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Abstract 

Lattice models can be a basic tool for alloy design, due to their ability to capture the most 

important thermodynamic and kinetic phenomena of a wide-range of alloys at a low computational 

cost. However, in order to correctly treat ordered precipitates at off-stoichiometric compositions 

requires multi-body potentials, and these can be challenging to calibrate to known alloy behaviors. 

Here we introduce a simple means of capturing the multi-body terms needed to treat ordered 

compounds in a lattice model based on defining “compound units”. This approach is particularly 

designed for, and easily calibrated in, cases where the structure and formation energy of 

equilibrium compounds are already known. This is accomplished by defining a compound unit 

that derives its energy from the formation energy of the compound as an a priori input. The method 

is illustrated for a binary alloy with D03 and B2 stable compounds.   

 

Highlights 

• A method for incorporating known ordered compounds into a lattice model is proposed.  

• The method maintains the simplicity and broad applicability of the pairwise model. 

• A compound unit is used to capture the compound’s structure and formation energy.  

• Monte Carlo simulations show that this method produces proper two-phase behavior.  

 

Graphical Abstract 
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1. Introduction 

 Lattice models provide a convenient framework for studying the evolution and stability of 

alloy microstructures [1-15]. These models typically focus on the mesoscale behavior of the 

system, describing the state of the alloy on a fixed lattice, with an interatomic potential that 

expresses the relative preference for different arrangements of species on the lattice. A pairwise 

potential is often used because of its simplicity for implementation and easy adaptability for 

conducting rapid surveys across many material systems [1-4,16-20]. The pairwise potential for a 

binary alloy can generally be written as:  

𝐻𝐻 = �𝐽𝐽(𝑘𝑘)(1 − δ𝜎𝜎i𝜎𝜎j)
{i,j}

 (1) 

The summation is conducted over all pairs of lattice sites, where σi = 1 for a solvent atom and -1 

for a solute atom located at lattice site i, and δ is a Kronecker delta, which is 1 for like bonds 

(solvent-solvent (AA) and solute-solute (BB)) and 0 for solute-solvent bonds (AB). 𝐽𝐽(𝑘𝑘) is the 

pairwise interaction parameter describing the difference in pairwise bond energy, E, between like 

and unlike pairs at a neighbor distance of k: 𝐽𝐽(𝑘𝑘) = 𝐸𝐸𝐴𝐴𝐴𝐴
(𝑘𝑘) − (𝐸𝐸𝐴𝐴𝐴𝐴

(𝑘𝑘)+𝐸𝐸𝐵𝐵𝐵𝐵
(𝑘𝑘))

2
 . By varying 𝐽𝐽(𝑘𝑘) many 

different alloy systems can be represented using this general description.  

When considering only nearest-neighbor interactions (k = 1), a shortcoming of the pairwise 

potential for modeling negative enthalpy of mixing alloys becomes apparent. For a positive 

enthalpy of mixing alloy (J(1) > 0), the internal energy can be minimized by forming separate solute 

and solvent phases, and thus at 0K the thermodynamic equilibrium state consists of two phases 

that are immiscible in one another. In a negative enthalpy of mixing alloy (J(1) < 0), 

thermodynamically it is expected that an ordered compound will be formed to minimize internal 

energy such that at 0K the equilibrium state again consists of two phases that satisfy the zero 

entropy requirement of the third law of thermodynamics. The pairwise model does not produce 

this result for negative enthalpy of mixing alloys, instead predicting a disordered alloy state (solid 

solution) to be thermodynamically stable. Moreover, this limitation is inherent to the pairwise 

potential, and thus exists regardless of whether the equilibrium state is determined via the cluster 

variation method [7-9] or a Monte Carlo simulation [1,6]. 
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This anomalous behavior can be attributed to the insufficient description of ordering using 

a pairwise potential, which is illustrated in Figure 1 for the case of a two-dimensional square lattice. 

In this schematic, one system contains an ordered compound, while the second system is 

disordered. According to Equation 1, both of these systems have the same internal energy since 

each solute is bonded to only solvent atoms in both situations, which is also the lowest energy state 

possible for the system. Because the second system is disordered, it has higher entropy and is 

therefore found to be stable at all finite temperatures. 

