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Abstract We study the problem of reliable motion coordi-
nation strategies for teams of mobile robots when any of the
robots can be temporarily stopped by an exogenous distur-
bance at any time. We assume that an arbitrary multi-robot
planner initially provides coordinated trajectories computed
without considering such disturbances. We are interested in
designing a control strategy that handles delaying distur-
bance such that collisions and deadlocks are provably avoided,
and the travel time is minimized. The problem is analyzed in
a coordination space framework, in which each dimension
represents the position of a single robot along its planned
trajectory. We demonstrate that to avoid deadlocks, the tra-
jectory of the system in the coordination space must be ho-
motopic to the trajectory corresponding to the planned solu-
tion. We propose a controller that abides this homotopy con-
straint while minimizing the travel time. Besides being prov-
ably deadlock-free, our experiments show that travel time is
significantly smaller with our method than than with a reac-
tive method.
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1 Introduction

The problem of coordinating multiple mobile robots sharing
a common environment finds numerous applications includ-
ing, e.g. warehouse managements systems (Guizzo, 2008)
or autonomous urban transportation systems (Dresner and
Stone, 2008). There exist two main paradigms to tackle this
complex problem: the reactive paradigm – robots continu-
ously sense their environment and react according to what
they sense – and the deliberative paradigm – robots first
sense and compute a plan, and then execute the computed
plan.

In the reactive paradigm, the robot follows the shortest
path to its current destination, monitors positions and veloc-
ities of other robots in its vicinity, and attempts to resolve
collision situations as they appear, locally.

Many reactive control strategies have been proposed within
the last three decades. Among the first ones has been the
cocktail party model (Lumelsky and Harinarayan, 1997), while
more recently, the techniques based on velocity-obstacle paradigm
have become popular (Van den Berg et al, 2008; Guy et al,
2009; Alonso-Mora et al, 2014; Van Den Berg et al, 2011).
The key benefit of the reactive approaches is their computa-
tional efficiency. As noticed in (Lumelsky and Harinarayan,
1997; Pallottino et al, 2007), their main drawback is the in-
ability to provably avoid deadlocks, especially in crowded
and cluttered environments.

In the deliberative paradigm, coordinated collision-free
trajectories from the origin to the destination of each robot
are computed before execution. Even the simplest formula-
tions of multi-robot motion planning problem are however
known to be NP-hard (Spirakis and Yap, 1984). Therefore,
heuristics such as as prioritized motion planning (Erdmann
and Lozano-Pérez, 1987; Čáp et al, 2015a) are often used in
practice to compute the coordinated trajectories. Curiously,
if the operational environment is appropriately structured,
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prioritized techniques are known to always provide a solu-
tion in polynomial time (Čáp et al, 2015b,a).

This work focuses on the coordination of labeled robots,
i.e., each robot is given a specific goal to reach. For com-
pleteness, we should mention that there exists an alterna-
tive unlabeled formulation, where the task is to navigate
a set interchangeable robots to a set of goal location such
that all locations are occupied. The complexity of the unla-
beled version of the problem has been studied by Solovey
and Halperin (2016) and efficient solution algorithms for
this formulation have been also developed, see, e.g., Turpin
et al (2014) and Solovey et al (2015).

The key benefit of deliberative planning is that once a
solution is found and precisely executed, all robots are guar-
anteed to reach their destination in finite time, i.e. they will
not get stuck in a deadlock. It is important to note that these
guarantees only apply if the robots execute the planned tra-
jectories precisely both in space and in time.

