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Photon-efficient super-resolution laser radar

Dongeek Shina, Jeffrey H. Shapiroa, and Vivek K Goyalb

aMassachusetts Institute of Technology
bBoston University

ABSTRACT

The resolution achieved in photon-efficient active optical range imaging systems can be low due to non-idealities
such as propagation through a diffuse scattering medium. We propose a constrained optimization-based frame-
work to address extremes in scarcity of photons and blurring by a forward imaging kernel. We provide two
algorithms for the resulting inverse problem: a greedy algorithm, inspired by sparse pursuit algorithms; and a
convex optimization heuristic that incorporates image total variation regularization. We demonstrate that our
framework outperforms existing deconvolution imaging techniques in terms of peak signal-to-noise ratio. Since
our proposed method is able to super-resolve depth features using small numbers of photon counts, it can be
useful for observing fine-scale phenomena in remote sensing through a scattering medium and through-the-skin
biomedical imaging applications.
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1. INTRODUCTION

Laser radar (LADAR, also known as LIDAR) imaging systems recover the depth map of a scene, typically by
using a raster-scanning pulsed light source and a single time-resolved photodetector. Unlike other depth imaging
solutions, such as stereo vision,1 structured light sensors,2 and amplitude-modulated time-of-flight cameras,3

laser radar can deliver high accuracy and maximum range at the same time due to its ability to directly measure
object distance from the travel time of a short, powerful pulse.4 Thus, it finds its use in many engineering
applications including robot navigation,5 bathymetry,6 3D city reconstruction,7 and object shape scanning.8

Traditionally, by operating the light source at high flux, the optical pulse signal that is backreflected from
a scene pixel and incident at the photodetector is recorded using analog-to-digital conversion; from the scaling
and the mean time-of-flight of the observed pulse signal, one can infer reflectivity and depth at that particular
pixel. When the light incident at the detector is very weak, however, conventional photodetectors fail to pick
up signal due to the low detector sensitivity. In such a condition, highly sensitive photon-counting detectors,
such as avalanche photodiodes (APDs)9 and photomultipliers (PMTs),10 are used to resolve individual photon
detections. The backreflected pulse signal is then observed as a photon-count histogram.

There exist well-known methods that rely on pixelwise photon counting statistics and perform maximum-
likelihood (ML) estimation (or some variant of it) to recover depth.11,12 However, conventional pixelwise depth
estimation performs well only under high photon count assumptions, and using low-light photon-count data
results in noisy depth maps. Several methods have been developed to mitigate the noise in the low-flux photon-
counting process by exploiting the spatial correlations in natural images, including methods that use denoising,13

Markov random field models,14 and convex optimization.15–17 One core assumption behind these existing low-
light depth imaging frameworks is that the spatial spot size of the illumination is small enough that we can assume
that each pixel measurement has addressed a different scene patch. However, in practice, this independent-pixel
assumption can break down due to non-idealities in the illumination source and imaging conditions. For example,
when imaging through a scattering medium, such as a diffuser, the illumination spot on the hidden target behind
the scatterer is constrained to be large and often non-uniform.18,19 In such cases, the reconstructed depth map
overestimates the sizes of object features; this is an artifact known as “blooming” in the LIDAR literature.20 A
similar problem occurs in the dual imaging framework known as flash LIDAR, where instead of using a scanning
source and a single detector, one uses a diffuse source and an array of detectors.21,22 Here, detector array
lens aberrations lead to a non-trivial point spread function (PSF),23 which acts as a convolution operator and
spatially blurs the set of measurements.
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The problem of recovering a high-resolution depth map from low-resolution measurements is known as the
depth super-resolution problem. There are several approaches for depth super-resolution, each exploiting different
physical and image constraints. One of them is the upsampling approach, which converts the depth map at
low-resolution to high-resolution by exploiting, for example, the information in the high-resolution reflectivity
image or in multi-view image acquisition.24,25 Another, which is more relevant to us, is image deconvolution-
based super-resolution. This approach exploits the fact that many image acquisition constraints that lead to
low-resolution data can be modeled using a convolution operation. Several deconvolution-based depth super-
resolution techniques have been developed for commodity depth cameras.26,27 For laser radar, a framework
that uses spatiotemporal deconvolution of the photon histogram data for accurate depth imaging has been
demonstrated.28 The limitation of this framework is that the accuracy of high-resolution depth reconstruction
degrades in the low-photon count regime.

