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Abstract Analyzing the polarimetric properties of reflected
light is a potential source of shape information. However,
it is well-known that polarimetric information contains fun-
damental shape ambiguities, leading to an underconstrained
problem of recovering 3D geometry. To address this prob-
lem, we use additional geometric information, from coarse
depth maps, to constrain the shape information from po-
larization cues. Our main contribution is a framework that
combines surface normals from polarization (hereafter po-
larization normals) with an aligned depth map. The addi-
tional geometric constraints are used to mitigate physics-
based artifacts, such as azimuthal ambiguity, refractive dis-
tortion and fronto-parallel signal degradation. We believe
our work may have practical implications for optical engi-
neering, demonstrating a new option for state-of-the-art 3D
reconstruction.
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1 Introduction

Today, photographers use polarizing filters on 2D cameras
to create aesthetic photographs. But what if a polarizing fil-
ter is used in the context of 3D photography? In the vein of
computational imaging, we present a co-design of polarized
optics and post-capture processing for the task of 3D imag-
ing.
Currently, consumer 3D cameras like the Microsoft Kinec-

t produce depth maps that are often noisy and lack sufficien-
t detail. Using computational processing alone is unlikely
to mitigate the problem (e.g., if the noise is filtered, so is
the detail). As such, there is recent interest in using a join-
t optical and computational approach to both enhance de-
tail and remove noise. One of the most promising solutions
is to combine the captured, coarse depth map with surface
normals obtained from photometric stereo (PS) or shape-
from-shading (SfS). This depth-normal fusion is logical—
the coarse depth map provides the geometric structure and
the surface normals capture fine detail to be fused. Encour-
aging results have been shown by several papers that com-
bine low-quality depth maps with surface normal maps ob-
tained from SfS or PS Unfortunately, SfS and PS are lim-
ited by similar scene assumptions, e.g., restrictive lighting
and material assumptions. As a complementary technique,
this paper proposes the first use of surface normals from po-
larization to enhance depth maps. While our proposed tech-
nique also has assumptions on lighting and material proper-
ties, these assumptions work on new types of scenes that PS
and SfS cannot handle.

For over a century it has been known that the shape of an
object causes small changes in the polarization of reflected
light, best visualized by rotating a polarizing filter in front

I For example, [62}/161|60] using SfS, and [38l[17] using PS.
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(a) Input: Kinect Only

(b) Input: Polarization Photos

Canon T3i DSLR
Hoya CIR-PL Filter

(¢) Result after Section 3.1 (d) Result after Section 4.1.2
Coarse depth to correct

azimuthal ambiguity artifacts

(e) Result after Section 4.2

Correcting refractive distortion

Mi t Kinect Version II
icrosoft Kinect Version and physics-based integration

Shape from Polarization
Fig. 1 Outline of proposed technique. (a) The Kinect depth of an object is combined with (b) three photos at different rotations of a polarizing filter.
(c) Integration of surface normals obtained from Fresnel equations. Note the azimuthal ambiguity (observed as a flip in the shape) and distortion
of the zenith angle (observed as flatness in the shape). (d) Integration of surface normals after correcting for azimuthal ambiguity removes the flip,

and the final result is shown in (e) after correcting for zenith distortion and using physics-based integration.

of adigital cameraE|If properly constrained, obtaining shape
through polarization has potential advantages over SfS and
PS, including:

— Passive capture: assuming light incident on an object is
unpolarized, the surface normals can be obtained by ro-
tating a polarizer at the imaging sensor.

— Robustness to diffuse interreflections: unlike SfS and P-
S, diffuse interreflections do not significantly corrupt the
estimated shape.

— Material invariant capture: the physics of the shape from
polarization problem hold for materials ranging from di-
electrics to metals to translucent objects.

— Lighting robust capture: if the incident light is unpolar-
ized shape estimation is robust and can be conducted in-
doors, outdoors, or under patterned illumination.

However, there appears to be untapped potential as obtain-
ing surface normals through polarization is not yet a mature
technique. The obtained normals are drastically distorted.
Specific open problems include:

1. Ambiguity: The azimuth component of the surface nor-
mal contains an ambiguity of 7 radians, which leads to
ambiguous flips in the 3D shape.

2. Refractive distortion: Obtaining the zenith component
of the surface normal requires knowledge of the refrac-
tive index to estimate accurate 3D shape.

3. Fronto-parallel surfaces: When the zenith angle is close
to zero, the obtained normals are noisy.

4. Depth discontinuities: Even if the normals are obtained
correctly, integration of gradients must be performed to
recover the 3D shape.

5. Relative depth: Integrating surface normals obtains on-
ly relative 3D shape, up to offset and scaling constants.

We believe that a solution to the above 5 problems is a sig-
nificant step toward practical depth sensing. Although there
are partial solutions in prior art, that address restricted cas-
es, a comprehensive solution to the above 5 problems has

2 Formalized by Augustin-Jean Fresnel (1788-1827) as the famous
“Fresnel Equations”.

not been presented. In this paper, the 5 challenges are ad-
dressed by starting with a coarse depth map as a constraint
to correct the normals obtained from polarization. While we
do not solve all open problems, our correction is sufficient
to realize early-stage practical results and hopefully spur fu-
ture work. An overview of our approach is summarized in
Figure/[T]

A preliminary version of this work was demonstrated
live at SIGGRAPH in August 2015 [26] and appeared at IC-
CV in December 2015 [23]. This paper includes additional
material pertaining to: a theoretical analysis of mixed reflec-
tions based on wave interference (Section @, a practical
analysis of the unpolarized world assumption (Section [5.2)),
additional results including a failure case and demonstration
using a laser scanner, and finally expansions to the prose and
discussion of related works.

1.1 Contributions

Conceptually, we propose a technique that exploits surface
normals from polarization cues to enhance the quality of a
coarse depth map. This is the first technique that uses a depth
map to address the fundamental ambiguities in SfP. Very
specifically, we devise a physics-based framework, wherein
the coarse depth map is used to resolve azimuthal ambiguity
(addressing problem 1) and correct for refractive distortion
(solving problem 2). To recover 3D shape, we propose a s-
panning tree integration scheme that uses the degree of po-
larization as a weighting parameter. This approach, specifi-
cally designed for polarization normals, addresses problem
3. As is well-known, the general fusion of depth and normals
solves problems 4 and 5.

Taken together, we then analyze our technique for suit-
ability on real-world, mixed surfaces using a wave-based
analysis of light transport. Practical results are benchmarked
against ground truth data, Kinect data and state-of-the-art
3D enhancement techniques [60], demonstrating clear im-
provement on a wide variety of scenes.
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Table 1 The fusion of polarization and depth works on complex scenes, with shiny objects, interreflections, and uncontrolled lighting. Single-shot
capture is possible using a polarization camera. These cameras are sold with a sensor mosaic for multiple polarization channelsgﬁ

Depth Prior Material Lighting

Lighting

Diffuse Specular Minimum Compact

+X Assumption
Photometric Stereo

Assumption

Type Interreflections

Interreflections Images Sensor

67] Lambertian Distant Lighting Active and Controlled Not robust Not robust 3 No
Shape From Shading . Spherical Harmonic .

