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Abstract
We introduce a framework that enables
an agent to autonomously learn its own
symbolic representation of a low-level,
continuous environment. Propositional
symbols are formalized as names for
probability distributions, providing a nat-
ural means of dealing with uncertain rep-
resentations and probabilistic plans. We
determine the symbols that are sufficient
for computing the probability with which
a plan will succeed, and demonstrate the
acquisition of a symbolic representation
in a computer game domain.

Introduction
There is a long history of research in intelligent robotics that
combines high-level planning with low-level control [Nils-
son, 1984; Malcolm and Smithers, 1990; Gat, 1998; Cambon
et al., 2009; Choi and Amir, 2009; Dornhege et al., 2009;
Wolfe et al., 2010; Kaelbling and Lozano-Pérez, 2011]. Such
systems are capable of generating complex, goal-driven be-
havior but are hard to design because they require a difficult
integration of symbolic reasoning and low-level motor con-
trol.

Recently, Konidaris et al. [2014] showed how to automat-
ically construct a symbolic representation suitable for plan-
ning in a high-dimensional, continuous domain. This work
modeled the low-level domain as a semi-Markov decision
process (SMDP) and formalized a propositional symbol as
the name given to a grounding set of low-level states (repre-
sented compactly using a classifier). Their key result was that
the symbols required to determine the feasibility of a plan are
directly determined by characteristics of the actions available
to an agent. This close relationship removes the need to hand-
design symbolic representations of the world and enables an
agent to, in principle, acquire them autonomously.

However, a set-based symbol formulation cannot deal with
learned sets that may not be exactly correct, and can only
determine whether or not the probability of successfully exe-
cuting a plan is 1. These restrictions are ill-suited to the real-
world, where learning necessarily results in uncertainty and
all plans have some probability of failure.

We introduce a probabilistic reformulation of symbolic
representations capable of naturally dealing with uncertain
representations and probabilistic plans. This is achieved by
moving from sets and logical operations to probability dis-
tributions and probabilistic operations. We use this frame-
work to design an agent that autonomously learns a com-
pletely symbolic representation of a computer game domain,
enabling very fast planning using an off-the-shelf probabilis-
tic planner.

Background
Semi-Markov Decision Processes
We assume that the low-level sensor and actuator space of
the agent can be described as a fully observable, continuous-
state semi-Markov decision process, described by a tuple
M = (S,O,R, P, γ), where S ⊆ Rn is the n-dimensional
continuous state space; O(s) is a finite set of temporally ex-
tended actions, or options [Sutton et al., 1999], available in
state s ∈ S; R(s′, τ |s, o) is the reward received when exe-
cuting option o ∈ O(s) at state s ∈ S and arriving in state
s′ ∈ S after τ time steps; P (s′, τ |s, o) is a PDF describing
the probability of arriving in state s′ ∈ S, τ time steps after
executing option o ∈ O(s) in state s ∈ S; and γ ∈ (0, 1] is a
discount factor.

An option o consists of three components: an option policy,
πo, which is executed when the option is invoked; an initia-
tion set, Io = {s|o ∈ O(s)}, which describes the states in
which the option may be executed; and a termination con-
dition, βo(s) → [0, 1], which describes the probability that
option execution terminates upon reaching state s. The com-
bination of initiation set, reward model, and transition model
for an option o is known as o’s option model. We assume that
the agent does not have access to its option models, and can
only observe whether its current state is in Io and the transi-
tions resulting from actually executing o.

Probabilistic High-Level Planning
High-level planning approaches operate using symbolic states
and actions. The simplest formalism for high-level plan-
ning is the set-theoretic representation [Ghallab et al., 2004].
A typical formalization of the probabilistic version of this
[Younes and Littman, 2004] describes a planning domain as
a set of propositional symbols P = {p1, ..., pn} and a set of



actionsA = {α1, ..., αm}. A state Pt at time t assigns a truth
value Pt(i) to every pi ∈ P , and so can be represented by a
binary vector.

