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Abstract

One of the main challenges in high-speed mobile communications is the presence of large Doppler spreads. Thus, accurate

estimation of maximum Doppler spread (MDS) plays an important role in improving the performance of the communication link. In

this paper, we derive the data-aided (DA) and non-data-aided (NDA) Cramer-Rao lower bounds (CRLBs) and maximum likelihood

estimators (MLEs) for the MDS in multiple-input multiple-output (MIMO) frequency-selective fading channel. Moreover, a low-

complexity NDA-moment-based estimator (MBE) is proposed. The proposed NDA-MBE relies on the second- and fourth-order

moments of the received signal, which are employed to estimate the normalized squared autocorrelation function of the fading

channel. Then, the problem of MDS estimation is formulated as a non-linear regression problem, and the least-squares curve-

fitting optimization technique is applied to determine the estimate of the MDS. This is the first time in the literature when DA-

and NDA-MDS estimation is investigated for MIMO frequency-selective fading channel. Simulation results show that there is no

significant performance gap between the derived NDA-MLE and NDA-CRLB even when the observation window is relatively

small. Furthermore, the significant reduced-complexity in the NDA-MBE leads to low root-mean-square error (NRMSE) over a

wide range of MDSs when the observation window is selected large enough.

Index Terms

Maximum Doppler spread, data-aided, non-data-aided, multiple-input multiple-output, frequency-selective, Cramer-Rao lower

bound (CRLB), fourth-order moment, autocorrelation, non-linear regression, maximum likelihood estimator (MLE).

I. INTRODUCTION

M
AXIMUM DOPPLER SPREAD measures the coherence time, related to the rate of change, of wireless commu-

nication channels. Its knowledge is important to design efficient wireless communication systems for high-speed

vehicles [1]–[3]. In particular, accurate estimation of the maximum Doppler spread (MDS) is required for the design of

adaptive transceivers, as well as in cellular and smart antenna systems [3]–[12]. For example, in the context of adaptive

transceivers, system parameters such as coding, modulation, and power are adapted to the changes in the channel [4]–[7]. In

cellular systems, handoff is dictated by the velocity of the mobile station, which is also directly obtained from the Doppler

information. Knowledge of the rate of the channel change is also employed to reduce unnecessary handoff; the handoff is

initiated based on the received power at the mobile station, and the optimum window size for power estimation depends on

the MDS [7]–[10]. In the context of smart antenna systems, the MDS is used in the design of the maximum likelihood (ML)
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space-time transceivers [11], [12]. In addition, knowledge of MDS is required for channel tracking and equalization, as well

as for the selection of the optimal interleaving length in wireless communication systems [13].

In general, parameter estimators can be categorized as: i) data-aided (DA), where the estimation relies on a pilot or preamble

sequence [14]–[18], ii) non-data-aided (NDA), where the estimation is performed with no a priori knowledge about the

transmitted symbols [19]–[23], and iii) code-aided (CA), where the decoding gain is used via iterative feedback to enhance

the estimation performance of the desired parameters [24]–[29].

With regard to the MDS estimation, the DA approach often provides accurate estimates for slowly-varying channels by

employing a reduced number of pilot symbols, whereas this does not hold for fast-varying channels. In the latter case, the

details of the channel variations cannot be captured accurately, and more pilots are required, which results in increased overhead

and reduced system capacity.

There are five major classes of MDS estimators: ML-based, power spectral density (PSD)-based, level-crossing-rate (LCR)-

based, covariance-based, and cyclostationarity-based estimators. The ML-based estimator maximizes the likelihood function,

and, in general, is asymptotically unbiased, achieving the Cramer-Rao lower bound (CRLB) [30]–[32]. However, maximum

likelihood estimator (MLE) for MDS suffers from significant computational complexity. Hence, different modified low-

complexity MLEs for MDS in single-input single-output (SISO) flat-fading channel were developed [33], [34]. With the

PSD-based estimators, some unique features from the Doppler spectrum are obtained through the sample periodogram of the

received signal [35]. Covariance-based estimators extract the Doppler information which exists in the sample auto-covariance

of the received signal [36]–[38]. LCR-based estimators rely on the number of level crossings of the received signal statistics,

which is proportional to the MDS [39]. The cyclostationarity-based estimators exploit the cyclostationarity of the received

signal [40]. Comparing with other MDS estimators, the advantage of the cyclostationarity-based estimators is the robustness

to stationary noise and interference.

While the problem of MDS estimation in SISO flat-fading channel has been extensively investigated in the literature [30]–

[40], the MDS estimation in multiple-input multiple-output (MIMO) frequency-selective or in MIMO flat-fading channel has

not been considerably explored. Furthermore, DA-MDS estimation has mainly been studied in the literature. To the best of our

knowledge, only a few works have addressed MDS etimation in conjunction with multiple antenna systems. In [32], the authors

derived an asymptotic DA-MLE and DA-CRLB for joint MDS and noise variance estimation in MIMO flat-fading channel. In

[40], the cyclic correlation (CC) of linearly modulated signals is exploited for the MDS estimation for single transmit antenna

scenarios. While both DA and NDA estimators are studied in [40], only frequency-flat fading and single transmit antenna are

considered.

In this paper, we investigate the problem of MDS estimation in MIMO frequency-selective fading channel for both DA and

NDA scenarios. The DA-CRLB, NDA-CRLB, DA-MLE, and NDA-MLE in MIMO frequency-selective fading channel are

derived. In addition, a low-complexity NDA-moment-based estimator (MBE) is proposed. The proposed MBE relies on the

second- and fourth-order moments of the received signal along with the least-square (LS) curve-fitting optimization technique

to estimate the normalized squared autocorrelation function (AF) and MDS of the fading channel. Since the proposed MBE

is NDA, it removes the need of pilots and preambles used for DA-MDS estimation, and thus, it results in increased system
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capacity. The NDA-MBE outperforms the derived DA-MLE in the presence of imperfect time-frequency synchronization. Also,

the MBE outperforms the NDA-CC estimator (CCE) in [40] and the DA low-complexity MLE in [33], [34] in SISO systems

and under flat fading channels and in the presence of perfect time-frequency synchronization.

A. Contributions

This paper brings the following original contributions:

• The DA- and NDA-CRLBs for MDS estimation in MIMO frequency-selective fading channel are derived;

• The DA- and NDA-MLEs for MDS in MIMO frequency-selective fading channel are derived;

• A low-complexity NDA-MBE is proposed. The proposed estimator exhibits the following advantages:

– lower computational complexity compared to the MLEs;

– does not require time synchronization;

– is robust to the carrier frequency offset;

– increases system capacity;

– does not require a priori knowledge of noise power, signal power, and channel delay profile;

– does not require a priori knowledge of the number of transmit antennas;

– removes the need of joint parameter estimation, such as carrier frequency offset, signal power, noise power, and

channel delay profile estimation;

• The optimal combining method for the NDA-MBE in case of multiple receive antennas is derived through the bootstrap

technique.

B. Notations

Notation. Random variables are displayed in sans serif, upright fonts; their realizations in serif, italic fonts. Vectors and

matrices are denoted by bold lowercase and uppercase letters, respectively. For example, a random variable and its realization

are denoted by x and x; a random vector and its realization are denoted by x and x; a random matrix and its realization are

denoted by X and X , respectively. Throughout the paper, (·)∗ is used for the complex conjugate, (·)† is used for transpose,

| · | represents the absolute value operator, ⌊·⌋ is the floor function, δi,j denotes the Kronecker delta function, n! is the factorial

of n, E{·} is the statistical expectation, x̂ is an estimate of x, and det(A) denotes the determinant of the matrix A.