(50] G0Ia7] Lambertian See Basri [3]. Passive Not robust Not robust 1 [Regular Camera] Yes
Shape from Polarization Dielectrics or Uiyl Passive Robust Not robust [Camera + Polz. Filt.] Yes

[Proposed Combination] Low-frequency Transition

2 Related Work

Shape from Polarization (SfP) estimates surface normals by
analyzing the polarization properties of reflected light. An
overview can be found in [44], which describes how the de-
gree of polarization and orientation of specular reflection-
s can be used to obtain surface normals. The information
in specularly polarized light can also be extended to trans-
parent objects [46,32]. On the other hand it is also pos-
sible to estimate the shape of dielectric objects using the
cues from diffusely polarized reflections [3414]. A few no-
table extensions have been proposed to enhance SfP. For
instance, Zhang et al. propose a method whereby incident,
polarized information is used to improve the SNR charac-
teristics of shape from diffuse polarization [66]. In another
example, Huynh et al. combine spectral (wavelength) infor-
mation with polarimetric measurements to recover surface
normals and refractive index [20]. Recently, Smith et al.,
proposed a very interesting approach that allows linear depth
estimation in uncalibrated scenes with assumptions that ap-
pear more general to previous work, but still require scene
conditions like the refractive index to be known [53]]. Tak-
en together these papers illustrate the benefit of using po-
larization, but—regardless of which polarization technique
is used—the five problems we illustrated in Section [I] are
not handled by a single paper. These include, for example,
a lack of unicity when solving for the azimuth and zenith
components of the estimated surface normal. To solve such
ambiguities, uses two viewpoints to obtain polarization
measurements. The work by [34] instead opts to use priors
on the distribution of surface normals, which was extended
to obtain rough shape from space carving on multi-view data
[33]]. For a more complete picture, the reader is directed to
a survey of polarimetric shape techniques, published recent-
ly by Stolz et al. as well as chapter 10 of Robles-Kelly
and Huynh [435]]. Our work is closely related to that of [39],
which uses information from shading to constrain SfP. In
comparison, we use the additional measurement of coarse
depth to sufficiently address major artifacts in classic SfP,
which presents an additional option that is complementary
to previous works.

Combining depth and normal cues is, by now, a popular
technique to obtain 3D information. Generally speaking, pri-

1 [Polz. Camera]

or art combines a geometric-based technique to obtain rough
depth with a photometric-based technique to obtain surface
normals (one of the early works in this line is Helmholtz
Stereopsis [[70]). Such a fusion is well-motivated: (1) The
geometric approach helps to remove the ambiguities in pho-
tometric techniques, such as SfS or uncalibrated PS; (2) The
photometric approach helps in adding surface details to the
coarse depth map from the geometric data; and (3) the rough

depth map provides anchor points for the surface-from-gradient

problem, addressing the challenge of non-integrable surfaces
at depth discontinuities. There are numerous existing works
that partially or completely reflect these three aspects. Com-
binations that have been explored previously include: com-
bining a laser scan with PS [38]], multi-view stereo with SfS
or PS [65,231[9]], consumer depth sensing with SfS [62]
[16l/60], and consumer depth sensing with PS [67.[17,/50]. If
high-quality surface normals are not available, fusing a se-
quence of overlapping depth maps is a popular approach to
produce a smooth surface for various interactive application-
s [21] or large-scale, real-time surface reconstruction [40].
Tab. [T summarizes the benefits and limitations of our pro-
posed approach, while Fig. [J] outlines the logic of using po-
larization instead of SfS and PS.

Polarization in computational imaging: Some researcher-
s have exploited polarized spherical gradient illumination
patterns coupled with a polarizer in front of a camera to
capture the behavior of polarized light transport for high-
resolution facial scanning of static expressions [29], esti-
mation of specular roughness and anisotropy [[11]], inference
of per-pixel surface reflectance parameters through circular
polarization cues [[12}[14]], and for multi-view facial perfor-
mance capture [13]]. Polarization cues are also widely used
in computational imaging applications, such as separation
of multipath information in ToF imaging [56], separation
of diffuse and specular reflections [37/69], dehazing of im-
ages [48]], image mosaicing and panoramic stitching [49],
illumination multiplexing [[7]|, vehicular detection [§]] and
camera [30,22]] or display hardware [28]. In addition, po-
larization cues can be used to recover shape of translucent
objects [6], shape of the ocean surface [64], or address s-
cattering underwater [[55]. For a more complete overview of

4 A specific example of a polarization camera can be found at this
URL.: http://www.4dtechnology.com/products/polarcam.php
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- to theoretical limit, and practical limit is higher.

1000

Distant lighting
Isotropic BRDF
[Shi et al. 2014]

images

Unknown natural lighting
Lambertian
[Basri et al. 2007]*

Distant lighting
Anisotropic BRDF/
Transparent
[Holroyd et al. 2008;
Yeung et al. 2014]

+ ambient lighting

Number of images

Lambertian
[Ackermann et al. 2012]*

v
coarse depth to handle complex ligh refl. | Possible extensions

v

Increasing complexity of lighting and reflectance

Fig. 2 Why use polarization for obtaining surface normals? When
lighting conditions become less controlled or the material properties
increase in complexity, alternative techniques may require more im-
ages. By imposing geometric constraints on polarization cues, it may
be possible to span a large range of material complexities and lighting
conditions using only 3 photographs. For a more complete picture, the

figure references are, from left-to-right: (58], [T1, 50,1511, 1T9].[61]. The
proposed technique is shown in the red bar, with a possible extension,
shown in orange.

polarization imaging and its applications the reader is direct-
ed to and [68]].

3 Basics of shape from polarization

To provide a self-contained overview, we review the shape
from polarization problem in condensed form.

3.1 Surface normals from polarization cues

A photograph is captured with a polarizer at an angle @pq1.
At a single image point, the intensity can be written as
Tnax + Imin

Tmax — Imi
I(gpar) = =5+ =5 ——cos 2 (g = @), (D)

where the three unknown variables in this equation are Iy,
Inin, and @, shown in Fig. 3] Sampling different values on
the sinusoid amounts to taking pictures with different rota-
tions of the polarizer angleﬂ We use standard spherical and
cartesian coordinates to represent the normal vectors. In the
former, we are reliant on the zenith angle and azimuth angle
to define the surface normal.

