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ABSTRACT   

HabEx is one of four candidate flagship missions being studied in detail by NASA, to be submitted for consideration to 
the 2020 Decadal Survey in Astronomy and Astrophysics for possible launch in the 2030s. It will be optimized for direct 
imaging and spectroscopy of potentially habitable exoplanets, and will also enable a wide range of general astrophysics 
science. HabEx aims to fully characterize planetary systems around nearby solar-type stars for the first time, including 
rocky planets, possible water worlds, gas giants, ice giants, and faint circumstellar debris disks. In particular, it will 
explore our nearest neighbors and search for signs of habitability and biosignatures in the atmospheres of rocky planets 
in the habitable zones of their parent stars. Such high spatial resolution, high contrast observations require a large 
(roughly greater than 3.5m), stable, and diffraction-limited optical space telescope. Such a telescope also opens up 
unique capabilities for studying the formation and evolution of stars and galaxies. We present some preliminary science 
objectives identified for HabEx by our Science and Technology Definition Team (STDT), together with a first look at 
the key challenges and design trades ahead.  
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1. INTRODUCTION  
NASA is funding four parallel flagship mission concept studies in preparation for the 2020 Decadal survey in Astronomy 
and Astrophysics: the X-ray Surveyor, the Far Infrared surveyor, the Large UV Optical Infrared surveyor (LUVOIR) and 
the Habitable Exoplanet Imaging mission (HabEx). The corresponding mission concept studies have just started, and will 
be guided by community STDTs formed in March 2016. The HabEx mission is optimized for the exploration of a broad 
diversity of worlds orbiting nearby stars, by using direct imaging and spectroscopy of reflected starlight in the visible 
region, with potential extensions to the UV and/or the near infrared parts of the spectrum. In particular, the mission will 
be designed to search for signs of habitability and biosignatures in the atmospheres of Earth-sized rocky planets located 
in the habitable zone of nearby solar type stars. We present in section 2 the preliminary science objectives envisioned for 
the exploration of exoplanetary systems with HabEx, discussing in particular the wavelength range required for such 
observations. In parallel to defining these exoplanet science goals, our STDT started to define potential high impact 
general astrophysics (GA) – i.e, non exoplanet - investigations and corresponding instrumental requirements (section 3). 
Section 4 summarizes the main technical requirements and challenges that apply to both types of envisioned 
observations. A number of high-level architecture trades have been identified for the exoplanet and GA sides of the 
mission, and are summarized in section 5. 

 

2. DIRECT IMAGING AND SPECTROSCOPY OF EXOPLANETARY SYSTEMS 
HabEx’s prime science goal is the discovery and characterization of Earth-sized planets in the habitable zones of nearby 
main sequence stars, searching in particular for potential biosignatures in their atmospheres. This goal drives the high 
contrast imaging requirements of the mission, and the continuous spectral coverage needed (although the full mission 
wavelength range for other applications may be significantly wider). More generally, it is expected that HabEx will take 
complete “family portraits” of our nearest and brightest neighboring planetary systems for the first time, and characterize 
the full diversity of planets orbiting these mature stars, both in the habitable zone and beyond. Because of its direct 
imaging capability, HabEx will also study the structure and evolution of debris disks around these stars, and their 
dynamical interaction with such planets.  
 
