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ABSTRACT

Micro-X is a sounding rocket borne X-ray telescope that utilizes transition edge sensors to perform imaging
spectroscopy with a high level of energy resolution. Its 2.1m focal length X-ray optic has an effective area of 300
cm?, a field of view of 11.8 arcmin, and a bandpass of 0.1-2.5 keV. The detector array has 128 pixels and an
intrinsic energy resolution of 4.5 eV FWHM. The integration of the system has progressed with functional tests
of the detectors and electronics complete, and performance characterization of the detectors is underway. We

present an update of ongoing progress in preparation for the upcoming launch of the instrument.

Keywords: Microcalorimeter, Sounding Rocket, Transition Edge Sensors, Micro-X, X-ray astronomy, Cryogen-
ics

1. BACKGROUND

Micro-X is a sounding rocket borne X-ray telescope that will perform imaging microcalorimetry [1]. The
sounding rocket flight will reach an apogee of 270 km and will have 300 seconds for science observations after
the gate valve opens at 160 km. It utilizes transition edge sensors (TESs) for its detectors, and will be the first
instrument to use these in space. It has a Wolter imaging optic with a 11.8 arcmin field of view and a 2.4 arcmin
point spread function. The detector has 128 pixels and an effective area of 300 cm?, with a bandpass from 0.1 to
2.5 keV. The cryostat contains an adiabatic demagnetization refrigerator (ADR) which uses a ferric ammonium
alum salt pill to cool the system down to 75 mK.

The Micro-X TES detectors are Mo/Au proximity-effect bilayers with Au/Bi absorbers, read out through
three stages of superconducting quantum interference device (SQUID) amplifiers. TES microcalorimeters are
devices biased into the superconducting transition so that they can act as very sensitive thermometers. A small
temperature change within the transition manifests as a significant change in resistance, so the magnitude of the
resistance change can be related to the energy of an incoming photon with excellent precision. The TESs are
biased at constant voltage, so the change in resistance manifests as a change in current. This current is picked
up by a three-stage SQUID readout system which amplifies the signal before it reaches the room temperature
readout electronics. The SQUIDs are operated in a flux-locked mode, where a variable feedback is applied to the
first SQUID in the chain in order to keep the total error fixed at zero. This keeps the input to all of the SQUIDs
centered so that their gains remain constant, and the feedback is recorded as the output of the readout chain.

In addition to signal amplification, the SQUIDs also enable multiplexing between pixels. Each of the 16 pixels
of a single “column” shares a single second-stage SQUID, whose input is the sum of the current from each pixel
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in in the column. In this time-division-multiplexing implementation, one first-stage SQUID per column is biased
at a time, thus only one pixel is being read out on a column at any time. Since the switching happens fast enough
that several samples can still be taken on each pixel during the rise time of an X-ray pulse, the multiplexing
system reduces the number of needed wires, and therefore the heat load, without significantly decreasing the
signal fidelity. These sensitive detectors are capable of producing high-resolution spectra which can be of great
utility for astronomy.

The first flight of Micro-X will observe the Puppis A supernova remnant. Specifically, Micro-X will be
observing the Bright Eastern Knot region of the remnant, to study the physics of a shock front interacting with
very dense clouds of material [2]. Observing this object with an imaging microcalorimeter will enable better
resolving emission lines than with CCD imaging (because of improved energy resolution) or gratings spectroscopy
(because this is an extended source). The mapped out emission lines will provide better measurements of
elemental abundances, allow for comparing plasma diagnostics between different species and determine the
dynamics of the system from Doppler shift measurements. The complex interactions taking place at the Bright
Eastern Knot may also lead to the first solid detection of charge exchange processes outside of the solar system.
Cassiopeia A has been chosen as a secondary target if the flight schedule does not coincide with Puppis A’s
window of visibility (late November - March). For future flights, the system will be repurposed to explore other
areas of science as well, including searches for potential signals of Dark Matter decay in the X-ray from the Milky
Way [3].