Obtaining the azimuth of surface normal: By sampling three
values of ¢y it is sufficient to characterize the amplitude,
phase, and offset of the received signal. The azimuth angle,
@ is encoded as the phase of the received signal. Howev-
er, note that the solution is not unique: two azimuth angles,
shifted apart by ©t radians cannot be distinguished in the po-
larized images. Concretely, note that an azimuth angle of ¢

3 For this paper, we rotate the polarizer to the desired angle. How-
ever, the mechanical process of rotation could lead to small errors, for
which Schechner has devised a self-calibrating solution [47]].

and @ + 1 return the same value for Equation[I} In practice,
this leads to disappointing results when using shape from
polarization. Solving this ambiguity is one focus of this pa-
per.

Obtaining the zenith of surface normal: The degree of po-
larization is based on the amplitude and offset of Equation|[T]
and can be written as
— Imax — I ) (2)
Iax + Inin
Substituting the Fresnel equations (see [18]]) into Equation2]
allows the degree of polarization to be written as
(n— %)Zsinze )
p= ) ~
242n— (n+ %)Zsinze +4cos 0/ n? —sin’6
where n denotes the refractive index and 0 the zenith angle.
If the refractive index is known, the zenith angle can be es-
timated either in closed-form, or by numerical optimization.
Unfortunately, it is difficult to know the refractive index at
each pixel, particularly in a scene with mixed materials; this
is one of the challenges with SfP that we address.

Specular vs diffuse polarization: Equation [3] is robust for
dielectric surfaces, but cannot be used on non-dielectric sur-
faces, such as mirrors or metals. These materials do not re-
flect back any diffuse light, but the relation

_ 2ntan O sin 6
tan? Osin> 0 + |n

- |2 , (Specular Model)  (4)
where [n*|* = n? (14 ?) and x is the attenuation index of
the material, allows the zenith angle to be found [33]]. It is
possible to identify whether to use Equation [3] or ] to ob-
tain the zenith angle based on the degree of polarization at a
single pixel Variants of the method thus described are im-
plemented in previous SfP work [313234]. Due to the limi-
tations of SfP (see bullets 1-3 from Sectionm), SfP has never
been considered as a robust alternative to SfS or PS.

Implementing shape from polarization: Although SfP has
many ambiguities, as described above, our method uses s-
tandard SfP to recover an initial normal map from polariza-
tion. This will have all the aforementioned ambiguities, but
our contribution is to correct it with geometric constraints.
To obtain the initial normal map, we choose a refractive in-
dex to 1.5 (this value is obviously wrong, but is close to
the real-world value of many common objects). To decide
whether Equation 3] or ] is more germane, we make the ob-
servation that if p is high, the reflection is specular, and the
latter equation is more relevant. The result from SfP on the
coffee cup scene is shown in Figure[Tk, where the challenges
with SfP can be readily observed.

6 Tn practice, the degree of polarization is generally an order of mag-
nitude larger for specular dominant reflections.
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:

Linear Polarizer

-~

3 " Kinect

(a) Capture Setup

60 deg.

(b) Photograph of Object

Intensity

Polarizer Angle (Radians)

(¢) Intensity vs Polarizer Angle

150 deg.

(d) Photographs at different polarizer angles show slight variation

Fig. 3 Capture setup. In (a) a standard camera with a polarizing filter is used to photograph a diffuse sphere under different filter rotations. The
Kinect is not used in this figure, but shown for context (as the rest of the paper uses the Kinect). (b) A photograph of the sphere with two points on
the geometry labeled. (c) Plotting intensity at different polarizer angles at the labelled points on the geometry. Observe the variation in the sinusoid
that is due to the geometry. (d) Selected photos of the object at different polarizer angles show a slight variation (figure must be viewed digitally).

4 Framework for Depth-Polarization Fusion

Scenes are assumed to have the following properties: (1) un-
polarized ambient light; (2) no specular interreflections; (3)
only dielectric materials or low-frequency changes in ma-
terials; and (4) diffuse-dominant or specular-dominant sur-
faces[’]

4.1 Correcting normals from polarization

We use the obtained depth map to correct systematic dis-
tortions in the normals from polarization. Let D € RM¥*V
denote the obtained depth map. Our correction scheme op-
erates in the normal domain, so we find the surface normal-
s from the depth map, denoted as NPt ¢ RM*Nx3 Fol.
lowing the work of [27], we express the depth map D €
RM*N a5 a point cloud of real-world coordinates as Py, =

T
[—EDM —Dyy Dx,y] , where u and v denote pixel co-

J
ordinates and f; and f; denote the focal length in units of
pixels. For each scene point Py 5, we find J points whose Eu-
clidean distance away from P,  is less than a fixed absolute

distanceﬁ Thus, for a given point, Py ,, we have a set that in-

7 Refer to Sectionfor a detailed analysis of key assumptions.

8 For all experiments, this distance was set to 20 millimeters. To find
the neighborhood, we use the kd-tree search algorithm, which can be
implemented by the RANGESEARCH command in MATLAB.

cludes this point and its neighbors, {Pw, Py, .- ,PXM-J}.
By stacking all of these points into a matrix,

T
— I;x,y —

XYL

=| |, ®)

_pT

Xy T

we find the normal by solving
, ~ 2
i =asgin] (0-0)nf
n

where each identical row of the matrix 6 € RUF1)3

tains the mean across the first dimension of Q (i.e., a point
that is the average of all the points in Q). The smoothness of
NdePh can be changed by controlling the size of the neigh-
borhood that the search algorithm returns.

con-

4.1.1 Removing low-frequency azimuthal ambiguity

Consider the corner scene in Fig. ] Using a coarse depth
sensor, a low-frequency version of the surface is acquired
(note the smoothness in the 3D shape in Fig.[@b). On the oth-
er hand, the shape from polarized normals is very inaccurate
due to the azimuthal flip, but the high-frequency detail can
be recovered.
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Let NPolar ¢ RM*NX3 denote the normal map obtained
from polarization cuesﬂ The goal is to find an operator o7
that relates NPOl2r and N9ePth which can be expressed numer-
ically as