Each action αi is a tuple describing a pre-
condition and a set of possible outcomes, along
with the probability of each occurring: αi =(
precondi,

{
(ρ1, effect+i1, effect−i1), ..., (ρk, effect+ik, effect−ik)

})
,

where precondi ⊆ P lists the propositions that must be true
in a state for the action to be applicable, each ρj ∈ [0, 1] is
an outcome probability such that

∑k
j=1 ρj = 1, and effect+ij

and effect−ij are the positive (propositions set to be true) and
negative (propositions set to be false) effects of outcome j
occurring, respectively. All other propositions retain their
values. A planning problem is obtained by additionally
specifying a start state, s0, and set of goal states, Sg . The
planner is typically tasked with finding a sequence of actions
that leads from s0 to some state in Sg with high probability.

Symbols for Planning
When a high-level planning formalism is used to solve a low-
level problem, each proposition can be considered to evaluate
to true or false at each low-level state. The propositions can
thus be viewed as referring to (or naming) the set of low-level
states in which the proposition holds (i.e., evaluates to true).
Consequently, Konidaris et al. [2014] used the following def-
inition of a symbol:
Definition 1. A propositional symbol σZ is the name asso-
ciated with a test τZ , and the corresponding set of states
Z = {s ∈ S | τZ(s) = 1}.

The test, or grounding classifier, is a compact representa-
tion of a set of infinitely many continuous, low-level states.
High-level planning can then be performed using set opera-
tions over the grounding classifiers (corresponding to logical
operations over the symbols). Defining a symbol for each op-
tion’s initiation set, and the symbols necessary to compute its
image (the set of states the agent might be in after execut-
ing the option from any of a given set of starting states) are
necessary and sufficient for planning [Konidaris et al., 2014].
The feasibility of a plan is evaluated by computing each suc-
cessive option’s image, and then testing whether it is a subset
of the next option’s initiation set. This process is depicted in
Figure 1.

Konidaris et al. [2014] defined two option classes (subgoal
and abstract subgoal options) for which computing the im-
age simply required one symbol for each option’s effects set
(the set of states the agent could find itself in after executing
the option from any state). The grounding classifiers for the
resulting symbols are sufficiently well defined that an agent
can gather labeled training data by executing the options and
observing the results. In principle, this enables the agent to
acquire its own symbolic representation solely through inter-
action with the environment.

However, the resulting learned classifiers will be difficult to
plan with in real domains, for three reasons. First, this formal-
ism cannot account for the uncertainty inherent in learning
the symbols themselves. Instead, planning proceeds as if the
agent’s estimate of each of its grounding classifiers is exactly
correct. Second, it cannot model the fact that some transitions
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Figure 1: Determining whether a plan consisting of two ac-
tions, a1 and a2, can be executed from state set Z0. a1 can be
executed if and only if Z0 is a subset of a1’s precondition (a).
If so, the agent computes Z1, the set of states it may reach af-
ter executing a1 from some state in Z0 (b). a2 can be executed
if and only if Z1 is a subset of a2’s precondition set (c). This
procedure can be performed for any plan and starting set.

are more likely than others—effectively assuming that all
transitions with a non-zero probability of occurring are equiv-
alently important. Consequently, it cannot be used to reason
about expected reward, since expectation requires a probabil-
ity distribution. Finally, it can only determine whether a plan
can certainly be executed, or not—it cannot determine the
probability with which it can be executed. These restrictions
make it unlikely that a set-based framework can be applied to
real problems.

Probabilistic Symbols and Plans
We now describe a probabilistic formulation of symbolic rep-
resentations that allows an agent to reason about the proba-
bility that a plan can be executed using uncertain symbols
(such as are obtained during learning), and compute the ex-
pected reward of executing a plan. This requires generalizing
the idea of a symbol as a set to that of a symbol as a proba-
bility distribution. Instead of referring to a grounding set via
a grounding classifier, a symbol will now refer to a grounding
distribution. There are two senses in which this will be useful,
leading to two types of symbols, referred to as types 1 and 2.