In this paper, we propose a depth super-resolution framework for laser radar that incorporates detector,
scene, and imaging models. Our contributions can be summarized with the following points.

• Modeling: Our model combines the statistics of photon-counting noise, the spatiotemporal kernel, and
single-reflector-per-pixel constraints of reflective depth imaging to formulate the super-resolution imaging
problem as a single optimization problem.

• Algorithms: To solve the optimization problem for scene reflectivity and depth reconstruction, we propose
two algorithms:

1. ML solver: We develop a heuristic approximation to the ML estimator, inspired by the compressive
sampling matching pursuit (CoSaMP) algorithm for `0-norm-constrained optimization,29 that uses
moderate photon counts to locate the sparse object locations.

2. Regularized ML solver: The ML solution performs poorly at low photon counts and has high compu-
tational complexity. By exploiting small total variation (sparse gradients) of natural reflectivity and
depth scenes, we improve the accuracy of the reconstruction. With certain reparametrization of vari-
ables, we show that the TV-regularized optimization problem for reflectivity and depth reconstruction
is convex and can be solved using simple first-order gradient descent methods.

• Simulations: Using a simulated forward imaging kernel, we show that our proposed algorithms, especially
Algorithm 2, outperform conventional depth super-resolution methods such as (1) pixelwise ML estimation,
(2) pixelwise ML followed by TV-regularized Gaussian deconvolution,30 and (3) spatiotemporal Richardson-
Lucy data deconvolution31 followed by pixelwise ML, in the style of McMahon et al.28

2. PHOTON-COUNTING DEPTH IMAGING SETUP AND MODEL

Let s(t) be a non-negative function that starts at time 0 and has root-mean-square pulsewidth Tp. An optical
source, such as a laser, illuminates the scene with power waveform s(t) at scanning angle (θx, θy). Let Tr be
the total acquisition period for one scanning angle. Then the time-correlated photon-counting detector is able
to record the photon-count histogram of the spatially-distorted backreflected waveform with nt = Tr/∆ bins,
where ∆ is the bin width. The observed histogram consists of multiple modes from a depth-rich scene, because
the spatial kernel mixes responses from multiple reflectors that are at different depths. For scenes with partially-
reflecting scatterers, we time gate and reject the first-bounce response coming from the scatterer itself so that
the observed data always describes only the scene behind the scatterer. This acquisition process is repeated for
nx×ny scanning angles, and the objective is to form an nx×ny spatially-resolved intensity and depth map pair.

For the scanning angle (θx, θy), the detector rate function v(t; θx, θy), which generates the photon counts, is
derived using the linearity of light transport:

v(t; θx, θy) =

∫
(θ′x,θ

′
y)∈FOV

hxy(θx − θ′x, θy − θ′y) a(θ′x, θ
′
y)ht(t− 2d(θ′x, θ

′
y)/c) dθ′xdθ

′
y + b, (1)

for t ∈ [0, Tr). Here FOV denotes the rectangular field-of-view of the scanner, c is the speed of light, (a(θ′x, θ
′
y),

d(θ′x, θ
′
y)) is the (intensity, depth) pair at scanning direction (θ′x, θ

′
y), and b is the extraneous background and
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dark count rate. We have hxy and ht denoting the spatial and temporal kernels that originate from scatterers
and pulsewidth plus detector jitter, respectively. Intuitively, (1) shows that the scene impulse response, which
contains intensity and depth information, is convolved in space by hxy and in time by ht, leading to our low-
resolution observations. Here, we have assumed that a(θ′x, θ

′
y) multiplicatively combines object reflectivity, effect

of radial fall-off of optical power, and surface angles.