 

The repercussions of this shortcoming are not limited to the 0K equilibrium. In a pairwise 

model, ordering only occurs when the solute concentration is large enough to impose a geometrical 

constraint, e.g. when a disordered phase requires forming solute-solute bonds at an energetic cost. 

For example, the nearest neighbor model exhibits an equiatomic compound in the 2D square lattice 

because at this stoichiometry the only way to attain all solute-solvent bonds is to form an ordered 

phase. While the above discussion mainly focuses on the nearest neighbor model to simplify the 

explanation, this behavior is expected to be present at absolute zero for any pairwise model with 

negative interaction parameters [1,7-9]. The inability to capture accurate ordering tendencies limits 

the usefulness of such a description for designing alloys, where it is often desirable to study the 

Figure 1. The schematic shows two solute arrangements, ordered (on left) and disordered 

(on right). The internal energies calculated by Equation 1 in the nearest neighbor 

approximation are equivalent in both cases, making ordered phases unstable at off-

stoichiometric concentrations (Nsolute is the number of solutes and z is the coordination 

number).  
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precipitation of an ordered compound at off-stoichiometric compositions, and in systems where 

ordering has additional energetic implications beyond merely the geometric ones.   

The standard route to better incorporate an alloy’s ordering tendency is to include the 

interactions of multiple atoms, and thus allow ordered states to access a lower internal energy [21-

25]. A general formulation for introducing the multi-body terms can be written as:  

𝐻𝐻 = � 𝐽𝐽𝑖𝑖𝜎𝜎𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

+ � 𝐽𝐽𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

+ � 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝜎𝜎𝑘𝑘
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

… (2) 

where the J terms are now called effective cluster interactions. A typical procedure for predicting 

the bulk phase diagrams of different alloy systems is to calculate compound formation energies 

using density functional theory, and then using these to infer reasonable effective cluster 

interactions (called the Structure Inversion Method or Connolly-Williams method [21]). 

Generally, this requires consideration of 30-50 possible ordered compounds in order to determine 

a set of 10-100 interaction parameters that are deemed the most important for the interaction 

potential.  

 This method of including multi-body terms has been useful for developing bulk phase 

diagrams of alloys [26-29]. Increasingly, however, lattice models are being extended outside of 

classical bulk thermodynamic behavior, for instance to study the effects of interfaces [16-18,31-

35]. In such cases, while using a cluster expansion to define the interatomic potential may still be 

feasible, it is not optimal because (i) the stability of compounds in bulk systems is already known 

[30], and thus “predicting” the stable compounds through simulation is unnecessary and (ii) the 

multi-body terms are calculated for each alloy system and thus too specific to probe a large number 

of alloy combinations and often not easily extendable to non-bulk environments. In some of our 

group’s work on nanostructured alloys we have found a need for a lattice-based method that can 

be rapidly calibrated to known bulk thermodynamics and then used to explore, e.g., driven 

processing through ballistic mixing [34] or deposition [35], or simply to explore the space of 

accessible structures in nanostructured systems [18,36-38]. It is our purpose in this paper to present 

such a method that overcomes the limitations of the pairwise model in describing negative enthalpy 

of mixing systems, specifically for cases where the structure and formation energy of equilibrium 

compounds are already known, and a full cluster expansion would be redundant.  
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2. Compound Unit Model  

 In order to permit stable compounds in a pairwise model, a distinction has to be drawn 

between solute-solvent bonds in a solid solution and those in an ordered phase. Rather than add 

multiple higher order terms as in Equation 2, we directly include an ordered compound with known 

structure and formation energy into a nearest-neighbor pairwise formalism by identifying its 

structure through a “compound unit”. A compound unit is defined here as a repeating group of 

atoms from which the entire superstructure of the compound can be formed. For example, we may 

define the compound unit shown in Figure 2a to identify the compound shown in Figure 1.  Many 

potential compound units may be defined – the selection of appropriate compound units is 

discussed in Section 2.1, but the key feature of the unit is that when it appears in the structure, it 

will be assigned a lower enthalpy than what the pairwise potential would return, and which is 

related to the compound formation energy. If a compound unit, α, is found in the lattice, the energy 

is instead calculated based on an additional interaction parameter for the compound, Jα, which can 

be expressed as:  