2.1 Rocky planets in the habitable zone and biosignatures 

 
Figure 1 (based on models from Robinson et al. 4): Simulated spectrum of an Earth analog around Tau Ceti (a G8V star located at 3.6 
pc), as observed with a 5m telescope providing a 10-9 raw contrast outside of a 2λ/D inner working angle.  The exozodiacal emission 
is assumed to be 10x the solar level, the spectral resolution is constant at R=70 over the whole range shown and the integration time is 
set to 25 hours per each 20% bandpass. Realistic noise sources included.  
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As already established by many authors1,2,3 , numerous spectral features should be detectable in the atmospheres of rocky 
planets using low resolution (R~50-100) spectroscopy from the near UV to the near infrared (IR). Figure 1 shows as an 
illustration the noise-free spectrum of an exo-Earth analog (red curve) between 0.3 and 2 µm sampled at a resolution of 
R=70, together with the simulated spectrum with realistic signal-to-noise ratio derived from high contrast imaging 
simulations4. In this case, a continuous spectral coverage from 0.4 to 1 µm would already reveal water vapor (0.94 µm 
absorption band), and potential bio-signature gases in the atmosphere such as O2 (0.69 and 0.76 µm) and its photolytic 
product O3 (via the Chappuis band centered on ~0.6 µm).  Detecting both O2 and H2O is important to rule out some false 
positive scenarios5; thus the 0.4 to 1 µm spectral range is an absolute minimum for HabEx.  Extending the observations 
down to 0.3 µm would allow one to detect the very deep Huggins band of O3, which starts to absorb at ~0.34 µm and 
whose optical depth increases dramatically down to 0.3 µm and shorter wavelengths.  Pushing even further in the UV 
may also allow one to distinguish a biotic, high-O2 atmosphere from an abiotic, CO2-rich atmosphere based on the ozone 
absorption shortward of 0.3 µm6. On the long wavelength side, extending the observations to 1.7 µm would make it 
possible to search for strong additional water bands (at 1.13 and 1.41 µm), and would also allow one to search for 
evidence that the detected O2 and O3 gases were created by abiotic processes (e.g., by looking for features from CO2, 
CO, O4). A further infrared extension to ~2.5 µm would allow to search for secondary features such as CH4, which may 
be inconsistent with abiotic processes.  
 

In reality, whatever the instrumental spectral coverage selected, there will be a distribution of wavelengths accessible to 
high contrast measurements, depending on host star type and distance, planet brightness and separation. We retain for 
now that an absolute minimum continuous wavelength range is 0.4 to 1 µm, with possible short wavelength extensions 
down below 0.3 µm and near infrared extensions to 1.7 µm or even 2.5 µm. These possible near IR and near UV 
extensions of the nominal high contrast spectral coverage must be traded against technical cost and complexity, as 
discussed in section 5.   
 

2.2 Characterizing the exoplanets zoo 

 
Figure 2 (adapted from Seager et al.7): Differences and similarities in brightness and spectral features for a variety of exoplanet types. 
Optical reflectance spectra of a diverse suite of exoplanets are shown without added noise. Features in the spectra of analogs to some 
of the planets in the Solar System, as well as planets that have no analogs in our solar system such as super Earths and sub-Neptunes, 
are readily distinguishable with a R=70 spectrum.  
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While the observation of Earth-sized planets in the habitable zone is of major interest and will drive HabEx high contrast 
imaging requirements, a whole suite of different exoplanets will also be characterized: super-Earths, possible ocean 
planets, sub-Neptune planets, Jovian planets, and possibly ice giants, if they are bright enough. Figure 2 shows as an 
illustration of the spectra that could be recovered for such a zoo of exoplanets, using the minimum spectral range defined 
previously.  

In the case of giant planets, R=70 spectra will provide a wealth of further information over a simple measurement of the 
broadband flux. The shape of the spectrum would help determine the wavelength-dependent reflectivity of the planet, 
which is controlled by the atmospheric thickness and any cloud and haze layers. The overall spectral shape will therefore 
give an indication of the presence or absence of cloud or haze layers. Absorption features from CH4, H2O, NH3, and CO, 
and emission features from Na and K, are all within the wavelength range of anticipated HabEx observations. The depths 
and widths of these features would be measured, from which the concentrations of these species could be determined or 
constrained.  
 
Exoplanets are incredibly diverse and not limited to giant planets or Earth-size planets, but extend to the full range of 
sizes (and masses and densities) allowed by physics. While there are no solar system planets larger than Earth but 
smaller than Neptune, such planets appear to be the most common planets in our Galaxy, at least for orbits within a few 
hundred days. Being larger than Earth, these planets are favorable for detection and characterization with HabEx. Of 
particular interest is the possibility that super Earths or even some low-mass sub-Neptune planets exterior to the 
traditional habitable zone may have suitable surface temperatures to host life by a strong greenhouse gas atmosphere or 
envelope composed of H2

8. 
 