2. PAYLOAD STATUS

After three years of redesigns and upgrades to the cryogenic system, Micro-X successfully passed launch-level
vibration tests in July 2015, enabling a shift in focus towards the detector performance [4,5]. In February 2016,
the Micro-X payload was moved to the Goddard Space Flight Center (GSFC) to begin full detector systems
integration. The multiplexing (MUX) electronics have been integrated onto the readout and have accelerated
both detector calibration and the characterization and elimination of electrical noise. Previously, the detectors
had been mainly run with analog readout that permitted making single-channel measurements but did not have
the high speed multiplexing capabilities of the digital MUX electronics. The switch to using the MUX electronics
have made tests more flight-like and greatly improved the speed of tests intended to characterize performance
across the entire array instead of on single channels.
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Figure 1. Spectrum of the 5.9 keV Mn Ka line obtained with one of the Micro-X detector array pixels. The black curve
represents the fit two our collected data and the blue curve represents the fundamental line shape. The left figure is
a measurement taken in the flight cryostat with the flight electronics, while the right figure was taken in a laboratory
cryostat with analong electronics for initial testing [6]. The flight-system energy resolution is currently affected by various
sources of noise and crosstalk from the flight electronics, which we have mostly identified and for which fixes are in the
works.
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The achieved resolution of the Micro-X detectors in the flight system has improved substantially over the last
five months as we integrated of the cryogenic and electronics systems at NASA Goddard Space Flight Center. As
of this writing, Micro-X detectors have achieved 10 eV resolution using the flight cryostat and readout electronics
(Fig. 1). They were originally tested in mature ground based cryostats at GSFC in 2010. In that apparatus, a
spectrum of the Mn Ka line was measured with a resolution of 4.5 eV, representing the optimal performance of
these particular detectors with a Tc of 120 mK (Fig. 1). We expect that the implementation of various noise-
reducing modifications will allow the detector resolution to continue to improve towards their best achievable
performance.

3. ELECTRONICS NOISE STUDIES AT THE GODDARD SPACE FLIGHT CENTER

While integrating the flight electronics, we discovered a variety of electronic noise sources. Many have already
been eliminated to produce the detector performance discussed above, and progress with the other noise sources
will narrow the gap between the performance in the flight system and in the laboratory cryostat. These sources
of noise are described in the table below.

Digital The digital housekeeping electronics in the ADR controller and the MUX electronics operate
Housekeeping | by switching between different signals and compressing them into a single data stream. That
switching is picked up by the science chain readout and appears as detector noise. By filtering
the inputs to the housekeeping multiplexer and eliminating the housekeeping from the most
sensitive channels entirely, the impact on the detectors has been reduced.

Multiplexing | The digital commands that control the SQUID array readout carry the system clock for the
System Clock | multiplexer into the cold stage electronics. By passing these commands through an opto-
isolator, the clocking noise can be separated out. Design of a flight worthy installation of the
opto-isolators is underway.

MUX The MUX electronics derives its power from a converter card, which has a collection of DC/DC
Electronics converters to generate the necessary voltage rails from the onboard 28 V batteries. This
Power converter card produces significant white noise, which is seen on the detectors. For laboratory

testing, this board has been replaced with commercial power supplies. Installation of superior
shielding and filtering to eliminate the noise from this card is underway.

ADR Control | We found that when the ADR controller was powered, a significant amount of noise appeared
Thermometer | at all stages of the science chain. This was produced by the electronics that generate the sine
Stimulus wave of current that is used as stimulus for the control thermometers on the detector plane.
The noise on the detectors and the underlying digital clock on that board are correlated in
Fig. 2. Changing the grounding configuration on this board to match the same board used
for XQC rocket payload [7] cleaned up this effect. Adding a power line filter to the magnet
current also eliminated this noise and is still in use.

4. PATH FORWARD

With functional tests successfully completed, optimization has become the main focus of Micro-X. The
payload was moved to Northwestern University to continue the optimization and integration efforts in August
2016. For the detectors, full measurements of system noise and energy resolution have been made on a single
column, and those tests will need to be repeated over the entire array. It is also necessary to measure the
uniformity of optimal SQUID tuning parameters for different pixels to better characterize the performance of
the full array. These parameters vary with the magnetic field across the detectors, and a field coil has been
integrated into the detector setup to minimize the magnetic field across the detector plane. This field must be
optimized for performance across the array.

In addition to detector characterization, the readout timing must be optimized. The rocket flight version of
the multiplexing electronics has a slower response time than other, less constrained versions of the system. While
it is preferable to multiplex between channels as quickly as possible, it is necessary to ensure that the system
doesn’t multiplex so quickly that the switching time is shorter than the settling time for the electronics to reach
its new state. SQUID tuning parameters will be further optimized to obtain the best MUX performance.
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Figure 2. Comparison of noise spikes seen at the output of the unlocked science chain readout (green and yellow) with
the square wave passing between the digital sine generator board and the germanium thermometer readout board in the
ADR controller stack (pink). That these signals are correlated shows that the sine wave was ultimately responsible for
the noise on the SQUIDs.

Following detector optimization, the remaining subsystems will be integrated into the system. The radioactive
source for in-flight calibration and the optical blocking filters will be added to the inside of the cryostat. The
X-ray mirror, which has already been calibrated, will be aligned with the detectors. Finally, full integration and
testing at the Wallops Flight Facility will follow.

5. CONCLUSIONS

The Micro-X project has been making significant progress towards flight. The detectors have been operated
inside the flight system with flight electronics and obtained an energy resolution of 10 eV FWHM at 6 keV,
approaching the design sensitivity. This was achieved by identifying the sources of system noise and developing
effective mitigation strategies. Further work will provide additional improvements to the energy resolution and
complete the preparations for the upcoming flight.
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