However, in environments where the robots share space
with humans, such as warehouses or roads, precise tempo-
ral execution of the planned trajectory is often impossible
to ensure. For example, a robot in a warehouse must yield
to a human crossing its path, even if its planned trajectory
dictates to move forward at that instant. Even a small distur-
bance that delays a robot may have a strong impact on the
system. See the example scenario in Figure 1: If one of the
robots is delayed, and the other simply continues advancing
along its trajectory, the robots will end up in a deadlock.

d2 o2

o1 d1

t=2t=1 t=3 t=4 t=5
t=9t=10 t=8 t=7 t=6

t=0

t=0...5t=11

t=6

Fig. 1 Deadlock example induced by a delaying disturbance. Robots
1 desires to move from origin o1 to destination d1, the second robot
desires to move from o2 to d2. A possible solution found by a multi-
robot trajectory planner is indicated by the dashed line, where labls
t = . . . denote the time evolution. The plan dictates that the robot 1 goes
through the corridor first. Robot 2 waits until robot 1 leaves the corridor
to proceed through the corridor towards its destination. Now suppose
that robot 1 is subject to a disturbance and enters the corridor with a
delay of 5 time units. If robot 2 continues moving according to the
original plan, both robots engage in a heads-on collision or a deadlock,
depending on whether some low-level safety mechanism prevents the
robots from physically crashing, in the center of the corridor.

To retain the benefits of the deliberative approaches while
being reactive to unexpected events, hybrid deliberative/reactive
architectures have been proposed. For example, Kowshik

et al. designed a hybrid controller (Kowshik et al, 2011)
that computes a plan for all robots and updates it constantly
as new information comes in. However, the above method
needs to replan every time an unexpected event impacts the
progress of any of the robots.

In this paper, we show that deadlock avoidance can be
achieved without replanning, by designing a reactive con-
troller that ensures the path of the system in the coordination
space remains in the homotopy class of the path correspond-
ing to the planned multi-robot trajectory. Therefore, our ap-
proach should not be seen as an alternative to deliberative
methods but rather as a complementary technique allowing
to reliably handle disturbance while executing the plan out-
put by a multi-robot planner.

Previous work in motion planning already noticed that
planning a set of homotopic paths allows to react to un-
expected events by taking advantage of the freedom of ac-
tion within the homotopy class (see, e.g. the work on elas-
tic strips in (Quinlan and Khatib, 1993; Brock and Khatib,
2002)). In the context of multi-robot coordination, homo-
topy classes have been studied by Ghrist and Lavalle (Ghrist
et al, 2005; Ghrist and Lavalle, 2006) to design a locally-
optimal trajectory planner, deforming any trajectory into a
locally Pareto optimal trajectory. Gregoire et al. proved that
these homotopy classes can be encoded by so-called priority
graphs (Gregoire, 2014). In contrast to the above work, the
proposed method serves as an additional layer. It takes as
input coordinated trajectories planned by an arbitrary multi-
robot motion planner, and it derives a homotopy class of safe
and deadlock-free solutions. The system is then reactively
controlled to remain in this homotopy class.

The contribution of this paper is twofold. Firstly, we
show that coordinated trajectories computed by an arbitrary
multi-robot motion planner can be used to derive a maximal
set of homotopic solutions – a homotopy class – by trans-
lating the problem into the coordination space. The set of
solutions is composed of all paths in the coordination space
that are homotopic to the diagonal path δ . Given coordinated
trajectories in the physical space, we derive a whole region
χδ in the coordination space which is both collision-free and
deadlock-free. Robots can safely navigate within this region
with the guarantee to reach their goal at the end. To our
knowledge, there is no previous work in multi-robot coor-
dination that, given a particular solution, derives a maximal
set of local solutions around the initial solution (this maxi-
mal set of local solutions is the derived homotopy classs).

The second contribution of the paper is a controller that
guarantees the system remains within χδ , i.e. it remains within
the derived maximal set of local solutions, despite any de-
laying disturbance affecting the advancement of individual
robots, while minimizing delay. The application of the pro-
posed controller allows to guarantee that all robots will even-
tually reach their destination even when some of the robots
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are temporarily stopped by a disturbance. It is remarkable
that a mathematical property – the existence of homotopy
classes in the coordination space – can be exploited to design
a controller that provides a robustness property at the sys-
tem level, i.e. the ability to handle unpredicted disturbances
while retaining the liveness of the system. Interestingly, as
the homotopy class is a maximal set of local solutions, we
have the guarantee that to perform better than our controller,
there is no alternative but to replan, i.e., to switch to an al-
ternative homotopy class of solutions. In other words, our
controller does everything that can be done to handle distur-
bance without replanning. It must be noted that under major
disturbances, the system may perform much better by re-
planning, but at the cost of a high computational complexity
: replanning should be considered as the last alternative.

