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Abstract A numerical method for particle-laden fluids interacting with a deformable solid domain
and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain
is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with
a discrete element representation, and the deformable solid domain is modeled using a Lagrangian
mesh. The main issue of this work, since separately each of these methods is a mature tool, is to
develop coupling and model-reduction approaches in order to efficiently simulate coupled problems
of this nature, as occur in various geological and engineering applications. The lattice Boltzmann
method incorporates a large-eddy simulation technique using the Smagorinsky turbulence model.
The discrete element method incorporates spherical and polyhedral particles for stiff contact inter-
actions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed
description of how to couple the three solvers within a unified algorithm. The technique we propose
for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element
problem each time step. We also develop a technique to reduce the domain size of the full system by
replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for
the lattice Boltzmann method. The major ingredients of the routine are are separately validated.
To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston-valve
geometries. The dynamics of the valve and slurry are studied and reported over a large range of
input parameters.

Keywords Discrete elements method · Lattice Boltzmann · Fluid-particle interaction · Smagorinsky
turbulence model · Hyperelastic model · Neo-Hookean elastic rubber model

1 Introduction

For systems that involve grains, fluids, and deformable solids, a key challenge is to determine reason-
able methodologies to couple very distinct numerical techniques. On their own, systems of dry grains
are commonly simulated using the discrete element method (DEM), wherein each grain’s position
is evolved by Newton’s laws applied by way of contact interactions with other grains. For fluids, a
variety of approaches exist including finite volume methods, finite difference methods, and the Lat-
tice Boltzman Method (LBM), which are based on updating fluid data on an Eulerian background
set. While the former two methods directly simulate Navier-Stokes, the latter utilizes a lattice dis-
cretization of the Boltzmann equation, which approaches Navier-Stokes under the proper refinement.
As for solids, in the large deformation limit, finite-element methods are commonly used, typically
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based on a moving Lagrangian node set. Systems that mix particles, fluids, and deformable solids
require development of methods that allow proper momentum exchange between these disparate
representations, which can be computationally quite complex if not reduced. However, because the
particles can enter a dense-packed state, we do not wish to reduce the particle-fluid mixture to a
simplified dilute-suspension continuum model.

The purpose of this paper is three-fold:

1. We introduce a reduced-order method that permits continuum deformable solid models, repre-
sented with finite-elements, to interact with both grains and fluid in a dynamic environment.
The fluid-particle implementation is based on a joint LBM-DEM method similar to those used in
[1–6]. LBM is well-suited to this problem because of its ease dealing with many moving bound-
aries. The solid interaction method introduced uses data interpolation to map deformed solid
configurations from separate, individual solid deformation tests to the in-situ solid as it interacts
with particles and fluid.

2. Because of the inherent complexity in multi-material modeling, the ability to remove the need
to simulate large zones of the computational domain can be advantageous, as long as the macro-
physics in those zones can be properly represented otherwise. Herein, we introduce an LBM
sub-routine that allows us to remove a large zone of the computational fluid domain and replace
it with a global analytical form, which handshakes back to the LBM simulation domain appro-
priately.

3. As a key example of where these methods may come to use, we demonstrate their usage in
two different piston-valve geometries. In both piston-valve geometries, a large piston pushes a
particle-laden fluid through a passive valve. The valve is spring-loaded, and opens when the
slurry pressure beneath is large enough. The deformable solid aspect comes into play because
the valve has a rubber component along its bottom, which is intended to make a seal with
the valve seat. We conduct a systematic parameter study of valve behavior under variations in
particle size, input packing fraction, and polydispersity as well as variations in fluid viscosity and
piston speed. We consider two types of valve setups: (1) A ‘pressure valve’, in which the valve
separates a zone of pressurized slurry above it from a zone of low pressure below it. Slurry pushed
through the valve is hence pressurized as it passes through. (2) A ‘safety valve’, whose goal is to
ensure the pressure in a flowing conduit does not exceed a critical limit. Here, the valve is placed
adjacent to a flowing conduit and remains closed unless the pressure is high enough. Figure 1
shows mid-simulation snapshots of both valve setups, showing particles, fluid stream lines, rubber
deformation, and the geometry of the valve and frame. Note that we exploit symmetry about
the zy-plane and simulate only half the domain.

Fig. 1 Pressure valve (left) and safety valve (right) setups with particles (silver), fluid stream lines (colored according
to fluid speed |v| (m/s)), deformable solid (colored according to equivalent shear strain εq), valve (dark gray), and
frame (light gray). A spring (not shown) applies a downward force on the valve.
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In testing our method, we provide numerical validations of the new techniques introduced. We
also perform validations of the LBM approach in the simulated valve geometry. In analyzing valve
simulation results, we provide physical commentary where possible to justify various observations.

2 Numerical method

The discrete-element method (DEM) is already a mature tool that is applied in conjunction with
experiments both for a better understanding of the micromechanics of granular materials and as a
means of virtual experimentation when laboratory experiments are unavailable. In a similar vein,
the inclusion of a fluid at the subgranular scale in DEM simulations provides a powerful tool in the
broad field of fluid-grain mixtures. Obviously, the available computational power and research time
restrict considerably the number of particles or the size of a physical system.

In the case of dry granular materials, statistically representative samples are obtained and sim-
ulated with O(104) of particles in 2D [7]. Despite enhanced kinematic constraints, 2D simulations
often lead to novel physical insights and realistic behaviors that can be easily generalized to 3D
configurations. However, with fluid in the pore space, 2D simulations are much less reliable in the
dense regime since the pore space is discontinuous with zero permeability. This two-dimensional
flaw can be partially repaired by adding artificially a permeable layer on the particles. But only
3D simulations may account for a realistic behavior of particle-fluid mixtures with their natural
permeability. Moreover, complex geometries/boundaries relating to realistic engineering problems
cannot be fully captured in 2D simulations or symmetric 2D extensions (e.g. axis-symmetry); only
3D approaches can handle such problems in full generality.

We have developed a 3D fluid dynamics algorithm based on the Lattice Boltzmann Method
(LBM). This algorithm is interfaced with a DEM algorithm with a standard linear spring-dashpot-
friction model of contact between particles. An important benefit of LBM is the ease with which
one can couple the fluid phase with many moving internal boundaries, here the DEM grains. The
combined LBM-DEM method for particle-laden fluid is then further coupled to a deformable solid
domain using finite elements to model a rubber-like behavior. The rubber coupling is intentionally
simplified.

Within actual computer power, it is still a significant challenge to model the entirety of most engi-
neering systems and problems. Certain sub-scale details and complex interactions are unnecessary to
capture the macroscale system response for a given loading. We utilize symmetric boundaries (where
possible) and a variety of techniques to shrink the system size and average-up sub-scale phenomena.
Specifically in this work: to handle sub-scale behavior in the fluid we use a Large-Eddy-Simulation
(LES) technique (see Sect. 2.2), to mimic a large fluid domain outside the focus region we have
created a technique we denote Zoom-in with Effective Boundaries (ZIEB) (see Sect. 2.6), and to
reduce simulation time we developed a weak coupling to the rubber domain based on a Neo-Hookean
model developed in Abaqus. The last part is computed separately and only the result is imported
into LBM-DEM simulation; the coupling and description of this part is expounded in Sec. 2.4.

2.1 Discrete-element method

The DEM is based on the assumption of elastic solids with damping and frictional contact behavior
[8–15]. Newton’s equations of motion are integrated for all degrees of freedom with simple force
laws expressing the normal and friction forces as explicit functions of the elastic deflection defined
from the relative positions and displacements at contact points. We treat all quasi-rigid solids in
the domain using this DEM description, including grains, the valve, and solid system boundaries.
Correspondingly, all solid-on-solid contact forces (e.g. grain on grain, grains on valve, grain on
solid wall) are obtained using DEM contact laws. The valve and system walls are discretized as a
kinematically constrained connected mesh of polyhedral solid ‘particles’.