In the first sense, a set is a collection of equally likely
states, which we can generalize to a probability distribution
over states:

Definition 2. A probabilistic symbol σZ of type 1 is the name
associated with a distribution, Z(S), over states.

Symbols of type 1 will be useful in expressing a distribu-
tion over start states and for representing an option’s image.
During learning, the task of estimating the grounding distri-
bution of a type 1 symbol is that of density estimation, which
is a well-studied unsupervised learning problem.

In the second sense, a set is a collection of states in which
some condition holds. We generalize this to a distribution ex-
pressing the probability that a condition holds in each state:



Definition 3. A probabilistic symbol σE of type 2 is the name
associated with the probability P (C(s) = 1) of some condi-
tion C holding at every state s ∈ S.

Symbols of type 2 are probabilistic classifiers, giving the
probability that a condition holds for every state in S. Since
the agent operates in an SMDP, a condition either holds at
each state or it does not—but the agent must necessarily gen-
eralize when learning from data, and the probabilistic classi-
fier expresses the agent’s uncertainty about the condition in
states it has not yet encountered.

We now generalize the notion of a plan from one that starts
from a set of states to one that starts from a distribution over
states (a probabilistic symbol of type 1):

Definition 4. A probabilistic plan p = {o1, ..., opn} from
a start state symbol σZ (corresponding to state distribution
Z(S)) is a sequence of options oi ∈ O, 1 ≤ i ≤ pn, to be
executed from a state drawn from Z(S).

We can also define the corresponding plan space—the set
of all plans the agent should be able to evaluate.

Definition 5. The probabilistic plan space for an SMDP is
the set of all tuples (σZ , p), where σZ is a start symbol and p
is a plan.

The essential function of a symbolic representation for
probabilistic planning is to compute, on demand, the proba-
bility that an agent can execute any element of the plan space
to completion, and the expected reward received for success-
fully doing so. We now introduce probabilistic symbols that
are provably sufficient for doing so by defining probabilistic
versions of the precondition symbol and image operator. The
probabilistic precondition symbol expresses the probability
that an option can be executed from each state:

Definition 6. The probabilistic precondition is a probabilistic
symbol of type 2, defined as Pre(o) = P (s ∈ Io).

Given a distribution over s (a probabilistic symbol of type
1) representing a distribution over start states, we now require
a probabilistic image operator that computes an output distri-
bution (also of type 1) over s′, representing the distribution
over states in which the agent expects to find itself in after
option execution.

Definition 7. Given a start distribution Z(S) and an option
o, we define the probabilistic image of o from Z(S) as:

Im(o, Z) =

∫
S
P (s′|s, o)Z(s)P (Io|s) ds∫

S
Z(s)P (Io|s) ds

,

where P (s′|s, o) =
∫
P (s′, τ |s, o) dτ , since we are not con-

cerned with the time taken to execute o.

These generalizations of the precondition set and image
operator allow us to prove the probabilistic generalization of
Theorem 1 from Konidaris et al. [2014]:

Theorem 1. Given an SMDP, the ability to represent the
probabilistic preconditions of each option and to compute
the probabilistic image operator is sufficient to determine the
probability of being able to execute any probabilistic plan tu-
ple (σZ , p).

Proof. Consider an arbitrary plan tuple (σZ , p), with plan
length n. To determine the probability of executing p
from σZ , we can set Z0 = Z and repeatedly com-
pute Zj+1 = Im(pj , Zj), for j ∈ {1, ..., n}. The prob-
ability of being able to execute the plan is given by
Πn
j=1

[∫
S

Pre(oj , s)Zj−1(s) ds
]
.

Computation proceeds as follows. Starting with an initial
distribution over states, the agent repeatedly applies the im-
age operator to obtain the distribution over low-level states it
expects to find itself in after executing each option in the plan.
It can thereby compute the probability of being able to exe-
cute each successive option, and multiply these to compute
the probability of successfully executing the entire plan.

To obtain the expected reward of the plan, the agent re-
quires one additional operator:
Definition 8. Given a start distribution Z(S)
and an option o, the reward operator J(o, Z) =∫
S

∫
S

∫
R+ P (s′, τ |s, o)R(s′, τ |s, o)Z(s) dτ ds′ ds.