𝐽𝐽α = 𝑁𝑁α𝛥𝛥𝛥𝛥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − � 𝐽𝐽(𝑘𝑘)(1 − δ𝜎𝜎i𝜎𝜎j)
{𝑖𝑖,𝑗𝑗}𝑖𝑖𝑖𝑖 α 

fα  (3) 

where Δ𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the formation energy of the compound per atom, which is multiplied by the 

effective number of atoms in the compound unit, Nα. The second term in this expression removes 

the pairwise contribution to energy of the compound unit (fa is the fraction of the bond that is 

contained in a particular compound unit), so that its energy is solely described by the formation 

energy of the compound. For a compound to be enthalpically preferable to a solid solution, Jα 

should be negative to account for the additional enthalpic benefit of ordering. 

The pairwise potential is appended to include an enthalpic benefit for compounds: 

𝐻𝐻 =  �𝐽𝐽(𝑘𝑘)(1 − δ𝜎𝜎i𝜎𝜎j)
{𝑖𝑖,𝑗𝑗}

+  �𝐽𝐽α𝑀𝑀α
{α}

 (4) 

The contribution of compound unit energies is calculated by counting the number of units of a 

particular compound in the system, Mα, and applying the enthalpic benefit, Jα, for each compound 

unit being considered. This similarly applies to calculating the energy of an individual atom: the 

energy is calculated entirely from pairwise interactions if none of the environment around the atom 

resembles a compound unit, but if the atom is part of a compound unit then that portion of its 
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energy is replaced by the compound unit energy. This is illustrated in Figure 2b, where the interior 

atom of the compound has its complete energy described by the compound unit energy, as opposed 

to atoms on the edges and corners which respectively have one-half and one-quarter of their 

energies described by the compound unit energy, with the remainder calculated from pairwise 

bonds.  

 

2.1 Selection of Compound Units 

 Subdividing the environment around an atom into an appropriate compound unit and 

counting these during a simulation is an important aspect of our method. To illustrate the selection 

of a compound unit, the D03 (25 at.% stoichiometry) and B2 (50 at.% stoichiometry) compounds 

in the body-centered cubic system are considered.  

The superstructure of these compounds is conveniently represented by describing the 

occupancy of the four interpenetrating face-centered cubic sublattices in a body-centered cubic 

structure, as shown in Figure 3a. The D03 compound exists when one of the face-centered cubic 

sublattices is occupied by solute, and the other three are occupied by solvent, thus fulfilling the 25 

at.% stoichiometry. The B2 compound exists when two non-adjacent face-centered cubic 

sublattices are occupied by solutes, and solvent atoms occupy the other two. Convenient compound 

units for each of these two compounds are shown in Figure 3b, with example corresponding lattice 

(a)  

(b)  

Figure 2. (a) Shows a possible definition of a compound unit for the ordered 

compound pictured in Figure 1, where dark atoms are solute. (b) Shows a schematic 

of how the energy of an atom is calculated in the compound unit model, where darker 

atoms have a larger compound unit contribution to their energy. 
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sites shaded in Figure 3a. The compound units are effectively solute-centric as they can be 

considered to divide the environment around a solute atom into 1/12th partitions (N𝑖𝑖,𝛼𝛼
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 12), 

where each unit consists of two first nearest neighbors, two second nearest neighbors, and one of 

the twelve third nearest neighbors of the solute. The necessary size of the compound unit is 

determined based on the compound superstructure, where in this case third nearest neighbors were 

required for the D03 compound since this is the neighbor distance of solute in this compound. 

 

Part of the consideration in determining a suitable compound unit is the ease with which 

the simulation method will be able to find the equilibrium state. For example, one choice of a 

compound unit would be to consider the full environment around a central atom out to third nearest 

neighbors in all directions. In this scenario, no energetic benefit would be applied until all of the 

second and third nearest neighbors of the compound fell into place. Since this is not a common 

occurrence, a Monte Carlo simulation is more prone to being trapped in a metastable solid solution 

due to the kinematic difficulty of forming a compound unit, even if it would decrease the free 

energy to form compound units. Thus, choosing a compound unit that is more readily formed 

(a)  (b)  

Figure 3. (a) A schematic of the compound superstructure for D03 and B2 compounds in 

body-centered cubic binary alloys, with numbers signifying different interpenetrating 

FCC sublattices. Convenient compound units for D03 and B2 are shown in (b), with solute 

in black. Shaded atoms in (a) illustrate the compound unit within the superstructure.  
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stochastically by Monte Carlo events, accomplished in this case by defining a compound unit that 

includes only the one necessary third nearest neighbor, is desirable to achieve ergodic sampling 

and find the true thermodynamic equilibrium state.    

