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Abstract Deterministic branch-and-bound algorithms for contiraiglobal optimization often visit a large
number of boxes in the neighborhood of a global minimizesulting in the so-called cluster problem (J Glob
Optim 5(3):253-265,1994). This article extends previous analyses of the clusteblpro in unconstrained
global optimization (J Glob Optim 5(3):253-265994 J Glob Optim 58(3):429-43&8014) to the constrained
setting based on a recently-developed notion of conveggerder for convex relaxation-based lower bounding
schemes. Itis shown that clustering can occur both on negtiynal and nearly-feasible regions in the vicinity
of a global minimizer. In contrast to the case of unconsé&dioptimization, where at least second-order con-
vergent schemes of relaxations are required to mitigateltiger problem when the minimizer sits at a point
of differentiability of the objective function, it is showthat first-order convergent lower bounding schemes
for constrained problems may mitigate the cluster problewfeun certain conditions. Additionally, conditions
under which second-order convergent lower bounding schearesufficient to mitigate the cluster problem
around a global minimizer are developed. Conditions on tmvergence order prefactor that are sufficient to
altogether eliminate the cluster problem are also providéds analysis reduces to previous analyses of the
cluster problem for unconstrained optimization underatié assumptions.

Keywords Cluster problem Global optimization- Constrained optimization Branch-and-bound
Convergence orderConvex relaxation Lower bounding scheme
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1 Introduction

One of the key issues faced by deterministic branch-anab@lgorithms for continuous global optimiza-
tion [11] is the so-called cluster problem, where a large number ébonay be visited by the algorithm in the
vicinity of a global minimizer ¥, 21, 29]. Du and Kearfott 7, 13] were the first to analyze this phenomenon in
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the context of interval branch-and-bound algorithms focanstrained global optimization. They established
that the accuracy with which the bounding scheme estimhgesahge of the objective function, as determined
by the notion of convergence order (see Definitndictates the extent of the cluster problem. Furthermore,
they determined that, in the worst case, at least secoret-cmhvergence of the bounding scheme is required
to mitigate ‘clustering’ 7]. Next, Neumaier 21] provided a similar analysis and concluded that even second
order convergence of the bounding scheme might, in the wasst, result in an exponential number of boxes
in the vicinity of an unconstrained global minimizer. In &dth, Neumaier claimed that a similar situation
holds in a reduced manifold for the constrained ca4g [

Recently, Wechsung et ak9] provided a refined analysis of Neumaier’s argument for nstr@ined global
optimization which corroborated the previous analysesaddition, they showed that the number of boxes
visited in the vicinity of a global minimizer may scale diféatly depending on the convergence order prefactor.
As aresult, second-order convergent bounding schemesmidti-enough prefactors may altogether eliminate
the cluster problem, while second-order convergent bawnsichemes with large-enough prefactors may result
in an exponential number of boxes being visited. Also noteahalysis by Wechsun@8, Section 2.3] that
shows first-order convergence of the bounding scheme mayfieient to mitigate the cluster problem in
unconstrained optimization when the optimizer sits at atpafi nondifferentiability of the objective function.

As highlighted above, the convergence order of the boundaigme plays a key role in the analysis of
the cluster problem. This concept, which is based on theatatdich the notion of excess width from interval
extensions 18] shrinks to zero, compares the rate of convergence of amat&d range of a function to its
true range. Bompadre and Mits@ fleveloped the notions of Hausdorff and pointwise convecgeates of
bounding schemes, and established sharp rules for thegatipa of convergence orders of bounding schemes
constructed using McCormick’s composition ruldS][ In addition, Bompadre and Mitso8][demonstrated
second-order pointwise convergence of schemes of conveex@rcave envelopes of twice continuously dif-
ferentiable functions, second-order pointwise convergesf schemes off BB relaxations 1], and provided
a conservative estimate of the prefactoradB relaxation schemes for the case of cons@anBcholz p5]
demonstrated second-order convergence of centered fatstssee, for instance, the article by Krawczyk and
Nickel [15]). Bompadre and coworkerd] established sharp rules for the propagation of convergenders
of Taylor and McCormick-Taylor models. Najman and Mits@6][established sharp rules for the propagation
of convergence orders of the multivariate McCormick reteores developed in19, 26]. Finally, Khan and
coworkers 14] developed a continuously differentiable variant of Mc@ak relaxations 17, 19, 26], and
established second-order pointwise convergence of sahefrtee differentiable McCormick relaxations for
twice continuously differentiable functions. The aboverature not only helps develop bounding schemes for
unconstrained optimization with the requisite convergeaer, but also provides conservative estimates for
the convergence order prefactor (see DefiniipnAlso note the related definition for the rate of convergenc
of (lower) bounding schemes for geometric branch-and-8ouathods provided by Schobel and Sch@3] [

This work provides an analysis of the cluster problem forst@ined global optimization. It is shown that
clustering can occur both on feasible and infeasible regiiothe neighborhood of a global minimizer. Akin to
the case of unconstrained optimization, both the converyerder of a lower bounding scheme and its corre-
sponding prefactor (see Definiti@& may be crucial towards tackling the cluster problem; havew contrast
to the case of unconstrained optimization, it is shown thst-&rder convergent lower bounding schemes with
small-enough prefactors may eliminate the cluster prohleder certain conditions. Additionally, conditions
under which second-order convergence of the lower bourgthgme may be sufficient to mitigate clustering
are developed.

This work assumes that boxes can be placed such that globahinérs are always in their relative in-
terior, otherwise an exponential number of boxes can comflabal minimizers. Technigues such as epsilon-
inflation [16] or back-boxing 21, 27] can potentially be used to place boxes with global minimgza their
relative interior.

This article is organized as follows. Sectidmprovides the problem formulation, describes the notions of
convergence used in this work, and sets up the frameworknfayaing the cluster problem in Secti@nSec-
tion 3.1analyzes the cluster problem on the set of nearly-optinedifde points in a neighborhood of a global
minimizer and determines conditions under which first-oated second-order convergent bounding schemes
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may be sufficient to mitigate clustering in such neighbod®&ectior8.2analyzes the cluster problem on the
set of nearly-feasible points in a neighborhood of a globaimmzer that have a ‘good-enough’ objective func-
tion value, and develops conditions under which first-omted second-order convergent bounding schemes
may be sufficient to mitigate clustering in such neighbod®d-inally, Sectior lists the conclusions of this
work.

2 Problem Formulation and Background
Consider the problem

min f(x) (P)

s.t.g(x) <0,
h(x) =0,
xeX,

whereX C R™ is a nonempty open bounded convex set, the functfané— R, g: X — R™, andh: X — R
are continuous o, and0 denotes a vector of zeros of appropriate dimension. Theviollg assumptions are
enforced throughout this work.

Assumption 1 The constraints define a nonempty compact set
{xeX:g(x) <0, h(x) =0} C X.

Assumption 2 Let x* € X be a global minimum for ProblenP), and assume that the branch-and-bound
algorithm has found the upper bouddD = f (x*) sufficiently early on. Let be the termination tolerance for
the branch-and-bound algorithm, and suppose the algofatimoms node&k whenUBD — LBDy < €, where
LBDy is the lower bound on node

When Assumptiori is enforced, Problen) attains its optimal solution oX by virtue of the assumption
that f is continuous orX. Note that the assumption thétis an open set is made purely for ease of exposition,
particularly when differentiability assumptions on thadtions in ProblemR) are made, and is not practically
implementable in general. As a result, we implicitly assutmeughout this work that finite bounds on the
variables (which define an interval in the interiorXf are available for use in a branch-and-bound setting.

Assumption2 essentially assumes that the convergence of the overadlrlbound is the limiting fac-
tor for the convergence of the branch-and-bound algorithihis is usually a reasonable assumption in the
context of branch-and-bound algorithms for global optatian where most of the effort is typically spent
in proving e-optimality of feasible solutions found using (heuristio¥al optimization-based techniques. The
cluster problem analysis in this work is asymptoticeiin general; we provide conservative estimates of the
worst-case number of boxes visited by the branch-and-balgatithm in nearly-optimal and nearly-feasible
neighborhoods of global minimizers for some sufficientlyatira > 0. The conservatism of the above estimates
decreases as — 0. The asymptotic nature of our analysis with respeetitonot only a result of considering
the local behavior of the objective function in the vicingfya global minimizer (which is also a limitation of
the analyses of the cluster problem in unconstrained opgitioin [7, 21, 28, 29)), but is also a consequence of
considering the local behavior of the constraints (andefloee, the feasible region) in the vicinity of a global
minimizer. In practice, values affor which the analysis of the cluster problem provides ageable overesti-
mate of the number of boxes visited can be much larger tham#uhine precision (on the order of 79). This
is evidenced by the examples in Sect@nAlso note that the fathoming criterion for the branch-ddind
algorithm in this work is different from the one considergdWechsung et al.Z9], who assume that node
is fathomed only whehBDy > UBD; however, the worst-case estimates of the number of bosésdiby the
branch-and-bound algorithm are not affected by this difiee in our assumptions.
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Throughout this work, we will use* to denote a global minimizer of ProblerR)( IZ to denote the set of
nonempty, closed and bounded interval subseFsofR", Z€ to denote the relative complement of azet R"
with respect toX, cl(Z) to denote the closure of a sétc R", ||z|| to denote the Euclidean norm nf R",
R_ to denote the nonpositive orthaaf,to denote thejth component of a vecta, (z1,2,---,z,) to denote a
vectorz € R" with entriesz;, z, - - -, z, € R (note that(z;, z,) will be used to denote both an open intervaRin
and a vector irR?; the intended use will be clear from the context), to denote the ceiling functior[,ﬁ} to
denote a vector-valued function with domairand codomaiR™™" corresponding to vector-valued functions
g:Y — RMandh:Y — R", f(Z) to denote the image & C Y under the functiofi: Y — R™, f/(z;d) to denote
the directional derivative of a functioh: Z ¢ R" — R at a pointz € Z (with Z open) in a directiord € R",
and ‘differentiability’ to refer to differentiability intie Fréchet sense. The following definitions are in order.

Definition 1 (Width of an Interval) LetZ = [;,2] x --- x [z;,2]] be an element ofR". The width ofZ,
denoted byw(Z), is given by

w(Z) = .:T,??fn(au -7).

Definition 2 (Distance Between Two Setd)etY,Z C R". The distance betweehandZ, denoted by (Y, Z),
is defined as
Y,Z):=inf |ly—z|.
d(v,2):=inf lly 2]

zeZ

Note that the above definition of distance does not define @aenbbwever, it will prove useful in defining a
measure of infeasibility for points iX for Problem P).

Definition 3 (Lipschitz Continuous Function) Let Z C R". A function f : Z — R is Lipschitz continuous
with Lipschitz constanM > 0 if |f(z1) — f(z2)| < M||z1 — 22||, Vz1,22 € Z.

Since the cluster problem analysis is asymptotie,iwe will need the following asymptotic notations.

Definition 4 (Big O and Little o Notations)LetY C R, f:Y — R, andg:Y — R. We say thaf (y) = O(g(y))
asy — yeY ifand only if there exisd,M > 0 such that

I <Mlg(y)l, VyeYwith|y—y] <.

Similarly, we say thaf (y) = o(g(y)) asy — y € Y if and only if for all M’ > 0 there exist®’ > 0 such that
[f(y) <M'g(y)l, VyeYwith|y—y]<d

Note that unless otherwise specified, we consjder0 in this work.

Definition 5 (Convex and Concave Relaxations§ziven a convex seZ C R" and a functionf : Z — R, a
convex functionf$¥: Z — R is called a convex relaxation df on Z if 5¥(z) < f(z), Vz € Z. Similarly, a
concave functiorf5¢: Z — R is called a concave relaxation bfon Z if {5%(z) > f(z),Vz € Z.

The following definition introduces the notion of schemeseatéxations 8].

Definition 6 (Schemes of Convex and Concave Relaxationkgt Y ¢ R" be a nonempty convex set, and
let f : Y — R. Assume that for every € IY, we can construct functiont}¥ : Z — R and f5°: Z — R that

are convex and concave relaxations, respectively, of Z. The sets of function$fs")zery and (f5)zery
define schemes of convex and concave relaxations, resglgctif f in Y, and the set of pairs of functions
(f5Y, £5°)zery defines a scheme of relaxations fin Y. The schemes of relaxations are called continuous
when 5" and fZ¢ are continuous o for eachZ e IY.

The next definition presents a notion of convergence ordsctoémes of convex and concave relaxati@$ [
based on the notion of Hausdorff convergence order of a selvémelaxations3].
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Definition 7 (Convergence Orders of Schemes of Convex and Coave Relaxations)LetY C R" be a
nonempty bounded convex set, ahdY — R be a continuous function. L¢f5")zcry and (5 zcry respec-
tively denote continuous schemes of convex and concaveatadas off in'Y.
The scheme of convex relaxatiof¥)zcyy is said to have convergence of orger> 0 aty € Y if there

existst® > 0 such that

min f(z) - minf$'(z) < ®W(Z)P, VZ eIY withy € Z.

zeZ zeZ
Similarly, the scheme of concave relaxatidri§®)zcyy is said to have convergence of orger- 0 aty € Y if
there existg®® > 0 such that

maxf$®(z) —maxf (z) < 1°W(Z)P, VZ eIY withy € Z.

zeZ zeZ
(f8V)zery and(f£°)zery are said to have convergence of orfies 0 onY if they have convergence of order (at
least)B at eachy €Y, with the constants®’ and ¢ independent of.

The following definition seeks to extend the notion of cogesrce order of a bounding schen3 4, 29] to
constrained problems. Conditions under which specific tdveeinding schemes are guaranteed to exhibit a
certain convergence order will be presented in a futurelarti

Definition 8 (Convergence Order of a Lower Bounding Schemefonsider ProblemR). For anyZ € IX,
let.#(Z) = {x € Z: g(x) < 0,h(x) = 0} denote the feasible set of ProbleR) (ith x restricted taZ.