The rest of the paper is organized as follows: Section II describes the system model; Section III obtains the DA- and

NDA-CRLBs for MDS estimation in MIMO frequency-selective fading; Section IV derives the DA- and NDA-MLEs for MDS

in MIMO frequency-selective fading channel; Section V introduces the proposed NDA-MBE for MDS; Section VI evaluates

the computational complexity of the derived estimators; Section VII presents numerical results; and Section VIII concludes

the paper.
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II. SYSTEM MODEL

Let us consider a MIMO wireless communication system with nt transmit antennas and nr receive antennas, where the

received signals are affected by time-varying frequency-selective Rayleigh fading and are corrupted by additive white Gaussian

noise. The discrete-time complex-valued baseband signal at the nth receive antenna is expressed as [41]

r
(n)
k =

nt∑

m=1

L∑

l=1

h
(mn)
k,l s

(m)
k−l + w

(n)
k k = 1, ..., N, (1)

where N is the number of observation symbols, L is the length of the channel impulse response, s
(m)
k is the symbol transmitted

from the mth antenna at time k, satisfying E
{
s
(m1)
k1

(s
(m2)
k2

)∗
}
= σ2

sm1
δm1,m2δk1,k2 , with σ2

sm1
being the transmit power of the

m1th antenna, w
(n)
k is the complex-valued additive white Gaussian noise at the nth receive antenna at time k, whose variance

is σ2
wn

, and h
(mn)
k,l denotes the zero-mean complex-valued Gaussian fading process between the mth transmit and nth receive

antennas for the lth tap of the fading channel and at time k. It is considered that the channels for different antennas are

independent, with the cross-correlation of the l1 and l2 taps given by1

E

{
h
(mn)
k,l1

(
h
(mn)
k+u,l2

)∗}
= σ2

h(mn),l1
J0(2πfDTsu)δl1,l2 , (2)

where J0(·) is the zero-order Bessel function of the first kind, σ2
h(mn),l1

is the variance of the l1th tap between the mth transmit

and nth receive antennas, Ts denotes the symbol period, and fD = v/λ = fcv/c represents the MDS in Hz, with v as the

relative speed between the transmitter and receiver, λ as the wavelength, fc as the carrier frequency, and c as the speed of

light.

III. CRLB FOR MDS ESTIMATION

In this section, the DA- and NDA-CRLB for MDS estimation in MIMO frequency-selective fading channel are derived.

A. DA-CRLB

Let us consider s
(m)
k = s

(m)
k , m = 1, 2, · · · , nt, k = 1, 2, · · · , N −L+ 1, as employed pilots for DA-MDS estimation. The

received signal at nth receive antenna in (1) can be written as

r
(n)
k = r̄

(n)
k + j r̆

(n)
k =

nt∑

m=1

L∑

l=1

h̄
(mn)
k,l s̄

(m)
k−l − h̆

(mn)
k,l s̆

(m)
k−l + w̄

(n)
k

+ j

(
nt∑

m=1

L∑

l=1

h̄
(mn)
k,l s̆

(m)
k−l + h̆

(mn)
k,l s̄

(m)
k−l + w̆

(n)
k

)
, (3)

where r̄
(n)
k , Re

{
r
(n)
k

}
, r̆

(n)
k , Im

{
r
(n)
k

}
, h̄

(mn)
k,l , Re

{
h
(mn)
k,l

}
, h̆

(m,n)
k,l , Im

{
h
(mn)
k,l

}
, s̄

(mn)
k−l , Re

{
s
(mn)
k−l

}
, and s̆

(mn)
k−l ,

Im
{
s
(mn)
k−l

}
.

Let us define

r
(n) ,

[
r̄
(n)
1 r̄

(n)
2 · · · r̄

(n)
N r̆

(n)
1 r̆

(n)
2 · · · r̆

(n)
N

]†
(4)

1Here we consider the Jakes channel; it is worth noting that different parametric channel models can be also considered.
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and

r ,

[
r
(1)†
r
(2)† · · · r(nr)

†
]†
. (5)

The elements of the vector r(n), n = 1, 2, · · · , nt, are linear combinations of the correlated Gaussian random variables as in

(3). Thus, r, is a Gaussian random vector with probability density function (PDF) given by

p(r|s; θ) =
exp

(
− 1

2 r
†
Σ

−1(s, θ)r
)

(2π)Nnr det
1
2
(
Σ(s, θ)

) , (6)

where Σ(s, θ) , E{rr†}, s ,
[
s(1)

†
s(2)

†
· · · s(nt)

†]†
, s(m) ,

[
s̄
(m)
1 s̄

(m)
2 · · · s̄

(m)
N−L+1 s̆

(m)
1 s̆

(m)
2 · · · s̆

(m)
N−L+1

]†
, and

θ , [ξ ϑ fD]
† is the parameter vector, with

ξ , [σ2
w1

· · · σ2
wnr

]† (7a)

ϑ , [ϑ†
1 ϑ

†
2 · · · ϑ

†
L]

† (7b)

ϑl ,

[
σ2
h(11),l

· · · σ2
h(1nr),l

σ2
h(21),l

· · · (7c)

σ2
h(2nr),l

· · · σ2
h(nt1),l

· · · σ2
h(ntnr),l

]†
.

Since r(n1) and r(n2), n1 6= n2, are uncorrelated random vectors, i.e. E
{
r
(n1)r

(n2)
†}

= 0, the covariance matrix of r,

Σ(s, θ), is block diagonal as

Σ(s, θ) , E{rr†} =




Σ
(1)

Σ
(2)

. . .

Σ
(nr)




, (8)

where Σ
(n)

, E
{
r(n)r(n)

†}
. By employing (2), (3), and (4), using the fact the real and imaginary part of the fading tap

are independent random variables with E
{
|h̄

(mn)
k,l |2

}
=
{
|h̆

(mn)
k,l |2

}
= σ2

h(mn),l
/2, and after some algebra, the elements of the

covariance matrix Σ
(n), n ∈ {1, 2, · · · , nr}, are obtained as

E

{
r̄
(n)
k r̄

(n)
k+u

}
= E

{
r̆
(n)
k r̆

(n)
k+u

}
(9a)

=
1

2

nt∑

m=1

L∑

l=1

σ2
h(mn),l

(
s̄
(m)
k−l s̄

(m)
k+u−l + s̆

(m)
k−l s̆

(m)
k+u−l

)

J0(2πfDTsu) +
σ2
wn

2
δu,0

E

{
r̄
(n)
k r̆

(n)
k+u

}
= −E

{
r̆
(n)
k r̄

(n)
k+u

}
(9b)

1

2

nt∑

m=1

L∑

l=1

σ2
h(mn),l

(
s̄
(m)
k−l s̆

(m)
k+u−l − s̆

(m)
k−l s̄

(m)
k+u−l

)
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J0(2πfDTsu).

The Fisher information matrix of the parameter vector θ, I(θ), for the zero-mean Gaussian observation vector in (6) is

obtained as

[I(θ)]ij , −E

{
∂2 ln p(r|s; θ)

∂θi∂θj

}
(10)

=
1

2
tr

[
Σ

−1(s, θ)
∂Σ(s, θ)

∂θi
Σ

−1(s, θ)
∂Σ(s, θ)

∂θj

]
.