In practice, the spatiotemporal domain is discrete in both pixels and time bins, so we express the continuous-
domain convolution (1) using matrix operations. Let nx × ny be the number of pixels and Ā, D̄ ∈ Rnx×ny

+ be
the high-resolution scene intensity and depth pair that we aim to recover. Then, let X̄ be a nx × ny × nt scene
impulse response matrix, where at its (i, j)-th scanning pixel is a vector that has one non-zero entry, whose value
is Āi,j and index is T̄i,j = round(2D̄i,j/(c∆)). (Here the assumption is that D̄i,j � c∆ and integer rounding
offers a good approximation.) Let B be a (b∆)-constant matrix of size nx × ny × nt. Let hxy and ht be the
kx×ky and length-kt discrete kernel approximation of hxy and ht, respectively. Finally, let h be the kx×ky×kt
spatiotemporal kernel that is the outer product of hxy and ht.

By the theory of photodetection,11 our nx × ny × nt photon histogram matrix is distributed as

Y ∼ Poisson
(
h ∗ X̄ + B

)
, (2)

where ∗ denotes the convolution operator in the spatiotemporal domain and Poisson(·) is defined entrywise.
Our depth super-resolution problem is to estimate X̄, which contains intensity and depth information, from
low-resolution photon histogram data Y, the spatiotemporal kernel h, and extraneous response B.

3. MAXIMUM-LIKELIHOOD RECONSTRUCTION

Define LX (X; Y,h,B) to be the negative log-likelihood function of X derived from (2). Also, define S1(nx, ny, nt)
as the set of nx×ny×nt sparse matrices in which each of the size-nt vector slices in the third dimension contains
exactly one non-zero entry. Then, we aim to solve the maximum-likelihood deconvolution problem:

minimize
X

LX (X; Y,h,B) (3)

subject to X ∈ S1(nx, ny, nt),

Xi,j,k ≥ 0, ∀i, j, k,

where Xi,j,k ≥ 0 models the non-negativity of light intensity. The negative log Poisson likelihood cost is a convex
function and the non-negativity is a convex constraint so the global minimizer could be found efficiently, if those
two were the only constraints in the optimization program. However, S1(nx, ny, nt) is a non-convex set of sparse
matrices. Thus, we aim to develop a reconstruction framework inspired by well-known sparse signal pursuit
methods that use the non-convex `0-norm constraint set to promote sparsity of solution.

We first express our observation model in (2) in the familiar matrix-vector form. We can flatten the size-
(nx×ny ×nt) matrices Y,X,B into two-dimensional ones, f(Y), f(X), f(B), of size nxny ×nt, by column-first
grouping the transverse pixel dimensions together. Then, (2) can be expressed using a triple matrix product:
f(Y ) ∼ Poisson

(
Hxyf(X)HT

t + f(B)
)
, where Hxy is the nxny×nxny block-convolution matrix generated using

hxy and Ht is the nt × nt convolution matrix from ht. Furthermore, using the identity vec(Htf(X)THT
xy) =

(Hxy ⊗Ht)vec(f(X)T ), where vec(·) denotes the column-first matrix vectorization operator and ⊗ denotes the
Kronecker product, we rewrite the matrix optimization problem in (3) as a vector optimization problem by
defining y = vec(f(Y)T ), x = vec(f(X)T ), b = vec(f(B)T ), H = Hxy ⊗Ht:

minimize
x

Lx(x; y,H,b) (4)

subject to x ∈ Snt,1(n),

xi ≥ 0, ∀i,

where we used Lx(x; y,H,b) as the negative log-likelihood derived from y being the observation of a Poisson
channel with rate Hx + b, defined n = nxnynt, and used Snt,1(n) as the set of size-n sparse vectors, where each
of its nxny subvector blocks of size nt has only one non-zero entry.
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Algorithm 1 ML reconstruction by greedy pursuit

Input: y, H, b, δ
Output: x̂ML

Initialize x(0) ← ~0, r← y − b, k ← 0;
repeat

k ← k + 1;
x̂← HT r;
Ω← supp (S(x̂, nt)) ∪ supp

(
x(k−1)

)
;

u|Ω ← N(HΩ,y,b); u|Ωc ← 0;
x(k) ← u;
r← y − (Hx(k) + b);

until ‖x(k−1) − x(k)‖22 < δ
x̂ML ← x(k);

Our proposed greedy algorithm for (4) is outlined in Algorithm 1. In the algorithm, which is similar to
a previous modification of CoSaMP for photon-efficient imaging,32 S(x̂, nt) is the n-sparse vector generated
by picking the best 1-sparse vector for every size-nt subvector of the intermediate solution x̂, which may be
dense; supp(x) is the set of indices of non-zero entries of vector x; HΩ is the submatrix of H that is obtained
by horizontally concatenating its columns indexed by set Ω; and N(HΩ,y,b) as the solution to the following
non-negative least-squares program:

minimize
v

‖y − (HΩv + b)‖22 (5)

subject to vi ≥ 0, ∀i.