Let (f5)zerx and(g%Y)zeix denote continuous schemes of convex relaxatiorsaridg, respectively, in
X, and let(h$’,h$%)zc1x denote a continuous scheme of relaxationd af X. For anyZ < IX, let #(Z) =
{xeZ:d%'(x) <0,h$'(x) < 0,h(x) > 0} denote the feasible set of the convex relaxation-based loowend-
ing scheme. The convex relaxation-based lower boundingnsetis said to have convergence of orfes 0
at

1. afeasible point € X if there existst > 0 such that for every € IX with x € Z,

min f(z)— min f&(2) < Tw(Z)P.
27 (2) @) zeFonz) (2) <w(2)

2. aninfeasible point € X if there existst > 0 such that for everg € IX with x € Z,

d ([ﬂ 2),R™ x {0}> ~d(A(2).R™ x {0)) < TW(2)’,

where m (Z) denotes the image @ under the vector-valued functio[rﬁ]J , and.sc(Z) is defined by

(H(2))zerx := ({(v,w) e R™ x R™ : v =g5(2),h$"(z) <w < h$%(z) for somez € Z}), 1 -

The scheme of lower bounding problems is said to have coemergof ordef3 > 0 onX if it has convergence
of order (at leastp at eachx € X, with the constants andt independent ox.

Definition 8 is motivated by the requirements of a lower bounding schenfethhom feasible and infeasible
regions in a branch-and-bound procedur.[On nested sequences of intervals converging to a fegsife
of Problem P), we require that the corresponding sequences of lowerdsoaanverge rapidly to the corre-
sponding sequences of minimum objective values. On the tidred, on nested sequences of intervals con-
verging to an infeasible point of ProblerR)( we require that the corresponding sequences of lowerdiogn
problems rapidly detect the (eventual) infeasibility af ttorresponding sequences of intervals for ProbEm (
The latter requirement is enforced by requiring that thesuess of infeasibility of the corresponding lower
bounding problems, as determined by the distance fundticonverge rapidly to the measures of infeasibility
of the corresponding restricted Probler®s. (Note that some intervals that only contain infeasiblenfromay
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also potentially be fathomed by value dominance if the ldaeamds on those intervals obtained by solving the
corresponding relaxation-based lower bounding problengsdater than or equal ¥BD — €. This possibility
in considered later in this section (see, for instance, Lar@nand in Sectior8.2

The following lemmata detail worst-case conditions undeiciv nodes containing a global minimum and
infeasible points are fathomed.

Lemma 1 (Fathoming Nodes Containing Global Minimizers)Let X* € IX, withx* € X*, correspond to the
domain of node kin the branch-and-bound tree. Suppose the convex relaxa@sed lower bounding scheme
has convergence of ord@"* > 0 at x* with a prefactort™ > 0 (see DefinitiorB). For node K to be fathomed,
we require, in that worst case, that .

o) < ()"
Proof The condition for nodé&* to be fathomed by value dominancéd8D — LBDy+ = f(x*) — LBDy+ < €.
Since we are concerned about convergence at the feasibliexpai X, we have from Definitior8 that

min f(z)— min f(z) < T'wW(X*)F’

e 7 (X%) 2e FV(X¥)
— IBDw = min f8Y(2) > f(x*) — T*w(X*)F".
e =, min 1942 > ()~ Twx)

Therefore, in the worst case, nokleis fathomed only when

LBDy > f(X*) — T'W(X")F" > f(x*) — g = w(X*) < (%) "

Lemma 2 (Fathoming Infeasible Nodes by Infeasibility)_et X' € IX, with
X' c {xeX:d( ﬁ} (x),R™ x {O}) >sf}

for somesf > 0, correspond to the domain of nodé ik the branch-and-bound tree. Suppose the convex
relaxation-based lower bounding scheme has convergenoedef B' > 0 at eachx € X' with a prefactor
' > Othat is independent of (see Definitior8). For node k to be fathomed by infeasibility, we require, in the

worst case, that )
£\ 3T
| g™\ B

w(X') < (F) .

Proof For nodek! to be fathomed by infeasibility, we require that the convaaxation-based lower bounding
problem is infeasible o', i.e.,d (fc(x'),RT' x {0}) > 0. Since we are concerned about convergence at
infeasible points, we have from Definiti@that

d (ﬁ(xw,w x {0}> —d (A (X).R™ x {0}) < T'w(x')”

= d(SA(X"),R™ x {0}) >d (m (X", R™ x {0}> - r'W(X')BI.
Therefore, nodd' is fathomed, in the worst case, only when

d(Sc(X').R™ x {0}) >d (E(x'),w x {0}> w50 = e —twx)? >0
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Lemma 3 (Fathoming Infeasible Nodes by Value Dominance)et X' € IX, with

X' ¢ {xex:dQﬂ (x),R™ x{O}) >o},

correspond to the domain of nodkik the branch-and-bound tree. Suppasec X', f(x) > f(x*). Further-
more, suppose the scherffg¥)zc1x has convergence of ord@’ > 0 at eachx € X' with a prefactort’ > 0
that is independent of (see Definitiorv). If
1
| £ \Bf
wiX') < (rf> ’

then node kwill be fathomed.
Proof A sufficient condition for nodé&' to be fathomed is

min f(z) > f(x*) —¢.

ze.FV(X!)
Since(f$¥)zeix has convergence of ordgr, we have from Definitiory that

m|nf V(z) > minf(z)_rf\,\,(xl)ﬁf

zeX! zeX!
>minf(z)—¢
T zex! ( )
> f(x") —¢,
£\ o
where Step 2 uses(X') < (F) A", and Step 3 usel(x) > f(x*), ¥x € X'. Therefore,
min  f5(z) > min f > f(x*)—¢.
ze 7oV (X! XI( )z zeX! XI( )2 106)
The desired result follows. m]

In what follows, we shall partition the s&tinto distinct regions with the aim of constructing regiohattare
either relatively easy to fathom (based on Lemniat&3), or are relatively hard to fathom. Suppose the convex
relaxation-based lower bounding scheme has convergerwderf3* > 0 on.Z (X) with prefactort* > 0, and
convergence of ordgs' > 0 on ((%‘(X))C with prefactort' > 0 (note that it is sufficient for the lower bounding
scheme to have the requisite convergence orders on sontogigod of the global minimizers of ProbleR) (

for our analysis to hold, as will become clear in Sect®)nFurthermore, suppose the schefi§’)zcx has
convergence of ordgB’ > 0 on X with prefactort’ > 0. Pick a feasibility tolerance’ and an optimality

tolerancee® such that
eNNF  [e\F e 7
(F) = (F) =()" (ToL)
and consider the following partition of:
W= {x eX:d (

(x),R™ x {0}

(x),R™ x {0} ) € (0,e"] and f(x) — f(x*) >e°},

xeX:d

o e
-
~{xex:
e

& X

(x),R™ x {0} ) =0andf(x)— f(x*) > ¢}, and

xeX:d (x),R™ x {0}

)¢
)<
(x),R™ x {O}) € (0,e' andf(x) — f(x*) < 50},
)
)

Q@ Q@ TQ .SaQ JQ

><
Q.
/\/\/\/‘\

}
=0andf(x f(x*)gs}.
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Fig. 1: Plots of the setX; through X5 for an unconstrained, an inequality-constrained, and aralég-
constrained problem. The dashed lines define theXse#md the filled-in triangles denote the unique global
minimizers of the problems oX. All plots uses = £° = £f = 0.1 for illustration.

The setX; corresponds to the set of infeasible points for Probl®nw(ith the measure of infeasibility
greater thare’. The setX, corresponds to the set of infeasible points for Probl&mwith the measure of
infeasibility less than or equal tof and with the objective function value greater thiaix*) + °, while the
setX3 corresponds to the set of infeasible points for Probl®nmw(th the measure of infeasibility less than
or equal tos" and the objective function value less than or equal(to’) + £°. The setXs corresponds to the
set of feasible points for Probler®)(with objective value greater thai(x*) + €, while the seiXs corresponds
to the set of feasible points for Problei) fvith objective value less than or equal t0x*) + €. The setsX;
throughXs are illustrated in Figuré for the three two-dimensional problems presented in Exagiplo 3.

Intuitively, we expect that nodes with domains containethmsetsX; andX, can be fathomed relatively
easily (by infeasibility and value dominance, respecyivebmpared to nodes with domains contained in the
setXsz. Similarly, we expect that nodes with domains containedéndetX, can be fathomed relatively easily
(by value dominance) compared to nodes with domains cadaim the seis. This intuition is formalized
in Corollary 1. Consequently, the extent of clustering is dictated prilpdony the number of boxes required
to cover the region¥Xs and Xs. Section3 provides conservative estimates of the number of boxesrtdine
widths that are required to cov&g and Xs under suitable assumptions. As an aside, note that thetondi
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specified by EquationT©OL) is used to roughly enforce that nodes with domains contkiim¢he sets<y, Xo,
andX, can, in the worst case, be fathomed using a similar levelfoftef

Example 1LetX = (0,1) x (0,1), m = me = 0, andf (x) = x} +x§ —x¢ — x5 with x* = ( 1 ,%).We have:

S

X1 =Xo=X3=0,

Xo={xeX:x{+x3—x —x5 > f(x*)+¢},and

Xs={xeX:x+x3—x—x5 < f(x*)+¢€}.
The setsX; throughXs are depicted in Figurgafor € = 0.1.

Example 2Let X = (2.2,2.5) x (2.9,3.3), m = 3,mg =0, f(X) = —X1 — X2, G1(X) = X2 — 2x + 83 — 8x2 —
02(X) = %o — 4x] + 323 — 88x2 + 96x; — 36, andyz(X) = 3— X with x* ~ (2.33,3.18) (based on Example 4.10
in [8]). We have:

Xl—{xex: i

(max{0,gj(x )2>£f},

(max{O gi() N2 € (0,"], =xg —x2 > f(x*) +€°

’

Xz = {xex: : (max{0,g;(x)})? € (0,1, —x1 —x < f(x*)+e°},

, —X1—X2 > f(x*)+¢€}, and
, =X — X < f(X*)+¢€}.
The setsX; throughXs are depicted in Figurgbfor e = e° = ef = 0.1.

Example 3LetX = (0.4,1.0) x (0.5,2.0), m =2,mg =1, f(X) = =12 — 7% +X3, g1 (X) = X1 — 0.9, g2(X) =
0.5—xq, andh(x) = Xz + 2x{ — 2 with x* ~ (0.72,1.47) (based on Example 4.9 ig]). We have:

X1 = {x eX: i(max{o,gj )H2+ |h(x) > > &f } ,
£

Xz—{XGXZ

(max{0,g;(x)})*+ |h(x)|? € (0,'], —12x; — Txa +X& > f(x*) + &°

M~

Mm

}
}

X3 = {xex: (max{0,g; (x)})%+ |h(x)|? € (0,6"], =12, — Txa +X& < f(x*) +£° ¢,
=1
Xs={x€X:g(x) <0,h(x) =0, =12 — 7% +X§ > f(x*) + €}, and
Xs={x€X:g(x) <0,h(x) =0, —12 — 7%+ X5 < f(X*) +€}.
The setsX; throughXs are depicted in Figurécfor e = €2 = ¢f = 0.1.
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The following corollary of Lemmatd, 2, and3, similar to Lemma 2 in29], provides sufficient conditions
under which nodes with domains containecin X,, andX4 can be fathomed.

1
Corollary 1 (Fathoming Nodes Contained inXy, Xp, and X;) Letd = (%) ”

1. Suppose the convex relaxation-based lower boundingreelias convergence of ordgt > 0 at each
X € X, with a prefactort' > 0 that is independent of. ConsiderX; € IX; corresponding to the domain of
node k in the branch-and-bound tree. If(%;) < J, then node kwill be fathomed by infeasibility.

2. Suppose the scheme of convex relaxat{df¥$zcix has convergence of ord@rf > 0 at eachx € X, with
a prefactort’ > Othat is independent of. ConsiderX, € IX; corresponding to the domain of nodgik
the branch-and-bound tree. If(%,) < &, then node kwill be fathomed by value dominance.

3. Suppose the convex relaxation-based lower boundingreelies convergence of ordgr > 0 at each
X € X4 with a prefactorr* > O that is independent of. ConsiderX, € IX4 corresponding to the domain of
node lg in the branch-and-bound tree. If(%,) < J, then node kwill be fathomed by value dominance.

Corollary 1 implies that nodes with domaing, Xo, andXs such thatXy € IX1, Xo € IXp, andXs € IX4 can be
fathomed when or before their Wldths ardin fact, nodes with domains X, andIX4 can be fathomed when

or before their widths ar 50“) and (£ )ﬁ* respectively). However, nodé§ e IXs may, in the worst

case, need to be covered by boxes of widthefore they are fathomed. Furthermore, nodes IX; may
need to be covered by a large number of boxes depending optkergence properties of the lower bounding
scheme orXs. The following example presents a case in which clusteriag otcur onXs because the lower
bounding scheme does not have a sufficiently-large conmeegerder at infeasible points.

Example 4Let X = (—2,2), m = 3, andmg = 0 with f(X) =X, g1(X) = X%, g2(X) = x— 1, andgs(X) = —1—x.
We havex* = 0 (which is the only feasible point). For afy-,xV] =: Z € IX, let

ffv(x) =X,

N ENYEEY if 0 € [x-,xY]
9iz(x) = {min((XL)27(XU)2> — (XY —xb), otherwise ’

gg\IZ(X) =X-— 17
g%YZ(X) =-1-x

We haveB* = B' = 1 andB’ arbitarily-large with prefactors*, 1!, andtf, respectively, greater than zero.

Supposee, ef < 1. Picky > 0 anda € (0,y) such that(y+ a)2 = &f. Letxt :== —y—a = -Vl and
xV:= —y+a < 0. The width ofZ isw(Z) = 2a. Note thaig, andgs are feasible oZ; therefore, we need only
be concerned with the feasibility of ..

We haveg, (Z) = [(y— a)?,(y+a)?] andd(g(2),R™) = (y— a)?. This impliesg; is infeasible at each
x € Z. Note thaiXz = [x-,0)U (O, min{&°,veT}| (which follows, in part, from eack e [x, 0) being infeasible
with f(x) < f(x*) andd({g(x)},R™) < &f).

We haved$y(Z) = [(y— a)? - 2a,(y— a)? — 2a] andd(99'(2),R™) = max{0, (y — a)? — 2a}. The
optimal objective value of the lower bounding problemais —y — a whend(g$'(2),R™) = 0, and is+
otherwise. Note that the lower bounding problem is infdasim Z when (y — a)? — 2a > 0, which can be
achieved by choosing to be sufficiently-small (and increasingaccordingly).