For the MDS, fD, I(fD) , [I(θ)]xx, x = ntnrL+ nr + 1, and one obtains

I(fD) = −E

{
∂2 ln p(r|s; θ)

∂f2
D

}
(11)

=
1

2
tr

[(
Σ

−1(s, θ)
∂Σ(s, θ)

∂fD

)2
]
,

where
∂Σ(s,θ)

∂fD
is obtained by replacing J0(2πfDTsu) with −2πuTsJ1(2πfDTsu) in Σ(s, θ), where J1(·) is the Bessel function

of the first kind.

Finally, by employing (11), the DA-CRLB for MDS estimation in MIMO frequency-selective fading channel is obtained as

Var(f̂D) ≥ I−1(fD) =
1

1
2 tr

[(
Σ

−1(s, θ)∂Σ(s,θ)
∂fD

)2
] . (12)

I(fD)=−E

{
∂2 ln p(r;ϕ)

∂f2
D

}
=−

1

|M |N ′nt

∫

x

∂2

∂f2
D

(
ln

|M|N
′nt∑

i=1

exp
(
− 1

2x
†
Σ

−1(c〈i〉,ϕ)x
)

det
1
2
(
Σ(c〈i〉,ϕ)

)

)
|M|N

′nt∑

q=1

exp
(
− 1

2x
†
Σ

−1(c〈q〉,ϕ)x
)

(2π)Nnr det
1
2
(
Σ(c〈q〉,ϕ)

) dx.

(19)

B. NDA-CRLB

Let us consider that the symbols transmitted by each antenna are selected from a constellation with elements {c1 c2 · · · c|M|},

where 1
|M|

∑|M|
i=1 |ci|

2 = 1. The PDF of the received vector r for NDA-MDS estimation is expressed as

p(r;ϕ) =
∑

c

p(r, c;ϕ), (13)

where c is the constellation vector as c ,
[
c
(1)†
c
(2)† · · · c(nt)

†]†
, c(m) ,

[
c̄
(m)
1−L c̄

(m)
2−L · · · c̄

(m)
N−1 c̆

(m)
1−L c̆

(m)
2−L · · · c̆

(m)
N−1

]†
,

c
(m)
k = c̄

(m)
k + jc̆

(m)
k is the constellation point of the mth transmit antenna at time k, and ϕ , [β† ξ† ϑ† fD]

† with

β , [σ2
s1 σ2

s2 · · ·σ2
snt

]†, and ξ and ϑ are given in (7).
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By employing the chain rule of probability and using p(c = c〈i〉) = |M |−N ′nt , N ′ , N + L− 1, one can write (13) as

p(r;ϕ) =
∑

c

p(r, c;ϕ) =
∑

c

p(c = c)p(r|c = c;ϕ)

=
1

|M |N ′nt

|M|N
′nt∑

i=1

p(r|c = c〈i〉;ϕ), (14)

where c〈i〉 represents the ith possible constellation vector at the transmit-side.

Similar to the DA-CRLB, p(r|c = c〈i〉;ϕ) is Gaussian and

p
(
r|c = c〈i〉;ϕ

)
=

exp
(
− 1

2 r
†
Σ

−1(c〈i〉,ϕ)r
)

(2π)Nnr det
1
2
(
Σ(c〈i〉,ϕ)

) , (15)

where Σ(c〈i〉,ϕ) , E
{
r〈i〉r

†
〈i〉

}
is the covariance matrix of the received vector r〈i〉 given the constellation vector is c = c〈i〉,

i = 1, 2, · · · , |M |N
′nt . The 2Nnr×2Nnr covariance matrix Σ(c〈i〉,ϕ) is block diagonal as in (8), where its diagonal elements,

i.e., Σ
(n)
〈i〉 , E

{
r
(n)
〈i〉 r

(n)
〈i〉

†}
, n ∈ {1, 2, · · · , nr}, are obtained as

E

{
r̄
(n)
k,〈i〉 r̄

(n)
k+u,〈i〉

}
= E

{
r̆
(n)
k,〈i〉 r̆

(n)
k,〈i〉

}
(16a)

=
1

2

nt∑

m=1

L∑

l=1

σ2
h(mn),l

σ2
sm

(
c̄
(m)
k−l,〈i〉c̄

(m)
k+u−l,〈i〉

+ c̆
(m)
k−l,〈i〉c̆

(m)
k+u−l,〈i〉

)
J0(2πfDTsu) +

σ2
wn

2
δu,0

E

{
r̄
(n)
k,〈i〉r̆

(n)
k+u,〈i〉

}
= −E

{
r̆
(n)
k,〈i〉 r̄

(n)
k,〈i〉

}
(16b)

=
1

2

nt∑

m=1

L∑

l=1

σ2
h(mn),l

σ2
sm

(
c̄
(m)
k−l,〈i〉c̆

(m)
k+u−l,〈i〉

− c̆
(m)
k−l,〈i〉c̄

(m)
k+u−l,〈i〉

)
J0(2πfDTsu).

By substituting (15) into (14), one obtains

p(r;ϕ) =
1

|M |N ′nt

|M|N
′nt∑

i=1

exp
(
− 1

2 r
†
Σ

−1(c〈i〉,ϕ)r
)

(2π)Nnr det
1
2
(
Σ(c〈i〉,ϕ)

) . (17)

Finally, by employing (17), the NDA-CRLB for MDS estimation in MIMO frequency-selective fading channel is expressed

as

Var(f̂D) ≥ I−1(fD) =
1

−E

{
∂2 ln p(r;ϕ)

∂f2
D

} , (18)

where I(fD) is given in (19) on the top of this page, and
∫
x
,
∫
x1

∫
x2

· · ·
∫
x(2Nnr)

. As seen, there is no an explicit expression

for (19), and thus, for the CRLB in (18). Therefore, numerical methods are used to solve (19) and (18).
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κ(n)
u = E

{∣∣r(n)k

∣∣2|r(n)k+u

∣∣2
}
=

nt∑

m=1

L∑

l=1

E

{∣∣h(mn)
k,l

∣∣2∣∣h(mn)
k+u,l

∣∣2
}
σ4
sm +

nt∑

m1=1

nt∑

m2 6=m1

L∑

l=1

E

{∣∣h(m1n)
k,l

∣∣2∣∣h(m2n)
k+u,l

∣∣2
}
σ2
sm1

σ2
sm2

+

nt∑

m=1

L∑

l1=1

L∑

l2 6=l1

E

{∣∣h(mn)
k,l1

∣∣2∣∣h(mn)
k+u,l2

∣∣2
}
σ4
sm +

nt∑

m1=1

nt∑

m2 6=m1

L∑

l1=1

L∑

l2 6=l1

E

{∣∣h(m1n)
k,l1

∣∣2∣∣h(m2n)
k+u,l2

∣∣2
}
σ2
sm1

σ2
sm2

+ 2σ2
wn

nt∑

m=1

L∑

l=1

E

{∣∣h(mn)
k,l

∣∣2
}
σ2
sm + σ4

wn
, u ≥ L. (28)

IV. ML ESTIMATION FOR MDS

In this section, we derive the DA- and NDA-MLEs for MDS in MIMO frequency-selective fading channel.