—

&/ = argmin HNdepth — o (NpO]ar) H2
of 2

Without any additional constraints, this optimization is ill-
posed. However, to resolve polarization ambiguity we are
only interested in representing <7 as a binary operator, i.e.,
the operator &7 has a matrix representation A of dimension
M x N, where A € 0,1. Here, the binary state of each el-
ement, A,;, corresponds to whether a normal at a specif-
ic pixel location will undergo an azimuthal rotation or not.
The operator’s function follows suit: at each pixel, the oper-
ator .o/ either rotates the azimuth angle by 7 or does noth-
ing depending on the binary value of A,,,. Since the goal is
to solve low-frequency ambiguity, we impose an addition-
al constraint that the matrix representation of &7 is smooth
in the sense of total variation. Taken together, this can be
expressed as a minimization problem:
— 2
&/ =argmin HNdepth 4 (Npom) H +v%(A)
o 2 (6)
subjectto A € {0,1},

where the parameter Y controls the (piecewise) smoothness
of the solution and % is the standard 2D TV regularizer,
such that 2 (A) = ¥, Yi|ViAun| + |VyAp|, where V, and
V, are horizontal and vertical gradients. In particular, since
the decision variable is binary, we use a modified version
of graph-cuts, which is often used to segment an image into_
foreground and background patches. ['*| After obtaining .o/
it is possible to correct low-frequency changes in the ambi-
guity by applying the operator to the polarization normal:

N = 7 (N %)

After correcting for low-frequency ambiguity, we can return
to the physical experiment on the corner. By applying the
techniques introduced in this section we have traversed from
the ambiguous normals in Fig. @i to the correctly flipped
normals in Fig. [#h. For this example, the ambiguity was low-
frequency in nature, so the coarse depth map was sufficient.

4.1.2 Removing high-frequency azimuthal ambiguity

If the depth map is coarse, consisting of low-frequency in-
formation, then it cannot be used to resolve regions with

9 Npolar js obtained through shape from polarization and this normal
map will suffer from the physics-based artifacts described previously.
This can be seen visually in Figure|lk.

10 The 2D-TV implementation parallels the optimization program
from prior work [24].

A/ N

(b)3D.Shape
Kinect

(@)3D.Shape
Ground. Truth

(c)3D.Shape
Polarization

(d)3D.Shape
Our.Result

(9)Surface.Normals (h) Surface.Normals
Polarization Our.Result

(F) Surface.Normals
Kinect

Ll LN

9) Shape.Error
Polarization.987.6.mmg

(€) Surface.Normals
Ground.Truth

(i) Shape.Error
Kinect.%5.4.mmg

(k) Shape.Error

Our.Result.9.6.mmg

120

| | B

(1)Normal.Error (m)Normal.Error
Kinect.920.9.degg  Polarization.%8.5.degg

(n)Normal.Error
Our.Result.%.6.degg

Fig. 4 A commonly used benchmark scene [T336]]. Combining po-
larization with Kinect results in improved performance. The top row
shows the 3D shape of a corner. The second row shows the surface
normals. The third row plots the estimated surface error in millime-
ters and the fourth row depicts the estimated angular error of surface
normals in degrees w.r.t. the ground truth.

high-frequency ambiguity. To address this challenge we force
these regions of the surface to be closed.

Fig. Bh illustrates a conceptual example with a high-
frequency V-groove on a plane. The normals are disambiguat-
ed correctly on the plane, but the ridge cannot be disam-
biguated using the method from Section f.1.1] In particu-
lar, observe that the high-frequency ridge can take one of
six forms. To constrain the problem, we define an anchor
point at the start of the high frequency region and a pivot
point at the center of the ridge. The anchor point represents
the boundary condition for the high-frequency ridge and the
pivot point occurs on an edge not on the boundary.

Given the anchor and pivot points, we define a facet as
the set of points between the anchor and pivot points (see
Fig. Bb). A facet can form a planar or nonplanar surface.
Assuming there are K facets, there are 2 x 2K — V possible
surface configurations, where V is the number of possible
closed surfaces [ This surface has two facets and two closed

11 Calculation of 2 x 2K — V: each facet can have 2 possible normal
orientations due to the azimuthal ambiguity, leading to 2X possible sur-
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\ \ object shape. Specifically, we define a binary mask as
\ l\ \J\ M., =1if [V'NEPP| <eand |V NS <&, My, =00.w,
®)

(a) Point Identification

i e e VN

(¢) Six Possible Orientations

(b) Facets

Anchor Points ® Pivot Points

Fig. 5 Addressing high-frequency ambiguity. Consider a planar sur-
face with a high-frequency pit. (a) Anchor and pivot points are identi-
fied to group points on the ambiguity region into (b) facets. (c) Each
facet can be rotated by 7 radians, creating ambiguities.

configurations, and therefore six possible surface configura-
tions. Four of these are not closed, i.e., the high-frequency
region has a discontinuity at an anchor point. The disconti-
nuity is physically possible—i.e., the V-groove could actu-
ally be a ramp in the real world—but it is less likely that the
high frequency detail has such a discontinuity exactly at the
anchor point. Therefore, we assume the high-frequency sur-
face is closed@ Of the two closed surfaces, one is concave
and the other is convex. There is no way to distinguish be-
tween these surfaces using polarization cues. This is not u-
nique to polarization enhancement: the convex/concave am-
biguity applies to the entire surface from SfS [41] and un-
calibrated PS [63].

4.1.3 Correcting for refractive distortion

Recall that estimation of the zenith angle requires knowl-
edge of the refractive index. For materials within the dielec-
tric range, deviation in the estimated zenith angle is only a
minor source of error (Fig. |§|) However, for non-dielectrics,
the zenith angle surface normal will be distorted, which when
integrated, causes distortions to the 3D shape.

To undistort the zenith angle, we first find the regions
of the depth map that provide a good estimate of the coarse

face configurations due only to the degrees of freedom of the facets. By
constraining the rest of the surface using the anchor point as a bound-
ary condition, this leads to 2 x 2X surface configurations. Since we
assume that the facet is continuous with the anchor point, the overall
dimensionality is reduced to 2 x 2K — V.

12 Implementing high-frequency ambiguity correction. First, a differ-
ence image is formed of the depth normals and polarization normals.
The difference image only contains detailed features, as it would not
show up in the former (otherwise the method from Section E-TTJwould
have been sufficient). From the difference image, the pixel at an edge
from 0 to a non-zero value represents an anchor point. An edge cor-
responding to a change in sign (e.g., at the V-groove of a corner) is
a pivot point. A greedy approach is used to flip surface facets, which
enforces a closed surface constraint. Details about the closed surface
constraint can be found in [34].

where € is a smoothness threshold. Note that the depth map
has been smoothed, such that it is not noisy, but lacks fine
detail. Intuitively, Equation[§]is saying that if the depth map
has low divergence (the depth map predicts no detail) and
the polarization data has low divergence (it is either noisy
or predicts no detail), then we should use the depth nor-
mal. For the corner in Fig. [ observe that the sharp point
of the corner—where the Kinect data is inaccurate due to
multipath—has a mask value of O since the divergence in
N is high.