The expected reward of a plan tuple (σZ0
, p) of length n is

then
∑n
i=1 J(pi, Zi−1), where each state distribution Zi(S)

is defined as in Theorem 1. Although the definition of the
reward operator involves three integrals, during learning we
use the following equation:

J(o, s) = Es′,τ [R(s′, τ |s, o)] ,
which simply estimates the expected reward for executing an
option from each state. The reward obtained after option ex-
ecution from a state is a sample of the right hand side of this
equation, resulting in a standard supervised learning problem.
Computing the expected reward now requires integration over
the distribution over start states only.

The symbol and operators described above are defined in
terms of option models. One approach to planning in SMDPs
is to learn the option models themselves, and use them to
perform sample-based planning. Representing the operators
directly as defined above may allow more efficient planning
using analytical methods for computing the image operator.
However, when the characteristics of the available options
support it, the agent can go further and construct completely
symbolic models it can use to plan—after which its ground-
ing distributions are no longer required.

Subgoal Options and Abstract Subgoal Options
As in the deterministic planning case, computing the image
operator for a subgoal option is particularly straightforward.
A subgoal option in the probabilistic setting satisfies:

Im(o,X) = Eff(o),

for all distributions over statesX(S). Eff(o) is the effects dis-
tribution—the distribution over states after executing o from
any start distribution. This means that the image distribution
is the same regardless of the start distribution—a stronger
condition than in the set-based case, where the set of states
that the agent has non-zero probability of arriving in cannot
depend on the start set, but the probability of arriving in each
state can.

This independence assumption models the case where a
feedback controller or learned policy guides the agent to a



specific target distribution before completing option execu-
tion. It drastically simplifies planning because the image op-
erator always evaluates to the effects distribution, and may be
a reasonable approximation in practice even when it does not
strictly hold.

If an agent has only subgoal options, a very simple abstract
data structure suffices for planning. Given a collection of op-
tions and their effects distributions, define an abstract plan
graph G as follows. Each option oi has corresponding vertex
vi, with edges eij from vi to vj with reward J(oj , Eff(oi))
and probability of success

∫
S

Pre(oj , s) Eff(oi)(s) ds. After
computingG the agent can discard its grounding distributions
and evaluate the reward and probability of a plan succeeding
by adding the rewards and multiplying the probabilities along
the corresponding path in the graph.

Abstract subgoal options model the more general case
where the state vector can be partitioned into two parts
s = [a, b], such that executing o leaves the agent in state
s′ = [a, b′]; the m feature values in a ∈ A ⊆ Rm are left
unchanged, and the state features values in b ∈ B ⊆ Rn−m

(o’s mask) are set to a subgoal distribution P (b′) independent
of the starting distribution. In this case:

Im(o, Z) = P (a)Eff(o),
where P (a) =

∫
B
Z([a, b]) db (integrating b out ofZ(S)) and

Eff(o) is a distribution over the variables in b′.
In some cases an (abstract) subgoal option can be best

modeled using multiple effect outcomes, where executing the
option leads to one of a number of distinct (abstract) subgoals,
each with some probability. The effect outcome distributions
can be modeled as a single mixture distribution if they all
have the same mask; if not, they must be modeled individu-
ally. In such cases an option oi is characterized by a single
precondition Pre(oi) and a set of effect outcomes Effj(oi),
each with an associated mask and probability ρj of occur-
rence.

The options available to an agent may in some cases not
satisfy the (abstract) subgoal property, but can be partitioned
into a finite number options that do. For example, consider
an agent with an option for moving through a corridor. This
is not a subgoal option in a building with multiple corridors,
but if the agent partitions the building into a finite number
of corridors and considers the option executed in each to be
distinct, then the subgoal property may hold for each parti-
tioned option. Identifying such partitions is a major challenge
when learning a probabilistic symbolic representation in prac-
tice. Fortunately, partitioning reflects a statistical measure of
independence—a partition should be made when the effect
distribution is not independent of the start distribution, but is
independent conditioned on assignment to a partition.