A. DA-MLE for MDS

The DA-MLE for fD is obtained as

f̂D = argmax
fD

p(r|s; θ), (20)

where p(r|s; θ) is given in (6). Since p(r|s; θ) is a differentiable function, the DA-MLE for fD is obtained from

∂ ln p(r|s; θ)

∂fD
= 0. (21)

By substituting (6) into (21) and after some mathematical manipulations, one obtains

∂ ln p(r|s; θ)

∂fD
= −

1

2
tr

[
Σ

−1(s, θ)
∂Σ(s, θ)

∂fD

]
(22)

+
1

2
r
†
Σ

−1(s, θ)
∂Σ(s, θ)

∂fD
Σ

−1(s, θ)r.

As seen in (22), there is no closed-form solution for (21). Thus, numerical methods need to be used to obtain solution. By

employing the Fisher-scoring method [42],2 the solution of (22) can be iteratively obtained as

f̂
[t+1]
D = f̂

[t]
D + I−1(fD)

∂ ln p(r|s; θ)

∂fD

∣∣∣∣∣
fD=f̂

[t]
D

, (23)

where I(fD) and
∂ ln p(r|s;θ)

∂fD
are given in (11) and (22), respectively.

B. NDA-MLE for MDS

Similar to the DA-MLE, the NDA-MLE for MDS is obtained from

f̂D = argmax
fD

p(r;ϕ), (24)

2The Fisher-scoring method replaces the Hessian matrix in the Newtown-Raphson method with the negative of the Fisher information matrix [43].
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where p(r;ϕ) is given in (17). Since p(r;ϕ) is a linear combination of differentiable functions, the NDA-MLE for fD is

obtained from

∂ ln p(r;ϕ)

∂fD
= 0. (25)

By substituting (17) into (25) and after some algebra, one obtains

|M|N
′nt∑

i=1

{
r†Σ

−1(c〈i〉,ϕ)
∂Σ(c〈i〉,ϕ)

∂fD
Σ

−1(c〈i〉,ϕ)r

det
1
2Σ(c〈i〉,ϕ)

−
tr
[
Σ

−1(c〈i〉,ϕ)
∂Σ(c〈i〉,ϕ)

∂fD

]

det
1
2Σ(c〈i〉,ϕ)

}
= 0 (26)

Similar to the DA-MLE, there is no closed-form solution for (26); thus, numerical methods are used to solve (26).

V. NDA-MOMENT-BASED (MB) ESTIMATION OF MDS

In this section, we propose an NDA-MB MDS estimator for multiple input single output (MISO) systems under frequency-

selective Rayleigh fading channel by employing the fourth-order moment of the received signal. Then, an extension of the

proposed estimator to the MIMO systems is provided.

A. NDA-MBE for MDS in MISO Systems

Let us assume that the parameter vector ϕ = [β† ξ† ϑ† fD]
† is unknown at the receive-side. The statistical MB approach

enables us to propose an NDA-MBE to estimate fD without any priori knowledge of β, ξ, and ϑ. Let us consider the

fourth-order two-conjugate moment of the received signal at the nth receive antenna, defined as

κ(n)
u

∆
= E

{∣∣r(n)k

∣∣2∣∣r(n)k+u

∣∣2
}
. (27)

With the transmitted symbols, s
(m)
k , m = 1, ..., nt being independent, drawn from symmetric complex-valued constellation

points,3 and with u ≥ L, κ
(n)
u is expressed as in (28) at the top of this page (see Appendix I for proof).

By employing the first-order autoregressive model of the Rayleigh fading channel, one can write [45], [46]

h
(mn)
k,l = Ψuh

(mn)
k+u,l + v

(mn)
k,l , (29)

where Ψu , J0(2πfDTsu) and v
(mn)
k,l is a zero-mean complex-valued Gaussian white process with variance E{|v

(mn)
k,l |2} =

(1− |Ψu|
2)σ2

h(mn),l
, which is independent of h

(mn)
k,l .

By using (29) and exploiting the property of a complex-valued Gaussian random variable z ∼ Nc

(
0, σ2

z

)
that E{|z|2n} =

n!σ2n
z [47], one obtains

E

{∣∣h(mn)
k,l

∣∣2|h(mn)
k+u,l

∣∣2
}

(30)

= E

{∣∣∣(J0(2πfdTsu)h
(mn)
k+u,l + v

(mn)
k,l )

∣∣∣
2∣∣h(mn)

k+u,l

∣∣2
}

3
E
{

(s
(m)
k

)2
}

= 0 for M -ary phase-shift-keying (PSK) and quadrature amplitude modulation (QAM), M > 2 [44].
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= J2
0 (2πfdTsu)E

{∣∣h(mn)
k+u,l

∣∣4
}
+ E

{∣∣v(mn)
k,l

∣∣2|h(mn)
k+u,l

∣∣2
}

+ J0(2πfdTsu)E
{
h
(mn)
k+u,l

∣∣h(mn)
k+u,l

∣∣2(v(mn)
k,l )∗

}

+ J0(2πfdTsu)E
{
(h

(mn)
k+u,l)

∗
∣∣h(mn)

k+u,l

∣∣2(v(mn)
k,l )

}

= 2J2
0 (2πfdTsu)σ

4
h(mn),l

+
(
1− J2

0 (2πfdTsu)
)
σ4
h(mn),l

=
(
1 + J2

0 (2πfdTsu)
)
σ4
h(mn),l

m = 1, ...nt, l = 1, ..., L.

With the channel taps l1 and l2 being uncorrelated for each transmit antenna, i.e., E
{
h
(mn)
k,l1

(h
(mn)
k,l2

)∗
}
= σ2

h(mn),l1
δl1,l2 and

employing

E

{∣∣h(m1n)
k,l1

∣∣2∣∣h(m2n)
k+u,l2

∣∣2
}

(31)

= σ2
h(m1n),l1

σ2
h(m2n),l2

[
(1 − δl1,l2)(1 − δm1,m2)

+ δl1,l2(1 − δm1,m2) + (1− δl1,l2)δm1,m2

]

+ σ4
h(m1n),l1

(
1 + J2

0 (2πfdTsu)
)
δm1,m2δl1,l2 ,

one can write (28) as

κ(n)
u =

nt∑

m=1

L∑

l=1

σ4
h(mn),l

σ4
sm

(
1 + J2

0 (2πfdTsu)
)

(32)

+

nt∑

m1=1

nt∑

m2 6=m1

L∑

l=1

σ2
h(m1n),l

σ2
h(m2n),l

σ2
sm1

σ2
sm2

+

nt∑

m=1

L∑

l1=1

L∑

l2 6=l1

σ2
h(mn),l1

σ2
h(mn),l2

σ4
sm

+

nt∑

m1=1

nt∑

m2 6=m1

L∑

l1=1

L∑

l2 6=l1

σ2
h(m1n),l1

σ2
h(m2n),l2

σ2
sm1

σ2
sm2

+ 2σ2
wn

nt∑

m=1

L∑

l=1

σ2
h(mn),l

σ2
sm + σ4

wn
.

f̂
[t+1]
D = f̂

[t]
D −

Mmax∑
u=Umin

8πTsu
(
Ψ̂
(n)
u − J2

0 (2πf
[t]
D Tsu)