The maximum width of the interva'& for WhICh |t can be fathomed by |nfea3|b|I|ty can be shown & b
w(Z) =2a" :=2(1+y)—2\/1+2y= £") (note thaty < 1 because < 1). Fora > a*, the
interval Z cannot be fathomed by |nfea5|b|l|ty and the optimal objectialue of the lower bounding problem
onZis —y—a = —Vel = O(y/£). Such an intervak cannot be fathomed by value dominance either since
ek 1.

Therefore, in the worst case, the interdatan be fathomed only whem(Z) = O(y?) = O(&"). This causes
clustering in the worst case sineg[x-,0)) = O(Ve") and[x-,0) C Xa.
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3 Analysis of the Cluster Problem

In this section, conservative estimates for the number édoequired to coveXs andXs are provided based
on assumptions on Problei)((in particular, on its set of global minimizers), and ctaesistics of the branch-
and-bound algorithm. First, some requisite definitionsprozided P].

Definition 9 (Neighborhood of a Point)Let x € X C R™. For anya > 0, p € N, the set
NP (X) = {z eX:lz—x|, < a}
is called thexr-neighborhood ok relative toX with respect to thgp-norm.

Note that all norms o™ are equivalent.

Definition 10 (Strict Local Minimum) Let.# (X) denote the feasible set of ProbleR).(A pointx € .7 (X) is
called a strict local minimum X is a local minimum, anda > 0 such thatf (x) > f(X), ¥x € A2(X) N.Z (X)
such tha # x.

Definition 11 (Nonisolated Feasible PointA feasible pointx € .7 (X) is said to be nonisolated ¥fa > 0,
3z € A2(x)N.Z(X) such that # x.

Definition 12 (Set of Active Inequality Constraints)Letx € .7 (X) be a feasible point for Probler®). The
set of active inequality constraintsxatdenoted by (x), is given by

A (x):={je{L---,m}:gj(x)=0}.

Definition 13 (Tangent and Cone of Tangents)et x € .% (X) C R™ be a feasible point for Problen®), A
vectord € R™ is said to be a tangent of (X) atx if there exists a sequend@y} — 0 with Ax > 0, and a
sequence Xy} — x with x¢ € % (X) such that

. Xk—X
d=lim2X—~%
k—oo Ak

The set of all tangents of (X) atx, denoted byT (x), is called the tangent cone & (X) atx.

3.1 Estimates for the number of boxes required to cof¢er

This section assumes that ProbleR) fias a finite number of global minimizers (which implies egbtbal
minimum is a strict local minimum), and is small enough thaXs is guaranteed to be contained in neigh-
borhoods of global minimizers under additional assumggtidm estimate for the number of boxes of width
required to cover some neighborhood of a minimxifrthat contains the subset ¥§ aroundx* is provided
under suitable assumptions. An estimate for the number xéoequired to coveXs can be obtained by
summing the above estimates over the set of global minimiZdroughout this section, we assume ttiaits

a nonisolated feasible point; otherwisky > 0 such that4;?(x*) N Xs = {x*}, which can be covered using a
single box.

We begin with a necessary condition fdrto be a local minimum.

Theorem 1 (First-Order Necessary Optimality Condition) Consider Problen{P), and suppose f is differ-
entiable atx*. Then
{d - Of (x*)Td < o} AT(x") = 0.

Proof See Theorem 5.1.2 ir2]. O
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Lemma 4 Consider ProblenfP). Suppose* is nonisolated and f is differentiable &t. Thenv8 > 0,3a >0
such that
inf Of (x*)Td >

min Of(x*)Td—6.
{d:]|d]|;=1,3t>0: (x* +td)eAG (x)NF (X) } {d:[|d[|;=1,deT (x*)} 0

Proof See AppendiA.1. O

The following result, inspired by Lemma 2.4 i@g], provides a conservative estimate of the subsetsof
around a nonisolated" under the assumption that the objective function growsalilyeon the feasible region
in some neighborhood of*. The reader can compare the assumptions of Lefmmwih what follows from
Lemma4 and the necessary optimality conditions in Theorke(eee RemarHlt for details).

Lemma5 Consider ProblenfP). Suppose™* is nonisolated, f is differentiable at', and3a > 0 such that

L= inf Of(x*)Td > 0.
{d:]|d[l;=1,3t>0: (x*+td)eAG (x )NF (X) }

Then,3a € (0, a] such that the region/i/al(x*) M Xs can be conservatively approximated by
Xs = {x € Ag-(x") 1 L|Ix —x*||, < 2¢}.

Proof Letx = x* +td € #71(x*) N.Z (X) with ||d||; = 1 andt = |[x —x*||; > 0. We have

X*)+OF (x) T (x—x") +0([x —x";)
x*) +t0f (x*)Td +oft)
X*) +Lt+o(t),

where Step 2 follows from the differentiability dfatx*. Consequently, there exisiise (0, a] such that for
all x =x*+td € .7 (X) with ||d||; = 1 andt € [0, &):

() > 1<) +LE+o(t) > F(x) + 5.
Thereforey/x € #5H(x*) N Xs we havex = x* +td € . (X) with ||d||, = 1 andt = [|x — x*||, < &, and

£> 1(x) 1<) > 5t = Lt=L|x—x'; <2¢.
O

A conservative estimate of the number of boxes of widltiequired to coverszt(x*) N Xs can be obtained
by estimating the number of boxes of widdhrequired to coveXs (see Theoren2). The following remark is
in order.

Remark 1

1. Lemmabis not applicable wheh = 0. This can occur, for instance, whehis an unconstrained minimum,
in which case other techniques have to be employed to antigzeluster problem7], 21, 28, 29] under
alternative assumptions. This is because whedifferentiable at an unconstrained minimizérit grows
slower than linearly arouns* as a result of the first-order necessary optimality condlitid (x*) = O (note
that if f is twice-differentiable ak* and0?f (x*) is positive definite, therf grows quadratically around
x*). The assumptions of Lemntamay be satisfied for a constrained problem, however, bet¢hagenly
require that the objective function grow linearly in the gktlirections that lead to feasible points in some
neighborhood of*. An example ofL = 0 whenx* is not an unconstrained minimum iX: = (-2, 2),
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m =2, me =0, f(x) =x3 g1(x) = x— 1, andgz(x) = —x with x* = 0. In this example, the objective
function only grows cubically arounx in the direction fromx* that leads to feasible points.
From Lemma4, we have that a sufficient condition for the key assumptioherhmab to be satisfied

is min Of(x ) d > 0. It is not hard to show that this condition is also necessdngn f
{d:[ldll;=L.deT (x*)}

is differentiable aix*. Proposition2 shows that the assumptions of Lem&avill not be satisfied when
Problem P) does not contain any active inequality constraints andrhemizer corresponds to a KKT
point for Problem P).

2. & depends on the local behavior bfaroundx*, but is independent of since it is determined by the
subset of #,1(x*) N.Z (X) on which the affine functiorf (x*) + %t underestimated (x). Consequently,
for sufficiently smalle, Xs = {x € X : L||x — x*||; < 2¢} since{x € X : L||x —x*||; < 2¢} will then be a

subset of #.1(x*). Note that the factor ‘2’ in the denominator cgt is arbitrarily chosen; any factos 1
can instead be chosen with a correspondmgrurthermorex* is necessarily the unique global minimizer
of Problem P) on .#;(x*) sinceL > 0.

3. If, in addition to the assumptions of LemrBaf is assumed to be convex offi;} (x*), then we can choose
@ = a. Additionally, .#;1(x*) N X5 can be conservatively approximatedfoye X : L|x —x*||; < £} when
€ is small enough.

4. The estimat&s becomes less conservativesis decreased since the higher order teft — 0 ase — 0.
Simply put, this is because the affine approximatigr*) 4 Lt provides a better description éfase — 0.

In fact, under the assumptions of Lem#Bja less conservative estimateXgfcan be obtained by accounting
for the fact that not all points € {x € A ) L x = x|, < 2} satisfny(x*)T(x —X") > L|Ix=x*|;.

Proposition 1 Consider Problen(P), and suppose the assumptions of Lerdraee satisfied. Therid < (0, a|
such that the regiom/al(x*) N Xs can be conservatively approximated by

Ro = {x € M) Lx =X < 26, Lx—x" [, < OF () (x=x) }.
Proof The desired result follows from Lemnieand the fact that
Of (x)T(x —x*) > LIx—x*[ly, ¥xeAEX)N.Z(X),
from the assumptions of Lemnia O

As an illustration of the application of Lemn&alet us reconsider Examp Recall thatX = (2.2,2.5) x
(29,33), m =3, mg =0, f(X) = —X1 — Xz, G1(X) = X2 — 2X] + 8% — 8XF — 2, Ga(X) = Xp — 4x] + 32¢ —
882 +96x; — 36, andyz(X) = 3—x with x* ~ (2.33,3.18). Lete < 0.07. We haveZ (X) = {x € X : g(x) < 0},
Of (x*) = (—1,—1), a =+, L~ 0.649, andXs = {x € X : g(X) < 0, —x1 —x2 < f(x*) +€}. Chooselr = +o
in Lemmas. From Lemmab and Remark, we haveXs = {x : 0.649|x — x*||; < £} (sincef is convex).

Figure2aplotsXs andXs for € = 0.07, and Figur&b shows the improvement in the estimate when Proposi-
tion 1is used, in which case we obtalg = {x : 0.649|x — x*||; < &, 0.649x — x*[|; < —(x1 —X}) — (X2 —%5)}.
Note that an even better estimateXgfmay be obtained by using knowledge of the local feasible&gtx*) N
Z(X). However, other than in some special cases (see LeB)mae shall stick with the estimatés from
Lemmab since we are mainly concerned with the dependence of thateatelustering on the convergence
rate of the lower bounding scheme.

Before we provide an estimate of the number of boxes of widtquired to cover#;1(x*) N Xs, we provide a
few more examples that satisfy the assumptions of Lefara present an approach that could help determine
if its assumptions are satisfied. Exampldlustrates another inequality-constrained case whidisfées the
assumptions of Lemm&. Note that the minimizex* does not satisfy the KKT conditions in this case.

Example 5Lete <1, X = (—2,2), m = 3, andmg = 0 with f(x) = —x, g1(x) = x3, g2(X) = x— 1, g3(X) =
—1-x,andx* =0. We haveZ (X) = [-1,0], Of (x") = 1,0 = +o, L= 1, andXs = ¢, 0]. Choos& = +o
in Lemmab. From Lemmab and Remarl, we haveXs = [—¢,+€] (sincef is convex).



14 Rohit Kannan, Paul I. Barton
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(a) Xs and estimaté&s from Lemma5 (b) X5 and estimatés from Propositionl

Fig. 2: Plots ofXs (solid regions) ands (the areas between the dotted lines) for Exan2dfier € = 0.07 (note
that we do not use = 0.1 as in Figurelb because the correspondiifg are not contained iX). The dashed
lines define the seX, the filled-in triangles correspond to the minimiz&r and the dash-dotted lines represent
the axes translated t0.

The reader may conjecture, based on Exarb@ed other examples of low dimension, that every noniso-
lated minimizerx* which does not satisfy the KKT conditions will automatigadlatisfy the main assumption
of Lemmab. Example6, inspired by LO, Section 4.1], however illustrates a case when the assongtf
Lemmab are not satisfied even though does not satisfy the KKT conditions.

Example 6LetX = (—2,2)3, m =5, andmg = 0 with f(X) = X1 +X3, g1(X) = X1 — 1, g2(X) = X2 — X1, g3(X) =
X2, 9a(X) = —X3, 05(X) = X3 — 1, andx* = (0,0,0). We haveZ (X) = {x € [0,1]3 : x, = 0}, Of (x*) = (1,0,0),
andL = 0 for everya > 0 since(0,0,1) € T(x*) andJf (x*)7(0,0,1) = 0.

The next result provides conditions under which the assiamgptof Lemmab will not be satisfied. In
particular, it is shown that the assumptions of Lenfnaill not be satisfied if ProblemR) is purely equality-
constrained and all the functions in Problel) &re differentiable at a nonisolatad!.

Proposition 2 Consider Problen{P) with mg > 1. Suppose* is nonisolated, f is differentiable &, func-
tions h, k=1,---,mg, are differentiable ak*, and .« (x*) = 0. Furthermore, suppose there exist multipliers
A” € R™e corresponding to the equality constraints such thet 0,A™) is a KKT point. Then

min Of(x*)'d = 0.
{d:]dll;=1deT (x*)}

Proof See AppendiA.2. O

Note that the above result can naturally be extended to awoalate weakly active inequality constraints
(see R, Section 4.4]). The ensuing examples illustrate that taraptions of Lemm& may be satisfied when
individual assumptions of Propositi@do not hold.

Example 7Lete <0.5,X = (—2,2) x (—2,2),m =1, andmg = 1 with f(x) = x1 +10x3, g(X) = X1 — 1, h(x) =
X1 — [X2|, andx* = (0,0). We haveZ (X) = {x € X : x1 = |xg|,x1 <1}, Of(x*) = (1,0), 0 =+, L = 0.5,
andXs = {x € [0,€] x [—&,&] 1 xg = |Xa|, X1 + 10x§ < £ }. Choosedi = +o0 in Lemma5s. From Lemmab and
Remarkl, we haveXs = {x € X : ||x||; < 2¢} (sincef is convex).

Example 8Lete <0.5,X = (—2,2) x (—2,2), m =4, andmg = 1 with f(X) = X1 +X2, 91(X) = —X1, G2(X) =
—Xo, G3(X) = X1 — 1, 9a(X) = X2 — 1, h(X) = xo — 3, andx* = (0,0). We haveZ (X) = {x € [0,1]% 1 x, =%},
Of(x*) = (1,1), a = +oo, L= 1, andXs = {x € [0,&] x [0,€] : o = %3, X1 + X < £ }. Choosed = +oo in
Lemma5. From Lemmab and Remark, we haveXs = {x € X : ||x||; < &} (sincef is convex).
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Fig. 3: Plots ofXs (solid curves) anis (left figure: area between the dotted lines, right figureveutepicted
by the circles) for Exampl@ for € = 0.5. The filled-in triangles correspond to the minimiz€r, and the
dash-dotted lines represent the axes translatgt to

Figure3aplots X5 and Xs for Example8 for € = 0.5. It is seen that the estimatg does not capture the
one-dimensional nature & (which is a consequence of the equality constraint in Exar8pl This issue
is addressed in Lemm@ Note thatXs for Example7 also resides in a reduced-dimensional manifold, but
Lemmas6 does not apply in this case sinés not differentiable ax* (the discussion after Lemn@&proposes
a modification of the assumptions of Lem@i¢hat addresses this issue).