2.3 Structure and evolution of circumstellar disks  

With a contrast that is 1,000 times better than that achievable with the Hubble Space Telescope (HST), HabEx will 
resolve dust structures, tracing the gravitational effect of planets too small or remote to be detected by any other means, 
and measuring dust properties in a large sample of outer exo-Kuiper belts and inner exozodiacal belts at solar system 
emission levels or even lower. HabEx will indeed survey several hundred nearby solar type stars for exoplanets, and in 
doing so will directly image all types of dust structures around them, with the ability of resolving rings, gaps, warps and 
asymmetries driven by planetary perturbations in these disks. Such observational studies of dynamical disk/planet 
interactions would be similar to what has already been demonstrated on much brighter disks and self-luminous planets 
found around nearby young stars such as β Pic9, but with HabEx would be possible on much fainter disks orbiting 
mature stars. By imaging so many faint debris disks for the first time, HabEx will enable comparative studies of dust 
inventory and properties across a broad range of stellar ages and spectral types. This will put the solar system in 
perspective not only in terms of exoplanet populations, but also in terms of dust belts morphologies and other physical 
characteristics.     
 

3. GENERAL ASTROPHYSICS OBSERVATIONS  
A wide variety of investigations are currently being considered for HabEx general astrophysics program. They range 
from studies of galaxy leakiness and Inter-Galactic Medium (IGM) reionization through measurements of the escape 
fraction of ionizing (LyC) photons, to studies of the life cycle of baryons as they flow in and out of galaxies, to resolved 
stellar population studies, including the impact of massive stars and other local environment conditions on star formation 
rate and history. More exotic applications include astrometric observations of local dwarf galaxies to help constrain the 
nature of dark matter, or further improvements in the determination of the local value of the Hubble constant, using 
precision near infrared Cepheid-based measurements in scores of galaxies that have hosted SNe Ia events. All themes 
would take advantage of what would be the largest diffraction limited optical telescope in space, with likely extensions 
to the UV and/or near infrared regimes. As an illustration, we concentrate hereafter on three of these potential general 
astrophysics topics.  

3.1 Measuring the star formation histories of nearby galaxies with stellar archaeology 

One of the primary goals of studies of galaxy formation and evolution is to map how galaxies formed their stars and 
produced heavy elements over cosmic time. We can probe the formation history of stars in galaxies in a statistical way 
by studying galaxies at different redshifts, corresponding to “snapshots” of different cosmic epochs. However, a 
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complementary and very powerful technique uses measurements of the luminosities and colors of individual stars within 
a galaxy, along with our knowledge of how stars evolve in this diagram as they age, to determine the ages and chemical 
abundances of these stars. This allows us to extract a “fossil record” of when stars formed. The Hubble Space Telescope 
can resolve individual stars down to stars like our Sun only for very nearby galaxies (within our own Local Group). 
Hubble can reach only one other large galaxy with this technique, the Andromeda spiral galaxy.  
With a >3.5-m diffraction-limited UV-optical telescope, we could map star formation histories out to much larger 
distances. By pushing to larger distances, we will be able to study the diversity of galaxy formation histories as a 
function of mass, environment, and other properties. Moreover, this information will be synergistic with several of the 
other science drivers discussed in this document and science that will be possible with other facilities by the time HabEx 
flies. For example, if we can map the circumgalactic medium (CGM) using UV spectroscopy, we can attempt to make 
links between the amount of energy and momentum that was deposited into the ISM over a galaxy’s history (using 
resolved stellar populations) and the conditions in the CGM. Although some of this science will be done with JWST in 
the infrared, UV and optical photometry are critical for obtaining deeper, more robust constraints on star formation 
histories and disentangling degeneracies between age, metallicity and dust. This work is very unlikely to be possible 
from the ground even with ELTs. 