Let 99¢Ph ¢ RMXN and 9 ¢ RM*N denote the zenith
components of NP and N from section Over the
pixel grid, we use a patch based optimization. A patch is
a rectangular group of P pixel coordinates with associated,
scalar angles from depth, {Offgql, e Ggﬁpyﬂ;} and polariza-
tion, {657 ..., Gif,f;l,}EFor the p-th patch, the goal is to
find a rotation operator &, such that

o~

A= argmim, XiYi XpsYi

1

P
Mxijy,' edepth 7 (6901~r) |2_ 9)
=1

To correct for refractive index, the normals are updated
by applying the rotation operator to pixels within this patch,
such that
N = SPH2CART (1,%, (6% ) , @uy,) »

XisYi XisYi

(10)
where @y, ,, denotes the azimuth angle of NiT, SPH2CART
represents an operator that converts spherical coordinates to
cartesian, and the first argument of SPH2CART is the radial
distance, typically equal to 1 for surface normals. It is im-
portant to note that %, is applied on a patch-wise basis as
it will be different at different patches (due to the spatially-
varying nature of the problem).

4.2 Corrected normals from polarization to enhance the
coarse depth map

Given the corrected normals, it is possible to integrate to
obtain the 3D shape. Unfortunately, surface normal integra-
tion is known to be a challenging task due to depth discon-
tinuities [2l67]. To recover plausible 3D shape, we develop
an integration scheme that incorporates the input depth map
(D) and physical intuition from corrected polarization nor-
mals (N°) to recover the depth coordinates of the surface
ﬁ c RM xN

13 Note: this notion of a patch operates on the pixel grid and is thus

different from our convention of defining a point cloud neighborhood
(cf. SectionA.T). For our paper, we use a 7x7 patch.
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Scene: Spheres with Different Materials

Reconstruction: Surface Normals
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(a) Refract. Index=1.3
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(b) Refract. Index=1.5

(¢) Refract. Index=1.8

Reconstruction: Cross-Section
of Integrated Surface
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(d) Recovered Surface

Fig. 6 Within the dielectric range (n=1.3 to 1.8), refractive distortion has little effect on shape reconstruction (simulated example). We simulate a
scene with three spheres, each having different material properties but geometrically identical. If the refractive index is unknown—and a hard-coded
threshold is used—the estimated surface normals shown in the bottom row of (a)-(c) exhibit slight distortion. When the surfaces are integrated,

shown in the upper row of (a)-(c), the shape changes slightly, shown in (d).

4.2.1 Spanning tree constraint

The standard way to integrate surface normals uses the well-
known Poisson equation, written as V2D = VTN for our
problem. This is the optimal solution in the sense of least
squares and works well when the noise model is asystematic.

For the polarization problem, the surface normals have
systematic error. Intuitively, it is desirable to avoid integra-
tion using unreliable surface normals (see Fig.[7). In partic-
ular, the surface can be recovered in closed form by using
only the minimum spanning tree over a weighted, 2D graph
(the spanning tree is found using Kruskal’s algorithm). The
optimal solution is written as
V2D = VENeor, an
where S denotes the set of gradients used in the reconstruc-
tion and V_% and V. represent Laplace and divergence op-
erators computed over S. For accurate integration, the set S
includes a spanning tree of the graph. Let Wy, denote the
weights of the 2D grid. To find the weights, most previous
work uses either random sampling, gradient magnitudes, or
constraints on integrability [2L[10].

The physics of polarization are used to motivate the se-
lection of graph weights. Specifically, the polarization nor-
mals are considered to be noisy when the degree of polariza-
tion p is IOWEA low degree of polarization most common-
ly occurs when the zenith angle is close to zero (i.e. fronto-
parallel surfaces). For the depth map, the mask operator M,
defined in section[d.1.3] provides a weight of confidence.

We initialize S, the set of gradients used in the integra-
tion, as the empty set. The first gradients that are added to
S are those that lie on the minimum spanning tree of the

14 Estimation of the sinusoidal parameters from Equationbecomes
unstable when there is little contrast between I, and Tiax.

weighted graph with weights

Wy =pyy if pyy>7Tand M, =0, W, =7 otherwise,

(12)

where 7 reflects the level of confidence in the polarization
vs depth normals. We then update S by using the iterative
a-approach described in [2] by using N in the update
process. To incorporate N%P® into the approach, we update
the corrected normals using the output from the o-approach,
ie.,

N := NP if - W,y <7, (13)

4.2.2 Depth fidelity constraint

When integrating surface normals, only a relative 3D shape
up to an unknown offset and scaling is obtained. Here, the
depth fidelity constraint serves to preserve the global coordi-
nate system and enforce consistency between the integrated
surface and accurate regions of the depth map. Specifically,
the depth constraint takes the form of

e (e (0-D))

where VEC denotes the vectorization operator and ® repre-
sents Hadamard multiplication. Here, we have used Hadamard
multiplication with the mask to enforce fidelity only where
the depth map is reliable. Both the depth fidelity and span-
ning tree constraints are incorporated into a sparse linear
system

(14)

AMGI
Vs

AVEC(M®D)

VEC (ﬁ) = V§ (Neorr) ) (15)
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Full Gradients

Minimum Spanning Tree

Full Integration Spanning Tree Integration

1

Ground Truth Surface

1

Ground Truth

Combined Normals

Polarization Coarse Depth

Fig. 7 Using polarization cues to find the best gradients to integrate
the surface (simulated example). Represent the image points as nodes
and gradients as edges. The full gradients are shown in the upper-left.
‘We break the edges that have a low degree of polarization to find a
minimum spanning tree for the grid (upper right). We validate this in
simulation, shown at bottom, where the normals from polarization have
error in fronto-parallel regions. Full integration results in a noisy depth
map, while the spanning tree integration preserves the shape of the
contour.

where I is the identity matrix of size MN x MN and A is
a scalar parameter to adjust the tradeoff between spanning
tree and depth fidelity constraintsIEl

S Reflection and Lighting Assumptions

This section analytically validates the practicality of our tech-

nique by justifying the reflectance and lighting assumption-
s, first described in Section [d] Specifically, Section [5.1] in-
cludes two propositions, one for the azimuth angle, the oth-
er for the zenith angle, to explain why the proposed method
will work on certain classes of mixed surfaces but not other-
s (e.g., if a reflection is 75 percent specular and 25 percent
specular, the method can work, but not if the components
are equal). In Section [5.2] the unpolarized world assumption
is described in more detail.

15" A value of A = 0.02 is recommended.

5.1 Analyzing mixed reflections

Reflections from real-world objects are mixed as they in-
clude both specular and diffuse componentsmln this paper,
we are able to recover 3D geometry for mixed surfaces, sub-
ject to the constraint that the reflection is composed of an un-
equal mixture of diffuse and specular components. We term
this the “diffuse or specular dominant” assumption, first list-
ed in Section @]

One of the reasons for this assumption is that when the
measured irradiance from diffuse and specular reflection com-
ponents is small wrt. noise, then the azimuthal angle en-
counters a stochastic additional ambiguity of 7/2 radians.
We refer to this error as stochastic azimuthal ambiguity. In
comparison, when the measured irradiance from the reflec-
tion components is large wrt. noise, then the azimuthal an-
gle predictably aligns to either diffuse or specular reflection
components.