To simplify contact interactions, we assume linear elastic normal and tangential contact forces
characterized by a normal stiffness kn and tangential stiffness kt. This is applied to all contact
interactions, e.g. between spheres, polyhedra, or sphere-polyhedra, though the stiffnesses can vary
depending on the two objects in contact. In additional to the elastic part, a dissipative part of the
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contact force is necessary [11,13,16,17]. In our model, we use a linear visco-elastic law for normal
damping and a linear visco-elasto-plastic law for tangential damping and friction forces where the
plastic part uses a Coulomb law. The visco-elastic law is modeled by a parallel spring-dashpot model.
The contact normal force is defined as:

f n =
{
knδnn− γn vrn if δn ≤ 0
0 otherwise (1)

where n is the contact normal vector, vrn is the relative velocity along the contact normal and δn is
the overlap. γn represents a viscosity parameter with a value that depends on the normal restitution
coefficient between grains and kn is the normal stiffness. According to Coulomb’s law the friction
force is given by:

f t =

{
ktδt − γt vrt if |f t| ≤ µs|f n|
−µs|f n| vr

t

|vr
t |

otherwise (2)

and

δt =


∫
t
vrtdt if |f t| ≤ µs|f n|

1
kt

f t otherwise
(3)

Here kt is the tangential stiffness, γt is the tangential viscosity, µs is the friction coefficient, and δt is
the sliding displacement vector since the contact is created. The relative velocity along the contact
tangent is vrt = vr − vrn where vr is the relative velocity of the contact pair.

The equations of motion (both linear and angular momentum balance) are integrated according
to a Velocity Verlet scheme [9].

2.2 Lattice Boltzmann method

The LBM is based on a material representation of fluids as consisting of particle distributions moving
and colliding on a lattice [1,3,18,19]. The partial distribution functions fi(r, t) are introduced to
represent the probability density of a fluid particle at the position r with a velocity u = ci at time
t along discrete direction i. The three components of ci are given in Tab. 1.

Table 1 The ci components for a D3Q19 scheme (see Fig. 2).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

x 0 -1 0 0 -1 -1 -1 -1 0 0 1 0 0 1 1 1 1 0 0
y 0 0 -1 0 -1 1 0 0 -1 -1 0 1 0 1 -1 0 0 1 1
z 0 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1 1 -1

The Lattice Boltzmann method is often non-dimensionalized when applied to physical problems.
The governing macroscopic equations are given in terms of lattice units:

Characteristic length scale ∆x
Characteristic velocity c
Characteristic density ρ

f

(4)

where ∆x is the lattice spacing, c = ∆x/∆t is the lattice speed with ∆t the time step, and ρ
f

is the
fluid density at zero pressure. For the following, we will describe the method in lattice units.

Figure 2 shows a cartesian grid where the meshing scheme D3Q19, corresponding to 18 space
directions in 3D used in our simulations, is represented. In LBM, the scheme D3Q19 is defined for
each node where the distribution functions evolve according to a set of rules, which are constructed
so as to ensure the conservation equations of mass, momentum and energy (with dissipation), so
as to recover the Navier-Stokes equations [20]. This holds only when the wave lengths are small
compared to the lattice spacing [21].
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Fig. 2 3D lattice discretization with 18 directions (D3Q19).

At each lattice node, the fluid density ρ and momentum density ρu are defined as

ρ =
∑
i

fi. (5)

ρu =
∑
i

fici. (6)

and the temperature is given by

D

2
kT =

∑
i

1
2
m(ci − u)2

fi
ρ

(7)

where D is the number of space dimensions, T is the ambient temperature, m is particle mass,
and k is the Boltzmann constant. The ratio of the momentum density and the density defines the
direction-averaged, mean fluid velocity u at each lattice point. The equilibrium state is assumed to
be governed by the Maxwell distribution:

feq(c) = ρ
( m

2πkT

)D/2
exp

[
− m

2kT
(c− u)2

]
. (8)

By expanding (Eq. 8) to order 2 as a function of u/cs, which is the local Mach number with cs being
the LBM sound velocity, a discretized form of the Maxwell distribution is obtained and used in the
LBM:

feqi = ρwi

[
1 +

ci · u
c2s
− u2

2c2s
+

(ci · u)2

2c4s

]
(9)

where the factor w0 = 1/3, w(1,2,3,10,11,12) = 1/18 and the rest of wi = 1/36. wi depend on the
scheme with the requirement of rotational invariance [22]. The LBM sound speed is then given by
cs =

∑
i wic

2
i = 1/

√
3.

The velocities evolve according to the Boltzmann equation. In its discretized form, it requires
an explicit expression of the collision term. We used the Bhatnagar-Gross-Krook (BGK) model in
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which the collision term for each direction i is simply proportional to the distance from the Maxwell
distribution [23]:

∂fi
∂t coll

=
1
τ

(feqi (r, t)− fi(r, t)) (10)

where τ is a characteristic time. Hence, for the D3Q19 scheme, we have a system of 18 discrete
equations governing the distribution functions:

fi(r + ci∆t, t+∆t) = fi(r, t) + 1
τ (feqi (x, t)− fi(r, t)) (11)

These equations are solved in two steps. In the collision step, the variations of the distribution
functions are calculated from the collisions:

f̃i(r, t+∆t) = fi(r, t) + 1
τ (feqi (r, t)− fi(r, t)) (12)

where the functions f̃i designate the post-collision functions. In the streaming step, the new distri-
butions are advected in the directions of their propagation velocities:

fi(r + ci∆t, t+∆t) = f̃i(r, t+∆t). (13)

The above equations imply an equation of state [21,24,25]:

P (ρ) = ρc2s. (14)

The kinematic viscosity is then given by [2,25]

ηf = c2s

[
τ − 1

2

]
(15)

with the requirement τ > 1/2.
As discussed in [21], the Lattice Boltzmann method holds only when the pressure wave lengths

are small compared to the lattice spacing unit. This imposes a limitation on Mach number Ma =
u/cs � 1 and therefore fluid speeds higher than the sound speed cannot be simulated.

In nature, for a given fluid we have: sound speed c ∗ cs, density ρ
f

and viscosity η
f
. From Eq. 12,

we need the relaxation time τ . This is related to c, η
f

and ∆x by:

τ = 0.5 +
η

f

c2s

1
c∆x

(16)

Equation. 16 shows that since c and η
f

are fixed from fluid properties, only ∆x can be used to ensure
the stability of LBM, which becomes unstable when τ → 1/2. Numerically, there is a limitation in
computer capability regarding the smallest value of ∆x. To handle this, a sub-grid turbulent model
based on LES with a Smagorinsky turbulence model is used [26–29]. The viscosity formulation is:

η∗ = ηf + ηt = c2s

[
τ∗ − 1

2

]
= c2s

[
τ + τ

t
− 1

2

]
(17)

where ηt = c2sτt is the sub-grid LES viscosity and τt is the sub-grid LES LBM relaxation time. The
LES viscosity is calculated from the filtered strain rate tensor Sα,β = 1

2 (∂αuβ + ∂βuα) and a filter
length scale lx through the relation η

t
= (Clx)2 S where C is the Smagorinsky constant. In LBM,

S is obtained from the second momentum [30] Πα,β =
∑
i 6=0 ciαciβ(fi − feqi ) as S = Π

2ρc2sτ
∗ , where

Π =
√

2Πα,βΠα,β . From S and Π, τt is expressed as:

τ
t

=
1
2

[√
τ2 + 2

√
2(Clx)2 (ρc4sδt)

−1
Π − τ

]
(18)

where the filter length scale lx = ∆x is the spatial lattice discretization.
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2.3 LBM-DEM coupling

There exist different techniques to model fluid-structure interaction. The most used in CFD is stress
integration, however, in LBM the preferred approach is based on momentum exchange [1,3,5,31–35].
This approach is simple in LBM, since in LBM each node already contains information about the
derivatives of the hydrodynamic variables in each distribution function fi [24]. Due to the presence
of a solid boundary, after the collision step but before the streaming step, we know the population
of fi except those which reflect off the solid wall as shown in Fig. 3 (fi =?). In our simulations, we
use the method developed by Bouzidi [1], which mimics a macroscopic no-slip condition. For clarity,
we describe the interaction rules using lattice units. This means that the time step is one, the space
discretization is one, etc. Out of the characteristic scales, we will denote, around the fluid-solid
boundary, x as position and the subscripts f , s, and b respectively will indicate either the fluid
or solid domain and the fluid-solid boundary. We present the method in simplified 1D form. For
more clarity in the way momenta are exchanged between fluid and solid domains, let us introduce
q = |xb − xf |/∆x. According to the LBM scheme (collide and stream Sect. 2.2) in the presence of a
solid wall, we have two scenarios depending on the wall position xb (see Fig. 3):

1. q < 1
2 where fluid leaves node xf , reflects off the wall, and reaches xf again in time less than ∆t.