3.2 Tracing the Life cycle of Baryons – a candidate grand challenge for HabEx 

One of the candidate general astrophysics grand challenges that HabEx could substantially address is to track and 
understand the life cycle of baryonic matter in the Universe.  The goal would be to understand the nature of material in 
the IGM, and what can we learn about the cycle of material between star formation in galaxies and how the resulting 
material is ejected from those galaxies and subsequently returned via other mechanisms. There are a series of 
observational approaches that can be used to address this goal.  One is to use QSOs or fainter AGNs as backlights to 
allow FUV absorption line studies of the intervening IGM.  The idea is to use this methodology to trace invisible baryons 
and conduct a census of baryonic matter in the low redshift universe in the various phases of the IGM.  In parallel to this 
we can also map the IGM/CGM emission to probe baryonic structure formation across cosmic time. This idea detects 
and characterizes the IGM in emission (rather than absorption) to determine the physical properties of the IGM and trace 
baryonic structure formation using that same emission.  Another component would map and track the metallic evolution 
of the IGM, and through that data the physics and contents of galactic haloes, the evolution of UV irradiated 
environments and ultimately the emergence of life using a large number of spectroscopic lines of sight, coupled with 
narrow band UV imaging and spectroscopy.    
 

 
Figure 3 (adapted from Tripp 201310): resonance absorption lines detectable with a HabEx class telescope. Using intermediate-
redshift QSOs and fainter AGNs as backlights allows absorption line studies of the intervening IGM/CGM, with transitions from a 
tremendous suite of elements and ions redshifted into the UV band. Such observations provide a very effective tool to probe the flow 
of matter in and out of the CGM and constrain the cosmic baryon cycle over the past ~10 Gyr.  

In addition, we can gain an understanding of how material, and in particular the chemical elements, are distributed and 
dispersed into the CGM and the IGM, and how baryonic matter subsequently flows from the IGM into galaxies and from 
there into stars and planets.  Such a study is rooted in a high-resolution multiband UVOIR survey imaging of the 
Magellanic Clouds (MCs), together with a narrowband survey of HII regions and the diffuse warm Interstellar Medium 
(ISM) in the Clouds.  A complementary FUV spectroscopic survey of 1300 early-type stars would provide direct tracers 
of both the ISM conditions as well as providing insight into the nature of these stellar atmospheres to provide checks for 
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atmospheric codes.  A critical component of this work is to focus on massive stars as a tool to measure the range of 
properties that stars can be formed with: mass, composition, convection, mass-loss rate, rotation rate, binarity, magnetic 
fields, and ultimately birth cluster mass.  Such a wide-ranging survey of a large sample of local star forming galaxies 
would allow one to study the escape rate of Lyα photons, which is critical since these have a direct impact on the ecology 
of the CGM and have implications for fundamental cosmological questions such as the source of the photons that drove 
cosmic reionization.   
 
3.3 Precision Measurement of the local value of the Hubble Constant  
The latest measurements of the local value of the Hubble constant, based on an extensive Hubble Space Telescope 
program, including significant optical and near-IR observations with the Wide Field Camera 3 (WFC3), find a local 
value that is 3.4 sigma higher11 than the latest value measured by Planck. Importantly, the Hubble program measures the 
local value of the Hubble constant, while Planck observes the surface of last scattering of the cosmic microwave 
background at high redshift and infers the local value of the Hubble constant based on an assumed cosmology.  In this 
case, the discrepancy arises for a vanilla ΛCDM cosmology. Thus despite having entered the era of precision cosmology 
where fundamental parameters have uncertainties less than 2.5%, significant tension remains, potentially indicating 
exotic new physics. One plausible explanation for this discrepancy could involve an additional source of dark radiation 
in the early universe.  
 