This article is a mathematical extension of the confer-
ence paper (Čáp et al, 2016). The conference paper was
mainly focused on the algorithmic aspect of the proposed
controller, while this article focuses on the construction of
the homotopy constraint and how this mathematical prop-
erty can be used to design a controller allowing to navigate
within the constructed homotopy class. It is structured as fol-
lows. Section 2 shows how to use initial coordinated trajec-
tories computed by an arbitrary planner to obtain a planned
homotopy class. Section 3 then provides a controller en-
suring locally optimal navigation within a planned homo-
topy class. Finally, Section 4 evaluates our control scheme
through simulations and Section 5 concludes the paper.

2 From planned coordinated trajectories to a
homotopic constraint in the coordination space

In this section we formulate the problem in the coordination
space and show several structural properties of paths in the
coordination space. Firstly, we show that in the coordination
space the homotopy class of the planned path can be equiv-
alently defined as a class of paths taking values in a well-
defined subregion of the coordination space χδ . Secondly,
we show that if the system stays within the region χδ , then
it is guaranteed to avoid deadlocks and eventually reach the
goal. Intuitively, the homotopy class should be seen as a set
of solutions to the coordination problem such that the rela-
tive order between robots with respect to each intersection
area remains the same as initially planned. It seems intuitive
that keeping the same relative order, i.e. staying within the
homotopy class, is a deadlock-free strategy. This intuition is
proved by the following results, and homotopy theory gives
their underlying mathematical origin.

2.1 Problem formulation in the coordination space

Consider 2-d or 3-d workspace W ⊆ Rd , with d ∈ {2,3},
populated by n robots indexed 1, . . . ,n. The configuration
space of robot i is denotedCi and the region of the workspace
that robot i occupies when it is at configuration c is denoted
Ri(c). Let π1, . . . ,πn be feasible collision-free trajectories
from the desired origin configuration to the desired desti-
nation configuration obtained from an arbitrary multi-robot
trajectory planner. The continuous-time trajectory of robot i
is a function πi : [0,T ]→Ci, where T denotes the time when
the last robot reaches its destination.

The state of the multi-robot system is described in terms
of position xi ∈ [0,T ] of each robot i along its trajectory
πi. That is, if a robot is in state xi ∈ [0,T ], then it is at
configuration πi(xi) ∈ Ci and it occupies the spatial region
Ri(πi(xi))⊂W .

We construct a coordination space χ for the multi-robot
system as an n-dimensional cube χ := [0,T ]n (Kant and Zucker,
1986; O’Donnell and Lozano-Perez, 1989; LaValle, 2006).
A point in the coordination space encodes the state of all
robots, i.e. the position along their trajectories. Robots i and
j are said to be in collision in system configuration x =
(x1, . . . ,xn) if

Ri(πi(xi))∩R j(π j(x j)) 6= /0. (1)

The set of all couples (xi,x j) such that i and j are in collision
is defined as

Ci j :=
{
(xi,x j) | Ri(πi(xi))∩R j(π j(x j)) 6= /0

}
(2)

The obstacle region χobs in the coordination space of n
robots is defined as :

χ
obs :=

{
(x1, . . . ,xn) | ∃i, j i 6= j : (xi,x j) ∈Ci j

}
. (3)

We let χ free := χ \ χobs denote the obstacle-free region
in the coordination space.