2. q ≥ 1
2 where fluid leaves node xf , reflects off the wall, and reaches xf again in time greater than

∆t.

To handle these scenarios, we introduce a fictitious node x′f (see Fig. 3) such that after streaming, a
fluid particle leaving x′f arrives at xf exactly in time ∆t.

Fig. 3 A 2D illustration of the fluid-structure interaction scheme. Black squares are fluid nodes, triangles are fictitious
nodes, empty squares are solid nodes and circles are boundary nodes.

As shown in Fig. 3, if xf is the last fluid node before we reach the solid boundary, xs = xf + c
should be a solid node. Let fi′ be the distribution function such that fi′ is the opposite direction of
i where i is the direction oriented from fluid node to solid boundary. By using a linear interpolation,
fi′ is expressed as follow:

fi′(xf , t+∆t) = 2qf ci (xf , t) + (1− 2q)f ci (xf − ci, t) + ∂fwi′ for q < 1
2

fi′(xf , t+∆t) = 1
2qf

c
i (xf , t) + 2q−1

2q f ci (xf + ci, t) + ∂fwi′ for q ≥ 1
2

(19)

where f ci corresponds to the distribution function of fi after the collision step but before streaming
and f ci (xf + ci, t) = f ci′(xf , t). The term ∂fwi′ is calculated from the boundary velocity and is zero if
the boundary is stationary. ∂fwi′ is calculated by considering that the fluid velocity u evolves linearly
between xf and xs. If u0 is the boundary velocity, u is then defined by

u = u0 + (xf − q)
∂u

∂x
(20)
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at first order in u. The equilibrium value of fi is given by fi = f0
i + 3ωiu · ci where f0

i is constant
and depends on the lattice discretization scheme [1,36]. Using a linear interpolation, ∂fwi′ is given
by:

∂fwi′ = 6ωi u0 ci for q < 1
2

∂fwi′ = 3
qωi u0 ci for q ≥ 1

2

(21)

Hydrodynamic forces acting on the structure are calculated by using momentum exchange [1,5,31,
37]. Let Qf and Qs be fluid and solid momentum calculated near the boundary. The exchanged
momentum is given by:

∆Q = Qs −Qf . (22)

Qf and Qs are calculated as follows:

Qf = ∆xD
∑
all

∑
i

ffi ci (23)

Qs = ∆xD
∑
all

∑
i

fsi′ci′ (24)

where D is the space dimension, and ffi and fsi′ are respectively the fluid and the solid distribu-
tion functions. To be clear, fsi′ is constructed at a lattice point occupied by solid by taking the
solid velocity us and density ρs and assigning a Maxwell equilibrium distribution, per Eq. 9. The
hydrodynamic force F and torque T are then given by:

F =
∆Qfs

∆t
=
∆xD

∆t

∑
all

∑
i

(ffi + fsi′)ci′ (25)

T =
∆xD

∆t

∑
all

∑
i

l × (ffi + fsi′)ci′ (26)

where l is the distance between the center-of-mass of the solid domain and the boundary node xb.

2.4 LBM-DEM-Rubber coupling

Unlike the coupling between LBM and DEM, the LBM-Rubber and DEM-Rubber coupling is in-
direct. We focus our explanation below on the case of a rubber ring component of a valve, but the
idea can be generalized to other cases.

A first simulation is performed using Abaqus from which the deformed rubber shape and reac-
tion force of the valve seat on the rubber are saved for many states of rubber compression. This
simulation uses no fluid or particles. The Abaqus simulation consists of compressing the rubber
ring geometry against the bare valve seat (see inset of Fig. 5). The rubber is simulated as a nearly
incompressible neo-Hookean elastic solid with a strain energy Ψ (per unit reference volume) given
by Ψ = (Gr/2)

(
I1 − 3

)
+ (Kr/2) (J − 1)2 where I1 is the first deviatoric strain invariant defined

as I1 = λ
2

1 + λ
2

2 + λ
2

3, the deviatoric stretches are given by λi = J
1
3λi, J is the total volume ratio,

and λi are the principal stretches. The (small-strain) shear modulus is Gr and bulk modulus is Kr.
A frictionless contact between rubber and valve seat is used for simplicity. Figure 4 shows several
snapshots during the Abaqus simulation and Fig. 5 gives the seat net-force on rubber as a function of
(downward) displacement δ of the rubber ring, h(δ). We index each deformed rubber configuration
by the value of δ it corresponds to. The Abaqus tests are performed under quasi-static conditions
but we also assume damping can exist such that upward the force on the rubber satisfies the relation

F = h(δ) + νδ̇. (27)

Then, the data from the Abaqus simulation is used in an implicit coupling iteration routine to
describe rubber configurations when the ring takes part in a slurry simulation. In short, the method
determines which of the deformed rubber configurations from the stand-alone Abaqus tests is the
best representation of the actual deformed rubber state at that moment in the slurry problem. Hence,
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Fig. 4 Snapshots of rubber deformation during the Abaqus simulation at 0 %, 33 %, 66 % and 100 % of the simulation
duration where the color map shows the Mises stress in Pa.

Fig. 5 Net-force of valve seat on rubber as function of displacement. The inset shows the configuration of Abaqus
simulation where the dot line represent the imposed velocity boundary U .

the utility of this method lies in the fact that the rubber deformation that occurs in the actual slurry
problem largely resembles the modes of deformation seen in a purely solid compression experiment.
Situations where the rubber surface becomes heavily locally deformed could be problematic for this
approach.

From the LBM-DEM point of view, the rubber is composed of tetrahedra; this allows us to
compute contact forces for DEM and the exchanged momentum for LBM as if it were a simple
collection of polyhedral objects. Since the Abaqus simulation is performed without fluid or particles,
to use its solutions we need to deduce an effective upward force from LBM-DEM acting on the
bottom rubber surface, which can then be referenced against the Abaqus data to infer a deformed
rubber shape. The effective force is needed because the rubber in the Abaqus simulations has contact
only with the valve seat, whereas in the slurry case, there can be additional forces from fluid and
particles extending to the lateral surfaces of the rubber.

Key to our routine is to identify two subsets of the exposed rubber surface, denoted surface A and
surface B. Surface A is the part that makes contact with the valve seat and surface B remains free
in the Abaqus simulations (see left Fig .6). In particular, surface A and B are geometrically defined
using the the last frame of the Abaqus simulation where the rubber is fully compressed. In the slurry
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case, we add uniform hydrostatic stress to the observed rubber loading distribution until the mean
normal stress acting on surface B vanishes. This leaves us with a loading state that resembles one from
Abaqus. Because the rubber is essentially incompressible, changing the hydrostatic stress uniformly
along the surface does not affect the deformed rubber configuration. To be specific, we compute the
normal stress on surface A using P

A
= 1

A

∫
A

n·fdS and on surface B using P
B

= 1
B

∫
B

n·fdS where f
is the stress from hydrodynamic, particle, and valve-seat forces and n is the normal vector on section
dS. Since the rubber deformation is caused by the shear part of the stress, we uniformly subtract
the traction P

B
from all normal stresses acting on the rubber. This modified loading now resembles

the Abaqus loading (inset Fig. 5) in which only an upward force on surface A exists. Therefore, we
define the effective upward force on surface A as F = AreaA · (PA

− P
B

).
The rubber shape is updated using a three step loop, which is performed after particle positions

and fluid data are updated. The goal of the iteration routine is to implicitly solve Eq. 27 for δ so
that the effective force from particles, fluid, and the valve seat on the final rubber state matches
the force from Eq. 27. In the below n is the iteration counter, which advances by one each passage
through the three step routine.

– Step 1: Compute PA and PB from fluid, particle, and valve-seat interactions on rubber for rubber
shape given by δ = δn. Use to compute the effective upward force F .

– Step 2: Use this F and Eq. 27 to update δ to a new guess, δn+1, for the rubber deflection.
– Step 3: Check if δn+1 and δn differ by less than a tolerance. If so, break. If not, set n to n + 1,

and return to Step 1.