While Lemmab provides a conservative estimateﬂgl(x*) N Xs under suitable assumptions, verifying
the satisfaction of its assumptions is not straightforwditse following proposition provides a conservative
approach for determining whether the assumptions of Lefara satisfied.

Proposition 3 Let L(a) denote the constant L in LemrBdor a givena > 0. When the active constraints are
differentiable atx*, a lower bound on 4.:= Iin(wﬁL(a) can be obtained by solving
a—

nbin Of (x*)"d

st.[d], =1
de.2(x),

where Z(x*) := {d e R™: 0g;(x*)'d < 0,Vj € o7 (x*), Oh(x*)'d = 0, vk € {1, ,mE}} denotes the lin-
earized cone at*. If x* corresponds to a KKT point, the above formulation providesexact value of .

So far in this section, we have established conditions undiéch a conservative estimate of the subset
of Xs around a minimizex* can be obtained, presented examples for which the abovetiomsdhold, and
isolated a class of problems for which the above conditioesnat satisfied. The following theorem follows
from Corollary 2.1 in R8], the proof of which is rederived in Appendi& for completeness. It provides a
conservative estimate of the number of boxes of willttlequired to coveKs from Lemma5. Therefore, from
Lemmal and the result below, we can get an upper bound on the wasstraanber of boxes required to cover
/Val(x*) N Xs and estimate the extent of the cluster problem on that rggémall from Remark that the subset
of Xs aroundx* will be contained in#;(x*) for sufficiently smalle).

1
. £\ pBF 2¢
Theorem 2 Suppose the assumptions of LenBld. Letd = (F> Plr= T

1. fd>2r,letN=1
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2. Ifmz—r1 >0 > Z—n: for some ne N with m< nyand2 < m< 5, then let

N = 202' (n.x) +2nx[m 3}.
& i 3
3. Otherwise, let

N= {Z(T*)ﬂ% 7) Lﬂ " ([Z(T*)ﬁ% () L’l—‘ +2ny {(T*)ﬁ% £(-7) |_*1D :

Then, N is an upper bound on the number of boxes of Widdguired to coveiXs.

Proof See AppendiA.3. a

Remark 2Under the assumptions of Lemrbathe dependence ®&f on € disappears when the lower bound-
ing scheme has first-order convergence #t(x*) N.Z (X), i.e., B* = 1. Therefore, the cluster problem on
Xs may be eliminated even using first-order convergent lowentding schemes with sufficiently small pref-
actors. This is in contrast to unconstrained global opttiin where at least second-order convergent lower
bounding schemes are required to eliminate the clustetgrrotsee Remark for an intuitive explanation for
this qualitative difference in behavior). Note that the eleglence oN on the prefactor* can be detailed in a
manner similar to Table 1 ir2p].

The above scaling has also been empirically observed bys@@iuh et al. 9], who reason *- - removes the
tangency between the feasible set and the objective leyelrse therefore should prevent the cluster effect.”

The next result refines the analysis of Lemfwahen ProblemP) contains equality constraints that can
locally be eliminated using the implicit function theore®].

Lemma 6 Consider Problen{P) with 1 < mg < ny. Suppose™ is nonisolated, f is differentiable at', and
Ja > 0'such thath is continuously differentiable o} (x*) and

L= inf Of (x*)'d > 0.
{d:]|d]|3=1,3t>0: (x* +td) e NG (x*)N.7 (X) }
Furthermore, suppose the variablegan be reordered and partitioned into dependent variaklesR™ and
independent variablep € R™* ™€, with x = (z,p), such that(,;h((z,p)) is nonsingular on4.((z*,p*)),
wherex* = (z*,p*). Then,3ap, a; € (0,a], a continuously differentiable functiop : %})(p*) — N (Z),
and & € (0,ap) such that the regiofi. 4! (z*) x .#5}(p*)) N Xs can be conservatively approximated by

X6 = {(2,p) € Mah(2') x NG (p") :2= @(p), LlIp—p*[l; < 2¢}.
Proof The result follows from the proof of Lemnfaand the implicit function theoren2p, Chapter 9. O

Lemmaé effectively states that, under suitable conditions, tHesstiofXs aroundx* resides in a reduced-
dimensional manifold. Figur@b compares the estima¥ obtained from Lemm& (when we assume precise
knowledge of the implicit function) with the one obtainedrfr Lemma5 for Example8. The reason for dis-
tinguishing betweem, and & is so that we can have to be continuously differentiable on(c%l(p*));
this fact will be used shortly. Note that the assumptions tthis continuously differentiable om/;t(x*) and
0zh((z,p)) is nonsingular on4;((z*,p*)) can be relaxed based on a nonsmooth variant of the impliogt-fu
tion theorem ¢, Chapter 7] (which can be used to derive a less conservattimate ofXs for Example?, for
instance).

The following corollary of Theoren refines the estimate of the number of boxes of widlttequired to
coverXs under the assumptions of LemrBalt provides an upper bound on the number of boxes of width

_ _ 1 _ 1
J required to covelXs that scales a® (s("x mE>(l F)) in contrast to the scalin@® (snx(l F*>) from
Theorem?2.
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1
Corollary 2 Suppose the assumptions of Len@ield. Letd = <i> Pr= 2—LS Define

Mk:—< max ||D¢k(p)||>\/nx—m» vke {1,---,me},
pec

(A5 P))
Ki={ke{l, - ,mg}:M>1}.
1. fo>2r,letN= M.

2. If% >0> 2_nr1 for some ne N with m< ny,—mg and2 < m< 5, then let

ml o /no—me m—3
N = 2'( * )+2(n —mg) [—w M.
(iZO ! " 3 kle_rl(
3. Otherwise, let

N= oy R (o etF] 4
| [ |

Then, N is an upper bound on the number of boxes of widéguired to coveiXs.

Proof Theorem2 can be used to obtain an overestimate of the number of boxegltif 5 required to cover
the projection ofXs, as defined by Lemmé, onp, i.e., {p € g/i/al(p*) :L|lp—p*||y < 2¢}, by replacingn,
with ny — mg in the expressions fdx. This e§timate can be extended to obtain a conservativaastiof the
number of boxes of widtld required to coveKsg as follows.

Note thatgy is Lipschitz continuous on @%1(p*)) with Lipschitz constan\/tanfLmE, vke {1,--- ,meg}.

Consider any bo of width & that is used to cover the projectionX$ onp. We have
w(@ (BNl (A5 (p7)))) <MS, ke {1 me},
from the Lipschitz continuity ofg. Therefore, we can replace the liayasingkL_J< Mgk such boxes and translate
them appropriately to cover the region
{(zp) € Az(2) x (BNAG(PY)) :LIp—P*lly < 26,2=(p)} -
SincelUg {BN ,/Val(p*)} covers the projection ofs onp, the desired result follows by multiplying the estimate

obtained from Theorer (with ny, replaced by, — mg) by rL M. a
ke

The next result provides a natural extension of Lenfita the case when the objective function is not
differentiable at the minimizex* [28]. Note that a similar result was derived for the case of ustrained
optimization in P8, Section 2.3] under alternative assumptions.

Lemma 7 Consider ProblentP). Suppose* is nonisolated, f is locally Lipschitz continuous on X anebdi
tionally differentiable at*, and3a > 0 such that

L:= inf f'(x*;d) > 0.
{d:[|d]l;=1,3t>0: (x*+td)eAG (x*)NF (X) }

Then,3& € (0, a] such that the regiom/al(x*) N Xs can be conservatively approximated by

X5 = {x € AGH(X") 1 L[jx —x*||; < 2¢}.
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Proof The proof is relegated to Appendix4 since it is similar to the proof of Lemmnta O
Remark 3Theorem2 can be extended to the case when the assumption that théofuricis differentiable

at x* is relaxed by using Lemmathand 7 and Corollary 2.1 in 28] (also see Theorer). Similar to the
differentiable case, the dependenceNobn ¢ disappears when the lower bounding scheme has first-order
convergence on#;l(x*) N.% (X), i.e.,B* = 1. Additionally, Lemma6 and Corollary2 can also be extended to
the case wheiffi is not differentiable ax* under suitable assumptions.

Thus far, we have established conditions under which fidérconvergence of the lower bounding scheme
at feasible points is sufficient to mitigate the cluster peabonXs. In the remainder of this section, we will
present conditions under which second-order convergefite dower bounding scheme is sufficient to miti-
gate clustering oXs. The first result in this regard provides a conservativerestt of the subset ofs around
a nonisolatec* under the assumption that the objective function grows igumally (or faster) on the feasible
region in some neighborhood wf.

Lemma 8 Consider ProblenfP), and suppose f is twice-differentiablexdt Supposéla > 0,y > 0 such that
Of (x*)Td + %dTDZf(x*)d >yd'd, vde{d:(x"+d) e SZx)NF(X)}.
Then3a € (0, a] such that the regiom/az(x*) N Xs can be conservatively approximated by
X5 = {x e MR tyx—x*|? < 28}.
Furthermore x* is the unique global minimizer for Proble¢®) on.#;2(x*).

Proof Letx = x* +d € #2(x*)N.Z(X). We have

f(x) = f(x* +d)
= f(x*)+0f(x")Td+ %dTDZf(x*)d +o(|[d]|?)
> f(x") + yd"d+o([[d]%).

Consequently, there exisise (0, a] such that for alk = x* +d € .% (X) with ||d|| € [0, &):
f(0) = f(x) +yd"d+o([[d]|?) > f(x") + ngd @
ThereforeWx € 4z2(x*) N Xs we havex = x* +d € . (X) with ||d|| < &, and
ez f)—f(x) = ngd — yld)I* = vilx—x"[|* < 2.

The conclusion that* is the unique global minimizer for Problerﬁ)(ong/i/az(x*) follows from Equation 1).
O

Remark 4

1. Lemmas8 is not applicable whedla > 0 andy > 0, for exampleX = (—2,2) x (—2,2), m =2, mg =0,
f(X) =Xz, 01(X) = X§ — X2, G2(X) = X2 — 1, andx* = (0,0). In this case, for anyr > 0, there exist directions
from x* to feasible points in whichi grows slower than quadratically nexr.
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2. For the case of unconstrained global optimization, tiseimption of LemmaB reduces to the assumption
that02f (x*) is positive definite, angt can be taken to be equal to half the smallest eigenvallé bfx*)
(see Theorem 1 ir2P]). When the minimum is constraineg@may potentially be estimated as follows. The
first possibility is to directly estimatg using a quadratic underestimator fobn .#;2(x*) 1.7 (X). If such
an underestimator cannot be constructed eagityay still be estimated relatively easily when additional
assumptions are satisfied.

Suppose(x*, u*,A”) is a KKT point, wherepu* andA™ correspond to Lagrange multipliers fgrand

h, respectively, ak*. Consider the restricted Lagrangiafx; u*,A*), and suppose it is positive definite
for all x € cl(A2(x*) N.Z (X)) (cf. [2, Section 4.4]). Thery may be estimated from the eigenvalues
of O2L(x; u*,A™) on cl(#2(x*) N.Z(X)). This is a consequence of the fact tHak) > L(x; u*,A"),

vx € Z(X), by weak duality,f (x*) = L(x*; u*,A"), and the stationarity conditiollxL(x; u*,A") = 0.
Otherwise, if (x*, u*,A") is a KKT point and some convex combination dfandL(-; u*,A™) grows
quadratically or faster on#;?(x*) N.%(X), theny can be estimated using one of its quadratic underes-
timators onA42(x*) N.7 (X).

3. The key assumption of Lemn&which assumes thdtgrows quadratically or faster on the feasible region
in some neighborhood of , is a relaxation of the key assumption of Lem&avhich assumes thdtgrows
linearly on the feasible region in some neighborhood'ofWhile it was shown in Theorer that first-
order convergence of the lower bounding scheme at feasilifésomay be sufficient to mitigate clustering
on X5 under the assumptions of LemriaTheorem3, which will be presented shortly, shows that second-
order convergence of the lower bounding scheme at feasililiésomay be sufficient to mitigate clustering
on Xs under the assumptions of LemmBa Consequently, the assumptions of Lemmatand 8 can be
viewed as belonging to a hierarchy of conditions for certnvergence orders of the lower bounding
scheme at feasible points being sufficient to mitigate ehirsy onXs, with the condition for third-order
convergence of the lower bounding scheme at feasible pturtie sufficient to mitigate clustering ofg
amounting to the third-order Taylor expansionfofrowing faster than cubically on the feasible region in
some neighborhood of*, and so on.

4. Along the line of discussion in Rematk & depends on the local behavior baroundx*, but is indepen-
dent ofe. Consequently, for sufficiently smatlwe can conservatively approximate the SQZ(X*) NXs

by {x eXyx—x|? < 25}. Additionally, if the objective functionf is either an affine or a quadratic
function ofx, then its second-order Taylor expansion aroxhéqualsf itself and we can choosg = a.
Furthermore, #32(x*) N X5 can be conservatively approximated by theXset {x eX:yllx—x** < s}.

5. Similar to Propositiori, a less conservative estimatexigz(x*) N X5 can be obtained as

X5 = {x e N2 T ylx—x*||? < 28, OF (x)T (x—x*) + %(x—x*)Tsz(x*) (x—x*) > y\|x—x*||2}.

As an illustration of the application of Lemn& et us reconsider Examp®& Recall thatX = (0.4,1.0) x
(0.5,2.0),m =2,mg =1, f(X) = =12 — T2+ %3, g1(X) = X1 — 0.9, g2(X) = 0.5—xq, andh(x) = Xo +2x} — 2
with x* ~ (0.72,1.47). Let e < 0.1. We haveZ (X) = {x € X : g(x) < 0,h(x) = 0}. Choosear = 0.1, y = 2,
andd = 0.1 in Lemma8. We haveXs = {x Xp=2— 2x‘1‘, —12x1 — 7xz+x§ < f(x*) +£}. From Lemma8
and Remarkd, we haveXs = {x € M2 (X*) x—x*||* < 0.58} (since f is quadratic). Note that an even

better estimate aks may be obtained using Lemn®by accounting for the fact tha¢ resides in a reduced-
dimensional manifold.