Using x̂ML, the n-sparse output vector of Algorithm 1, we can obtain our scene intensity and depth estimates,
ÂML, D̂ML, for each pixel by reading out the value and index of the non-zero entry in each size-nt block vector.

4. REGULARIZED MAXIMUM-LIKELIHOOD RECONSTRUCTION

Algorithm 1 solves (4) and estimates a sparse vector of size nxnynt. However, (4) does not include any natural
image models: intensity and depth images are typically compressible due to their spatial correlations. Thus,
Algorithm 1 has limited photon efficiency, because its deconvolution relies solely on the single-reflector-per-pixel
constraint. Moreover, Algorithm 1 carries the limitation that H is a large nxnynt × nxnynt matrix. Because of
the adjoint computation step of HT r at each iteration, the number of flops of a single iteration of Algorithm 1
is at least (nxnynt)

2. Given that practical LIDAR image resolution can go up to 1 megapixels, computational
time depending at least quadratically on nxny is too large for applications that require fast processing. Thus,
we propose an alternative depth super-resolution imaging framework that addresses the above two points: an
algorithm that incorporates spatial priors and that is computationally efficient.

We first define a new variable C ∈ Nnx×ny to be the total photon count matrix: Ci,j =
∑nt

k=1 Yi,j,k. Because
the sum of independent Poisson random variables is a Poisson random variable with summed rates, we have

C ∼ Poisson(hxy ∗ Ā + B′), (6)

where B′i,j = b∆nt. We also define the variable P ∈ Rnx×ny , that for each pixel is a dot product between the
histogram data with a linear function:

Pi,j =

nt∑
k=1

(kYi,j,k). (7)

One can intuitively see that this is a way of linearly encoding depth values in a single value. Previously, this
histogram sum trick has been exploited in the context of compressed depth imaging.33
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Algorithm 2 Regularized ML reconstruction by convex optimization

Input: Y, hxy, b

Output: ÂRML, T̂RML

Ci,j →
∑nt

k=1 Yi,j,k, ∀i, j;
Pi,j →

∑nt

k=1(kYi,j,k), ∀i, j;
ÂRML ← solution to (10) using inputs (C,hxy,B

′)

T̂RML ← solution to (11) using inputs (P,hxy, Â
RML,B′′)

Recall that we defined T̄i,j ∈ {1, . . . , nt}nx×ny to represent the non-zero index of X̄i,j at each pixel; from
T̄, one can obtain D̄ by scaling each entry by (c∆)/2. Define ◦ to be the entrywise product, also known as the
Hadamard product, between matrices. We have

E[Pi,j ] = (hxy ∗ (Ā ◦ T̄))i,j + B′′i,j , (8)

where B′′ is a constant matrix of size nx × ny with all entries equal to b∆nt(nt + 1)/2. We use the assumption
that Pi,j is Poisson distributed as a heuristic and write the approximate observation model

P ∼ Poisson(hxy ∗ (Ā ◦ T̄) + B′′). (9)

Let LA(A; C,hxy,B
′) be the negative log-likelihood function derived using (6). Then, we obtain the regu-

larized maximum-likelihood intensity solution ÂRML by solving the following optimization problem:

minimize
A

LA(A; C,hxy,B
′) + βA penA(A) (10)

subject to Ai,j ≥ 0, ∀i, j,

where penA(A) is a regularization function enforcing smoothness in the intensity solution and βA is a positive
scalar parameter controlling the degree of regularization. One choice of penA(A) is the TV norm. The choice of
the regularizer is application-dependent; for biological imaging of sparsely located cells, one may use the `1-norm
instead. It is straightforward to show that LA(A; C,hxy,B