 From the perspective of a pairwise bonding scheme, the inclusion of these compound unit 

energies is a targeted way to incorporate the formation energies of known compounds to replicate 

bulk thermodynamic behavior. On the other hand, this can also be viewed as a simplification of 

the multi-body potential in Equation 2. The value of the structural inversion method for 

incorporating ordered compounds is that the potential is trained on a set of ordered compounds 

constructed by density functional theory, and thus consequent simulations with this potential can 

reveal which compounds are found at equilibrium. In our present method, by contrast, we assume 

knowledge of the relevant equilibrium ordered compounds and thus rather than performing a full 

cluster expansion this method includes a select few energy terms to produce proper ordering 

behavior while maintaining the convenience of a pairwise description for the remainder of the 

physics in the model.  

 

3. Case Study  

 The thermodynamic equilibrium of an alloy described by the compound unit model was 

determined using a lattice-based Monte Carlo simulation. A lattice was constructed with a fixed 

composition and a random distribution of solutes. In each Monte Carlo event, a random solute and 

solvent atom from anywhere within the lattice were swapped to create a new configuration in the 

phase space, and this transition was accepted according to the Metropolis algorithm (the transition 

was always accepted if the energy of the new configuration was lower, and was accepted with a 

probability, 𝑒𝑒−
𝛥𝛥𝛥𝛥
k𝑇𝑇, if the new energy was larger by ΔE, where k is the Boltzmann constant and T is 

the temperature). While the ordering term in Equation 4 was not written as a sum over lattice sites, 

the ordering contribution to the change in energy from a swap was determined quickly by counting 

the number of compound units containing the swapped atoms that were created or disrupted by the 

swap and multiplying by the appropriate compound interaction parameters.  

 Monte Carlo simulations were conducted for a binary, body-centered cubic alloy with 

stable D03 and B2 compounds. Two sets of calculations were conducted using this Monte Carlo 
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setup. In the control simulations, the system was described purely using pairwise bond energies, 

considering up to second nearest neighbor bonds with interaction parameters of J(1) = -32.4 

meV/bond and J(2) = -16.2 meV/bond, which are known to produce stable D03 and B2 compounds 

[39]. In the second set, the compound unit model was used, considering nearest neighbor pairwise 

bonds, still with an interaction parameter of J(1) = –32.4 meV/bond, and with compound unit 

interaction parameters, JD03 = -16.1 meV/unit and JB2 = -10.3 meV/unit, for the compound units in 

Figure 3b. These compound unit energies were selected in order to produce D03 and B2 compounds 

with the same formation energy as in the pairwise model, where the formation energies of the two 

compounds are -89 meV/atom and -145 meV/atom, respectively. The values of the interaction 

energies were verified by constructing each compound at stoichiometry and ensuring that the total 

energy of the system was equal to the formation energy of the ordered compound. A three-

dimensionally periodic simulation of 64,000 atoms at a temperature of 2,500 K and was 

equilibrated for 50,000 Monte Carlo steps (1 step consists of 64,000 swap attempts). Subsequently 

the temperature is repeatedly lowered by 50 K and equilibrated for 10,000 Monte Carlo steps at 

each new temperature to determine the equilibrium state down to 0 K. Since at each temperature 

the equilibrated structure from the previous, higher temperature state is used as the initial state, 

this method produces reasonable predictions of low temperature equilibrium structures. The 

simulations were conducted for solute concentrations ranging from 1 to 50 at.%, with additional 

simulations conducted in increments of 10K within 100K of the critical temperature to attain a 

higher resolution. 