The following examples illustrate two additional casesvidich the assumptions of Lemn&hold.

2
1
X, — 1, andx* = (0,0). We haveZ (X) = {X: %, > xZ, x, < 1}. Choosea = 1, y = 0.5, and& = 1. From

Example 9Let e < 0.5, X =(—2,2) x (—=2,2), m = 2, andmg = 0 with f(X) = X2, 91(X) = X{ — X2, 92(X) =
Remark4, we haveXs = {x € [—\/€,+/€] x [0,€] 1 o > X2} C {x: [Ix||* < 28} =Xs.



20

Rohit Kannan, Paul I. Barton

051

0

X1

0.5 1

(a) X5 and estimatés from Lemma8 for € = 0.5
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(b) X5 and estimatés from Remarkd for € = 0.5
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(d) Xs and estimatés from Remarka for £ = 0.1
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(e) Xs and estimaté&s from Lemmal0for £ = 0.1 (f) Xs and estimaté&s from Lemmal0and Remarld for & = 0.1

Fig. 4: Plots ofXs (solid regions) aniks (area between the dotted lines) for ExampleThe filled-in triangles
correspond to the minimizer*, and the dash-dotted lines represent the axes translatéd to

Example 10Let& < 0.5, X = (—2,2) x (—2,2), m = 3, andmg = 0 with f(x) = 2x2 + X2, G1(X) = —X2 — X,
02(X) = —X1, 93(X) = X2 + X% — 1, andx* = (0,0). We haveZ (X) = {X: xp > —x2, x; > 0, 2 + x4 < 1} with

a=1y=05a=1andXs={X X +2¢ < £,% > —x¢,x; > 0} C {x HIx|12 < 25} = X5 (see Remark).

The overconservatism of the estim3&ein the above two examples (with regards to its dependenad on
is primarily due to the fact that the linear growth of the albijee function in the direction of its gradient is
not taken into account. This observation is formalized ak&n advantage of in Lemnid to obtain a less
conservative estimate. Figufeplots Xs and Xs, obtained using different estimation techniques, et 0.5
ande = 0.1 in Examplel0. The benefit of using the estimate in Remdriver that of Lemma3 is seen from
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Figures4aand4b, and the benefit of using the estimate from Lemb@&gusing p1 = 3, p2 = 1.5) over that
of Lemmas8 is seen from Figuredaand4c. It can be observed from Figudz that the constraint-p;& <

Df(x*)T(x—x*) in Lemmal0 is not active on the regim{x Cylx—xF|? < s} for € = 0.5. To illustrate the

benefit of this constraint in LemmED, we considere = 0.1. Figures4d and4e demonstrate the advantages
of using the estimates in Rematkand LemmalO0, respectively, over the estimate in Lem&jeand Figuredf
combines the benefits of the estimates from Lenliland Remarld by using the estimate

X5 = {x € MAX) tyllx—x*||2 < 2¢, —p1e < OF (X)T (x—x*) < poe,
OfF(x)T (x—x*) + %(x—x*)Tsz(x*) (x—x") > ny—x*Hz}.
The following theorem follows from Lemma 3 i29], and provides a conservative estimate of the number
of boxes of widthd required to cover the estimakg from Lemma8. Consequently, from Lemmaand the

theorem below, we can get a conservative estimate of the euaftboxes required to coven/g(x*) N Xs and
estimate the extent of the cluster problem on that region.

1
Theorem 3 Consider Problem(P), and suppose the assumptions of Len8rtzold. Letd = (i) 7 and

T*
2¢€
r:,/—.
y

1. fo>2r, letN=1

2. If 2 >0 > 2 for some ne N with m< n, and2 < m< 18, then let

vim-1 vm
=52

3. Otherwise, let
11 nx—1 11 -
N= {Z(T*)‘% 8(27*))/’%} ([Z(T*)‘% S(Z*W)v’ﬂ +2ny {(\/5— 1) ()% s(Z*FF)y*%D .
Then, N is an upper bound on the number of boxes of wdidéguired to cover/i/az(x*) N Xs.

Proof From Lemma8, we have that the sét; = {x € NZ(x*): ylIx —x*[|? < 25} provides a conservative
estimate of #2(x*) N Xs. The desired result follows from Lemma 3 i29]. O

For the case of unconstrained global optimization, TheoBegffectively reduces to Theorem 1 i@9
with y equal to half the smallest eigenvalueletf (x*) (note that there is a ‘factor of two difference’ from the
analysis in 9] because we consider an appropriéte (0, or]).

Remark 5Under the assumptions of Theor&pthe dependence df on ¢ disappears when the lower bounding
scheme has second-order convergencefgtix*) N.Z (X). This is similar to the case of unconstrained global
optimization where at least second-order convergent ldweeinding schemes are required to eliminate the
cluster problem.

Finally, we present two sets of additional assumptions thase of Lemm@& under which less conservative
estimates of the cluster problem ¥gcan be obtained. The first result in this regard, similar tmb&6, refines
the analysis of Lemm8& when ProblemP) contains equality constraints that can locally be elin@dausing
the implicit function theoremZ2).
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Lemma 9 Consider ProblentP) with 1 < mg < nk. Suppose f is twice-differentiablexit, and3a > 0, y > 0
such thath is continuously differentiable on;?(x*) and

Of(x*)Td+ %dTDZf(x*)d >yd'd, vde{d:(x"+d) e SZ(X)NF(X)}.

Furthermore, suppose the variablegan be reordered and partitioned into dependent variaklesR™ and
independent variablep € R™ ™€, with x = (z,p), such that(,;h((z,p)) is nonsingular on42((z*,p*)),
wherex* = (z,p"). Then,3ap, a; € (0,a], a continuously differentiable functiop : A (p*) — A¢2(Z"),
anda e (0, ap) such that the regior@ai{,i(z*) X /I{}Z(p*)) N Xs can be conservatively approximated by

%6 = {(z.p) € NE(Z) x N2(P") 2= @R, yIP—P'|* < 26 }.
Proof The result follows from the proof of Lemnthand the implicit function theoren2p, Chapter 9. O

Lemma9 can be used to obtain a less conservative estimate of theerwhboxes of widthd required to
coverXs as shown in the following corollary of Theore8nlt provides an upper bound on the number of boxes

1 1 1 1
of width & required to coveXs that scales a® (smx*mE)(fﬁ**)) in contrast to the scalin@ (snx(fﬂ**))
from Theorens.

1
Corollary 3 Suppose the assumptions of Lenthieold. Letd = (%) P andr= \/ 2—; Define

Mk:—( Imax IID@(D)II)x/nx—mE, vke{1,---,me},
pec

(A& P")
Ki={ke{l, - ,mg}:M>1}.
1. fo>2r, letN= M.

2r 2r

2. f —>0>
vm—1 - y/m

for some ne N with m< ny—mg and2 < m< 18, then let

m1l . ne—me m-—9
N = 2'( x )+2(n —mg) [—1 M.
(i; ! " 9 k|;|<
3. Otherwise, let

N= [z s<%%>y%}“*"“([z<r*>ﬁa ((i-#)y2)

Then, N is an upper bound on the number of boxes of wid#guired to coveiXs.
Proof The proof is similar to the proof of Corollai®; and is therefore omitted. O

The next result refines the analysis of Lemturther, in part by accounting for the fact thatgrows
linearly aroundk* in the direction of its gradient.

Lemma 10 Consider Problen(P), and suppose the assumptions of Len8#ld. Then3éa € (0, a] and
constantgps, p2 > 0 such that the regiomfaz(x*) N Xs can be conservatively approximated by

Xs = {x € M2 1 yx—x*||? < 28, —pre < Of (x*)T (x—x*) < pzs}.
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Proof See AppendiA.5. O

The previous lemma can be used to obtain a less conservatiugage of the number of boxes of widéh
required to coveXs whene is sufficiently-small and the convergence or@&r> 1. This is presented in the
following Corollary of Theoren8, which provides an upper bound on the number of boxes of vaa#quired

e (3-2)) | (o3 )
to coverXs that scales a® | € B in contrast to the scalin@ | € B from Theorens.

1
Corollary 4 Suppose the assumptions of Lentt@&old. Letd = (%) P andr= \/ 2—; Supposg* > 1, €
is sufficiently-small thatp; + p2)€ < 3, and O f (x*) # 0.

1. fo>2r, letN=1

2 2 52
Cvm=1 - y/m

for some ne N with m< ny,—21and2 < m< 18, then let

-2 (M) e

3. Otherwise, let

1
83

2(n— 1) [(\/é— 1)(1%)7 g(%fﬁ%)yf%-‘ )

Then, N is an upper bound on the number of boxes of widéguired to coveiXs.

Proof We have from LemmaOthatXs is conservatively estimated by a sphere with ragi®(+/¢) truncated
by the hyperplane@f(x*)T (X—=x*) < pog and[]f(x*)T (x—x*) > —p1€. Therefore, whem is chosen to be
small enough thatp; + p2)€ < 9, the desired result follows from Theore3vand the fact that any covering of
the projection ofXs on to the subspace perpendiculafb(x*) with boxes of widthd can be directly extended
to coverXs without using additional boxes. O

Note that Corollaryt can also be extended to the case when®" < 1, in which case the estimakemay
additionally depend on the values @f andps.

3.2 Estimates for the number of boxes required to coy&B;

This section assumes that ProbleP lfas a finite number of global minimizers, anégs small enough thaxs

is guaranteed to be contained in neighborhoods of constigjlobal minimizers under additional assumptions.
An estimate for the number of boxes of certain widths reguicecover some neighborhood of a constrained
minimumx* that contains the subset ¥§ aroundx* is provided under suitable assumptions. An estimate for
the number of boxes required to cowés can be obtained by summing the above estimates over the set of
constrained global minimizers. Throughout this sectioa,assume that* is a constrained global minimizer;
otherwiseda > 0 such that#;?(x*) N X3 = 0. Furthermore, we assume thetis at the center of a single box

1
Bs of width 6 = (%) 4 placed while coverings (see Remark for the reason for this assumption).
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The first result in this section provides a conservativarest of the subset of; around a constrained mini-
mizerx* under the following assumption: the infeasible region imemeighborhood of* can be split into two
subregions such that the objective function grows lineiarthe first subregion and the measure of infeasibility
grows linearly in the second subregion.

Lemma 11 Consider ProblengP). Suppose* is a constrained minimizer, and the functions f{,\¢§j € &7 (x*),
and h, vk e {1,--- ,mg}, are locally Lipschitz continuous on X and directionallfeiientiable atx*. Further-
more, supposéa > 0 and a setZy such that

Li= inf f'(xd)>0
deZon %

L= inf max{ max gj(x*;d), max }h’ (x*;d) }}
de 7\ % jed (x*) ke{l:
where2 is defined as
_ . _ . * 1/y* ar C
9 = {d ld]ly =1, 3t > 0 : (x*+td) € A2(X) N (F (X)) }

Then,3é € (0,a] such that the region

Xt = A (x) N XN {x = (X" +td) € A2 N(F(X)C:d e DN t > o}
can be conservatively approximated as

X3 = {xe Mx) 1 Le|x—x*||, < 26°},

and the region

X2 := A(x) N XN {x = (X" td) € AN (F (X)) d € 71\ %t > 0}
can be conservatively approximated as

Xg = {xe MHx) Lillx—x"[, < 2¢"}

1
Furthermore, suppose® is at the center of a box, £ of widthd = (%) 4 placed while coverings. Then,
the region

X2\Bg = A (x*) N XN {x = (X" +td) € SZEX) N (F(X)C: d € A\ Dot > o} \B,;

is conservatively characterized by
e o[ o) < (300]

Proof Let x = x* 4td € AZH(x*) N (7 (X))© with Idll; =1,d € %, andt = ||x—x*||; > 0. We have (see
Theorem 3.1.2 in34])

whenever |9 < 4¢f.

f(x) = f(x* +td)

*

X*) A+ F/(X"5 (x = X)) +o(|[x = x"[| )
)+t (x";d) +o(t)
X)Lt +o(t).

f(
f(
f(
f(

(A%
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Consequently, there exists € (0, a] such that for alk = x* +td € (Z(X))C with ldl;=1,de % and
t € [0,00):
Lt

f(x) > f(x*)+Lst+o(t) > F(x*)+ 2t

Next, considex = x* +td € 4.1 (x*) N (.F(X))€ with Ild|l; =1,d & Zp, andt = ||x —x*||; > 0. We have

max{ max (g0}, max_{Iho

jed (x ke{1,-

=max{ max (x* +td max he(x* +td
{ max {a0c -}, max (inex +d))}

:max{len;ax {tgj(x*;d) +o(t)}, ke{Tgan}{|th{((x*;d)+o(t)|}}.

Consequently, there exists € (0,a] such that for alk = x* +td € (.Z (X)) with ldll; =1,d ¢ % and
te o, a;):

(3] 00.2m 0 ) zmax{ max {ai00).,_max_ (inxl}
:max{lemax {tdj(x*;d) + ot )},kG{T%E}{}thf((x*;d)+o(t)|}}
Ly
=2h

where Step 1 follows from the fact thigt|| > ||z]|,, ¥z € R™ x R™E,
Setd =min{&o, &1}. Then

Vx € X& = A (X)) N XaN {x = (X" +td) € SN (FX)C:d e Zon )t > o}
we havex = x* +td € (.Z (X)) with ||d||; = 1,d € Zp andt = |x—x*||, < &, and

9> f(x)— f(x*) > L—th = L¢t=Lg|lx—x*|; <2¢°

Furthermore,

VX € X2 = G (X )N XN {x = (X* +td) € ()N (F(X)C :d € D\ %ot > 0}
we havex = x* +td € (.Z (X)) with ||d||; = 1,d & Zp andt = |x—x*||, < &, and

ef Zd(m (x),R™ x{O}) > %t — Lit=Lx—x, < 2.