Proposition 1: Stochastic ambiguities in the azimuthal an-
gle are avoided when polarized reflections are either diffuse
or specular dominant.

Proof: Consider a single scene point where the image in-
tensity of a mixed reflection can be written as

1=1Is+1p, (16)

where I is the intensity due to a specular reflection, while
Ip is due to a diffuse reflection. Both specular and diffuse
reflections will have polarized (denoted by Iy) and unpo-
larized components (denoted by Ig). Then, Is = Ig+ I5 and
Ip =I5+ Ip. The total image intensity can now be expressed
as

I =L+ I+ 15+ 1p a7
Writing this in terms of electric field vectors,
E:E0+ED+E§, (18)

where the unpolarized electric field vector Eqg can have any
direction. By noting that the diffuse and specular compo-
nents differ in phase by a factor of ©/2, we write

E =E+Egsin (¢pol - (P) + Ezcos (¢pol - (P) ) (19)

where @, is the polarizer angle, and ¢ the azimuth angle at
this scene point. Since the light source is incoherent, upon
taking the magnitude, we obtain

I =|E| = Io+Isin* (9o — @) + I5cos” (@por — @), (20)

16 In this paper, we use the term “reflection components” following
an optical imaging convention. This is identical to the term “reflectance
components”, which may be more familiar to some readers.
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which is rearranged as

I+15 I5
I=l+2-L2 43

I —
D
5 +Tcos( (Ppoi — @)) - 1)
Clearly if the surface is specular dominant, then I3 >> Iy and
Equation 21| can be approximated as

I; I
I=1ly+ 3+ c0s (2(9po1 = @) - (22)

Similarly, if the surface is diffuse dominant, then Iy < I; and
Equation|2l|can be approximated by neglecting I5. Note that
either Iz > Iy or Iy < Iyy. Represent A = |Iz— I5|. Then, de-
pending on whether the diffuse or specular polarized com-
ponent is greater, Equation[21|can be written as

L+I5 A
I=L+3 3 D+§cos(2(¢pol—(p))
S
I()-i-L

2]D + %cos (2 (Ppor — (9 —7/2)))

if Ig>1y

1

(23)

where now the azimuth angle has shifted by ©/2 radians.
Only for small values of A will the flip in azimuthal angle
be randomly dependent on noise. Specifically, if A is large,
the model will consistently conform to one of the two cases
in Equation[23) which is the desired result. B

The key implication of Proposition 1 is that azimuthal
angle is robust to mixed surfaces as long as the assumption
of diffuse/specular dominance is met and that the correc-
t model, either diffuse/specular, is identified.

We now seek to show that any perturbation in zenith an-
gle as a function of mixed reflectance can be corrected for
with depth constraints.

Proposition 2: Assuming the conditions of Proposition 1
hold, perturbations in zenith angle due to mixed reflection-
s can be corrected by applying the rotation operator ,@ as
described in Equation[I0)].

Proof: Under the conditions of Proposition 1, it is assumed
that the reflection component is either (1) specular dominan-
t, or (2) diffuse dominant. First, consider case (I1). Denote
Lins Lnin, and p as the corresponding variables of Ly, Lyin,
and p for mixed reflections. Since, for case (1), = Is+1Ip =~
I, it follows from Equations [I)and 21 that:

min I[)a
o571 _ =15 '
21 + L+ 15 2(1§+ID)+I§+I]~)

Now, p is dependent on both diffuse and specular compo-
nents. Under case (1), the polarization of diffuse component

i Is<I;,
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(a) Input Depth: Kinect (Time of Flight)
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(¢) Proposed Technique: Captured in Disco Ball Lighting
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(d) Proposed Technique: Captured in Outdoor Lighting

Fig. 8 Polarization enhancement works in a range of lighting condi-
tions (real experiment). (a) ToF Kinect, due to multipath, fails to cap-
ture an accurate corner. (b) Polarization enhancement indoors. (c) Po-
larization enhancement under disco lighting. The disco ball casts di-
rectional uneven lighting into the corner and introduces caustic effects.
(d) Polarization enhancement outdoors on a partly sunny, winter day.

is assumed to be negligible wrt. the polarization of the spec-
ular component. Therefore, the relation in Equation [I6 al-
lows us to express the measured degree of polarization, after
simplification, as:
. I-Ip
P

(25)

Since # acts as a scaling factor on the degree of polariza-
tion, and since the degree of polarization has a monotonic
relationship with zenith angle, it follows that 3 a rotation op-
erator that aligns the mixed zenith angle with the true zenith
angle. For case (2), the opposite is assumed, such that the
measured degree of polarization is expressed as:

‘ I-1Is

P=pP—F- (26)

Analogous to case (1), = 15 acts as a scaling factor on the
degree of polarization, whlch is the desired result. B
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Fig. 9 Polarization enhancement works for varied material conditions. Since one of the objects is shiny, a simulated depth skeleton with additive
Gaussian noise is used as the depth template; this demonstrates that our key contribution of combining a general depth map with polarization
normals can work for a range of material conditions. A challenging object can preclude recovery of a coarse depth map, leading to instances like

the failure case in Fig.[T4]

Propositions 1 and 2 provide analytical justification for the
practical results of this paper on real-world, mixed surfaces.
In the case of unstable azimuth perturbation, this unique ef-
fect will only happen when diffuse and specular components
are nearly equal (following from Proposition I). This will
not happen in many scenes, and in particular it will not hap-
pen at many scene points. In the case of zenith perturbation,
Proposition 2 shows that the perturbation amounts to a s-
caling on the ground truth degree of polarization. Therefore,
the correction applied to the zenith angle motivated first by
refractive error (i.e., rotating the zenith angle to match the
depth normal) also serves to correct for the diffuse/specular
perturbation in zenith angle. Nevertheless, more study is re-
quired to assess performance limits of mixed surfaces.

5.2 Unpolarized world assumption

This paper follows the standard SfP assumption that the light
incident on the object is unpolarized, such that any polariza-
tion imparted to the reflected light is due to the shape. For
this to hold, the light source must be unpolarized and the
scene must not consist of specular interreflections.

Incident lighting is unpolarized: Natural light sources, like
the sun, are unpolarized. Most types of indoor lighting are
also unpolarized, like incandescent or halogen bulbs. Some-
times, solid-state light sources are used indoors, like LED
lamps. However, in almost all cases, a diffusing sheet is
placed over the light source, which acts to depolarize the

light. We believe that the unpolarized source assumption is
valid.