)
J0
(
2πf

[t]
D Tsu

)
J1
(
2πf

[t]
D Tsu

)

∂2

∂f2
D

Umax∑
u=Umin

(
Ψ̂
(n)
u − J2

0 (2πfDTsu)
)2
∣∣fD=f

[t]
D

(42)

∂2

∂f2
D

Umax∑

u=Umin

(
Ψ̂u − J2

0 (2πfDTsu)
)2
∣∣fD=f

[t]
D

=

Mmax∑

u=Umin

{
32π2T 2

s u
2J2

0

(
2πf

[t]
D Tsu

)
J2
1

(
2πf

[t]
D Tsu

)

+ 8πTsu

(
2πTsu

(
J2
0

(
2πf

[t]
D Tsu

)
− J2

1

(
2πf

[t]
D Tsu

))
−

J0
(
2πf

[t]
D Tsu

)
J1
(
2πf

[t]
D Tsu

)

f
[t]
D

)(
Ψ̂(n)
u − J2

0 (2πf
[t]
D Tsu)

)}
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Further, let us consider the second-order moment of the received signal, i.e., µ
(n)
2

∆
= E{|r

(n)
k |2}. By using (1), it can be

easily shown that

µ
(n)
2 =

nt∑

m=1

L∑

l=1

σ2
h(mn),l

σ2
sm + σ2

wn
. (33)

By employing (32) and (33), one obtains the normalized squared AF of the fading channel as (see Appendix II for proof)

Ψu
∆
= J2

0 (2πfdTsu) = η(n)
(
κ(n)
u −

(
µ
(n)
2

)2)
, (34)

where η(n) = 1/
nt∑

m=1

L∑
l=1

σ4
h(mn),l

σ4
sm .

For non-constant modulus constellations, η(n) is expressed in terms of µ
(n)
4

∆
= E

{
|r
(n)
k |4

}
and µ

(n)
2 as (see Appendix III for

proof)

η(n) =
2(Ωs − 1)

µ
(n)
4 − 2

(
µ
(n)
2

)2 , (35)

where Ωs =
1

|M|

∑|M|
i=1 |ci|

4 is a constant, and 1 < Ωs ≤ 2.4

Finally, substituting (35) into (34) yields

Ψu
∆
= 2(Ωs − 1)

κ
(n)
u −

(
µ
(n)
2

)2

µ
(n)
4 − 2

(
µ
(n)
2

)2 . (36)

As seen, the normalized squared AF of the fading channel is expressed as a non-linear function of the µ
(n)
2 , µ

(n)
4 , and κ

(n)
u .

In practice, statistical moments are estimated by time averages of the received signal. For (36), the following estimators of the

moments are employed

µ̂
(n)
2 =

1

N

N∑

k=1

∣∣r(n)k

∣∣2 (37)

µ̂
(n)
4 =

1

N

N∑

k=1

|r
(n)
k

∣∣4

κ̂(n)u =
1

N − u

N−u∑

k=1

∣∣r(n)k

∣∣2∣∣r(n)k+u

∣∣2,

where u ≥ L > 0.

By substituting the corresponding estimators in (36), the estimate of the normalized squared AF is given as

Ψ̂(n)
u

∆
= 2(Ωs − 1)

κ̂
(n)
u −

(
µ̂
(n)
2

)2

µ̂
(n)
4 − 2

(
µ̂
(n)
2

)2 . (38)

Now, based on (34) and (38), the problem of MDS estimation can be formulated as a non-linear regression problem. Given

the estimated normalized squared AF, Ψ̂
(n)
u , the non-linear regression model assumes that the relationship between Ψ̂

(n)
u and

4For 16-QAM, 64-QAM, and complex-valued zero-mean Gaussian signals, Ωs is 1.32, 1.38, and 2, respectively [44].
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Ψu is modeled through a disturbance term or error variable ǫ
(n)
u as [48], [49]

Ψ̂(n)
u = Ψu + ǫ(n)u (39)

= J2
0 (2πfDTsu) + ǫ(n)u , u = Umin, . . . , Umax,

where Umin and Umax are the maximum and minimum delay lags, respectively.

To solve the non-linear regression problem in (39), the LS curve-fitting optimization technique is employed. Based on the

LS curve-fitting optimization, the estimate of fD, i.e., f̂D, is obtained through minimizing the sum of the squared residuals

(SSR) as [49]

minimize
fD

Umax∑

u=Umin

(
Ψ̂(n)
u − J2

0 (2πfDTsu)
)2

subject to fl ≤ fD ≤ fh,

(40)

where fl and fh are the minimum and maximum possible MDSs, respectively. To obtain f̂D, we consider the derivative of the

SSR with respect to fD and set it equal to zero as follows:

Mmax∑

u=Umin

8πTsu
(
Ψ̂(n)
u − J2

0 (2πfDTsu)
)

(41)

J0(2πfDTsu)J1(2πfDTsu) = 0.

As seen, for the non-linear regression, the derivative in (41) is a function of fD. Thus, an explicit solution for f̂D cannot be

obtained. However, numerical methods [50] can be employed to solve the LS curve-fitting optimization problem in (40).

By employing the Newton-Raphson method, f̂D can be iteratively obtained as it is shown in (42) at the top of next page.

The main problem with the Newton-Raphson method is that it suffers from the convergence problem [43]. Since the parameter

space for the MDS estimation is one-dimensional, the grid search method can be employed, which ensures the global optimality

of the solution. With the grid search method, the parameter space, i.e., [fl, fh] is discretized as a grid with step size δ, and

the value which minimizes SSR is considered as the estimated fD. This procedure can be performed in two steps, including

a rough estimate of the MDS, f̂
(r)
D , by choosing a larger step size ∆ followed by a fine estimate, f̂

(s)
D , through small grid step

size δ around the rough estimate, i.e.,
[
f̂
(r)
D −∆, f̂

(r)
D +∆

]
. A formal description of the proposed NDA-MBE for MDS in MISO

frequency-selective channel is presented in Algorithm 1.

It is worth noting that fD can be estimated by using a downsampled version of Ψ̂
(n)
u . For the case of uniform downsampling,

i.e., u = ℓus, the SSR is given as
Nla−1∑

ℓ=0

(
Ψ̂
(n)
Umin+ℓus

−ΨUmin+ℓus

)2
, (43)

where us is the downsampling period expressed in delay lags, Nla is the number of delay lag,

Ψℓus = J2
0

(
2πfDTs(Umin + ℓus)

)
, (44)
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Algorithm 1 : NDA-MBE for MDS in MISO systems

1: Set fl, fh, ∆, and δ

2: Acquire the measurements
{
r
(n)
k

}N
k=1

3: Estimate the statistics µ̂
(n)
2 , µ̂

(n)
4 , and κ̂

(n)
u , by employing (37)

4: Compute Ψ̂
(n)
u , ∀u ∈

{
Umin, . . . , Umax

}
by using (38)

5: Obtain f̂
(r)
D by solving the minimization problem in (40) through the grid search method with grid step size ∆

6: Obtain f̂
(s)
D by solving the minimization problem in (40) through the grid search method over

[
f̂
(r)
D −∆, f̂

(r)
D + ∆

]
with

grid step size δ

7: f̂D = f̂
(s)
D

and

Ψ̂
(n)
Umin+ℓus

= 2(Ωs − 1)
κ̂
(n)
Umin+ℓus

−
(
µ̂
(n)
2

)2

µ̂
(n)
4 − 2

(
µ̂
(n)
2

)2 . (45)

The downsampled version of Ψ̂
(n)
u is usually employed for the rough MDS estimation, where ∆ is a large value.