Riess et al.11 reduced the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%, with the bulk of the 
improvement coming from near-IR observations of Cepheid variables in 11 host galaxies that have recently hosted type 
Ia supernovae (SNe Ia). This work more than doubled the sample of reliable SNe Ia with Cepheid-calibrated distances, to 
a total of 19. WFIRST, with the same aperture as Hubble, will only be able to incrementally improve upon Hubble 
because SNe Ia explosions are relatively infrequent within the small volume of the local universe in which Cepheid 
variables are accessible to a 2.4-m class telescope. A near-IR channel on HabEx would vastly increase the volume 
accessible to such measurements, thereby allowing precision Cepheid-based measurements to scores of galaxies that 
have hosted recent SNe Ia, and thus significantly reducing the uncertainty in the local value of the Hubble constant. The 
required precision photometry is not achievable from the ground. 
 

4. TECHNICAL REQUIREMENTS AND CHALLENGES  
 
4.1 High Contrast Imaging of Exoplanetary systems 

Before considering contrast and spatial resolution, an obvious requirement for HabEx is to provide enough sensitivity for 
high signal-to-noise ratio spectroscopic measurements of V~30 planets in reasonable exposure times. In terms of signal, 
taking the case an Earthlike planet seen at quadrature around a Sun-like star located at 10 pc, the incoming visible photon 
flux per R=70 spectral resolution element is only 10-3 photons/m2/s.  Even with a 5m-class telescope, and assuming a 
50% overall transmission, it will take about 100s to detect a single planetary photon during spectroscopic observations.   
This points to extremely low noise and very stable detectors, with dark current lower than ~0.001 count/pix/s, and read 
noise smaller than ~0.1 count rms12. Energy-resolving detectors are an attractive solution that will be examined for the 
different wavelengths considered.  

Whether an internal coronagraph or an external starshade is used (or both), the detection of a meaningful number of 
Earth-sized planets in the habitable zone of nearby stars requires starlight suppression levels of ~1010 at physical 
separations smaller than 100 mas over large (>20%) optical bandwidths. This implies stringent control of residual 
starlight scattered from the edges of a distant starshade or from imperfect optics inside a telescope coronagraphic beam 
train.  

In the case of internal coronagraphs, raw contrast levels of the order of 5x10-10 have already been demonstrated over the 
required optical bandwidth and range of planetary separations considered13. These vacuum experiments used un-
obscured telescope apertures and a stable laboratory bread-board; several other candidate coronagraphs architectures 
have come close to the required performance14. This suggests that under static wavefront conditions, the required 10-10 
detectability levels should be accessible in the near future with current coronagraph designs, especially after applying 
post-processing techniques to further reduce residual starlight speckles. More challenging is to reach the same 
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performance under dynamical conditions, i.e., in the presence of fast line-of-sight jitter and slow wavefront drifts due to 
small changes in the telescope thermal load. Such effects have already been examined and modeled in some detail in the 
context of the WFIRST coronagraph, which will primarily focus on imaging and characterizing brighter giants planets 
previously detected by ground-based RV measurements. HabEx will basically require a tenfold contrast improvement 
over WFIRST.  Assuming a primary aperture of ~3.5 m, and depending on the exact wavelength and coronagraph 
architecture considered, the HabEx telescope line of sight pointing jitter will have to be kept below to ~0.1-0.5 mas rms. 
Such low numbers will likely only be accessible after active correction of residual telescope pointing jitter using a fast 
stirring mirror. Similarly, very small low order wavefront drifts will be tolerable, down to the ~10 pm rms level. Such 
performance could in principle be reached passively through exquisite thermal design, and likely through additional 
active low order wavefront sensing and control using either natural starlight (WFIRST’s approach) or laser metrology for 
faster control.   