3.1 Simulations at 0K  

 The pairwise potential cannot accurately capture ordering in two-phase fields, and the 

addition of a compound unit term is a purposeful mend to this problem. Figure 4 shows the solute 

atoms in the (100) plane of equilibrated structures with and without the compound unit term at 

different compositions. At the 25 at.% and 50 at.% stoichiometries, the D03 and B2 compounds 

are the equilibrium phases in both cases. However, deficiencies in the pairwise model are already 

evident; in Figure 4a at 25 at.%, two antiphase boundaries are observed and indicated with arrows. 

These defects should not be present at equilibrium in a single phase compound, and appear because 

they are trapped in this simulation. This difficulty in achieving long range order is a common 

problem when studying compounds in the Ising model with a pairwise potential [1,40]. However, 
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in the compound unit approach, antiphase boundaries are more energetic and not easily trapped, 

which yields the correct equilibrium microstructure as shown in Figure 4b at 25 at.%.  

 

 The more serious deficiencies of the pairwise model appear at off-stoichiometric 

compositions, where faceted precipitates in a two-phase equilibrium are thermodynamically 

expected at 0K. The equilibrated structures in Figure 4a have non-zero entropies, as evidenced by 

the large degeneracy of the equilibrium states, which is attributed to the phenomena explained in 

Figure 1. At the stoichiometric composition, the equilibrium is a single-phase compound that is 

forced to form by geometry, and it does not require a non-zero interfacial energy. At slightly off-

(a) Pairwise Model 

 

(b) Compound Unit Model 

 

5 at.% 10 at.%

40 at.%30 at.% 45 at.% 50 at.%

15 at.% 20 at.% 25 at.%

35 at.%

Figure 4. Equilibrium states computed at 0K via a Monte Carlo simulation under (a) the 

pairwise model and (b) the compound unit model. Only solute atoms are shown in the 

image, on a single (100) plane of the simulation cell.  
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stoichiometric compositions, local ordering is observed via this same constraint, but a single 

consolidated phase is not preferred energetically because there is no energetic penalty associated 

with forming an interface between the compound and solvent atoms. At low concentrations, this 

leads to a solid solution as there are many sites where solute can reside and still achieve ideal first 

and second nearest neighbor coordination. 

In contrast, and shown in Figure 4b, the compound unit model produces equilibrium 

structures with the expected two-phase equilibrium at off-stoichiometric compositions at 0K. 

Firstly, the addition of compound units fixes the energetics such that the ground state of the alloy 

is now two, separated phases at 0K. Secondly, this formulation makes it convenient for Monte 

Carlo simulations to find the correct equilibrium state even at low temperatures since each atom 

at the interface possesses an interfacial energy; the system thus correctly coarsens into a single 

precipitate, and can avoid producing anti-phase boundaries.  

3.2 Order-Disorder transitions  

The more realistic occurrence of ordering in the compound unit model not only satisfies 

the third law of thermodynamics, but also captures reasonable order-disorder behavior, which is 

not present at low compositions in the pairwise model.  

A natural set of order parameters arises from the compound unit formulation because each 

solute atom in the system has a certain number of compound units of which it is a member. For 

example, a solute atom in solution would not be a part of any compound units, a solute atom in the 

compound phase should have a full coordination of compound units (in our BCC example, this is 

12), and any level of coordination in between corresponds to different degrees of order (for 

instance at phase boundaries or local ordering in solution). Formally, this set of short-range order 

parameters can be written as:  

𝜂𝜂𝑚𝑚α =
1

Nsolute
 �𝛿𝛿𝑁𝑁jα,𝑚𝑚
j

   for 𝑚𝑚 = 0 to N𝑖𝑖,α
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (5) 

where 𝜂𝜂𝑚𝑚α  is the order parameter describing solute atoms that are part of m compound units of 

phase α. Here, the summation runs over only lattice sites containing a solute atom. 𝑁𝑁jα is the 

number of compound units of phase α around the solute atom at site ‘j’, and Nsolute is the number 

of solutes in the system. This general set of m order parameters could be particularly useful for 
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describing how the ordering changes through the inclusion of non-bulk behavior, for instance due 

to the presence of grain boundaries and surfaces, which is a topic of some of our future work. For 

the purposes of the present study, we limit our attention to 𝜂𝜂12α  for both the D03 and B2 compounds, 

which signifies the fraction of solutes in a completely ordered local state. The 𝜂𝜂12α  order parameter 

in particular is chosen as it behaves most like a long-range order parameter; it can only have a 

value close to unity if a large single-phase region exists in the material. 