A (collision-free) solution to the coordination problem
in the coordination space is defined as a component-wise
non-decreasing1 path ϕ : [0,1]→ χ free such that :

ϕ(0) = (0 · · ·0) and ϕ(1) = (T · · ·T ) . (4)

The requirement on the path to be non-decreasing is a stan-
dard assumption adopted by many works in the field (e.g,
(Kant and Zucker, 1986; O’Donnell and Lozano-Perez, 1989;
Ghrist et al, 2005; Ghrist and Lavalle, 2006)). It makes even
more sense in our particular scheme, as our goal is to exe-
cute the plan, i.e. to move forwards along the planned tra-
jectories. While deadlocks can be trivially resolved by re-
versing the progress of some of the robots at a cost of in-
creased travel time, our goal is to reach destination in mini-
mum time, without the need to move backwards and backup
to the initial plan.

1 Each component ϕi : [0,1]→ [0,T ] has to be non-decreasing.
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We let Φ denote the set of solutions, equipped with the
topology of pointwise convergence. We say that two solu-
tions ϕ1 and ϕ2 are homotopic if and only if there exists
a continuous map H : [0,1]→ Φ such that H(0) = ϕ1 and
H(1) = ϕ2.

Observe that, if planned trajectories are precisely fol-
lowed by all robots (in the absence of disturbance), the path
of the multirobot system in the coordination space is a diag-
onal line segment joining (0, . . . ,0) to (T, . . . ,T ). This path
will be referred to as the planned path, denoted δ , and de-
fined component-wise as δi : τ ∈ [0,1] 7→ τT . It is remark-
able that this path, δ , is a (collision-free) solution by con-
struction:

Property 1 (Diagonal collision-freeness) The diagonal path
δ is a (collision-free) solution : δ ∈Φ .

We built the coordination space such that for all τ ∈ [0,T ],
(π1(τ) · · ·πn(τ))= π(τ) is a point of the collision-free planned
trajectory. As a result, (τ · · ·τ) 6∈ χobs for all τ . All the results
of the paper are based on the above property.

We are interested in the existence of a subset χδ ⊂ χ free

that satisfies ∀ ϕ : [0,1]→ χδ : ϕ is homotopic to δ . Intu-
itively, we’re looking for a region of the coordination space
such that the relative order between robots remains the same.

2.2 Construction of the homotopic constraint

To construct the maximal set χδ , we proceed very intuitively
by completing the collision regions on the North-West and
South-East directions, forming a collision-free and deadlock-
free corridor around the diagonal path as depicted in Fig-
ure 2. The mathematical construction is detailed in Appendix A.
We obtain a completed obstacle region, denoted χobsδ as fol-
lows:

χ
obsδ

:=
{

x ∈ χ : ∃i, j, (xi,x j) ∈ (CNW
i j ∪CSE

i j )
}

. (5)

We define χδ as the complement of the completed obstacle
region : χδ := χ \ χobsδ . Interestingly, by simple geomet-
ric considerations, the set χδ is invariant through min and
max operators as illustrated in Figure 2 (these operators are
defined in Appendix A).

We can now present the main result of this section and
the first contribution of this paper:

Theorem 1 A solution ϕ ∈Φ is homotopic to δ if and only
if ϕ takes values in χδ .

The proof can be found in Appendix B and follows the same
scheme as the ones in (Gregoire, 2014) in a much more gen-
eral setting as there is no need to introduce the notion of
priority in our setting2.

2 Note that we can see δ as a representative of the homotopy class,
while in (Gregoire, 2014) the homotopy class is uniquely represented
by its priority graph.

xi

xj

T xi

xj

0

diagonal path xi = xj diagonal path xi = xj

0 T

T T

Cij
NW

Cij

x

ymin(x,y)

max(x,y)

Cij
SE

Χδ

Fig. 2 Illustration of the completion of the obstacle region to constrain
the trajectory in the coordination within the same homotopy class as the
planned path. All connected regions above (resp. below) the diagonal
segment are completed in the North-West (resp. South-East) direction.

The above result means that χδ can be seen as a homo-
topy constraint: a set of configurations that correspond to
values taken by solutions within the same homotopy class.
It allows to design a maximally permissive feedback control
policy to remain within the homotopy class in the presence
of delaying disturbances. All we have to do to remain within
the assigned homotopy class is to take care not to cross the
boundary of the constructed corridor χδ .