′) and ‖A‖TV are convex functions in A, and thus
(10) is a convex optimization problem that can be solved efficiently.34

To estimate T̄, and thus D̄, from P, we must solve an inverse problem of deconvolution of hxy and entrywise

scaling in Ā. Because the ground truth Ā is not available, we use ÂRML obtained by solving (10) as a plug-in
estimator. Let LT (T; P,hxy, Â

RML,B′′) be the negative log-likelihood function of the scaled depth image derived

from (9). We solve for the regularized ML depth solution T̂RML using the following optimization program:

minimize
T

LT (T; P,hxy, Â
RML,B′′) + βT penT (T) (11)

subject to Ti,j ≥ 0, ∀i, j,

where, similar to the optimization program for intensity, penT (T) is a regularization function enforcing smooth-
ness in the depth solution and βt is a positive scalar parameter controlling the degree of regularization. We can
show that LT (T; P,hxy, Â

RML,B′′) is a convex function in T, and thus (11) is a convex optimization problem.
Algorithm 2 summarizes the steps of our regularized ML intensity and depth reconstruction framework.

5. SIMULATIONS

To validate our framework, we perform simulations of the photon-counting depth imaging setup. In Fig. 1, we
show simulation results of reconstructing the intensity and depth of the MIT logo scene. The resolution of the
simulated MIT logo image was 19 × 19 and thus we had n = 361. The ground truth intensity and depth pair
is shown in Fig. 1(a,h). In our simulations, the number of detector time bins was nt = 10. The spatial kernel
was set to be a 2D symmetric Gaussian with variance 3 pixels, as illustrated in Fig. 1(o). We assumed that the
pulsewidth Tp is much smaller than the detector time bin ∆ and set Ht to be identity. The mean number of
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Figure 1: Intensity and depth reconstruction results with PSNR values for a simulated 19 × 19 MIT logo
scene with a Gaussian kernel. (a,h) Ground truth Ā, D̄. (b,i) Conventional pixelwise ML estimates. (c,j)
Gaussian deconvolution as post-processing of pixelwise ML estimates. (d,k) Richardson–Lucy spatiotemporal
deconvolution as pre-processing for pixelwise ML estimation. (e,l) ÂML, D̂ML from proposed Algorithm 1. (f,m)
ÂRML, D̂RML from proposed Algorithm 2. (g) Visualization of f(Y). (o) The Gaussian kernel hxy.

detected photons per pixel was 4.5× 103, and the signal-to-background ratio (SBR) was 5 (so the mean number
of detected signal photons per pixel was 3.7 × 103). This is not a low number of photons per pixel comparable
to recent works in which deconvolution is not needed,14–17 but the results suggest that it is low enough that our
explicit Poissonian modeling of observed photon counts improves performance. The flattened photon data cube
f(Y) ∈ Nnxny×nt is illustrated in image form in Fig. 1(g). Note how the three vertical slices representing the
letters MIT overlap in the spatial domain due to the non-trivial forward kernel.

Fig. 1(b,i) shows the intensity and depth results from the straightforward pixelwise ML approach. As ex-
pected, the image features are blurry and overestimated in size. By performing TV-regularized deconvolution
on these, we obtain the results in Fig. 1(c,j). By performing the spatiotemporal data deconvolution as a pre-
processing step, we obtain the results in Fig. 1(d,k). Here, due to photon noise, the resulting images are also
noisy but some finer object features start to emerge, especially in depth. Fig. 1(e,l) shows the intensity and
depth reconstruction results ÂML, D̂ML from our Algorithm 1, and we see that there is only a mild improvement
compared to Fig. 1(d,k), since Algorithm 1 relies only on the single-reflector-per-pixel constraint and not the
image smoothness constraint. Fig. 1(f,m) shows the intensity and depth pair ÂRML, D̂RML from our Algorithm 2,
which regularizes for natural image smoothness. Compared to previous results, here we see the noise has been
suppressed while the fine features are preserved for both intensity and depth. Although the depth values at the
boundaries of the letter features have been under-estimated due to the 1-pixel separation between each pair of
letters, our intensity and depth results in Fig. 1(f,m) has the highest PSNR values among all results.
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