Generating a Symbolic Domain Description
We now show that an agent can build a probabilistic STRIPS-
like representation given a collection of abstract subgoal op-
tions. Our target is PPDDL, the Probabilistic Planning and
Domain Definition Language [Younes and Littman, 2004],
which can serve as input to an off-the-shelf planner.

Reasoning about the soundness and completeness of a
symbolic representation requires a grounding scheme that

specifies the semantics of that symbolic representation. Re-
call that a STRIPS-like representation is based on a collection
of propositional symbols P = {p1, ..., pn}. We choose to use
probabilistic symbols of type 1, so that each pi symbol refers
to a distribution over states: pi has associated grounding dis-
tribution G(pi). We then define the grounding distribution of
an abstract state as the multiplication of the grounding distri-
butions of the propositions set to true in that state:

G(Pt) = Πi∈IG(pi), I = {i|Pt(i) = 1}.

The abstract state Pt can therefore be interpreted as repre-
senting the distribution of states in which the agent expects to
find itself in at time t.

Finding Factors To proceed, the agent must identify the
appropriate factors, similarly to Konidaris et al. [2014]—
given the function modifies(si) (the list of options that mod-
ify a low-level SMDP state variable), the agent groups state
variables modified by the same list of options together into
factors. It can then define the functions factors(oi) (the list of
factors affected by executing oi) and factors(σi) (the list of
factors that probability distribution σi is defined over).

Building the Symbol Set We define a natural notion of in-
dependent factors—those that are statistically independent in
the joint distribution Eff(oi):
Definition 9. Factor fs is independent in effect distribution
Eff(oi) iff Eff(oi) =

[∫
fs

Eff(oi)dfs

]
×
[∫
f̄s

Eff(oi)df̄s

]
,

where f̄s = factors(oi) \ fs.
Factor fs is independent in Eff(oi) if the two sets of ran-

dom variables fs and f̄s are statistically independent in the
joint distribution Eff(oi). When that is the case, Eff(oi) can
be broken into independent factors with separate propositions
for each.

Let Effr(oi) denote the effect set that remains after integrat-
ing out all independent factors from Eff(oi), and factorsr(oi)
denote the remaining factors. Our method requires a separate
propositional symbol for Effr(oi) with each possible subsets
of factorsr(oi) integrated out. The vocabulary P thus contains
the following symbols:

1. For each option oi and factor fs independent in Eff(oi),
create a propositional symbol with grounding distribu-
tion

∫
f̄s

Eff(oi)df̄s.

2. For each set of factors fr ⊆ factorsr(oi), create
a propositional symbol with grounding distribution∫
fr

Effr(oi)dfr.

Propositions that are approximate duplicates can be merged.

Constructing Operator Descriptions Given that it can
be executed, each option oi with possible effect outcome
Effj(oi) results in the following effects:

1. All propositional symbols with grounding distributions
for each factor independent in Effj(oi), and an additional
proposition with grounding distribution Effjr(oi) if nec-
essary, are set to true.



2. All propositional symbols (except the above)
σj such that factors(σj) ⊆ factors(oi) and∫
S
G(σj)(s)Pre(oi, s)ds > 0, are set to false.

3. All currently true propositional symbols σj where
fij = factors(σj) ∩ factors(oi) 6= ∅ but factors(σj) 6⊆
factors(oi), and

∫
S
G(σj)(s)Pre(oi, s)ds > 0, are set to

false. For each such σj , the predicate with grounding
distribution

∫
fij
G(σj)dfij is set to true.

Each such potential outcome is listed with the probability
ρj of it occurring.

This computation is analogous to the effects computation
in Theorem 1, computing Im(oi, Z) = P (a)Eff(oi), where
P (a) =

∫
B
Z([a, b]) db (integrating out b, the variables in

oi’s mask). The first effect in the above list corresponds to
Eff(oi), and the remaining two types of effect model P (a).
The second type of effect removes predicates defined entirely
using variables within mask(oi), whose distributions are com-
pletely overwritten. The third models the side-effects of the
option, where an existing distribution has the variables in
mask(oi) integrated out. The proof that this image compu-
tation is correct closely follows the one given by Konidaris et
al. [2014] and we omit it here.