No specular interreflections assumption Assuming the light
source is unpolarized, after a specular reflection, the light is
polarized. If this is incident on the scene point of interest,
the polarimetric properties of the reflected light will not be
due solely to the shape. In practice, the presence of specu-
lar interreflections is a limiting factor for most of the popu-
lar shape depth sensing technologies (e.g., structured light,
time of flight, photometric stero, shape-from-shading). We
feel that this is likely the most serious limitation for Sf-
P and, by extension, our proposed technique. For example,
even though the sun is unpolarized, due to air scattering, the
polarization incident on the surface-level will vary based on
factors like the weather and time of day. An open problem
will be how to make polarization based techniques more vi-
able in outdoor environments.

6 Assessment and Results

Previous techniques in shading enhancement have had limit-
ed success under challenging material or lighting conditions.
The proposed technique, using polarization, is able to handle
more complicated scenes.

6.1 Robustness in the wild

Robustness to lighting conditions: Assuming unpolarized
incident light, the proposed technique is robust to varying
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Fig. 10 The proposed technique can correct multipath interference in ToF sensors. Comparing the proposed technique against Naik et al. [36],
which combines ToF with structured illumination patterns from a projector. The technique by Naik et al. uses 25 coded illumination photographs.
With 3 photographs from a polarizer and the Kinect depth map, the proposed technique preserves the sharp edge of ground truth.

lighting conditions. As shown in Fig. [§] depth enhancement
is shown to be near-identical for three lighting conditions:
(Fig. Bp) indoor lighting; (Fig. [8k) under interfering illumi-
nation from a disco ball; and (Fig. EH) even outdoors. The
last two conditions violate lighting assumptions of SfS.

Robustness to material properties: As shown in Fig. 9] the
proposed technique is evaluated on three materials: (1) dif-
fuse; (2) glossy; and (3) mirror-like. Polarization enhance-
ment is consistent for each material, though slightly worse
for the mirror-like object. Comparison papers that use shad-
ing enhancement can only work on Lambertian surfaces [162}
161160,42].

Robustness to diffuse multipath: Diffuse multipath has been
an active challenge in the ToF community [43L[15L36]]. The
proposed technique of polarization enhancement drastically
outperforms a state-of-the-art technique for multipath cor-
rection, while using fewer images [36]. Refer to the caption
of Fig.[10] for details.

6.2 Results on various scenes

Fig. [TT] shows results on various scenes along with qualita-
tive comparisons to shading refinement, directly performed
by Wu et al [160].

Diffuse face scene: The mannequin scene, shown in Fig.
[TTh, was selected to compare the best-case performance of
shading enhancement with our proposed technique of polar-
ization enhancement. Specifically, the mannequin is coated
with diffuse paint and lit by distant lighting to conform to
SfS assumptions. Even under ideal conditions for shading
refinement, the proposed technique using polarization lead-
s to slightly improved 3D reconstruction. As shown in the
close-up, the concave eye socket causes challenges for shad-
ing refinement due to diffuse interreflections.

Coffee cup scene: Fig.[[Tp shows depth reconstruction for
a coffee cup made of Styrofoam. Such a surface is not Lam-
bertian, and causes artifacts in shading refinement. The pro-
posed technique is dramatically better than shading refine-
ment, and as shown in Fig. [I2} is able to cleanly recover the
grooves (300 micron feature size). For this scene, the pro-
posed technique outperforms a laser scan of the object (refer
to Figure[T2]for the comparison).

Two-face scene: To illustrate robustness to mixed-materials,
Fig.[TTk shows a mannequin, painted with two paints of d-
ifferent pigments and specularities. Shading enhancement
cannot handle the shininess of the face, so the entire recon-
struction is poor. Moreover, at the point of material transi-
tion, local artifacts are visible (best seen in the close-up).
In comparison, the proposed technique of polarization en-
hancement recovers the surface well, and is robust to ma-
terial change (see close-up). Note that the lack of artifacts
at the point of material transition verifies that assumption 4
need not be strict (since the paints have different proportions
of diffuse and specular reflectivity).

Trash can scene: Fig.[TT{ depicts a scene for everyday ob-
jects under natural lighting. The scene consists of a hard,
plastic trash can with a shiny, plastic liner in a well-illuminated
machine shop with windows. This is a challenging scene for
depth enhancement, with uncontrolled lighting, mixed mate-
rials and specular objects. The proposed technique performs
drastically better than shading refinement. In particular, the
reconstruction from shading refinement contains holes in the
recovered surface that correspond to specular highlights in
the image. Furthermore, since the liner is highly specular,
shading refinement cannot resolve the ridges. In compari-
son, the proposed technique reconstructs many of the ridges
in the liner.

Enhancing a laser scanner: Fig.[13]shows that polarization
enhancement can be a beneficial additional to even higher-
quality depth sensors. As shown in Fig. [I3, given a laser
scan of the cup, we corrupt it with quantization and additive
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Fig. 11 Various captures, ranging from controlled scenes to complex scenes. Please zoom in using your PDF viewer.

Table 2 Mean absolute error (mm) with respect to a laser scanner.

Init. Depth ~ Shading Proposed
Corner, Fig.El 5.39 478 3.63
Mirror Ball, Fig. g 8.50 17.58 8.25
Diffuse Face, Fig. | 18.58 18.30 18.28
Coftee Cup, Fig.|11b 3.79 3.84 3.48

noise to form the depth skeleton. All details are lost in this
skeleton, but after polarization enhancement, details down to
the 300 micron grooves are made visible. Adding a polarizer
to a mid-range laser scanner, might be a low-cost solution
to computationally replicate the performance of a higher-
quality laser scanner.

Failure case: Failure cases occur in the context of all limita-
tions detailed in the paper. We illustrate one such failure case
in Fig.[T4] The depth map obtained from the chrome sphere
contains significant error in low-frequency content. Our “en-
hanced” shape tries to preserve low-frequency fidelity with
the noisy depth map instead of recovering the correct shape.

3 Quantitative analysis of enhancement

Tab. 2l shows the mean absolute error wrt. a laser scan for
a sampling of scenes from this paper. Since shading-based

techniques [60] cannot handle shiny objects like the chrome
sphere or glossy coffee cup, the error actually increases wrt.
the input depth. In contrast, the proposed technique of polar-
ization reduces error for all scenes. Because polarization can
handle interreflections (which the Kinect cannot), polariza-
tion shows the most improvement on the corner scene. Refer
to Fig. [ for additional metrics.

To verify the resolution enhancement of the proposed
approach, we used a precision caliper to measure the grooves
of the cup in Fig. [Tk at 300 microns. The proposed tech-
nique can resolve finer detail than some laser scanners.