We assume that fluid forces do not change throughout the iteration procedure. This is true by
assuming a small incremental rubber shape change between iterates, so only particle and valve-seat
forces on the rubber are recalculated upon return to Step 1. The contact force is computed using
Eq. 1 for the normal part and Eq. 2 for the tangential part. One specificity here is that we do not
update δt during the coupling loop routine unless when |f t| > µsfn where δt = 1

kt
f t. A schematic

model of one update through the iteration loop is presented in Fig. 6 (left) and a 1D mechanical
model of the treatment of the rubber interaction is visualized in Fig. 6 (right).

In Step 2 we utilize the following update rule

δn+1 =
[F − h(δn)] ∆tη + δ0 νη + δn

1 + ν
η

(28)

where δ0 is the actual displacement of the rubber at the beginning of the time-step (i.e. for n = 0).
The coefficient η is numerically selected to aid convergence. Its role is to control the rate at which
δ adjusts each iteration but it does not affect the converged solution. In the examples shown later,
we are able to choose η so that the rubber coupling is stable and converges in ∼10 iterations. Note
that when convergence occurs (δn = δn+1) Eq. 27 is implicitly solved, per a backward-Euler time
discretization. The update rule above attempts to move δ toward such a solution with each pass
through the iteration loop. We check convergence of δ (Step 3) using a tolerance that is scaled by
the change after the first iterate, δ1 − δ0, where δ1 is the value obtained for δ after the first pass
through the loop.

We use simple linear interpolation to compute values of h(δ) when δ is between two neighboring
values from the Abaqus output. To update the rubber shape, a linear interpolation is also applied.
For the shape, we export the Abaqus mesh, which allows the interpolation. For example, if the new
δ lies directly between two frames of the Abaqus data, the rubber shape is updated by moving the
nodes of the rubber to positions halfway between those of the neighboring frames.

2.5 Numerical algorithm

The numerical method described in previous sections is implemented using the algorithm displayed
in Fig. 7. Note that we compute the valve acceleration by enjoining the applied force and mass of the
rubber and valve components together in the Verlet update; rubber deformations are not included
in the calculation of net acceleration of the valve/rubber composite as they are small compared to
the movement of the valve overall. As shown in Fig. 7, the LBM step can be computed in parallel
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Fig. 6 Configuration of rubber-LBM-DEM coupling. The left figure gives the geometrical definitions of area A and
B, and the initial and final shape of the rubber as it proceeds through the iteration loop to solve Eq. 27, with a
representation of particles in contact shown. The right figure gives a 1D analog of the model to compute the rubber
deformation.

with DEM force calculation and Rubber force calculation. This is not the strategy we adopted but
it can be easily introduced in the algorithm.

The coupling of the different methods requires a synchronization approach since the stable time
steps are different for each material’s solver. The solver with a lower time step runs for a number of
steps, which we denote synciter, before re-syncing with one update of that of the higher time step.
The DEM time step, ∆tDEM, LBM time step, ∆tLBM, and rubber solver time step, ∆trubber, must
be synced in this fashion. The DEM time step depends on the particles’ mass mp and stiffness kp
and is given by ∆tDEM ∝

√
mp/kp. The LBM time step is obtained from the lattice speed c and

the lattice spacing ∆x via ∆tLBM = ∆x/c. Since the rubber method utilizes an implicit scheme, as
discussed in section Sec 2.4, its time step is simply chosen to equal ∆tDEM to keep the DEM and
rubber updates synced.

In this paper, synciter = ∆tLBM/∆tDEM = 2; for this reason, the master time step will be
∆tDEM. In our upcoming examples, we find the LBM solver takes ∼ 74% of the computation time
(in serial) while DEM takes ∼ 25% and the rubber solver takes ∼ 1%. Hence, any strategy to
expedite or parallelize the LBM solve (e.g. through domain parallelization) would have the most
effect on improving computation time.

2.6 Zoom-in with Effective Boundaries (ZIEB)

The Zoom-In with Effective Boundaries (ZIEB) technique replaces a fluid reservoir/domain with an
analytical solution that interacts dynamically with the remainder of the domain. The challenge is
to determine the correct effective dynamics at the fictitious interface, and to transfer the analytical
result to LBM distribution functions. In this study we model valves, which can be positioned far
from the pump that leads the slurry to the valve. The goal is to avoid having to calculate flow in
the expansive pump region. From a computational point of view, one might assume a simple input
velocity boundary condition should solve the problem, however, for a compressible fluid, the imposed
flow and pressure may depend on the total removed volume and feedback with the dynamics within
the valve system. In this section, we first detail how to obtain the analytical solution then explain
how to implement this solution as an LBM boundary condition.

ZIEB analytical solution

Per Fig. 8, we assume the virtual (i.e. removed) domain is a cylinder and piston. The cylinder is
initially full of fluid and has total volume V0. As the piston moves, fluid is pushed into the simulated
domain. Let the movement of the piston be given by some prescribed Hp(t), where Hp measures
the piston displacement. The cross-sectional area of the piston (and cylindrical domain) is Ap. The
piston velocity, vp(t), is simply defined from the time-derivative of Hp. Define as vf the mean in-
flowing fluid velocity component on the interface between the domains. Let ρ be the average density
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Fig. 7 LBM-DEM-RUBBER implementation algorithm.

of fluid in the virtual cylinder between the piston head and the interface. Further, we make the
simplifying assumption that in the cylinder region the fluid density is in fact uniform, such that it
is equal to ρ throughout.

Conservation of fluid mass in the cylinder domain can be expressed by balancing the mass rate
within the cylinder against the mass flux into the simulated domain:
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Simulated*Domain�

Virtual*Domain�

vp

⇢vf Ap

xS xV

f12 =?

Hp

Fig. 8 Top: Full geometry of problem to be solved — valve region connected to a cylinder and piston region. ZIEB
technique allows removal of the piston/cylinder domain from the simulation, by replacing it with effective boundary
conditions at the fictitious interface. Bottom: Zoom-in near the fictitious interface showing the first simulated lattice
point (at xS) and the closest virtual lattice point (at xV ).

d

dt
ρ · (V0 −ApHp) = −ρvfAp ⇒ dρ

dt
= ρ

[
vpAp − vfAp
V0 −ApHp

]
(29)

In a fully continuum framework, the above equation would need to be augmented with momentum
balance in order to provide the in-flowing velocity, vf , at the fictitious interface. However, using the
LBM description, we can update vf in another way, which is consistent with momentum balance on
the small scale.

Implementation of ZIEB analytical solution in LBM

At a given time tn, we assume ρn is given in the cylinder domain and is equal to the density at xS ,
where, per Fig. 8, xS is the lattice point in the simulated domain that is adjacent to the interface
with the virtual domain. We suppose the velocity at xS is the interfacial velocity vnf . Both density
and velocity at time tn at xS are defined by Eq. 5 and 6 through distribution functions fni .

The distribution functions are updated to tn+1 under the following procedure, which is applied
after the collision step but before streaming. First we update and store the density ρn+1 at xS using
explicit integration of Eq. 29:

ρn+1 = ρn exp
[
vnpAp − vnfAp
V0 −ApHn

p

∆t

]
(30)

Next, a partial LBM streaming step is performed at xS using the distributions at time tn. During
this step xS streams to and from its neighboring ‘real’ lattice points within the simulated domain.
However, it only streams out of the interface with the virtual domain and does not receive any
distributions from the virtual domain. Define ρ∗ as the density at xS after this partial streaming
step.

The next step is to back-solve the needed distributions to be streamed in from the virtual domain
in order to guarantee the final density at xS equals ρn+1. For example, consider a setup as shown in
Fig. 8 and suppose the fictitious interface is normal to the ẑ direction (see Fig. 2). After the partial
streaming step, updated (though not finalized) distribution values exist for all the fi except for the
values associated to i = 7, 9, 12, 15, and 17. These five distribution values are all unknown after
the partial streaming step. To compute them, first we modify only the value of the f12 distribution,
which is the distribution that streams into the simulated domain normal to the fictitious boundary:

f12 = ρn+1 − (ρ∗ − fn12) (31)
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This advects all the missing density at xs from a fictitious node xV (see bottom of Fig. 8). With
these distributions, the velocity at time tn+1 is computed at xS according to u = 1

ρn+1

∑
fi. Because

the distributions in the i = 7, 9, 15, and 17 directions are still unknown at this point, the Maxwell
equilibrium function Eq. 9 is then used to redistribute all the distributions at xS to a more natural,
equilibrium state. This updates all the distributions to their final values, at tn+1.