N|O1

Finally, for everyx € Az1(x*) N XN {x = (x*+td) € A(X) N (F (X NC:de Z\%,t > O} with t
we havex € Bs. Consequently, for each

X € NHX) N Xa N {x = (x* +td) € A2 N (Z(X))C:d € A\ Do, t > o} \55,

we havet > g and therefore,

d (m (x),R™ x {0}) L—z't > Lzlé
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The desired result follows when d < 4ef: otherwise, ifL; & > 4¢, then
A (x)NXaN {x = (xX*+td) € A (X) N (F (X)) d € A\ %ot > 0} C Bs.
o

A conservative estimate of the number of boxes of certairthgidequired to cove(.#:1(x*) N X3) \Bj
can be obtained by estimating the number of boxes of certalths/required to cove)231 and )25\85 (see
Theorenmd). The following remark is in order.

Remark 6

1. Lemmall does not hold whedla > 0, 2y such that boti_s andL, are positive. Exampld illustrates
a case when no valid partition &% exists (sincgx-,0), which is a subset o3, corresponds td = —1
which has an empty intersection with every valid choicezgf andg; (X*) = 0). Note thatZy, may be
chosen to be 0, but it cannot be chosen tazhevhen the objective function is differentiableat This
is because whehlf (x*) # 0O, the direction—f (x*) leads to infeasible points aroumxd. One potential
choice of%y is

To = {d dl; =1, 3t >0 : (x* +td) € AL N (F (X))C,

max{ max {dj(x";d)}, T%E}{}h{((x*;d)}}}ge}

jed (x*) ke{

for some choice oB > 0, so long as ijnff’(x*;d) > 0. Proposition4 shows that the assumptions of
€%

Lemmall will not be satisfied when Problenf’ does not contain any active inequality constraints and
the minimizer corresponds to a KKT point for ProbleR).(
2. The inequality 5 < 4¢' is equivalent to

1
f\ @l
& B
Ldo=L <_T') < 4gf.

Sincee' can be taken to be sufficiently-small, the above inequatitg$ionly when

1
(N <e' = p' <1,

i.e.,if B' > 1, we can choose' to be small-enough so thhfd > 4¢f. Note that ifL; & > 4¢f, the region
AKX N Xe N {x = (x"+td) € A2 N (F (X)) d € A\ To,t > o}

has already been covered while coverfigsince

Lo o

)

N ™

Shy e
> 5 <

which impliesx = x* +td € By.

The motivation for excluding the regidBs from Xz is as follows. Lemma shows that if the measure of
infeasibility, as determined by the distance functibiis strictly greater thaa® at each point in the domain
of a node, the node can be fathomed by a box of wédtHowever, ifx* is a constrained minimizer, we will
have points irKz which are arbitrarily close tg* and have a measure of infeasibility that is arbitrarily elos
to 0. Such points will then have to be fathomed by boxes oftwidtich smaller tha® (and arbitrarily
close to 0). To avoid this issue, such points are assumed étirhmated wherXs is covered by boxes of
width o.
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3. & depends on the local behavior 6f gj, Vj € «/(x*), andhy, Yk € {1,--- ,mg}, aroundx*, but is in-
dependent o. Consequently, for sufficiently smadl we haveX} = {x € X : L¢[|x —x*||; < 2¢°} and
X2 = {xeX:L|x—x"|, <2¢"}. Additionally, if f andgj, Vj € 7 (x*), are convex on#gt(x*) andhy,
vk e {1,---,mg}, are affine on# ' (x*), we can choosé = a. Furthermore,

X3 = A (X)) N XN {x = (X +td) € SN (F (X)) :de Zon it > O}
can be conservatively approximatedds= {x € X : L|[x —x*||; < €°},
XZ = MH(X) N XN {x = (x* +td) € A (X)N(Z (X)) :d € A\ Zo,t > o}
can be conservatively approximated¥s= {x € X : L;[|x —x*||; < €'}, and the region
NN XN {x = (X" +td) € S N(FX)C:d e A\ %ot > o} \B,;

is conservatively characterized by

{x e Mx) d (m (x),R™ x {0}) e (%5,5} }
whenevel ;5 < 2¢f.

4. Similar to Propositiori, the following less conservative estimatesgfandXZ can be obtained:
X3 = {x € AFHX") 1 Le|lx— x| < 26°, £/(X";x—X*) > Le[[x =X},

%= {xe ) sLilx-xy < 2,

maxs max d¢;(x :x—x*), max |h(x*:x—=x")|p > Li|Ix=x"|; ¢.
{ max gjxix—x),_max_[rocix—x| b= Lk}

As an illustration of the application of Lemnid, let us reconsider Exampf Recall thaiX = (2.2,2.5) x
(29,33), m =3, mg =0, f(X) = —X1 — Xz, G1(X) = X2 — 2¢} + 8 — 8X¢ — 2, ga(X) = Xp — 4x] + 32 —
882 + 96x; — 36, andgs(x) = 3 — X with x* ~ (2.33,3.18). Let £° < 0.03 ande < 0.05. We haveZ (X) =
{xeX:g(x) <0}, Of(x*)=(-1,-1), Oga(x*) ~ (—8.164 1), andgy(x*) ~ (4.700,1). Choosea = +o.
9 = {d ld]l, =1, 3t >0 (x* +td) € (PJ(X))C}. ChooseZy = {d ||d]l, = 1, Of (x*)Td > 0.298} and
c:r = +o in Lemmall From Lemmall and Remarlg, we havel ;s = 0.298 andL, = 1 with the estimates
X3 = {x:0.298|x — x*||, < £°} (sincef is convex), and? = {x : |[x—x*||; < 2¢"}. Figure5 illustrates the
set%, and plots the se} andxZ along with their estimateX} andX2 for £° = 0.03 ande’ = 0.05.

The next result provides conditions under which the assiamptof Lemmall will not be satisfied. In
particular, it is shown that the assumptions of Lentravill not be satisfied if ProblemR) is purely equality-
constrained and all the functions in ProbleR) &re differentiable at a nonisolated constrained minimize

Proposition 4 Consider Problen(P) with mg > 1. Suppose* is a nonisolated constrained minimizer, f is
differentiable ai*, functions , k=1, -- ,mg, are differentiable ak*, and.«7 (x*) = 0. Furthermore, suppose
there exist multipliers * € R™ corresponding to the equality constraints such thet 0,A ") is a KKT point.
Then Aa > 0, % such that the assumptions of Lemirisare satisfied.

Proof See AppendiA.6. O

The above result can be extended to the case when there etiig mequality constraints if all such
constraints are strongly activeit (see R, Section 4.4]) and there exisis= T (x*) such that]f(x*)Td =0.
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—Vg,Kx)

317 — Y00
————— vix)Td =L,
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(a) lllustration of the set¥y and 2\ %
33f  pees=-e-- memmmem——— 337

3.2¢
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2971

(d) X3 and estimateX} from Remarké (e) X2 and estimate? from Remarké

Fig. 5: lllustration of the set&y and 2\ Zo, the set3 andXZ, and their estimate¥} andX2 for Example2.

The dashed lines represent the Xetand the filled-in triangles represent the minimuin (Top Plot) The
solid region represents the feasible region and the sotitbverepresent the gradients of the objective and the
constraints. The set of directions between the dot-dashed (the part in which the feasible region resides)
defines the se¥p, and the remaining directions define the $gt %. The dotted line represents the direction
in 21\ %o in which both constraints grow equally quickly in a first-ercsense. (Other Plots) The solid regions
represent the s} or X3, the area between the dotted lines represent the estihaieX2, and the dash-dotted
lines represent the axes translated’toAll plots uses® = 0.03 ande = 0.05.
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Next, we revisit two equality-constrained examples fronta 3.1 for which the assumptions of Lemnid
hold, and which do not satisfy individual assumptions ofg@sition4. Consider Exampl&, and recall that
X =(-2,2)x(-2,2), m =1, andme = 1 with f(x) = X + 103, g1(X) = X1 — 1, h(x) = X1 — |x2|, and
x* = (0,0). Let €% f < 0.25. We haveZ (X) = {x € X 1 xq = |xo|, % < 1}, Of (x*) = (1,0), andh (x*;d) =
d; — |dy|. Choosea = +. We have, = {d Sdj;=1,3t>0: (x*+td) € (ﬂ(x))c}. Choose%y =

{d il =1, Of (x*)Td > 0.25} and & = 4o in Lemmall From Lemmall and Remark6, we have

Lt = 0.25 andL; = 0.5 with the estimateX] = {x: 0.25|x —x*||; < £°} (since f is convex), and¥? =
{x:0.5]x—x*||], < 2}

Consider Exampl8, and recall thaX = (—2,2) x (—=2,2), m; =4, andmg = 1 with f(X) = X1 + X2, g1(X) =
—x1, G2(X) = —X2, Ga(X) = X1 — 1, 9a(X) = %2 — 1, h(X) = x2 — x5, andx* = (0,0). Let %, e’ < . Z(X) =
{x€[0,12:x =3}, Of(x*) = (1,1), Ooa(x*) = (—1,0), Og2(x*) = (0,—1), andIh(x*) = (0,1). Choose
o=+ 7 ={d:||dl; =13 >0 (x +1d) € (F(X))°}. ChooseZo = {d : ]}, = 1, O (x")Td > §}
andd = +o in Lemmall. From Lemmall and Remars, we havel ; = % andL, = % with the estimates
X?} = {x: ||x—x*"|]; < 3¢°} (sincef is convex), anik?2 = {x:lx=xl, < 3£f} (sinceg; andgy are convex).

The next example illustrates a simple one-dimensional whseh satisfies the assumptions of Lemiriavith
P0=0.

Example 11Letef < 0.5, X = (—=2,2), m = 2, andmg = 0 with f(x) =%, g1(X) = x— 1, g2(x) = —x, and
x* = 0. We haveZ (X) = [0,1], Of(x*) = 0, Oga(x*) = —1, andXz = [—€",0). Choosea = +o. We have
9 = {—1}. ChooseZp = 0 andé = + in Lemmall From Lemmalland Remarl6, we havel, = 1 and
X3 = [—¢&',+&f] (sincegy is convex).

The following result follows from Corollary 2.1 ir2g] (also see the proof of TheoreB). It provides a con-
servative estimate of the number of boxes of certain widtsired to coveX} andX2\Bs from Lemma1l.

Therefore, from Lemmata and3 and the result below, we can get an upper bound on the wosstraanber
of boxes required to cove,rVal(x*) N Xz and estimate the extent of the cluster problem on that region

E o\ & N
Theorem 4 Suppose the assumptions of Lembiahold. Letd = s = <i> - (£—> o (£—> ,

T*
1 1 _1
5= Lo\ _ (L \F (e “")zrfz_ffrfz_fo
“\ar) ~\ar 7 LT T
1. If& >2r,letN =1

2r 2r _ - _
2. If = ! 1 >0 > ﬁl for somem, € Nwithm < nyand2 <m <5, then let
|

w5 ()

N = [28, (58" Ly, 1)]™ H ([2Bi(e"; B, L, 1) ] + 20 [Bi (5 B i, 1))

3. Otherwise, let

where
et ) (o ) e ) ()
4, If o > 2r¢, let Nf = 1.
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2r¢
ms —

5. If

2r .
1 > O > Ff for some m € N with m; < ny and2 < ms <5, then let
f

w2 (1)
6. Otherwise, let
ny—1
Nr = {Z(Tf)“_1r (€°) (-3) Lfl—‘ ({2(“)‘*—1r (£°) () Lflw +2n, {(rf)ﬁlr (€°) (+-7) Lf1D .

Then, N is an upper bound on the number of boxes of widjtrequired to coveDA(g\Ba, and N is an upper
bound on the number of boxes of widthrequired to coverX?}.

Proof The result onN; follows from Lemmata3 and 11 and Corollary 2.1 in 28] (also see the proof of
1
- . . Lido\ B .
Theorem?2). To deduce the result di, note that we covexX?2\B; with boxes of widthd = (4|_r') g since,
from Lemmall, we have

X§\Bs C {x €M) d (m (x),R™ x {o}) e (%5,5”

and, from Lemma, we have that a boB; of width & with eachx € B satisfyingd (m (x),R™ x {0}) >
%6 can be fathomed by infeasibility. The desired result thélovis from Corollary 2.1 in 28]. O

Remark 7Under the assumptions of Lemri4, the dependence df one disappears when the lower bound-
ing scheme has first-order convergence ¢ (x*) N (y(X))C, i.e.,,8' =1, and the dependence lgf on £°
disappears when the scherfi€")zc1x has first-order convergence o i.e., B = 1. Therefore, the cluster
problem onX3 can be eliminated even using first-order convergent schavitlesufficiently small prefactors.
Note that the dependence Nf andN, on the prefactors " andt', respectively, can be detailed in a manner
similar to Table 1 in29].

The following results illustrate one set of assumptionsauwhich second-order convergence of the lower
bounding scheme at infeasible points is sufficient to elatérthe cluster problem ofs\B;. First, we provide
a conservative estimate of the subseXgfiround a constrained minimizet under the following assumption:
the infeasible region in some neighborhoodkotan be split into two subregions such that the objective-func
tion grows quadratically (or faster) in the first subregion &he measure of infeasibility grows quadratically
(or faster) in the second subregion. Note that better etz X3 may be derived either under the (stronger)
assumption that the objective function grows linearly ia dlirectionsZy N 2, or under the (stronger) assump-
tion that the measure of infeasibility grows linearly in ttieectionsZ, \ %o.

Lemma 12 Consider Problen{P). Suppose* is a constrained minimizer, functions f;,¢/j € </ (x*), and
hg, Vk € {1,--- ,mg}, are twice-differentiable at*, and3a > 0,1 > 0,y» > 0 and a set% such that

0 (x) T+ %dTDZf(x*)d > wd'd, ¥de %N,

1 1
0o #\ T = TDZ Cuk Oh s\ T - TDZh *
max{ max {ogi00)7d+ 50702 c)a b, max flonx) T+ ST e

> ngTd, vd € 2\ %,
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where2 is defined as
9 = {d S (X" +d) € AR(X) m(y(X))C}.