 

Figure 5 shows the value of the order parameter, 𝜂𝜂12
D03, as a function of temperature for 

different compositions at and below 25 at.% for both the pairwise and compound unit models. In 

the pairwise model (Figure 5a), the order parameter is only markedly greater than zero for solute 

concentrations above 15 at.%, which matches what was observed in the equilibrium 

microstructures in Figure 4a where larger clusters of the D03 compound are found starting at 20 

at.%. In contrast, the compound unit model (Figure 5b) has non-zero values for the order parameter 

at 0K for all compositions below 25 at.%, though the value of the order parameter at 0K only 

reaches unity at the stoichiometry of the compound, where the system is in a single-phase, fully 

ordered state (it does not reach unity in the pairwise model due to the presence of anti-phase 

boundaries). When the ordered phase is in equilibrium with a second phase, the order parameter 

will be less than unity as some of the solute atoms reside at the interface and are not fully ordered. 

(a)  Pairwise Model (b) Compound Unit Model  

Figure 5. The D03 order parameter with respect to system temperature at compositions 

{1,5,10,15,20,25} at.% for (a) the pairwise model and (b) the compound unit model.  
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In all cases in the compound unit model, as the temperature increases, the ordering 

decreases, with a sharp drop approaching the phase transition. Figure 6 shows the equilibrium 

states at compositions of 10 and 25 at.% during this disordering processes. As expected, at non-

zero temperatures, each phase exhibits some solubility of the second phase, and as the temperature 

increases the amount of the ordered phase decreases until it disappears above the phase transition 

temperature. Interestingly, as the composition increases from 10-20 at.%, the drop in the order 

parameter (Figure 5b) becomes less sharp, and approaches an order parameter of zero more 

gradually. Because 𝜂𝜂12α  is not a true long range order parameter, the shape of this curve at the 

transition does not characterize the transition as being either first or second order. Instead, this 

seems to be due to compositions closer to stoichiometry being constrained in their ability to 

disorder – in order for it to disorder fully, it requires not only forming solute-solvent bonds in 

solution, but also some solute-solute bonds, which are less favorable. At 25 at.%, this effect is 

present even for the smallest amount of disordering, which explains the different shape of the 

order-disorder curve at stoichiometry.  

 

3.3 Phase Diagrams 

The 𝜂𝜂12
D03 and 𝜂𝜂12

B2 order parameters were used to construct phase diagrams of both the 

pairwise and compound unit models, shown in Figure 7, with two-phase regions shaded. The 

critical temperature of a phase transition was determined by identifying the temperature at which 

800 K

X 
= 

10
 a

t.%
X 

= 
25

 a
t.%

400 K200 K

600 K200 K 800 K

Figure 6. Equilibrium states as temperature is increased from 200 to 800 K at 

compositions of 10 and 25 at.%. Only solute atoms are shown in the image, with atoms 
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an order parameter exhibits a discontinuity in slope, and was corroborated with visual evidence of 

phase changes in the equilibrium microstructures.  

 

There are a few important differences between the two phase diagrams. At low 

concentrations, the compound unit model produces the expected two-phase equilibrium with the 

A-rich solid solution phase. The lack of this two-phase region in the pairwise model was the 

principle reason for incorporating compound units, and the phase diagram demonstrates that this 

approach fixes the anomalous thermodynamic behavior in the pairwise model. Similarly, there is 

a two-phase region that exists between the D03 and B2 phases in the compound unit model that is 

absent in the pairwise model. Other pairwise models simulating a system with D03 and B2 

compounds produce a second order phase transition between the D03 and B2 phases [7,8], which 

would also violate the third law of thermodynamics, as one or both phases would have to have a 

non-zero solubility at 0K. Thus, the presence of this two-phase region also seems to be an 

improvement made by the inclusion of compound unit energies.   