However, we face a complication present in the probabilis-
tic setting. Given high-level state Pt and action o, the agent
can compute the probability, ρ, that o can be executed from
Pt, and the positive and negative effects for that outcome. But
that is a probabilistic precondition, and PPDDL only allows
for probabilistic outcomes. This does not occur in the deter-
ministic case, because the subset relationship is always either
true or not. For simplicity, we get around this by adding a
virtual proposition named notfailed, which is set to true
during initialization and is a precondition for every operator.
An effect of¬notfailed is added to each action with prob-
ability (1− ρ).

Symbol Acquisition in the Treasure Game
The Treasure Game features an agent in a 2D, 528 × 528
pixel video-game like world, whose task is to obtain treasure
and return to its starting position on a ladder at the top left of
the screen (see Figure 2). The agent’s path may be blocked
by closed doors. Flipping the direction of either of the two
handles switches the status of the two doors on the top left of
the screen (flipping one switch also flips the other). The agent
must obtain the key and use it in the lock to open the door on
the bottom right of the screen to reach the treasure.

The agent can move up, down, left, and right, jump, inter-
act, and perform a no-op. Left and right movement is avail-
able when the agent’s way is not directly blocked, while up
and down are only available when the agent is on or above,
or on or below, respectively, a ladder. These actions move the
agent between 2 and 4 pixels (chosen uniformly at random).
The interact action is available when the agent is standing in
front of a handle (flipping the handle’s position from right
to left, or vice versa, with probability 0.8), or when it pos-
sesses the key and is standing in front of the lock (whereupon
the agent loses the key). The no-op action lets the game dy-
namics continue for one time step, and is useful after a jump
action or when the agent is falling. Each action has a reward

Figure 2: The Treasure Game domain. Sprites courtesy of
Hyptosis and opengameart.org, Creative Commons li-
cense CC-BY 3.0. Although the game screen is drawn using
large image tiles, sprite movement is at the pixel level.

of −1, except for the jump action, which receives a reward
of −5. Returning to the top ladder with the treasure ends the
episode. The low-level state space is 9-dimensional, featuring
the x and y positions of the agent, key, and treasure, the an-
gles of the two handles, and the state of the lock. When the
agent has possession of an item (the key or the treasure), it is
displayed in the lower-right corner of the screen.

The agent has access to the following 9 high-level options,
implemented using simple control loops:

• go-left and go-right, which move the agent con-
tinuously left or right, respectively, until it reaches a
wall, an edge, an object with which it can interact, or
a ladder. These options can only be executed when they
would succeed.

• up-ladder and down-ladder, which cause the
agent to ascend or descend a ladder, respectively.

• down-left and down-right, which cause the agent
to execute a controlled fall off an edge onto the nearest
solid cell on its left or right, respectively.

• jump-left and jump-right, which cause the agent
to jump and move left, or right, respectively, for about
48 pixels. These options are only available to the agent
when the area above its head, and above its head and to
the left and right, respectively, are clear.

• interact, which executes a primitive interaction.

All options have stochastic termination conditions which,
when combined with the stochasticity present in the primitive
actions, results in outcome variance ranging from a few pixels
(for the go-left and go-right options) to a much larger
amount (e.g., in the case where the jump-left option can
miss the ledge, causing the agent to fall).



The shortest plan that solves to the Treasure Domain with
non-zero probability consists of 42 high-level actions, requir-
ing approximately 3800 low-level actions.

Data was gathered as follows. 100 randomly chosen op-
tions were executed sequentially, resulting in one set of data
recording whether each option could run at states observed
before or after option execution, and another recording the
transition data xi = (si, oi, ri, s

′
i) for each executed option.

This was repeated 40 times.