Generally speaking, some configurations in χδ could be
deadlock configurations requiring robots to move backwards
to reach their goal. The theorem below states that χδ is
actually a deadlock-free space, i.e. from any point in χδ :
there exists a non-decreasing collision-free path to the goal
configuration (T, . . . ,T ). This is an important property, as
it means that as long as a controller guarantees the system
stays in χδ , then deadlocks are provably avoided.

Theorem 2 χδ is a deadlock-free space, i.e. for all x ∈ χδ ,
there exists a solution ϕx going through x.

Proof Take x ∈ χδ . And consider the following path:

ϕ
x
i (τ) :=

{
min(xi,2τT ) for τ ∈ [0,1/2]
max(xi,2(τ−1/2)T ) for τ ∈ (1/2,1]

(6)

By Property 2, x∈ χδ and δ taking values in χδ implies that
ϕx takes values in χδ . Moreover, it starts at (0 . . .0), it ends
at (1 . . .1) and it is non-decreasing, so that ϕx is a solution to
the coordination problem going through x (at time 1/2). ut

Note that Theorem 2 is on its own sufficient for the de-
sign of the proposed controller. However, Theorem 1 pro-
vides an important insight that allows one to interpret the
proposed control rule as a strategy that ensures that the tra-
jectory of the system is in the homotopy class of the planned
solution, i.e the proposed rule is an instance of navigation
under homotopy constraints.
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3 Locally-optimal navigation within a homotopy class
under disturbances

In this section, we will describe a control rule for control-
ling the advancement of individual robots along their trajec-
tories in response to some of the robots being delayed by a
disturbance such that the path of the multi-robot system in
the coordination space remains in the homotopy class of the
planned coordination-space path. As a consequence of the
properties discussed in the previous section, the fact that the
system remains in this homotopy class ensures that all robots
reach their goals without getting trapped in a deadlock.

3.1 Problem formulation

For simplicity and practical considerations, we will describe
the controller in discrete time. The discrete-time trajectory
of robot i is a function πi(t) : {0,1, . . . ,T} → W , where T
denotes the time step when the last robot reaches its destina-
tion. The state of the system is described in terms of position
xi ∈ {0, . . . ,T} of each robot i along its trajectory πi, i.e. if
robot i is in state xi, the robot is at spatial position πi(xi).
The control variables are ai(t) ∈ {0,1} for each robot i. If
ai(t) = 1, robot i is trying to proceed; if ai(t) = 0, robot i
willingly stops. Robots control variables are subject to an
exogenous multiplicative disturbance di(t) ∈ {0,1}, where
di(t) = 0 models the situation when the robot is forced to
stop. Then, the discrete-time system dynamics is governed
by the equation:

∀t ∈ N, xi(t +1) = xi(t)+ai(t) ·di(t).

The state xi(t) of robot i can be intuitively interpreted as a
position in the plan πi at time t. Note that this position is
measured in time units. Our model is illustrated in Figure 3.

Our objective is to design a multi-robot controller G(x1,

. . . ,xn) that takes the current position of each robot and re-
turns control variables (a1, . . . ,an) such that from the initial
state x0 = (0, . . . ,0) at time t = 0, the system is collision-
free, all robots reach destination following a path in the co-
ordination space that belongs to the same homotopy class as
δ , and the travel time for each robot to reach their goal is
locally minimal, i.e. it is minimal given the assigned homo-
topy class.

In the sequel, we will present a control scheme that sat-
isfies the above requirements. We remark that the presented
scheme combines advantages of planning and reactive ap-
proaches in that it guarantees liveness and in the same time
retains freedom of action allowing robots to deviate from the
planned trajectory and handle the disturbance thanks to the
freedom of action within the homotopy class.