We notice here that the initial value of ρ at the beginning of the simulation should be a normalized
value (in lattice units) otherwise an additional step of normalizing by the physical fluid reference
density will be necessary before using it in Eq. 29 and Eq. 31.

2.7 Tests and validations

We first test some of the individual components of the routine. In this section, we provide separate
numerical validations of the ZIEB technique, the rubber deformation and coupling method, the LBM
implementation for fluid flow, and the LBM-DEM coupling technique.

To validate the ZIEB method, we performed an analysis of fluid flow in a geometry comprised of
a piston driving fluid through a narrow restriction. This flow field is then compared to that obtained
using a “virtual piston” in which the domain containing the moving piston is removed and in its
place an effective boundary condition from ZIEB is used, see Fig. 9. The real piston begins positioned
such that the fluid volume between the piston and input section is V0; the same V0 is used in Eq. 30
for the virtual piston. We use V0 = 1.77e-06 m3 and Ap = 0.0000709 m2. As input parameters,
we use a (pressure-free) fluid density ρ

f
= 1000 kg/m3, dynamic viscosity ηf = 0.001 Pa.s and

a Smagorinsky constant of C = 0.4 for the sub-grid turbulence model [3,6,38]. Figure 10 shows
the comparison between the two simulations regarding fluid velocity and the normalized input fluid
density computed in the same domain (see Fig. 9). The agreement is strong, even the time-dependent
fluctuations, confirming the correctness of the ZIEB method.

Fig. 9 Configuration of tests for the Zoom-in with Effective Boundaries (ZIEB) technique. The real piston geometry
is displayed in the top figure (mid-simulation) and the virtual piston geometry is displayed beneath, where ZIEB has
been applied on the left boundary to mimic the removed piston domain.

The test of the rubber coupling and rubber deformation is performed running a loading/unloading
test without fluid. A force Fload is directly applied on the valve which presses the rubber into
contact with twelve frozen spheres (see Fig. 11). Two loading phases are considered: a loading
with Fload = 40 N over 5 ms, then an unloading phase with Fload = 10 N . We use a frictionless
contact type between the rubber and spheres where normal stiffness is set to 1e+05 N/m and no
contact damping is used to ensure that all dissipation comes from internal rubber damping. The
rubber damping (Eq. 27) is set to ν = 80 N · s/m. The valve density is set to 7850 kg/m3 and the
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Fig. 10 Velocity and normalized input fluid density as functions of time for the real and virtual piston setups. The
velocity and density are calculated within the boxed subdomain in Fig. 9.

rubber density to 1200 kg/m3. The time step is set to 1e-07 s and the convergence parameter is
η = 10 N · s/m.

Fig. 11 shows the loading/unloading force, the total upward force F of spheres acting on the
rubber, and the internal elastic force h(δ) within the rubber. As expected, the force of particles on
rubber, F , reaches the applied force Fload as well as h(δ), both for the loading and unloading phase,
within a relaxation time of τrubber ' 0.67 ms, which is roughly the ratio of ν and the initial slope of
h(δ).
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Fig. 11 A dry numerical test of the simplified DEM-Rubber coupling. The left figure shows the configuration of the
test where the loading/unloading force Fload is applied directly to the valve. Color corresponds to equivalent shear
strain magnitude εq in the rubber. Spheres are held fixed on the valve seat. The right figure shows loading/unloading
force Fload, h(δ) and the net reaction force F of spheres on rubber. The inset shows the rubber deformation δ as a
function of time.

The fluid LBM simulation is validated by comparing flow of fluid in the rubber channel of a
pressure-valve assembly (recall Fig. 1) against an analytical approximation. We run a simulation
where the fluid viscosity is large, such that the flow in the channel is in the Stokes limit. To aid
in calculating an analytical approximation, we treat the flow as radially directed and assert the
lubrication approximation. The true valve flow does not satisfy these assumptions exactly, so some
deviation compared to the analytical approximation is acceptable. In view of Fig. 1 for the definition
of the y direction, we obtain the following system of equations, which includes momentum and
mass balance under the lubrication limit: 1

r
∂
∂r (rvr) = 0, ∂p

∂y = 0, η
f

∂2vr

∂y2 = ∂p
∂r . This system is

solved by v(r, y) = A
r y(h − y) where A is an undetermined constant and p(r) = −2Aη

f
ln(r) + C

where C is a constant and A is the same as in the velocity field equation. From the p(r) equation,
the pressure difference ∆p between r = Rin and outer at r = Rout (see Fig. 12) is given by:
∆p = −2Aη

f
ln(Rout/Rin). Using y = h/2 = 0.0026 m, Rin = 0.0065 m and Rout = 0.0110 m, we

find v(Rin, h/2) ' 4.16 m/s (see Fig. 12 left) from our numerical data, giving A ∼ 1.59e+04 s−1.
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Hence, the predicted pressure difference is ∆p ' −5.3e+05 Pa which is quite close to the obtained
pressure difference from the simulation (−5.7e+05 Pa, see Fig. 12 right). Fig. 13 shows the analytical
solution as a function of r in comparison with the numerical data and agreement is found. In this
test, the fluid density is ρ

f
= 1000 kg/m3 and dynamic viscosity is η

f
= 3.16 Pa · s. The valve

density is set to 7850 kg/m3 and the rubber density to 1200 kg/m3. We use ZIEB on the input
section (see Fig. 15) with a virtual piston velocity of vp = 6 m/s, and we apply a constant pressure
of Pout = 1.04e+04 Pa at the output section (see Fig. 15).

Fig. 12 Fluid flow and pressure in the rubber channel. On the left we show the fluid pressure and on the right, the
velocity magnitude.
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Fig. 13 Numerical versus theoretical comparison for pressure (left) and velocity (right) in the rubber channel. A ∼
1.59e+04 s−1, y = h/2 ' 0.0013 m, C ∼ −2.33e+06 Pa.

The LBM-DEM coupling is validated for the problem of a spherical particle settling under grav-
ity within a large body of fluid. At steady state, the drag coefficient, Cd = 4

3
2 g Rg
v2term

ρs−ρf

ρf
, can

be calculated, where vterm is the sphere’s terminal velocity. This problem has been studied an-
alytically and experimentally by many [39–41] and results have been aggregated into a unified



A simulation technique for slurries interacting with moving parts and deformable solids with applications 17

functional form by Cheng et al [42]. The final formula is given by Cd = 24
Re (1 + 0.27Re)0.43 +

0.47
[
1− exp

(
−0.04Re0.38

)]
where Re = Dvterm/ηf for D the sphere’s diameter. Fig. 14 (left) shows

a comparison of our numerical data and this form where the experimental data [39] correspond to a
settling sphere inside a cylinder filled by a fluid; the particle begins stationary and the data is taken
when its speed has reached a nominally steady value. Fig. 14 (right) shows a snapshot of the particle
and flow for Re = 0.208. The data collapses against the known solution well, indicating that the
numerical momentum transfer between the fluid and particle is accurate. It should be noted that
the eddy viscosity was set to zero in these simulations to offer a pure test against the known result.
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Re

1e-02

1e+00
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1e+04

1e+06

C
d

Fig. 14 Drag coefficient Cd for a sphere as a function of Reynolds number, Re (left). The dotted line is the analytical
solution [42] and crosses are our numerical data. The right figure shows a snapshot of the simulation for Re = 0.208
where streamlines are colored according to the fluid speed and the spherical particle is in black. Fluid domain shown
is a quarter of the simulated domain.

3 Examples

We present numerical examples utilizing the valve geometries presented in Fig. 15. The two systems
are used to mimic a safety and pressure valve. The different parts and their corresponding names
are presented in Fig. 15. Their dimensions are given in Appendix A.

Fig. 15 Illustration of different parts of the safety and pressure valve.