 

 
Figure 4 (adapted from Fang Shi 6): expected sensing capabilities for the WFIRST telescope using diverse low-order wavefront 
sensing schemes and 1 milli-second exposures on natural starlight. The blue lines are representative of the sensing performance 
expected with a larger (~3.5m to 8m) HabEx telescope optimized for exoplanets direct imaging. Left: a pointing sensing error of 0.1 
mas rms per axis is reachable in 1milli-second on a V=6 star. Right: a 10 pm rms sensing error is achievable on a V=6 star in ~10s.  
Controlling the line-of-sight and wavefront jitters down to these theoretical levels requires however that the input drifts before any 
starlight based correction be lower and slower than these limits, or pre-reduced using vibration isolation and laser metrology.  
 

In the case of an external starshade, the telescope will not require the ~10 pm level stability needed by the coronagraph. 
The major requirement is hence no longer set on the telescope stability, although it will still need to be diffraction limited 
down to ~400nm for best performance, requiring some active control at the ~100nm level. The challenge is instead on 
the control of the starshade petal shapes and positions to within ~100 µm, and precision formation flying of the telescope 
inside the shadow casted by the starshade (typically +/- 1 m of tolerance) and on model validation, given difficulties in 
end-to-end testing of such a large system from the ground. All of these key aspects have been the objects of successful 
demonstrations over the last few years15 and recognized as high priorities for further verifications in the near future tests. 
The potential WFIRST starshade rendezvous mission currently being studied would strongly advance the technology 
readiness level of the starshade, bringing it on par with the coronagraph.  

It is worth noting here that the starshade and the coronagraph represent at this point two viable options for the HabEx 
high contrast imaging system, and that they are not necessarily incompatible. In fact, while more work is needed to 
properly optimize possible synergies (section 5) and assess compatibility, it could be that the highest exoplanet science 
yield is obtained when using both systems in conjunction. For example, exoplanet observations may take advantage of 
the coronagraph agility to conduct multiple blind search visits around different stars, and use the intrinsic broad 
wavelength coverage and small inner working angle (IWA) of a starshade for subsequent spectroscopic characterization. 
As shown above, the coronagraph and starshade approaches present very different and quite “orthogonal” technical 
challenges, so that operating both may also increase the robustness of the mission.   
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4.2 General Astrophysics 

General astrophysics observations may level requirements on the HabEx design (e.g in terms of wavelength range and 
field of view), if justified by a high science return while still being compatible with top exoplanet science goals and 
preferred architecture. Table 1 summarizes the investigations currently suggested for HabEx general astrophysics 
program (Section 3), together with some notional instrument requirements for each of them. A number of themes point 
toward spectroscopic observations in the far UV, and diffraction limited imaging over a significant field of view (at least 
3x3 arcmin), none of which appear to be especially difficult. However, extending the spectral range into the UV would 
require aluminum-based primary and secondary mirrors and dedicated UV coatings, and while HST has observing 
capabilities in the far UV, they do not extend with high throughput below 120nm.  The exact impact of a UV capability 
on high contrast imaging observations will have to be assessed, specifically in terms of throughput loss at longer 
wavelengths, expected polarization effects when using a coronagraph, and perhaps others. This will be part of the trades 
discussed hereafter.  

Science Driver Observation Wavelength Spatial R Spectral R Field of 
view 

Local Hubble 
Constant 

Image Cepheid in 
SN Ia host galaxies 

Optical- NIR Diffraction  
Limited 

Low 3’ x 3’ 

Galaxy Leakiness 
and Reionization 
 

UV imaging of 
galaxies (LyC 
photons escape 
fraction) 

UV, preferably 
down to LyC at 
91 nm 

10-20 mas R ~ 1000-
3000 

few 
arcmin 

Cosmic Baryon 
Cycle 

UV imaging & 
spectroscopy of  
absorption lines in 
background QSOs 

Imaging down 
to 115nm 
Spectroscopy 
down to 91nm 

10-20 mas R ~ 40000 3’ x 3’ 

Massive Stars 
/Feedback 

UV imaging & 
spectroscopy  in the 
MW and nearby 
galaxies 

110-1000nm 
imaging 
120-160 nm 
spectroscopy 

< 40 mas R ~ 10000 3’ x 3’ 