Partitioning the Options
First, the options must be partitioned so that the abstract sub-
goal property approximately holds. This was done using the
following procedure for each option o:

1. The mask mi was computed for each sample transition
xi, and the data was partitioned by mask.

2. For each mask mj , the effect states s′i [mj ] were clus-
tered and each cluster was assigned to its own partition.
The data was now partitioned into distinct effect dis-
tributions, but may have been over-partitioned because
distinct effects may occur from the same start state par-
tition.

3. For each pair of partitions, the agent determined whether
their start states samples si overlapped substantially by
clustering the combined start state samples si from each
partition, and determining whether each resulting cluster
contained data from both partitions. If so, the common
data was merged into a single partition.

4. When merging, an outcome was created for each effect
cluster (which could be distinct due of clustering or due
to a different mask) and assigned an outcome probability
based on the fraction of the samples assigned to it.

Clustering was performed using the DBSCAN algorithm
[Ester et al., 1996] in scikit-learn [Pedregosa et al.,
2011], with parameters min samples = 5 and ε =
0.4/14 (for partitioning effects) or ε = 0.8/14 (for merging
start states). This resulted in 39 partitioned options. Example
partitions are visualized in Figures 3 and 4. Note that fuzzy
or transparent sprites indicate variance in the distribution.

Creating the Symbolic Vocabulary
The agent created symbols for each of the partitioned options
as follows (all parameters set using 3-fold cross-validation):

1. A precondition mask was computed using feature selec-
tion with a support vector machine (SVM) [Cortes and
Vapnik, 1995].

2. An SVM with Platt scaling [Platt, 1999] was used as
a probabilistic precondition classifier, using states as-
signed to that partition as positive examples and all other
states (including those from other partitions of the same
option) as negative examples.

3. Kernel density estimation [Rosenblatt, 1956; Parzen,
1962] was used to model each effect distribution.

4. The reward model was learned using support vector re-
gression [Drucker et al., 1997].

(a) (b)

(c) (d) (e)

Figure 3: A visualization of both partitions of the
jump-left option. The first precondition distribution (a)
shows the agent standing next to a block. Jumping left leaves
agent standing on top of the block (b). The second precon-
dition distribution has the agent standing on the block (c).
Jumping left leaves the agent either standing atop the ledge
to its left (d, with probability 0.53) or, having missed, on the
floor (e, with probability 0.47).

(a)

(b)

(c)

Figure 4: A visualization of the first partition (of five) of the
interact option. The precondition distribution (a) shows
the agent in front of a handle, the handle set to the right,
and the door open. Interaction results in an effect distribu-
tion where the handle is pushed to the other side and the
door is closed (b, with probability 0.795), or where the handle
moves only slightly and the door remains open (c, probability
0.204). The two effect distributions have different masks—
one changes the angle of one handle, the other changes both.



The agent identified 7 factors from the resulting par-
titioned probabilistic symbols: (playerx; playery; handle1-
angle; handle2-angle; key-x and key-y; bolt-locked; and
goldcoin-x and goldcoin-y). The effect distributions were split
into 30 distinct type 1 probabilistic symbols (duplicates were
detected by a simple coverage interval and mean similarity
test). The factors extracted, and the number of effect symbols
defined over each factor, are shown in Table 1.

Factor State Variables Symbols
1 playerx 10
2 playery 9
3 handle1.angle 2
4 handle2.angle 2
5 key.x, key.y 3
6 bolt.locked 2
7 goldcoin.x, goldcoin.y 2

Table 1: Factors identified automatically in the partitioned
options extracted from the Treasure Domain, along with the
number of probabilistic symbols defined over each.

Constructing a PPDDL Representation
The agent constructed a PPDDL representation by recursing
through possible combinations of symbols that overlapped
with each partitioned option’s precondition mask, and com-
puting the probability of executing that option using Monte
Carlo sampling (m = 100 samples). Operators estimated to
be executable with a probability of less than 5% were dis-
carded, and those with an estimated execution probability of
greater than 95% were rounded up to certainty. This resulted
in 345 operators; an example operator along with its ground-
ing distributions is given in Figure 5.