The valve is spring-loaded from above. Initially, the valve is closed due to force from the spring
(and prescribed overpressure above in the pressure-valve geometry). The spring’s force-displacement
relation is chosen to be non-linear and is expressed as follows: Fs = kvδ0 + kv(a/π2 ) tan(π2

δ
a ); kv is
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the stiffness, δ0 = 0.092 m is the preload spring displacement, δ is the load displacement and a =
0.0045 m is the spring maximum compression. The fluid region above the valve begins unpressurized
in the safety-valve case and pressurized by the selected Pout in the pressure-valve case. For each
simulation, both for safety and pressure valve, we start by introducing fluid through the input
section beneath valve domain using the ZIEB technique at constant virtual piston velocity vp. When
the beneath valve domain reaches a large enough pressure, it will overcome the spring-load (and
possible top pressure) on the valve to open it. We continue displacing the virtual piston and then
turn off vp when we assume that the flow has reached a steady state. We then wait until the valve
is closed. We check the behavior of the valve systems with and without particles but the closure
phenomena is only investigated for the case where we have particles.

In the presence of particles, we start with a constant packing fraction in the domain beneath the
valve corresponding to the imposed packing fraction φ at the input section. During the simulation,
each particle that exits the simulated domain is removed and each new particle introduced at the
input section starts with the fluid input velocity as its initial velocity. To control the input particle
flow, we insert grains to ensure that the input particle packing fraction is constant within a zone
extending 4.25 mm from the interface with the virtual domain. We introduce/remove particles in
the simulated system every 50 steps to save time. In all cases, particles move significantly less
than a grain diameter in the 50 steps between insertion/removal, which is certainly small enough to
maintain control of the grain packing fraction in the insertion zone.

Physical parameters involved in the valve problem are displayed in Tab. 2), which include the
geometry of the valve system (e.g. safety-valve or pressure-valve), each of which has fixed size
dimensions (see Appendix). For all tests, we fix the solid density of particles ρ

s
= 2500 kg/m3,

(pressure-free) fluid density ρf = 1000 kg/m3 (small-strain) rubber shear modulus Gr = 3.0e+05 Pa
and bulk modulus Kr = 8.0e+06 Pa, rubber damping ν = 80 N · s/m, rubber+valve mass Mvr =
9.2e-03 kg, and valve spring stiffness kv = 625N/m.

Since mono-disperse particles may induce a crystallisation phenomena at higher packing, a ran-
dom size distribution is used uniformly between dmin and dmax. The distribution may be described
by a mean particle size d = (dmin + dmax)/2 and polydispersity ∆d = dmax/dmin.

Table 2 Parameters.

Particles Valve + Rubber Fluid System

mean diameter [d] mass [Mvr ] dynamic viscosity [ηf ] system geometry [geo]

solid density [ρs ] rubber shear modulus [Gr] pressure-free density [ρf ] system size [r]

polydispersity [∆d] rubber bulk modulus [Kr ] output pressure [Pout] piston speed [vp]
input packing fraction [φ] valve spring stiffness [kv ]

rubber damping [ν]

To generalize the valve dynamics and flow behavior, we choose the natural units of our system
to be the input section radius [L] = r for length, time [T ] =

√
ρ

f
r3/k

v
and mass [M ] = ρ

f
r3. From

these units, a dimensionless parametric space is represented by:{
geo,

Pout
k

v

, vp

√
kv

ρ
f
r
,
d

r
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}
where geo is the system geometry. Taking into account the fixed parameters, the dimensionless para-
metric space we will explore is described by the following groups:{

geo,
Pout
k

v

, vp

√
k

v

ρ
f
r
,
d

r
,∆d, φ,

η
f

k
v
ρ

f
r

}
The second group is only relevant to pressure valves and the latter five can be independently con-
trolled through the selection of vp, d,∆d, φ, and ηf .

The parameters for all tests are summarized in Tab. 3 and Tab. 4. As indicated in the Tables, the
tests are conducted in order to observe the dependence of the valve behavior on each of ηf , vp, d,∆d,
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and φ independently; for each variable, a sequence of tests is performed where it is varied over a
range while the others are held fixed.

Table 3 Range of parameters investigated for safety and pressure valve simulations without particles. All units are
in [kg], [m], [s].

geo=safety valve geo=pressure valve

range fixed

ηf 1e-03 to 3.16e+01

name value

Pout 0
vp 12.5
d 0
∆d 0
φ 0

vp 1 to 12.5

Pout 0
d 0
∆d 0
φ 0
ηf 1e-03

range fixed

ηf 1e-03 to 3.16e+01

name value

Pout 10416
vp 6
d 0
∆d 0
φ 0

vp 1 to 12

Pout 10416
d 0
∆d 0
φ 0
ηf 1e-03

Table 4 Range of parameters investigated for safety and pressure valve for simulations with particles. All units are
in [kg], [m], [s].

geo=safety valve geo=pressure valve

range fixed

vp 1 to 12.5

Pout 0
d 0.8e-03
∆d 1.2
φ 0.084
ηf 1e-03

d 0.8e-03 to 1.5e-03

Pout 0
vp 12.5
∆d 1.2
φ 0.053
ηf 1e-03

∆d 1.1 to 1.5

Pout 0
vp 12.5
d 0.8e-03
φ 0.053
ηf 1e-03

φ 0.026 to 0.128

Pout 0
vp 12.5
∆d 1.2
d 0.8e-03
ηf 1e-03

range fixed

vp 1 to 12

Pout 10416
d 0.8e-03
∆d 1.2
φ 0.067
ηf 1e-03

d 0.8e-03 to 1.4e-03

Pout 10416
vp 6
∆d 1.2
φ 0.053
ηf 1e-03

∆d 1.1 to 1.5

Pout 10416
vp 6
d 0.8e-03
φ 0.053
ηf 1e-03

φ 0.026 to 0.117

Pout 10416
vp 6
∆d 1.2
d 0.8e-03
ηf 1e-03

The contact model (DEM solver and DEM-Rubber coupling), fluid turbulence model (LES) and
numerical parameters are displayed in Tab. 5

3.1 Pressure valve lift behavior

In this section, we discuss the effect of fluid viscosity, piston velocity, and input packing fraction on
the opening, steady flow, and closure behavior of the valve for a pressure valve configuration. As
shown in Tab. 3 and Tab. 4, when varying a parameter of interest, we fix the others to a control
set taken from vp = 6 m/s, η

f
= 0.001 Pa · s, φ = 0.053 and ∆d = 1.2. We will focus our analysis

on the pressure valve and will give a brief analysis of the results for the safety valve in Sec. 3.2.
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Table 5 The contact parameters (DEM solver and DEM-Rubber coupling), fluid turbulence model (LES) and nu-
merical parameters. All units are in [kg], [m], [s].

stiffness normal tangantial

seat-valve 1e+11 0
seat-rubber 1e+06 0
seat-particle 1e+07 0.8e+07
valve-particle 1e+07 0.8e+07
rubber-particle 1e+05 0.8e+05
particle-particle 1e+07 0.8e+07

friction coefficient

seat-valve 0
seat-rubber 0
seat-particle 0.4
valve-particle 0.4
rubber-particle 0.4
particle-particle 0.4

damping normal tangantial

seat-valve 1e+03 0
seat-rubber 0 0
seat-particle 3 0
valve-particle 3 0
rubber-particle 0 0
particle-particle 3 0

rubber and numerical parameters

Smagorinsky constant 0.4000
lattice speed 2.5e+03
fluid space discretization 3.0e-04
DEM time step 5.0e-08
numerical rubber convergence (η) 1.0e+01

Valve opening phase

During the opening phase, we observe a delay between the initiation of the piston and the initiation
of valve opening. The effect is not due to packing fraction Fig. 21 (left), polydispersity Fig. 20 (left)
or mean particle diameter Fig. 20 (right), rather, the delay increases with fluid viscosity Fig. 16
(left), and decreases when piston velocity increases Fig. 16 (right) (simulation without particles)
and Fig. 21 (right) (simulation with particles). The lack of dependence of the delay time on particle
inputs is because the mean particle diameter is bigger than the initial valve lift so it does not modify
fluid behavior in the valve-rubber channel (see schematic in Fig. 17). The more dominant effect is
negative suction pressure, which develops in the valve-rubber channel as the valve initially displaces
upward, as shown in Fig. 18. The delay increases with increasing viscosity because this increases
the suction force due to lubrication effects in the narrow valve-rubber channel. At the same time, in
the beneath valve region where the fluid domain is not thin, the pressure is mostly independent of
viscosity as we observe in Fig. 19 (left) where before the first peak of the valve lift (Fig. 16 (left))
the pressure evolution is the same.
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Fig. 16 Valve lift as function of time for different fluid viscosity (left) and different virtual piston velocity (right)
(without particles).
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Fig. 17 Rubber channel, valve channel, and beneath valve domain configuration.
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Fig. 18 Several snapshots showing valve and rubber channel pressure evolution for ηf = 31.6 Pas and vp = 6 m/s.
(without particles).