B. NDA-MBE for MDS in MIMO Systems

The performance of the proposed NDA-MBE for MDS in MISO system can be improved when employing multiple receive

antennas due to the spatial diversity, by combining the estimated normalized squared AFs, Ψ̂
(n)
u , n = 1, ..., nr as

Ψ̃u =

nr∑

n=1

λ(n)
u Ψ̂(n)

u , (46)

where Λu ,
[
λ
(1)
u λ

(2)
u · · · λ

(nr)
u

]†
, with

∑nr

n=1 λ
(n)
u = 1, is the weighting vector. Let us define Ψ̂u ,

[
Ψ̂
(1)
u Ψ̂

(2)
u · · · Ψ̂

(nr)
u

]†
.

The mean square error (MSE) of the combined normalized squared AF in (46) is expressed as

E

{(
Ψ̃u −Ψu

)2}
= Λ

†
uCuΛu +

(
Λ

†
uµu −Ψu

)2
, (47)

where Cu , E

{(
Ψ̂u − µu

)(
Ψ̂u − µu

)†}
and µu , E

{
Ψ̂u

}
.

By employing the method of Lagrange multipliers, the optimal weighting vector Λop
u in (47) in terms of minimum MSE is

obtained as

Λ
op
u =

(
1
†yu

)−1
yu, (48)

where yu ,
(
Cu + (µu −Ψu1)(µu −Ψu1)

†
)−1

1 and 1 , [1 1 · · · 1]† is an nr-dimensional vector of ones.

As seen, the optimal weighting vector, Λop
u , in (48) depends on the true value of MDS, i.e., fD, through the true normalized

squared AF, Ψu, in yu. To obtain the optimal weighting vector, the mean vector µu and covariance matrix Cu are required to

be estimated from the received symbols. One approach is bootstrapping [51]–[53]. The bootstrap method suggests to re-sample

the empirical joint cumulative distribution function (CDF) of Ψ̂u to estimate µu and Cu as summarized in Algorithm 2.5

5Since Ψ̂
(n)
u , n = 1, ..., nr are uncorrelated random variables, Cu is a diagonal matrix. Thus, only the diagonal elements of Ĉu are employed to obtain

the optimal weighting vector.
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Algorithm 2 : Bootstrap Algorithm for Optimal Combining

1: Set NB

2: for t = 1, 2, · · · , NB do

3: Draw a random sample of size N , with replacement, from X , {1, 2, · · · , N} and name it X ⋆

4: for n = 1, 2, · · · , nr do

Ψ̂(n)⋆
u [t] =

1
N−u

∑
k∈X ⋆

∣∣r(n)k

∣∣2∣∣r(n)k+u

∣∣2 −
(

1
N

∑
k∈X ⋆

|r
(n)
k

∣∣2
)2

1
N

∑
k∈X ⋆

|r
(n)
k

∣∣4 − 2
(

1
N

∑
k∈X ⋆

|r
(n)
k

∣∣2
)2

5: end for

6: Ψ̂
⋆

u[t] , 2(Ωs − 1)
[
Ψ̂
(1)⋆
u Ψ̂

(2)⋆
u · · · Ψ̂

(nr)⋆
u

]†

7: end for

8: Γu =
[
Ψ̂

⋆

u[1] Ψ̂
⋆

u[2] · · · Ψ̂
⋆

u[NB]
]

9: µ̂u = 1
NB

∑NB

t=1 Ψ̂
⋆

u[t]

10: Ĉu = 1
NB−1 (Γu − µ̂u1

†)(Γu − µ̂u1
†)†

1 100 200 300 400 500 600
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Illustration of the non-linear LS regression for the uniformly sampled normalized squared AF for fDTs = 0.02 and fDTs = 0.005, with nt = 1,
nr = 2, L = 1, us = 2, and at γ = 10 dB.

As seen in Algorithm 2, the optimal weighting vector for each delay lag u is derived at the expense of higher computational

complexity. In order to avoid this computational complexity, the suboptimal equal weight combining method can be employed

as

Ψ̃u =
1

nr

nr∑

n=1

Ψ̂(n)
u . (49)

Fig. 1 shows how Ψ̃u fits Ψu through the equal weight combining in (49) for fdTs = 0.02 and fdTs = 0.005 with nt = 1,

nr = 2, L = 1, us = 2, and at γ = 10 dB.

Finally, similar to the MISO scenario, the problem of MDS estimation for multiple receive antennas is formulated as non-

linear regression problem in (39) for Ψ̃u. A formal description of the proposed NDA-MBE for MDS in MIMO frquency-selective

channel is presented in Algorithm 3.
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Algorithm 3 : NDA-MBE for MDS in MIMO systems

1: Set fl, fh, ∆, and δ
2: Acquire the measurements {r

(n)
k }Nk=1, ∀n ∈

{
1, . . . , nr

}

3: Estimate the statistics µ̂
(n)
2 , µ̂

(n)
4 , and κ̂

(n)
u , by employing (37) for {r

(n)
k }Nk=1, ∀n ∈

{
1, . . . , nr

}

4: Compute Ψ̂
(n)
u , ∀u ∈

{
Umin, . . . , Umax

}
, ∀n ∈

{
1, . . . , nr

}
, by using (38)

5: Compute Ψ̃u, ∀u ∈
{
Umin, . . . , Umax

}
, by using (49)

6: Obtain f̂
(r)
D by solving the minimization problem in (40) for Ψ̃u through the grid search method with step size ∆

7: Obtain f̂
(s)
D by solving the minimization problem in (40) for Ψ̃u via the grid search method over

[
f̂
(r)
D −∆, f̂

(r)
D +∆

]
with

step size δ

8: f̂D = f̂
(s)
D

Table I
NUMBER OF REAL ADDITIONS, REAL MULTIPLICATIONS, AND COMPLEXITY ORDER OF THE PROPOSED NDA-MBE.

Algorithm Real additions Real multiplications Order

MISO
(

N + 2Ng −

(Umax+Umin)
2

)

Nla + 3N −Ng − 1
(

N +Ng −

(Umax+Umin)
2

+ 2
)

Nla + 3N + 4 O(N)

MIMO nr

(

(

N −

(Umax+Umin)
2

)

Nla + 3N − 1
)

+ (2Nla − 1)Ng nr

(

(

N −

(Umax+Umin)
2

+ 2
)

Nla + 3N + 4
)

+NgNla + 1 O(N)

C. Semi-blind NDA-MBE

The proposed NDA-MBE for MISO and MIMO systems do not require knowledge of the parameter vector ϕ = [β†

ξ†ϑ† fD]
†. In other words, the proposed NDA-MBE in section V-A and V-B are blind. For the scenarios in which the variance

of the additive noise can be accurately estimated at the receive antennas, i.e., ξ is known, a semi-blind NDA-MBE for the

case of SISO transmission and flat-fading channel, i.e., nt = 1 and L = 1, can be proposed. In this case, for the nth receive

antennas, one can easily obtain6

µ
(n)
2 = σ2

hn
σ2
s + σ2

wn
(50)

and

η(n) = (σ4
hn
σ4
s )

−1 =
1

(
µ
(n)
2 − σ2

wn

)2 . (51)

By using (34), (50) and (51), and by replacing the statistical moments and the noise variance with their corresponding estimates,

one obtains

Ψ̂(n)
u =

κ̂
(n)
u −

(
µ̂
(n)
2

)2

(
µ̂
(n)
2 − σ̂2

w

)2 , (52)

where σ̂2
wn

is the estimate of the noise variance, and κ̂
(n)
u and µ̂

(n)
2 are given in (37). Clearly, similar to the SISO transmission,

the optimal and suboptimal combining methods for the multiple receive antennas can be employed, as well.