Once the PPDDL description was constructed the agent
was free to discard its grounding distributions and plan solely
using the completely symbolic PPDDL representation. Table
2 shows the time required to compute a policy for the result-
ing PPDDL problem using the off-the-shelf mGPT planner
[Bonet and Geffner, 2005] with the built-in lrtdp method
and min-min relaxation heuristic. All policies were computed
in less than one fifth of a second.

Goal Min. Depth Time (ms)
Obtain Key 14 35
Obtain Treasure 26 64
Treasure & Home 42 181

Table 2: Timing results and minimum solution depth (option
executions) for example Treasure Game planning problems.
Results were obtained on an iMac with a 3.2Ghz Intel Core
i5 processor and 16GB of RAM.

Related Work
The most closely related work is that of Jetchev et al. [2013],
which uses a symbol-as-set definition of a propositional sym-

bol, and then searches for the symbol definitions and a re-
lational, probabilistic STRIPS description of the domain si-
multaneously. This method is based on a metric that balances
predictability and model size, but is hampered by the size of
the resulting search. It does not consider uncertainty in the
symbol definitions themselves, but is able to find relational
operators, which we leave to future work.

Similarly, the early framework described by Huber [2000]
can describe transition uncertainty but not uncertainty in the
symbols themselves. It is unclear how such uncertainty might
be added, since this approach does not refer to low-level states
but instead to the discrete states of a set of controllers, which
are described in terms of their convergence conditions.

Several researchers have combined a given symbolic vo-
cabulary with learning to obtain symbolic operator models
for use in planning [Drescher, 1991; Schmill et al., 2000;
Džeroski et al., 2001; Pasula et al., 2007; Amir and Chang,
2008; Kruger et al., 2011; Lang et al., 2012; Mourão et al.,
2012]. Our work shows how to construct the symbolic vocab-
ulary itself.

Option discovery is an active topic of research in hier-
archical reinforcement learning; see the recent review by
Hengst [2012]. This area is largely concerned with discov-
ering an appropriate set of options in an MDP, the presence
of which is assumed in our work.

Modayil and Kuipers [2008] use a learned model of the ef-
fect of actions on an object to perform high-level planning.
However, the learned models are still in the original state
space. Later work by Mugan and Kuipers [2012] use quali-
tative distinctions to adaptively discretize a continuous state
space to acquire a discrete model suitable for planning; here,
discretization is based on the ability to predict the outcome of
executing an action.

Other approaches to MDP abstraction have focused on dis-
cretizing large continuous MDPs into abstract discrete MDPs
[Munos and Moore, 1999] or minimizing the size of a discrete
MDP model [Dean and Givan, 1997].

Conclusion
We have specified the symbolic representation required by an
agent that wishes to perform probabilistic planning using a set
of high-level actions. Our formalization enables an agent to
autonomously learn its own symbolic representations, and to
use those representations to perform efficient high-level prob-
abilistic planning.
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(:action jump_left_option319
:parameters ()
:precondition (and (notfailed) (symbol29) (symbol28) )
:effect (probabilistic 0.4723 (and (symbol17) (symbol1) (not (symbol28)) (not (symbol29))

(decrease (reward) 62.39))
0.5277 (and (symbol20) (symbol1) (not (symbol28)) (not (symbol29))

(decrease (reward) 36.32))
)

) (a) Generated PDDL Operator

(b) symbol29 (c) symbol28 (d) symbol28&29

(e) symbol17 (f) symbol20 (g) symbol1

Figure 5: The automatically generated PPDDL operator for one partition of the jump-left option (a), together with 50
samples drawn from each symbol’s grounding distribution. The precondition distributions (symbol29 and symbol28, b and
c) together indicate that the agent should be atop the concrete block in the center of the domain (d). Executing the option
results in one of two y coordinate outcomes named by symbol17 and symbol20 (e and f). Both outcomes set the agent’s x
coordinate according to the distribution named by symbol1 (g). The two outcomes have different rewards—the failed jump
costs more because the agent has to wait until it has fallen past the bottom of the ledge before it can finish moving left.
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