Increasing the piston velocity reduces the delay because the suction pressure in the valve-rubber
channel is balanced by faster growth of the beneath valve pressure. Figure 19 (right) shows that
during the pressurization phase, the pressure slope increases with piston velocity, as expected.
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Fig. 19 Beneath valve pressure as a function of time for different fluid viscosity (left) and different piston velocity
(right) (without particles).

Quasi-steady open valve phase

The valve displacement begins to approach a steady value (with or without oscillations) after the
first peak in valve lift (t ' 0.010 s) and ends when the piston motion is stopped at t = 0.025 s.
As shown in Fig. 16, the steady lift position, for the simulations without particles, increases with
fluid viscosity and piston velocity. For lower viscosity, the valve has an ‘underdamped’ response
characterized by decaying oscillations, whereas for larger viscosities, an ‘overdamped’ response can
be seen (see Fig. 16 (left)). The presence of particles can modify the valve lift behavior. Figure 20
(left) shows that virtually no effect on valve lift is observed for different polydispersity in the range
we tested. Increasing the mean diameter of particles, Fig. 20 (right), increases the steady lift position
but this appears to be primarily a particle size effect; after the initial upward motion of the valve, the
valve descends downward and is stopped by a monolayer of mobile particles in the rubber channel,
which holds the valve position at roughly 1d high. Further tests would be needed at higher fixed
piston speeds to determine if the valve positioning depends more robustly on d.
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Tests involving variation of the packing fraction or the piston velocity, Fig. 21, show a non-trivial
valve lift behavior in which three approximate regimes can be identified:

1. A lower input particle flux behavior: ϕ < ϕ
l
.

2. A transition input particle flux behavior: ϕ
l
≤ ϕ ≤ ϕ

u
.

3. A higher input particle flux behavior: ϕ
u
< ϕ.

where the input flux is defined by ϕ = φ vp.
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Fig. 20 Valve lift as function of time for different polydispersity (left) and different mean grain diameter (right).
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Fig. 21 Valve lift as function of time for different packing fraction (left) and different piston velocity (right).

In the first regime, we observe a simple particle suspension flow through the valve and rubber
channel with a quasi-constant lift as shown in Fig. 21. The beneath valve packing fraction shows
also a quasi-constant value Fig. 22. This regime is observed for ϕ < ϕ

l
' 0.405 (from Fig. 21).

The second regime is characterized by unsteady motion of the valve that oscillates between
notably disparate high and low positions. This regime, for the range of parameters we tested, appears
to be limited by ϕ > ϕ

l
' 0.405 and ϕ < ϕ

u
' 0.611. To better understand the valve lift behavior

in this regime let us analyze the lift for φ = 0.084. Figure 23 and Fig. 24 show the time dependence
of the lift, beneath valve packing fraction, and beneath valve pressure. Notice that the peaks and
valleys of the beneath valve pressure and packing fraction are relatively in sync. The peaks in the lift
plot are delayed with respect to those of the pressure and packing fraction. This can be understood
as follows: when the valve position is low, particles aggregate under the valve and as they do so, they
form something of a ‘plug’ that causes the pressure beneath the valve to build up. When the pressure
is sufficiently high, the valve will open up to release the pressure, which causes the backed-up grains
beneath the valve to escape through the open valve. When this happens it causes the beneath valve
packing fraction and the pressure to decrease, which immediately allows the valve to recover to its
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Fig. 22 Beneath valve packing fraction as function of time for different input packing fraction.

initial lift (Fig. 23, Fig. 24). This phenomena can be distinguished from the lower input particle flux
regime, in that in the lower flux case, the flux of grains into the system is not enough to back-up
sufficiently under the valve and induce a pressure build-up.

Fig. 23 Valve lift (left) and beneath valve packing fraction (right) for φ = 0.084 as function of time.

Figure 25 shows several snapshots of the beneath valve region for φ = 0.084 (from Fig. 21 (left)).
According to Fig. 23 (right), the first two packing fraction peaks correspond to t = 0.0095 s and
t = 0.0132 s, and the first two valleys to t = 0.0112 s and t = 0.0145 s. The rest of the snapshots
correspond to the time between the peaks and the valley. Comparing the first packing fraction peak
and the first valve lift peak in Fig. 25, we observe a delay; the first peak in packing fraction occurs at
t = 0.0095 s, and the peak for valve lift occurs between t = 0.0105 s and t = 0.0112 s. Using Fig. 23,
we find that the delay is ∼ 0.0014 s. The same delay is observed for all peaks and valleys. Contrary
to the valve lift, between the pressure and packing fraction peak/valleys, no delay is observed. This
is in agreement with the lift behavior Fig. 21 where the valve lift is a consequence of the packing
fraction/pressure evolution.

The third regime of valve behavior corresponds to a high particle flux such that the beneath
valve slurry develops a sustainably high pressure able to push and hold the valve at a maximal lift.
This is observed for ϕ > ϕu ' 0.611 on Fig. 22 (left) from φ ' 0.101.
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Fig. 24 Beneath valve pressure as function of time for φ = 0.084.

Fig. 25 Several snapshots showing particles beneath valve for φ = 0.084. According to Fig. 23 (right), the first two
packing fraction peaks correspond to t = 0.0095 s and t = 0.0132 s, and the first two valley correspond to t = 0.0112 s
and t = 0.0145 s.

Out of the three phases, one outlier phenomenon is observed for vp = 1 m/s. In fact, Fig. 21
(right) shows that when the valve is opened, from t = 0.013 s to t = 0.025 s, we have a constant but
small lift. During this phase, it turns out that a portion of the particles are stuck at the entrance of
the valve channel but without entering fully into the channel. The force from these stuck particles
and fluid pressure is enough to hold open the valve at a constant lift.

Valve closing mechanisms

In this section, we focus on the closure phase of the valve simulations with particles in order to
investigate the effect particles have on the final lift of the valve and to study the degree to which
particles become stuck in the valve-rubber channel, which could have detrimental effects on valve
performance in practice. Since the rubber plays the role of a seal between valve and seat, preventing
grain trapping during closure could be a key design goal in such systems.

The closure phase starts when the piston velocity vp is turned off. In the range of the parametric
study we investigated, the final lift is mostly affected by the mean particle diameter d as shown in
Fig. 27 (for d and ∆d) and Fig. 28 (for φ and vp). This behavior is simply explained by the fact
that the closing valve squeezes out all but a monolayer of particles, which become stuck in the valve
channel as illustrated in Fig. 26 where a zoom-in on the valve channel shows how geometrically the
lift depends on the stuck particle diameter d. Using the size of particles and the geometry of the valve
channel Fig. 26, we calculated the envelope giving the maximum lift (upper bound) and minimum
lift (lower bound) which should be obtained if only big particles (with dmax) or small particles (with
dmin) were stuck. The two bounds are given by:
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lift = d∗/ cos(θ) (32)
where d∗ is either dmax or either dmin and θ is the valve channel inclination as shown on Fig. 26.
θ = 29.53o is obtained from Fig. 34 (DETAIL B). As expected, the final lift is always between these
two limits.

Fig. 26 Final lift configuration; relation to stuck particle size.