6The index of transmit antenna, i.e., m = 1 and the index of channel tap, i.e., l = 1 is dropped.
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Fig. 2. Computational complexity comparison of the proposed NDA-MBE, the low-complexity DA-MLE in [33], [34], and the DA-COMAT estimator in
[38].

VI. COMPLEXITY ANALYSIS

By employing the two steps grid search method to solve the optimization problem in (40), the number of real additions

and multiplications employed in the proposed NDA-MBE is shown in Table I, where Nla is the number of delay lag, Ng ,

(Ng1 +Ng2), and Ng1 and Ng2 are the number of grid points used for the rough and fine estimation, respectively. As seen, the

proposed NDA-MBE exhibits a complexity order of O(N). It should be mentioned that the complexity order of the derived

DA-MLE and NDA-MLE are O(N3) and O(|M |N
′nt), respectively.

Fig. 2 compares the total number of operations used by the proposed NDA-MBE with the low-complexity DA-MLE in

[33], [34] and the DA-COMAT estimator in [38]. As seen, the proposed NDA-MBE exhibits significantly lower computational

complexity compared to the DA-COMAT [38] and the low-complexity DA-MLE in [33], [34]. This substantial reduced-

complexity enables the proposed MBE to exhibit good performance in the NDA scenarios, where the observation window can

be selected large enough.

VII. SIMULATION RESULTS

In this section, we examine the performance of the proposed NDA-MBE, as well as the derived DA-MLE and DA-CRLB

for MDS in MIMO frequency-selective fading channel through several simulation experiments.

A. Simulation Setup

We consider a MIMO system employing spatial multiplexing, with carrier frequency fc = 2.4 GHz. Unless otherwise

mentioned, nt = 2, nr = 2, Ts = 10µs, N = 105, and the modulation is 64-QAM. The delay profile of the Rayleigh

fading channel is σ2
h(mn),l

= β exp (−lrmsl/L), where β is a normalization factor, i.e., β
∑

l (−lrmsl/L) = 1, with L = 5 and

lrms = L/4 as the maximum and RMS delay spread of the channel, respectively. The parameters for the downsampled LS
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curve-fitting optimization are Umin = L, Umax = ⌊N
10⌋, and us = 10. The additive white noise was modeled as a complex-

valued Gaussian random variable with zero-mean and variance σ2
w for each receive antennas. Without loss of generality, it

was assumed that σ2
sm = 1/(ntnr), m = 1, 2, .., nt, and thus, the average SNR was defined as γ = 10 log

(
1
/
nrσ

2
w

)
. Unless

otherwise mentioned, the performance of the MDS estimators was presented in terms of normalized root-mean-square error

(NRMSE), i.e., E{(f̂DTs − fDTs)
2}1/2/fDTs, obtained from 1000 Monte Carlo trials for each fDTs ∈ [10−3, 18×10−3], with

the search step size ∆ = 10 Hz and δ = 0.5 Hz, respectively.

B. Simulation Results

Fig. 3 shows the distributions of the estimated f̂D by the proposed NDA-MBE for different MDSs, fD = 1000 Hz and

fD = 100 Hz, with nt = 2, nr = 2, and at γ = 10 dB. As seen, the distributions are not symmetric around their mean

values; hence, this leads to bias in MDS estimation. Furthermore, Fig. 4 illustrates E{f̂D/fD} versus fD for γ = 10 dB and

γ = 20 dB. As seen, the proposed NDA-MBE is nearly unbiased, i.e., E{f̂D} ≈ fD over a wide range of MDS. This can be

(a) fD = 1000 Hz

(b) fD = 100 Hz

Fig. 3. Distribution of the estimated f̂D for the proposed NDA-MBE for nt = 2, nr = 2, and at γ = 10 dB.
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Fig. 4. The mean value of the estimated MDS by NDA-MBE for various SNR values for nt = 2 and nr = 2.
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Fig. 5. The NRMSE of the proposed NDA-MBE versus fDTs for different SNR values.

explained, as while the distribution of the estimated fD is not symmetric, the estimated values are accumulated around their

mean value. It should be mentioned that by increasing the length of the observation window, N , the bias of the proposed

estimator approaches zero.

In Fig. 5, the NRMSE of the NDA-MBE versus fdTs is illustrated for γ = 0 dB, γ = 10 dB, and γ = 20 dB. As seen, the

proposed estimator exhibits a good performance over a wide range of Doppler rates, fDTs. As observed, the NRMSE decreases

as fDTs increases. This performance improvement can be explained, as for lower Doppler rates, a larger observation window
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Fig. 6. The effect of nt on the performance of the proposed NDA-MBE for nr = 2 and at γ = 10 dB.
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Fig. 7. The effect of nr on the performance of the proposed NDA-MBE for nt = 2 and at γ = 10 dB.

is required to capture the variation of the fading channel. Also, as expected, the NRMSE decreases as γ increases. This can

be easily explained, as an increase in γ leads to more accurate estimates of the statistics in (38).

Fig. 6 presents the NRMSE of the proposed NDA-MBE versus fDTs for different numbers of transmit antennas, nt, for

nr = 2 and at γ = 10 dB. As expected, the NRMSE increases as the number of transmit antennas increases. This increase can

be explained, as the variance of the statistics employed in (38) increases with the number of transmit antennas, thus, leading

to higher estimation error in the LS curve-fitting.

In Fig. 7, the NRMSE of the proposed NDA-MBE is shown versus fDTs for different numbers of receive antennas, nr, for

nt = 2, and at γ = 10 dB. It can be seen that an increment in nr leads to a reduced NRMSE. This decrease can be easily
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Fig. 8. The effect of the parameter Umin on the performance of the proposed NDA-MBE for different values of fdTs and at γ = 10 dB.

explained, as averaging at the receive-side yields more accurate estimation of Ψu, thus, leading to a more accurate result in

the LS curve-fitting.

In Fig. 8, the effect of the parameter Umin on the performance of the proposed NDA-MBE is illustrated for L = 5 and

us = 10. As observed, the proposed estimator exhibits a low sensitivity to the value of Umin. This can be explained, as a large

number of lags, Umin ≤ u ≤ Umax, are employed for fitting Ψ̃u to J2
0 (2πfDTsu) in the LS estimation; thus, the estimator is

nearly robust to a few missing delay lags, L ≤ u < Umin, or nuisance delay lags, 1 ≤ u < L. As such, basically the estimator

does not require an accurate estimate of L.

Fig. 9 shows the effect of the observation window size, N , on the performance of the proposed NDA-MBE. As expected,

the performance of the proposed estimator improves as the length of the observation window increases. This performance

improvement can be explained, as the variance of the estimated statistics employed in (38) decreases when N increases.