6.4 Implementation details

As shown in Fig. [§] the capture setup includes the follow-
ing: a Canon Rebel T3i DSLR camera with standard Canon
EF-S 18-55mm £/3.5-5.6 IS II SLR lens, a linear polarizer
with quarter-wave plate, model Hoya CIR-PL. Calibration
is performed on the polarizer’s transmission axis. Values for
7 and € are the same for all scenes. The latest model of Mi-
crosoft Kinect is used to obtain most depth maps. Normal
maps and depth maps are registered using the intrinsic pa-
rameters of the Kinect and relative pose (translation only).
To measure polarization cues the sensor response must be
linear, enforced by preprocessing CR2 raw files from the
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Laser Scanner Output Our Enhancement Corrupted Laser Scan Our Enhancement

(a) Setup (b) Enhancing the laser scan (¢) Corrupted Depth Skeleton

Fig. 13 Our technique can be used to augment even high quality depth maps (physical experiment). (a) The Styrofoam cup being laser scanned
using multistripe technology. (b) We can combine the direct output from the laser scan with polarization cues to recover even more detail. (c) The
laser scanner output is corrupted with additive Gaussian and quantization noise. Polarization cues are still able to recover the ridges on the cup.

The ridges are approximately 300 microns in depth. This figure is best viewed digitally.
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(b) Laser Scanner Depth

(a) Enhanced Kinect Depth

Fig. 12 Qualitative comparison to a multistripe laser scanner. (a) Our
result, using a Kinect and three polarized photographs. (b) The surface
from the laser scanner. Notice that the Kinect has been enhanced to the
point of capturing the grooves in the cup, approximately 300 microns
in depth.

camera. Ground truth is obtained using a multi-stripe, trian-
gulation, laser scanner and benchmarks are obtained through
ICP alignmentm

7 Discussion

In summary, we have proposed the first technique of depth
enhancement using polarization normals. Although shading
refinement is an established area, with incremental progress
each year, the proposed technique leverages different physic-
s to demonstrate complementary advantages.

Benefits: By using the depth map to place numerous con-
straints on the shape-from-polarization problem, this paper

17" Laser Scanner: nextengine.com/assets/pdf/scanner-techspecs.pdf

resolves many of the ambiguities in shape-from-polarization
research while demonstrating compelling advantages over
alternative techniques (SfS and PS). In particular, SfS and
PS assume Lambertian objects and distant/controlled light-
ing, while the proposed technique has demonstrated results
on diffuse to mirror-like objects in controlled and uncon-
trolled settingsm Moreover, the proposed technique can be
made passive, can be implemented in a single-shot, and re-
quires no baseline (Tab. [T). While not specific to multipath
correction, the proposed technique, while using fewer im-
ages, can outperform a paper entirely dedicated to ToF mul-
tipath correction (Fig. [T0).

Material assumptions Although we have presented practi-
cal results on a range of materials, the technique is still sen-
sitive to certain material configurations. For example, if the
material change is rapid in a scene (like glitter on an ob-
ject), the proposed method would fail (as it relies on patch-
es with fixed material properties). An engineering improve-
ment would be to use higher spatial resolution sensors, as
sensors continue to increase in resolution. On a more fun-
damental level, inspired by the work of Huynh et al. [20],
it may be possible to use additional information from dif-
ferent spectral channels to recover the refractive index. An-
other area of future work would be to explore how layered
or transparent materials would affect the polarimetric ap-
proach. A clear advantage of approaches that rely on polar-
ization is that they generalize to non-Lambertian surfaces,
like metals. For the proposed work to generalize to metallic
surfaces, the key challenge lies in obtaining the depth of a
metallic object.

18 While there are variants of generalized photometric stereo for non-
Lambertian objects and natural environment lighting, they usually re-
quire about 50-100 images according to a recent survey in [52].
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(a) Chrome Sphere

(b) Kinect Depth

(¢) Polarization Enhanced

Fig. 14 A failure case due to lack of low-frequency shape information
in the depth skeleton (physical experiment). (a) The scene is a chrome
sphere. (b) The Kinect depth has an incorrect shape due to the specular-
ities. (c) Our polarization enhanced algorithm takes the characteristics
of the distorted depth skeleton.

Shape from mixed polarization: As of today, the communi-
ty has developed models for diffuse or specular polarization
(Equation 3] and [] respectively). But a ”‘mixed reflection™
will consist of light that is both diffusely and specularly re-
flected. This causes model mismatch (as the model does not
conform to either Equation [3]and ). Mixed reflections have
been a problem for prior work that uses only polarimetric
information. However, in this paper, we have shown that the
depth constraints we impose offer a degree of robustness to
mixed reflections. This has been shown analytically in Sec-
tion [5.1] of this paper and verified with practical results. We
must emphasize that our solution is not perfect — we still
require diffuse-dominant or specular-dominant surfaces (so
that we can pick whether to use Equation [3] and [] for the
initial normal map from polarization).

Practical applications: The proposed work offers comple-
mentary benefits to shading or photometric solutions, offer-
ing 3D scans of objects that may be shiny or lit by area
sources. Although we used a capture setup that was not real-
time (since we took three photos at three different polarizer
rotations), there are off-the-shelf camera systems that allow
single-shot capture. With a production budget, we have lit-
tle doubt that the implementation could be a 2-frame, real-
time technique (the 2 frames would be a depth frame, and
the single-shot frame from the polarization array camera).
However, the method has value even as a static technique
(as demonstrated in this research paper) where the obtained
results can be seen as compelling; for example, in Figure[12]
the proposed technique outperforms a scan of the coffee cup
scene captured with a multi-thousand dollar professional-
grade 3D scanner (that is also not real-time). Moreover, the
proposed technique (depth and polarization) is a new direc-
tion to probe, which could be combined with other sources
of information.

Limitations: The proposed technique requires 3 images for

capturing the polarimetric information; however, off-the-shelf

solutions allow single-shot polarimetric capture@ For ro-
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bust performance, the assumptions described in Section [
and Tab. [[lmust be met. Note that some of these limitations
are also present in SfS and PS contexts. For example, the
proposed technique cannot handle specular interreflections,
but SfS or PS methods cannot handle any interreflections,
whether diffuse or specular.

Open challenges: While the proposed technique is capa-
ble of obtaining encouraging results (e.g. Fig. [TTd), several
scientific challenges remain, including: (1) better methods
to handle mixed reflections, where the camera measures a
mixture of diffuse and specular reflections at a single scene
point, (2) whether there is a way to correctly resolve high-
frequency detail without resorting to the closed surface heuris-
tic (Sec. @.1.2), and (3) alternate ways to circumvent a low
degree of polarization at fronto-parallel facets (Sec. [4.2.1).
Additional information, e.g., from multi-view data, circular
polarization, or shading, might be a way to improve on our
technique. In conclusion, we hope our practical results spur
continued interest in using polarization for 3D sensing.
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