Figure 28 (right) for vp = 1 m/s shows a lift of ∼ 0.00048 ± 0.00001 m which is less than the
minimum lift (lift

min
= 0.00155±0.000001 m) for the smallest particle diameter in the polydispersity

to travel through the valve. In fact here, as discussed previously in Section Quasi-steady open valve
phase for the effect of vp on the lift, no particle flow is observed in the valve/rubber channel since
the lift is less than one particle diameter. Therefore, when vp is turned off, the rubber descent is
unimpeded by grains. Once the rubber makes contact with the valve seat, the fluid beneath the valve
cannot escape and therefore a pressure and residual lift of ∼ 0.00048± 0.00001 m remains, which is
the lift when the rubber is in contact with the seat with zero deformation.

The quantity and behavior of particles that get stuck during valve closure is described in the
Appendix.
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Fig. 27 Final lift for different d (left) and ∆d (right).

3.2 Safety valve lift behavior

Many of the behaviors in the safety valve configuration mimic those of the pressure valve. Here
we summarize the safety valve data. The used input parameters are resumed in Tab. 3 for the
simulations without particles and Tab. 4 for the simulations with particles.
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Fig. 28 Final lift for different φ (left) and vp (right).

Figure 29 shows the time evolution of the valve lift for different fluid viscosity (left) and for
different piston velocity vp; both simulations are without particles. The delay at the beginning of
the simulation is less marked because of the absence of the above valve pressure. The steady lift
shows many of the same behaviors as the pressure valve, except there can be non-zero vp (1 m/s
and 2.5 m/s) and the valve may not ever open since the open end beneath the valve can prevent the
beneath-valve pressure from building up enough to overcome the valve’s spring force to open it.
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Fig. 29 Valve lift as a function of time for different fluid viscosity (left) and different piston velocity (right) (without
particles).

The three observed regimes for the pressure valve during the steady lift are also evidenced here
as shown in Fig. 30 for different φ and vp. The ϕ

l
and ϕ

u
need to be calculated here taking into

account the outgoing flux through the modular closure of the safety valve system. This then becomes:
ϕ = ϕ

in
− ϕ

out
where ϕ

in
is calculated from the input region and ϕ

out
is calculated from the flux

of outgoing particles through both outlet sections. Figure 31 (left) shows the time evolution of the
valve lift for different ∆d where a small deviation in different values of ∆d is observed.

As shown in Fig. 26, the envelope of the final lift can be predicted by lift = d∗/ cos(θ), d
min

6
d∗ 6 d

max
however, if the stuck particles are not entirely lodged in the valve channel, this prediction

is wrong. This is the case in Fig. 31 (right) for d = 0.0014 m where the final lift is less than the
observed lift for d = 0.0011 m. Figure 32 shows that in fact no particles are fully stuck in the valve
channel but there are some stuck in the rubber channel, as indicated by a non-zero normal force fn.
We see in Fig. 32 that even though contact exists between a partially stuck particle and the valve
channel region, the total force coming from the valve channel is close to ∼ 0.1 N whereas the total
force observed in the rubber channel is close to ∼ 10 N ; this means that the main force balancing
the valve spring force comes from the rubber channel and therefore, the final lift is overpredicted by
the previous formula, lift = d∗/ cos(θ).
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Fig. 30 Valve lift as function of time for different packing fraction (left) and different piston velocity (right).
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Fig. 31 Valve lift as a function of time for different polydispercity (left) and different mean diameter (right).

Fig. 32 Final valve lift configuration for d = 0.0014 m showing (partially) stuck particle in the valve entry and
normal forces, f n, supported by all particles.

4 Conclusion

In this paper, we have presented a detailed implementation of a 3D DEM-LBM-Rubber coupling
in two complex valve geometries. With different focused tests, we have validated the implemented
methods. The coupling of the three types of materials shows a good agreement with our physical
predictions. We also have demonstrated the validity of the ZIEB technique, which allows us to run
simulations without having to simulate the entire domain

Simulations performed without particles give realistic behaviors. We observe a lubrication effect
causing suction that delays the opening of the valve after piston motion commences. We find that
increasing fluid viscosity increasingly overdamps the valve lift, reducing or removing the valve os-
cillations in the quasi-steady regime. We have validated a Stokesian pressure drop across the valve
channel when the fluid being driven through is sufficiently viscous.
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In the simulations performed with particles in the pressure valve geometry, we found, for the
steady lift portion, three qualitative lift behaviors. The different regimes appear to be governed by
the total particle flux, which combines the imposed piston velocity vp and packing fraction φ through
a flux ϕ = vp φ. The flux variable appears to indicate when the open-valve dynamics transition from
a steady value of small lift, to an oscillating value that traverses between high and low positions, to
a steady high lift value. Further investigation may be needed to calibrate the robustness of the ϕ
variable in determining qualitative valve dynamics.

The valve closure was also investigated, which occurs when the (virtual) piston motion is stopped.
The pressure valve shows a dependency of the final lift on particle size and we give a prediction of
the lift envelope based on the minimum and maximum particle sizes in the polydispersity. We show
that if the maximum lift during the open phase does not exceed d

max
/ cos(θ), the final lift at closure

can be less than d
min

/ cos(θ) because the particles are not entirely stuck in the valve channel.
Lastly we demonstrate the robustness of the approach by switching to a safety valve configuration,

in which the above-valve region is not pressurized and the below-valve region has another exit.
Similar qualitative behaviors are observed as compared to the pressure valve, both with and without
particles, albeit at different specific values of the piston speed and input particle packing fraction.
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A Safety valve, pressure valve, and their dimensions

In this appendix, we give the safety and pressure valve configuration and the dimensions. Units are millimeters mm
and degrees o.

Fig. 33 Safety and pressure valve configuration.

Fig. 34 Frame dimension.
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Fig. 35 Valve dimension.

Fig. 36 Rubber dimension.

Fig. 37 Pressure Closure dimension.

Fig. 38 Safety Closure dimension.

B Study on particles stuck in valve

We give here a first quantitative view on which variables — among dmax ,∆d, φ and vp — matter most in affecting the
quantity of particles that get stuck beneath the valve during closure. Figure 39 and Fig. 40 show the projected area
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of particles on the seat (beneath valve-rubber area) normalized by the beneath valve-rubber area, i.e. the ‘normalized
area of stuck particles’ (NASP). On these four figures, we find that φ matters most whereas there is little variation
due to changes in dmax , vp and ∆d.

We can assume the packing fraction in the open valve channel, during the quasi-steady valve phase, is bounded
below by φ. As the valve descends during closure, particles are squeezed out and, as a further lower bound, we
can approximate that a single monolayer at the same packing fraction φ remains. This implies the total number
of stuck particles in the rubber-valve channel is approximated by: Nstuck ' lift A φ 6

π d3
where the final lift is

given by lift ' d/ cos(θ), and A is the projected rubber-valve area. The projected total particle area is: Sstuck '
d

cos(θ)
A φ 6

π d3
π d2

4
' 3

2
A

cos(θ)
φ normalizing the Sstuck by A, we obtain:

NASP '
3

2

1

cos(θ)
φ = 1.72φ (33)

The above lower bound formula assumes that the final packing fraction of grains stuck in the valve is greater than
the input value, φ. In our tests we have observed that this is always true except for the one outlier case mentioned
previously (vp = 1 m/s, Fig. 21 (right)) where no particles travel through the channel because the beneath valve fluid
pressure is less than the necessary pressure to open the valve to a lift greater than dmin/ cos(θ). This case is observed
in Fig. 40 (left) (vp = 1 m/s) where the normalized stuck area is zero.
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Fig. 39 NASP for different d (left) and ∆d (right).
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Fig. 40 NASP for different φ (left) and vp (right).

If particles get stuck, they can also potentially break depending on the force of contact with the valve and seat,
and grain properties such as the particle size and strength. A loose approximation of the possible volume of debris
created can be made by assuming stuck particles all break. This may be expressed in terms of the final lift and the
NASP, and then normalized by d3, giving

Debris = lift ·A ·NASP/d3 (34)

where A is the valve-rubber projected area.
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Supposing the lift obeys Eq. 32 where d∗ = d and NASP obeys Eq. 33, we suggest the Debris variable is approxi-
mated by:

Debris =
3

2

A

cos(θ)2
φ

d2
(35)

Figure 41 (left) shows the Debris as a function of d and Fig. 41 (right) as a function of φ. We show comparisons to
our approximate formula (Eq. 35).
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Fig. 41 Debris variation as function d (left) and φ (right). The red dashed line is the lower bound analytical solution
(Eq. 35)
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