

Since∃d ∈ T(x∗) with ‖d‖1 = 1 such that∇ f (x∗)Td = 0 and∇hk(x∗)Td = 0,∀k ∈ {1, · · · ,mE}, we have that the set

S:=
{

d ∈ Rnx : ‖d‖1 = 1,

∣

∣

∣
∇ f (x∗)Td

∣

∣

∣
< L f ,

∣

∣

∣
∇hk(x∗)Td

∣

∣

∣
< LI ,∀k ∈ {1, · · · ,mE}

}

is nonempty. All that remains to reach a contradiction is to show that∃d̄ ∈ S∩DI .

From the above arguments, we have the existence ofd̄ ∈ S, k̄ ∈ {1, · · · ,mE} such that
∣

∣

∣
∇hk̄(x

∗)Td̄
∣

∣

∣
∈ (0,LI ), since the as-

sumptionLI > 0 implies all of the equality constraint gradients∇hk(x∗), k ∈ {1, · · · ,mE}, cannot simultaneously be0. Since
∇hk̄(x

∗)Td̄ 6= 0, we havēd 6∈ T(x∗) (this follows from the arguments made in the proof of Proposition 2). Consequently,∃t ∈ (0,α)

such that(x∗ + td̄) ∈ N 1
α (x∗) ∩ (F (X))C =⇒ d̄ ∈ DI . This implies that either̄d ∈ D0, or d̄ ∈ DI \D0, which contradicts the

definition ofL f or LI since∇ f (x∗)Td̄ < L f and
∣

∣

∣
∇hk(x∗)Td̄

∣

∣

∣
< LI ,∀k ∈ {1, · · · ,mE}. ⊓⊔
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