Then3a € (0, a] such that the region
X3 = (X)) N XN {x = (x*+d) e SZ(X)N(F(X))C:de Zon G }
can be conservatively approximated as
= {xe 20 plx-x |2 <260},
and the region
X2:= M2(x*) N XN {x = (x*+d) € A2(x)N(F(X)C:d e %\%}
can be conservatively approximated as

X2 = {x e N2 plx— x| < 2sf}.

e

Furthermore, suppose® is at the center of a box, 8 of widthd = (%)
the region

placed while coverings. Then,

X2\Bs = A2 (x )ﬂ)@,m{x—(x +d) € A#2(x)N (g‘(X))C:de@.\%}\B(;

is conservatively characterized by

{x e N2(x):d (Lﬂ (X),R™ x {0}) c (Eaz,sf] } :
8

whenevery, 62 < 8¢f.

Proof From LemmaB, we have the existence af > 0 such that

%ﬁ(x*)mxgm{x: (X" +d) € AZ ()N (F (X)) :d e %ﬂ-@'}

can be conservatively approximated{aee %%(x*) Syllx—xF2 < 280}.
Considerx = x* +d € A2(x*) N (. (X)) with d € 2\ Zo. We have

max{ max {gj(x)}, {\hk( )|}}

jeds (x*) ke{l
= d h(x*+d
o G 0o )
- 0 d+ 2d" (2g; (x")d + of }
max{ max {07+ 3072, )a + o)}

max {‘th(x*)Td + }dTDth(x*)d +o(||d]|?)
ke{l,,meg} 2

i
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Consequently, there exisis € (0, a] such that for alk = x*+d € (Z (X))€ with ||d|| € [0,01),d & Z:

a([3] 0o < 0)) 2max{ max {00} _max_(inoy}

jeod (x* ’ke{l,»»»,mE

~max{ max {0g,0¢)Ta+ 3T 0)d +ofldl) .
jeos (x) 2

1
Ok (x*)Td + =dT0%hy (x*)d + o(||d]|?
o max_ {|oneTa 3T ol )

Y2 2
> 1z
> 2,

f

where Step 1 follows from the fact thgg|| > ||z||.,, ¥z € R™ x R™E,
Chooselr = min{ao, a1}. The region
xl . JVZ * _u* 2/ % o C.
Lim 2 (x )m)(o,ﬂ{xf(x +d) € SZ(X)N(F(X)) .de%ﬁ%}
can be conservatively approximated as
3= {xes200) plx—x P < 260},

and
VX € X2 1= A2(X) N Xa N {x = (X +d) e SAX)N(F(X)C:d e g \%},

we havex = x* +d € (.Z(X))€ with d & %, ||d|| < &, and

ef >d (m (x),R™ x {0}) > %HX—X*HZ — plx—x*|? < 2.

Finally, for everyx € A2(x") N XgN {x = (X" +d) € S2(X)N(F(X)C:d e @.\%} with ||d]| < g, we
havex € Bs. Consequently, for each

x € N2(X)NXaN {x = (X" +d) € A2(x)N(F(X)C:d e @.\@o}\sé,

we have||d|| > g and therefore,
g m E 2
o([f 0 10) - 25
The desired result follows whegnd? < 8¢'; otherwise, ify,62 > 8¢, then
H2(X) N XN {x = (x" +d) € S2(x)N(F(X))C:d e @.\.@0} C B
m

A conservative estimate of the number of boxes of certairthgidequired to cove(.#z(x*) N X3) \Bjs
can be obtained by estimating the number of boxes of certaths/required to coveK?} and )23?\85 (see
Theoremb). The following remark is in order.

Remark 8

1. Lemmal2 does not hold whedla, y1, y» > 0, and %y, for exampleX = (0,2) x (0,2), m =0, mg = 2,
f(X) = —xq, h1(X) =x2 — (1—x1)3, ha(X) = —x2 — (1—xq)3, andx* = (1,0) (see R, Example 4.3.5]). Note
that Zp may be chosen to be 0, but it cannot be chosen t@b@see Remark for an explanation).
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2. The inequality»d? < 8¢’ is equivalent to

Sincee’ can be taken to be sufficiently-small, the above inequabitg$ionly when
(ef)ﬁ% <el —= ' <2
i.e.,if ' > 2, we can choose' to be small-enough so thgté? > 8¢'. Note that ify,52 > 8¢, the region
N2 (X)NXN {x = (x*+d) e S2(X)N(F (X)) :de g \%}
has already been covered while coverfagsince

2 2
B8 ¢ pldl

o
=2l > BUL — o) <3,

which impliesx = x* +d € Bs.
3. & depends on the local behavior 6f gj, Vj € «/(x*), andhy, Yk € {1,--- ,mg}, aroundx*, but is in-

dependent of. Consequently, for sufficiently smadl we have)A(31 = {x eX: y1\|x—x*||2 < 250} and

X3 = {x e X:yllx—x*||* < 2¢f } Additionally, if the objective function and the active ctraints are

all either affine or quadratic functions &f then their second-order Taylor expansions aroxhéqual
themselves and we can chodse- a. Furthermore,

Xt = H2(X*) N XN {x = (x"+d) € SAX)N(F(X))C:d e Zon @.}
can be conservatively approximatedf@s: {x eX:ylx—x* HZ < eo}, the region
X2:= A2(x*) N XN {x = (X +d) e A2(x)N(F(X)C:d e @.\%}
can be conservatively approximated)%gs: {x € X plx—x* HZ <egf } and the region
NE(X) XN {x = (x" +d) € SZ(X)N(F(X)C:d e Z \%} \85
is conservatively characterized by

{XE%Z(X*) :d ([E} (x),R™ x {o}) c (%62’£f}}

whenevend? > 4¢’.
4. Similar to Propositior, the following less conservative estimatesgfand X2 can be obtained:

= {xe 20 sylx—x|P < 26",
1
O ()T (x=x7) + 5 (x=x) T2 () (x=x) = yallx—x" 2},

%= {xe H2) sl x| < 25"

max{ max {ng ()T (x—x*) + %(x —x*)T02g; (x*) (x —x*)} ,

jed (x*)
}}zww—ﬁw}

k k l * * k
ke{T?,)r(nE}{'th(x Y(x—x )+ 5(x—x )T O2hy () (X — X*)
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To illustrate the application of LemmER, let us reconsider Examplewith €°, e’ < 1. Recall thatX =
(=2,2), m =3, meg =0, f(X) =X g1(X) = %%, ga(X) = x— 1, andgs(X) = —1 — x with x* = 0. We have
7 (X) = {0} andXs = [-VeT,0)U (O,min{eo,\/s_f}}. Choosea = 1. We haveZ, = (—1,1)\{0}. Choose
_% ={de % d>0} =1 %=1 andd =1 in Lemmal2 From Lemmal2 and Remark8, we have

= {x:x% <%} andX? = {x: %2 < '} (sincef is linear andy, is quadratic). In fact, for this example, we
can get a better estlmate)éj by taking into account the fact thatgrows linearly onZoN 2.

Next, we revisit two examples from Secti@l for which the assumptions of Lemni2 hold. First, con-
sider Example9 with £° < 0.6, " < 0.5, and recall thak = (—2,2) x (—2,2), m = 2, ande = 0 with
f(X) = X, gl( ) =X — x2, O2(X) = X2 — 1, andx* = (0,0). We have.Z (X ) {x:1x2>x§, % <1} and
Xg = {x:x¢—&' <x <X % < €°}. Choosea = 1. We haveZ, = {d € .4;?(0) : d < d?}. ChooseZp =
{de 2 :d,>05d?}, 1 = 0.3, y» = 0.25 andd = 1 in Lemmal2 From Lemmal2 and Remarl8, we

haveX} = {x € A2(x") 1 0.3||x||* < 50} andX? = {x € M) |2 < 4sf} (sincef is linear andg; is
guadratic).

Finally, consider Exampl&0 with so,sf < 0.1, and recall thaX = (—2,2) x (—=2,2), my = 3, andmg =0
with f(X) = 2 + Xz, g1(X) = —X2 — X, G2(X) = —X1, G3(X) = X2 + %3 — 1, andx* = (0,0). We haveZ (X) =
{X:x > —x2 x> 0,x2+x5 < 1} and

X3 = {x eX: \/(max{o, —X2 — xz})2+ (max{0, —x1})2+ (max{0,§ +3 — 1})2 € (0,eM,2¢ +x; < 80} .

Choosea = £. We havez; = {d € ,/V%Z(O) (x*+d) € (y(X))C}. ChooseZy = {d € 2} : dp > —1.502},
y1=0.25,), = 0.25 andd = 3 in Lemmal2. From Lemmal2and Remarlg, we haveX} = {x CIx)? < 450}

and)A(g = {x : ||x||2 < 4£f} (sincef andg, are quadratic, angd; is linear). Figures plots the set9(31 andX§

along with their estimateX} and X for €° = £ = 0.1. The benefit of using the estimates in Rem@udver
that of Lemmal2is seen from Figuré.

The following result follows from Lemma 3 ir2P). It provides a conservative estimate of the number of boxes
of certain widths required to cové andX2\B;s from Lemmal2. Therefore, from Lemmataand3 and the
result below, we can get an upper bound on the worst-case etofitboxes required to covewaz(x*) N X3

and estimate the extent of the cluster problem on that region

Es NG (eN\F
Theorem 5 Suppose the assumptions of Lemb2ahold. Letd = (i> - o = (£—> o (s_) ,

3= (5" - @ ()" - o

1. Ifd > 2r, letN —1
2. If 2N > 9 > —— for somem, € Nwithm, < ny, and2 < m, < 18, then let

V-1 \/—
v-52 ()
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Fig. 6: Plots ofX3 and X2 (solid regions) and their estimat&§ and X2 (area between the dotted lines) for
Examplel0. The filled-in triangles correspond to the minimiz&r and the dash-dotted lines represent the axes
translated toc*. All plots useg®, ef = 0.1.

3. Otherwise, let

N = [281(e" B e, t)]™ " ([2Bi (6" By )] + 20| (V2 DBi(ei B v 1))

where

1+2> (;72)71+1
Bl(sf;ﬁI,VzaTl)iz'SElr (TI)<Er ) (“:f) L) Y2 (2 Er)~
4. Ifdf > 2ry, let Ny = 1.

5. If — 21

q/mf—l>

2r .
of > f for some m € N with my < nyand2 < ms < 18, then let
/Mg

mi—1
B i [Ny m; —9
v 3, 2(T) v
6. Otherwise, let

M1 11 1
Nf = ’VZ(Tf)ﬁ% (80)(%’ﬁ_lf) Vl%“ (’VZ(Tf)p% (50)(2713_{) y12“ +
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Then, N is an upper bound on the number of boxes of widjtrequired to coveDA(g\Bé, and N is an upper
bound on the number of boxes of widthrequired to coveiXs.

Proof The result orlN¢ follows from Lemmata3 and12, and Lemma 3 inZ9]. To deduce the result oN;,
Y0

note that we coveXZ\B; with boxes of widthd = <W

B
> since, from Lemmd2, we have

NS

%185 < {xe 00 :a([F 0087 x o)) e (2oe]

and, from Lemma, we have that a boB; of width & with eachx € B, satisfyingd ({ﬂ (x),R™ x {0}) >
%62 can be fathomed by infeasibility. The desired result thdlovics from Lemma 3 in 29]. O

Remark 9

1. Under the assumptions of Lemrnia, the dependence & on & disappears when the lower bounding
scheme has second-order convergencesgh(x*) N (Z(X))C, i.e.,B' =2, and the dependence Nf on
€° disappears when the scheiifé")zc1x has second-order convergenceXri.e., 3 = 2. Therefore, the
cluster problem orXs can be eliminated using second-order convergent schentessufficiently small
prefactors.

2. The dependence &f onef for B! =1,i.e.,N, O (sf) 5”*, scales worse than the corresponding depen-
dence ofN on ¢ for 8* = 1 when second-order convergenceXgns required to mitigate clustering, i.e.,
N 0 £99% (see TheorerB). Note, however, that this worse scaling may be an artifatti@conservative
requirement that all of(g\Bé has to be covered using boxes of sizénstead of simply requiring that the
subset o1L>A(32 that is not fathomed by value dominance (the resf(:quincluding Bs, would have already
been accounted for while coveritg and)?e}) be covered using boxes of appropriate size.

3. Similar to Lemmal0, less conservative estimates (with respect to the depeadame® andsf) may be
obtained forX} and X2 by taking into account the fact that the objective functionl ahe measure of
infeasibility grow linearly in certain directions.

-1

Remark 10The main assumptions of Lemmaieand 11, which assume that the objective function and the
measure of infeasibility grow linearly on certain regionssome neighborhood of, are similar to the linear
growth condition in 12], and the main assumptions of Lemm&and 12, which assume that the objective
function and the measure of infeasibility grow quadratjcah certain regions in some neighborhoodxéf
are similar to the quadratic growth condition & [L2]. Furthermore, the assumptions of Lemm&ta, 11,
and12 may be weakened based on the linear and quadratic growtlitiomsdn [5, 12] to account for cases in
whichx* is not a strict local minimum.

4 Conclusion

This work provides an analysis of the cluster problem forst@ined problems. The analysis indicates different
scaling of the number of boxes required to cover regionsedios: global minimizer based on the convergence
order and corresponding prefactor of the lower boundingsehon nearly-optimal and nearly-feasible regions
in the vicinity of the global minimizer.

It is shown that lower bounding schemes with first-order eosgence may eliminate the cluster problem
at a constrained minimizer if: i. the objective function gsolinearly in directions leading to feasible points
in some neighborhood of the minimizer, ii. either the ohijecfunction, or a measure of constraint violation
grows linearly in directions leading to infeasible pointssome neighborhood of the minimizer, and iii. the
corresponding convergence order prefactors are suffigisntall. This is shown to be possible because nodes
containing nearly-optimal and nearly-feasible points ayathomed relatively easily, by value dominance or
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by infeasibility, even using first-order convergent loweuhding schemes when the objective function or the
measure of constraint violation grows linearly in diren@round the minimizer. The above resultis in contrast
to the case of unconstrained minimization where at leastreborder convergence is required to eliminate the
cluster problem at a point of differentiability of the obje function. When the objective function is twice-
differentiable at an unconstrained minimizer, this is asaguence of the fact that the objective function grows
quadratically or slower around the minimizer.