In Fig. 10, the NRMSE is plotted versus fDTs for the proposed NDA-MBE, the low-complexity DA-MLE (DA-LMLE) in

[33], [34], the NDA-CCE in [40], the DA-MLE in [30], and the DA-CRLB in [32] for MDS estimation in SISO frequency-flat

fading channel for N = 1000 and at γ = 10 dB. As seen, the proposed NDA-MBE outperforms the NDA-CCE, and provides

a similar performance as the DA-LMLE for fDTs ≥ 0.012. The performance degradation of the DA-LMLE at high values of

fDTs is related to the second-order Taylor expansion employed to approximate the covariance matrix; this is less accurate at

higher MDSs.

Fig. 11 illustrates the NRMSE versus fDTs for the proposed NDA-MBE, the derived DA-MLE, and the derived DA-CRLB

in MIMO frequency-selective fading channel for N = 1000 and at γ = 10 dB. In order to show the convergence problem

in the derived DA-MLE caused by the Fisher-scoring numerical method employed to solve the ML [43], the performance of
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Fig. 9. The effect of the observation window size, N , on the performance of the proposed NDA-MBE for nt = 2 and nr = 2 in frequency-selective channel,
and at γ = 10 dB.
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Fig. 10. Performance comparison of the proposed NDA-MBE, DA-CRLB [32], DA-MLE [30], the low-complexity DA-MLE in [33], [34], and the NDA-CCE
in [40] in SISO frequency-flat fading channel for N = 103 at γ = 10 dB.

the derived DA-MLE for the cases of single initial value (SIV) and multiple initial values (MIV) is plotted, respectively.7

As seen, by choosing MIV, the convergence problem of the Fisher-scoring method employed in the derived DA-MLE is

solved. Moreover, as observed, the performance of the derived DA-MLE with MIV is close to the DA-CRLB. This high

performance is obtained at the expense of significant computational complexity in the order of O(N3). On the other hand, the

proposed NDA-MBE cannot reach the DA-CRLB. This behaviour can be explained, as the NDA-MBE requires a larger number

of observation symbols to accurately estimate the second- and fourth-order statistics in time-varying channel. However, the

7With the MIV method, several initial values are considered and at convergence the one that yields the maximum is chosen.
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Fig. 11. Performance comparison of the proposed NDA-MBE, the derived DA-CRLB, and the derived DA-MLE (SIV and MIV) in MIMO frequency-selective
Rayleigh fading channel for nt = 2, nr = 2, L = 5, N = 103, and at γ = 10 dB.

substantial reduced-complexity enables the proposed MBE to exhibit significantly low NRMSE in the NDA scenarios, where

the observation window can be selected large enough.

In Fig. 12, the NRMSE is shown versus fDTs for the proposed semi-blind NDA-MBE in (52), the derived NDA-MLE,

and the NDA-CRLB in SISO flat-fading channel for BPSK signal, N = 10, fDTs ∈ [5 × 10−3, 45 × 10−3], and at γ = 20

dB.8 As expected, the NDA-MBE does not exhibit good performance for a short observation window size because the second-

and fourth-order statistics employed in (52) are not accurately estimated. On the other hand, the derived NDA-MLE exhibits

low NRMSE even for a short observation window. Moreover, there is no significant performance gap between the derived

NDA-MLE and NDA-CRLB, as well as the DA-MLE in [30] and the DA-CRLB in [32].

VIII. CONCLUSION

In this paper, we derived the DA- and NDA-CRLBs and DA- and NDA-MLEs for MDS in MIMO frequency-selective fading

channel. Moreover, a low-complexity NDA-MBE for MISO and MIMO systems was proposed. The NDA-MBE employs the

statistical moment-based approach and relies on the second- and fourth-order statistics of the received signal, as well as the

LS curve-fitting optimization technique. Compared to the existing DA estimators, the proposed NDA-MBE provides higher

system capacity due to absence of pilot. Also, the substantial reduced-complexity enables the proposed MBE to exhibit good

performance in the NDA scenarios, where the observation window can be selected large enough. The NDA-MBE does not

require a priori knowledge of other parameters, such as the number of transmit antennas; furthermore, the proposed NDA-

MBE is robust to the time-frequency asynchronization. When compared to the NDA-CCE, the NDA-MBE exhibits better

8The complexity order of the derived NDA-MLE and NDA-CRLB are in the order of O(|M |N
′
nt ); for large values of N ′ (N ′ = N + L − 1), the

corresponding curves are not obtainable even for |M | = 2 or nt = 1. Hence, N = 10 and SISO flat-fading channel are considered.
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Fig. 12. Performance comparison of the proposed semi-blind NDA-MBE in (52), the derived NDA-MLE, the derived NDA-CRLB, the DA-MLE in [30], and
the DA-CRLB in [32] in SISO frequency-flat-fading channel for N = 10 and at γ = 20 dB SNR.
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performance, and when compared to the low-complexity DA-MLE, it exhibits similar performance for high MDSs. On the

other hand, the derived DA-MLE’s performance is very close to the derived DA-CRLB in MIMO frequency-selective channel

even when the observation window is relatively small. Similarly, there is no significant performance gap between the derived

NDA-MLE and the NDA-CRLB.
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APPENDIX I

To obtain an explicit closed-form expression for κ
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APPENDIX II
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APPENDIX III
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where Ωs is the fourth-order two-conjugate statistic for unit variance signal, which represents the effect of the modulation

format. Finally, by employing (33) and (57), (35) is easily obtained. �
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[15] F. Bellili, R. Meftehi, S. Affes, and A. Stéphenne, “Maximum likelihood SNR estimation of linearly-modulated signals over time-varying flat-fading

SIMO channels,” IEEE Trans. Signal Process., vol. 63, no. 2, pp. 441–456, Jan. 2015.

[16] M. Marey, M. Samir, and O. A. Dobre, “EM-based joint channel estimation and IQ imbalances for OFDM systems,” IEEE Trans. Broadcast., vol. 58,

no. 1, pp. 106–113, Mar. 2012.

[17] A. Khansefid and H. Minn, “On channel estimation for massive MIMO with pilot contamination,” IEEE Commun. Lett, vol. 19, no. 9, pp. 1660–1663,

Sept. 2015.



26

[18] Y. Li, H. Minn, and M. Z. Win, “Frequency offset estimation for MB-OFDM-based UWB systems,” IEEE Trans. Commun., vol. 56, no. 6, pp. 968–979,

Jun. 2008.

[19] M. Mohammadkarimi, O. A. Dobre, and M. Z. Win, “Non-Data-Aided SNR Estimation for Multiple Antenna Systems,” in Proc. GLOBECOM,

Washington, USA, Dec. 2016, pp. 1–5.

[20] H. Wang, O. A. Dobre, C. Li, and D. C. Popescu, “Blind cyclostationarity-based symbol period estimation for FSK signals,” IEEE Commun. Lett,

vol. 19, no. 7, pp. 1149–1152, July 2015.

[21] A. Masmoudi, F. Bellili, S. Affes, and A. Stephenne, “A non-data-aided maximum likelihood time delay estimator using importance sampling,” IEEE

Trans. Signal Process., vol. 59, no. 10, pp. 4505–4515, Oct. 2011.

[22] M. Mohammadkarimi, E. Karami, O. A. Dobre, and M. Z. Win, “Number of transmit antennas detection using time-diversity of the fading channel,”

IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4031–4046, Aug. 2017.
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