Stellar 
Archaeology 

Resolved 
photometry of 
individual stars in 
nearby galaxies 

Optical (500-
1000nm) 

Diffraction  
Limited 

Low 3’ x 3’ 

Dark Matter Photometry and 
astrometric proper 
motion of stars in 
Local Group dwarf 
galaxies 

Optical (500-
1000nm) 

Diffraction  
Limited 

Low TBD 

 
Table 1: Possible General Astrophysics themes to be pursued by HabEx and corresponding instrumental requirements (all notional).  
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5. MAIN ARCHITECTURE TRADES AHEAD AND CONCLUSIONS 
The HabEx mission design will be optimized for high contrast imaging and spectroscopy of Earth-sized planets in the 
habitable zone of nearby solar-type stars. HabEx will also enable a broad range of general astrophysics observations, 
with possible applications ranging from galaxy leakiness and reionization studies, to tracing the life cycle of baryons in 
and out of galaxies. To optimize HabEx science return with respect to cost and technical risk, the main trades ahead are 
clearly identified. We will explore during the concept study a range of possibilities for each of the following trades: 

• Telescope size and technology. At this point, we are considering primary mirror sizes ranging from ~3.5 to 8m, 
both on-axis and off-axis. There is no real drive for considering segmented primaries below ~4m in diameter, while 
4m+ apertures may have to be segmented. In terms of control, both passive and active controls will be considered, 
and active correction may be based on laser metrology sensing and/or natural starlight. An important trade to 
conduct will be the choice of the telescope f-number: higher values may be favored when polarization is a concern 
(i.e., for a coronagraph), but lower values would provide better stability of the secondary mirror and more compact 
designs.  

• High contrast architecture (also see section 4.1). Currently, all options for high contrast starlight suppression are 
being considered: a coronagraph system only, a starshade only, a hybrid coronagraph and starshade operation, or 
even multiple starshades.  Clearly, the telescope and high contrast architecture trades are highly correlated. 
Operating a coronagraph will place significantly more stringent requirements on wavefront control and stability. It 
would also point to an unobscured aperture, i.e., an off-axis telescope design. Increasing the telescope diameter will 
cause a significant increase in starshade size, distance and repointing ability.  

• Wavelength range. It is worth noting here that the wavelength range selected for high contrast observations may be 
different than that adopted for general astrophysics (or other type of exoplanet observations), and thus may level 
different requirements on the mission. On the exoplanet side, going to longer wavelengths would require a larger 
starshade and/or a larger telescope in order to reduce the amount of exozodiacal background collected per spatial 
resolution element, or to keep the coronagraphic IWA small. Characterizing exoplanets at wavelengths shorter than 
~350nm would require a fully UV-sensitive high contrast optical train to preserve throughput, and will make all 
wavefront requirements more stringent, whether for a starshade or a coronagraph architecture. The desired 
wavelength range for general astrophysics will have an impact on the telescope temperature if going above ~ 2µm, 
or will strongly impact telescope design if going below 200nm. In particular, far UV operation would require an 
aluminum based UV-coated primary, which will affect throughput at visible wavelengths and may cause additional 
polarization issues if a coronagraph is used. The choice of the HabEx wavelength range will also impact trades on 
the detector technology.  

• Nature and extent of target pre-screening. The trade here consists in understanding the gain (both in terms of 
science yield and cost) provided by different types of precursor observations of exoplanetary systems, in particular 
measurements of exozodiacal emission levels and the detection of Earth mass planets in the habitable zone using 
precursor RV measurements and / or astrometric measurements. We will assess what type of precursor measurement 
is the most beneficial, and how to best obtain them, i.e., through separate observations or as part of the mission 
itself.  

All these key trades are not independent of each other, and many iterations would be necessary to thoroughly search this 
multi-parameter space and find an absolute optimum. Given available resources, we will instead concentrate on finding 
the “sweet spot”, i.e., identify a viable proof of concept design that is scientifically compelling, technologically 
executable, and timely for the next decade.  
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