It is also shown that at least second-order convergenceusresl to mitigate the cluster problem at a non-
isolated constrained minimizer that satisfies certainleg@y conditions when the problem is purely equality-
constrained. Conditions under which second-order coeverg of the lower bounding scheme is sufficient to
mitigate clustering are also presented. This analysiscesito previous analyses for unconstrained problems
under suitable assumptions.
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A Proofs

A.1 Proof of Lemm&
Lemma 4 Consider Problen{P). Suppose* is nonisolated and f is differentiable &t. Thenv6 > 0, 3a > 0 such that

inf Of (x*)"d > min Of(x*)"d—#.
{di|dl3=1,3t>0: (x*+td) e (x*)N.Z (X) } {d:fld]l=1,deT (x*)}

Proof We proceed by contradiction. Define

L(a): inf Df(x*)"d,

B {d:Hdlel, 3t>0:(X*+td)6/‘/o,1(x*)ﬂ,,?(x)}
* . Df(x*)'rd7

= min
{di]|d]l;=1.deT(x*)}

and note thak (a) is monotonically nonincreasing @f, +). Supposélf > 0 such thata > 0, we have.(a) < L*— 6. Consider
a sequencé¢ay } — 0 with ay > 0, and a corresponding sequerdck } such that

* * * * e
dg € {d:HdHl:l, e >0: (X +tkd)e{/1/alk(x )NF(X),0f(x)Td <L _5}'

The existence aody follows from the assumption thata) < L*— 6, Va > 0. Since||dk||; = 1, Vk, we have the existence df € R™

with d* = k(Iwim di, and||d*||; = 1 for some convergent subsequerick, }. Furthermored* € T(x*) andOf (x*)Td* < L* — g

sincevkq we havel:lf(x*)Tdkq <L - g which contradicts the definition &f*. O

A.2 Proof of Propositior2

Proposition 2 Consider ProblenfP) with mg > 1. Suppose&* is nonisolated, f is differentiable at, functions i, k=1,--- ,mg,
are differentiable atx*, and </ (x*) = 0. Furthermore, suppose there exist multipliet§ € R™ corresponding to the equality
constraints such thatx*,0,A ™) is a KKT point. Then

min Of(x*)Td =0.
{d:]ldf};=1.deT (x*)}
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Proof Since(x*,0,A™) is a KKT point, we have
=
Of (x*) + z Ag Oh(x*) = 0.
K=1

From the assumption that is a nonisolated feasible point, we have that the{det||d||; = 1,d € T(x*)} is nonempty. Addition-
ally, we have

T(X)C Z(x") = {d eR™: Ohy(x*)Td =0,vk e {1, ,r‘rE}},

where.Z(x*) denotes the linearized conext(see, for instance?2]). Consequently, for eacth € T(x*) with ||d||; = 1, we have
Of(x*)Td=0. O

A.3 Proof of Theoren?

1
Theorem 2 Suppose the assumptions of LenBieold. Letd = (%) P = %

1. Ifd>2r letN=1

2. 1f 2
m7

2 .
1 >0 > ﬁr for some me N with m< ny and2 < m< 5, then let
m-1
i -3
N= 2 (”.X) +2nx[m—1.
& i 3

N= [Z(T*)ﬁ% e(-7) L*lw A < [Z(T*)ﬁ% £5) L*lw +2ny [(r*)ﬁ% () L—lb .

Then, N is an upper bound on the number of boxes of wideguired to coveiXs.

3. Otherwise, let

Proof This proof is rederived based on Corollary 2.128|[and the proof of Lemma 3 ir2P]. Note that the condition in the second
case is corrected to ‘2 m< 5’ as opposed to ‘Z m< 6’in [28].

~ 2 ~
From Lemmab, we haveXs = {x € #1(x*) 1 L|[x —x*||; < 2¢} C {x: [Ix=x*{]; < f} =: B. Therefore, an upper bound

on the number of boxes of widid required to coveKs can be obtained by conservatively estimating the numbeoxé®of width
d required to coveB. In what follows, we will assume without loss of generaliyatx* = 0.

1. Suppos& > 2r. Consider the boBs of width é centered ax* = 0. We have

~ 2¢ 2¢ 19
XeB = X< — = [X|o<—=r<5 = X€By,
L L 2
where we have used the fact thiad|,, < |||, ¥x € R™. ThereforeB; is sufficient to cove.
2. Supposen<nywithme {2,--- 5} andd > %’1 Place a boB; of width & centered ax* = O (the condition ord ensures that
B intersects the boundary 8). Let

E:=<{ecR™:g ¢ —éoé Vie {1, ,ng} nxI(e-)fi
j = 1§ 211211 s -,XajZlOJ_ )

wherelg : R — {0,1} is defined a$y(x) := 0 ifx= 0_ , denote the set of midpoints of tkie —i)-dimensional faces @5
1, otherwise
(each element di; has exactlyi nonzero components, each of Whichi:ig). Note that|Ej| = 2 (™), Vi€ {1, ,nk}. Under

the assumptiord > %’1 we will show that, in addition tds, it is sufficient to place one box besidy along the directions
in Eg, -+ ,Em—1 whenm= 2 orm= 3, and two boxes besid®s allong the directions ifE; and one box besidBs along the
directions inEy, --- ,Em_1 whenm=4 orm= 5 in order to coveB.

First, we show that we need not place any boxes beBjlalong the directions irEp,--- ,En,. Let e € E with i €
{m,--- ,nc}. We havele|; = i > Lr > r, which impliese € 9BUBC (wheredB denotes the boundary 8). Consequently,
boxes placed besid®s along the directions im, - - - , En, do not intersect the interior & and are not required to covBr
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Supposed > %’1 and lete € E; for somei € {1,--- ,m— 1}. The distance frone, which is the midpoint of arin —i)-
dimensional face 0B, to %e, which is a point on the boundary &in the directione, in the co-norm ist— g <P-ENf
this distance is less thanfor eachi € {1,--- ,m— 1}, then one box besidg; along the directions i&;, --- ,Em-1 is sufficient
to coverB. This amounts to requiring

rr _2r S
.—fnfqgﬁ,WG{l,-wmfl}<:>m§3|,¥/|e{17~-~,m71}<:>m:20rm:3.

Note that ifm=4 orm=15, we still havem < 3i, Vi € {2,--- ,m—1}. Additionally, | — & < in'l < 24 in such cases. Therefore,
Whenrp: 4 orm= 5, two boxes along the directions iy and one box along the directionsHn,--- ,Eny,_1 are sufficient to
coverB.

3. Ifthe previous assumptions drare not satisfied, a box of widdcentered ax* may not intersecfB. To estimate the number
of boxes of widthd required to coveB, we first estimate the number of boxd, of widthr = Z—f required to coveB using the
previous analysis, and then estimate the number of boxeilti Wrequired to cover the intersection of thégeboxes withB.

The number of boxes of widthrequired to coveBis N, := 1+ 2ny, where' 1’ corresponds to the box centeredkat= 0,
and‘2n,’ corresponds to the boxes along the direction&;inNote thatE; is now defined as

E1i—{ecR™: g Fofl vjeqa < lo(el) = 1
1={ec .e,e{fi 75}7 jed{l.nd, J_ZIO(GJ)*

sinceB is first covered using boxes of width The box of widthr centered ax* can be covered usinb{ﬂ ™ boxes of width

J. Note that the entire volume of then2boxes along the directions By need not be covered using boxes of widtlsince
parts of those boxes have no intersection \Bito estimate the extent to which each of tng Boxes need to be covered with
boxes of widthd, we compute the distance between any E; (which is a midpoint of a one-dimensional face of the box of
width r centered ak*) and rzx—'le: 2e (which is a point on the boundary &in the directione) in the co-norm. This distance
turns out to be equal t§. This implies at most half the volumes of the,zboxes need to be covered using boxes of witith

which yields the estimate ofr@| & | "xfl[%} boxes of widthd that are required to cover theboxes of widthr along the
directions inEj.
]

A.4 Proof of Lemmar

Lemma 7 Consider ProblentP). Suppose&* is nonisolated, f is locally Lipschitz continuous on X anediionally differentiable
atx*, and3a > Osuch that

= inf f'(x*;d) > 0.
{d:]d[|=1,3t>0: (x*+td) G (x*)N.Z (X) }

Then,3é € (0,a] such that the regiom/al(x*) N Xs can be conservatively approximated by

Xs = {x € Mg (x") 1 L|[x —x"||; < 2¢}.
Proof Letx =x*+td € A7 (x*)N.Z(X) with ||d||, = 1 andt = |[x — x*||; > 0. We have (see Theorem 3.1.2 24
)+ P (x=xT) +o([[x =X )

X
X*)+tf(x*;d) +o(t)
X*)+Lt+o(t),

>

where Step 2 follows from the directional differentialyiliof f atx*. Consequently, there exisfs € (0, a] such that for alix =
x*+td € Z(X) with ||d||; = 1 andt € [0,4):

L
f(x) > f(x")+Lt+o(t) > f(x*)+ Et'
Thereforeyx € AL(x*) N X5 we havex = x* +td € .# (X) with ||d||; = 1 andt = [|x —x*||; < &, and

L
e2 () —f(x) = 5t = Lt=Lx—x"|; <2
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A.5 Proof of Lemmal0

Lemma 10 Consider Problen{P), and suppose the assumptions of Lendhald. Therdd € (0,a] and constant®;, p2 > 0 such
that the region/i/‘f(x*) N Xs can be conservatively approximated by

X5 = {x € NA(X) yx—x*|? < 26, —pre < OF (x*)T (x—x*) < pzs}.

Proof The result trivially follows from Lemm& whenOf (x*) = 0.
Supposélf (x*) # 0. From LemmaB, we have

NN © {x e AR yix—x |2 <26} @

Suppose we represent eack .#;2(x*) N.F(X) by x := x* + B1Of (x*) + Bd, wherefy, B> € R andd L Of (x*) with ||d|| = 1.
Consider the case wh¢h > 0. We have

f(x)— f(x*) = Df(x*)T(xfx*)+%(xfx*)Tsz(x*)(xfx*)+o<\|x7x*\|2>
= OFO¢)T (B () + o)+ 2 (BT () + Bod) TP () (BT (') + o)+ 082 + B3)
= BlIOFO)2 4+ 3 (BT () + Bod) TR (<) (B (X°) + o)+ 082 + B3)
Thereforeyx € A#2(x*) NXs with x = x* + B10f (x*) + Bod, B1 > 0,3, € R andd L Of(x*) with ||d|| = 1, we have
BIOTOC) 2+ S (BOT(¢) + Bod) TRF(¢) (BT () + Bod) + 0 (82 + ) <&
= Bl DO < £~ S(BOT) + B D21 () (BOF (<) + Boc) 0 (B + )
= B0 < £~ S(BOTO¢) + BT D21 () (BOT¢) +Boc) + & (B0 +83) 3)
where the last step uses the fact thais chosen such that(B? + %) > 7%’ (BleDf(x*)HerBzz) (see Equatiori). Note that
2e

B < W and|f] < Z—VS follow from Equation2. The right hand side of Equatid®is O(¢) sincef; = B, = O(V/€),
4 X V

thereby establishing the existencegaf> 0.

Next, supposes; < 0. From the assumptions of LemmBawe have for eachx LA/az(x*) N Xs with x = x* + B1Of (x*) + Bod,
B1 <0,B, € Randd L Of (x*) with ||d|| = 1:

D) (X x) 5 (X TEPFO0) (=) >yl x|
= DHO)T (BUOT(C) + Bod) + 3 (B0 () + B2 (x°) (B¢ + Boc) > y (B0 () 2+ )

= B0 P+ S(BOTC) + BT TP () (BT () + Boc) > y (B0 () 2+ )

1
= S(BOFO¢) +Bd) T OC) (BT () + Bod) — v (BZIDF 0)|1°+ B3) = D () 2, @
andp, > — ﬁ [Ba| <4/ 2—; from Equatior2. The left hand side of Equatichis O(¢) sincef; = B, = O(v/€), thereby
4 X
establishing the existence pf > 0. O

A.6 Proof of Propositior

Proposition 4 Consider Problen{P) with mg > 1. Suppose&* is a nonisolated constrained minimizer, f is differentalaltx*,
functions , k= 1,--- ,mg, are differentiable aix*, and &/ (x*) = 0. Furthermore, suppose there exist multiplit§ € R™
corresponding to the equality constraints such ttwt,0,A ") is a KKT point. ThenBa > 0, % such that the assumptions of
Lemmall are satisfied.
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Proof Since(x*,0,A™) is a KKT point, we have
Mg
Of(x*) + z A Ohg(x*) = 0.
K=1

From the assumption that is a nonisolated feasible point, we have that the{det||d||, = 1,d € T(x*)} is nonempty. Addition-
ally, we have from the proof of Propositidhthat for eachd € T (x*) with ||d||; = 1, Of(x*)Td = 0 andOhg(x*)Td = 0,vk €
{1, me}.

Assume, by way of contradiction thatr > 0 and a set/ satisfying the assumptions of Lemrha ConsequentlyL¢,L; >0
such that

Li= inf Of(x)7d
deZ0N2
and
L= inf max ‘th(x*)Td‘ .
de2)\ %y ke{l,- mg}

Sincedd e T(x*) with ||d||; = 1 such that1f (x*)Td = 0 andh(x*) 'd = 0,vk € {1,--- ,me }, we have that the set

Si= {d ER™: |d||, =1, IZIf(x*)Td‘ <Ly, ‘th(x*)Td‘ <Livke {1, ,mE}}

is nonempty. All that remains to reach a contradiction ishtovs that3d € SN 2.
From the above arguments, we have the existenat @, k € {1,--- ,meg} such that‘DhE(x*)Ta‘ € (0,Ly), since the as-

sumptionL; > 0 implies all of the equality constraint gradierifii(x*), k € {1,--- ,mg}, cannot simultaneously b@ Since
Dhg(x*)Ta;A 0, we haved ¢ T(x*) (this follows from the arguments made in the proof of Propmsi2). Consequentlyt € (0,a)
such that(x* +td) € NN (F (X)) = d € 2. This implies that eithed € %, or d € 2\ %, which contradicts the
definition ofL¢ or Ly sinceOf(x*)"d < Ly and‘th(x*)Ta‘ <Lj,vke{l,--,me}. O
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