The critical temperature for disordering is also lower for the compounds in the pairwise 

model than in the compound unit model, since only geometric considerations lead to ordering, 

whereas in the compound unit model both geometric and chemical interactions favor the ordered 

phases. The adherence of the phase diagram produced by the compound unit model to basic 

thermodynamic principles provides confidence that this approach is a viable alternative to a full 

(a) Pairwise Model  (b) Compound Unit Model  

Figure 7. Phase diagrams in (a) the pairwise model and (b) the compound unit model 

calculated via Monte Carlo. Phase transitions are denoted with solid lines, and two-phase 

regions are shaded. 
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multi-body expansion for incorporating bulk ordering thermodynamics into lattice models of 

alloys. 

3.4 Application to Non-Bulk Systems 

 The compound unit method’s main benefit is its ability to account for an alloy’s ordering 

tendency without adding substantial complexity to the model. This is particularly useful when 

simulating non-bulk systems, where the added complexity of the system can be compounded by a 

complicated interatomic potential. To demonstrate such a scenario, we added an interface into the 

Monte Carlo simulations, and described the tendency for solute segregation to the interface using 

an interaction parameter, 𝐽𝐽int, to prescribe the energies of bonds across the interface: 𝐽𝐽int = 𝐸𝐸ABint −

(𝐸𝐸AA
int+𝐸𝐸BB

int)
2

, where 𝐸𝐸AAint = 𝐸𝐸BBint. Segregation of solute to the interface is favored when  𝐽𝐽int < 𝐽𝐽(1), 

because under this condition forming solute-solvent bonds at the interface reduces the energy of 

the system more than forming solute-solvent bonds in the bulk. The enthalpy of segregation can 

be related to the interaction parameters as Δ𝐻𝐻seg = 4�𝐽𝐽(1) − 𝐽𝐽int�, with ΔHseg having a positive 

value when grain boundary segregation is favored and the coefficient accounts for the number of 

bonds across the interface for an atom located at the interface .  

 Simulations were conducted using the bulk energies from the single crystal studies for 

different positive enthalpies of segregation to the interface (Figure 8).  Three distinct regimes are 

found. At low enthalpies of segregation, a compound forms at low temperatures and disorders into 

a solid solution. At high enthalpies of segregation, segregation to the interfaces is the lowest energy 

state, and disorders into a solid solution. At intermediate enthalpies of segregation, there are two 

transitions: first the compound disorders into an interface-segregated state, which then disorders 

into a solid solution.  
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With the inclusion of the interface, the solute elements now have three basic options: either 

dissolve into a solid solution, form into an ordered compound, or segregate to the interface. The 

competition between these options depends on the bond energies, temperature, composition, and 

interfacial area. Establishing the relationship between these inputs and the equilibrium 

microstructure is generally challenging, and conventional methods such as the structural inversion 

method do not provide a simple means of tuning the formation energy of the compound, enthalpy 

of mixing, or enthalpy of interfacial segregation to explore this alloy design space. Using the 

compound unit model, the energy inputs can be readily tuned and related to bulk thermodynamic 

properties, and the resulting thermodynamic behaviors can be explored.  

 

 

 

Figure 8. Equilibrium states for a system with an interface for different enthalpies of 

segregation to the interface (50, 250, and 300 meV/atom from bottom to top) and at 

different temperatures. All simulations were conducted with 1 at.% solute and with 

periodic boundary conditions (so the left and right sides of the simulation cell plane are 

interfaces as well).  
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4. Conclusions 

Lattice models are a convenient tool for developing a phenomenological understanding of the 

thermodynamics and kinetics of alloys, and the pairwise potential has long been useful for rapid 

surveys across the alloy design space. However, the pairwise potential is not able to capture 

compound formation in a thermodynamically consistent way, and this has limited the use of lattice 

models and in particular the pairwise potential lattice model for studying alloys where ordering is 

important, such as in negative enthalpy of mixing systems. The compound unit method is a simple 

patch to the pairwise model that for the most part maintains the simplicity of the pairwise 

description, but adds an energetic benefit when the local environment around an atom resembles a 

stable compound in the system. This model is designed to be useful for systems where the bulk 

thermodynamics, and thus the structure and formation energy of stable compounds, are already 

known, and the goal is to study non-bulk behavior, such as the influence of defects, interfaces, and 

processing conditions on a material’s equilibrium structure.  
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