πi(0)

πi(1)

πi(2) 
= 

πi(3)
πi(4)

πi(5)

t

xi(t)

0 1 2 3 4 5 6 7

1

2

3

4

T = 5

πi(xi(0)) 

πi(xi(1)) 
= 

πi(xi(2)) 

πi(xi(3)) 
=

πi(xi(4)) 
= 

πi(xi(5))
πi(xi(6)) 

πi(xi(7)) 

Planned trajectory t ↦ πi(t) :

Actual trajectory t ↦ πi(xi(t)) :

Robot state trajectory t ↦ xi(t) :

t=0

t=1
t=2,3

t=4
t=5

t=0

t=1,2
t=3,4,5

t=6
t=7

Fig. 3 Top: An example output of the planner for robot i. The balls
indicate the time evolution of the planned trajectory t 7→ πi(t) for robot
i. The curve represents the geometric path in R2 followed by robot i.
Middle: State trajectory t 7→ xi(t)∈ [0,5] encodes the time evolution of
position of robot i along its planned trajectory. We can see that during
time intervals [1,2] and [4,5] the robot makes no progress in its plan.
Also, the fact that the state trajectory is below the diagonal can be
interpreted as the robot lagging behind its plan. Bottom: The actual
trajectory of the robot is t 7→ πi(xi(t)). One can see that robot i will
follow the same geometric path in R2 as planned. However, the time
evolution along this geometric path is different. In particular, robot i
will reach its goal at time 7 instead of 5.

3.2 Control law

We now introduce a control law, referred to as robust multi-
robot trajectory tracking (RMTRACK), that ensures that the
actual trajectory in the coordination space under disturbances
remains in the homotopy class of planned path δ . As stated
in Theorem 1, this is equivalent to remaining within χδ ,
which is a deadlock-free space (cf. Theorem 2).

The multi-robot control law G(x1, . . . ,xn) is decomposed
into collection of control laws {Gi(x1, . . . ,xn)}, each gov-
erning the advancement of robot i. The control law for single
robot i is defined as

Gi(x1, . . . ,xn) :=
0 if xi = T or if

[
∃ j : xi > x j and

Ci j ∩ ({xi +1}×{x j, . . . ,xi +1}) 6= /0
]

1 otherwise.

(7)
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As we can see, the control law allows robot i to proceed only
if the line segment from (xi +1,x j) to (xi +1,xi +1) does not
go through Ci j for every other robot j. The mechanism is
illustrated in Figure 4. The effect of the application of such
a control law is illustrated in Figure 5.

Intuitively, the reader can interpret the control scheme
as follows : let every robot proceed at any time, unless it
is about to cross an intersection area before another robot
that was supposed to cross the area first according to the ini-
tial plan. The hierarchy of the initial plan is conserved. In
the example of Figure 1, it means in particular that robot 2
should not enter the corridor before robot 1 exits the corri-
dor, which clearly avoids the presented deadlock situation.
This research work provides this intuitive approach with a
theoretical framework and proofs.

current state (xi(t), xj(t))

diagonal path xi = xj

xi

xj

segment {xi(t1)+1} × {xj(t1)...xi(t1)+1}

Cij

Cij

T

T

0 xi(t1)

xi(t1)+1

xi(t1)+1

∩ = ∅ ⇒Cij ai(t1)=1

current state (xi(t), xj(t))

diagonal path xi = xj

xi

xj

segment {xi(t2)+1} × {xj(t2)...xi(t2)+1}

Cij

Cij

T

T

0 xi(t2)

xi(t2)+1

xi(t2)+1

∩ = ∅ ⇒Cij ai(t1)=0

Fig. 4 Illustration of the control law computation for robot i with re-
spect to single other robot j. Left: The segment {xi +1}×{x j, . . . ,xi +
1} is collision-free with Ci j at time t1, therefore the robot i is com-
manded to proceed, i.e. ai(t1) = 1. Right: The segment is not collision-
free with Ci j at time t2, therefore the robot i is commanded to stop, i.e.
ai(t2) = 0.

In the sequel, we show that under certain technical as-
sumptions, the RMTRACK control law satisfies collision-
freeness and liveness properties, i.e. the robots are guaran-
teed not to collide and eventually reach their goal.

3.3 Properties

3.3.1 Collision-freeness

In order to show collision-freeness we make the following
technical assumption. We assume that there is a 1-margin
between the diagonal path and the obstacle region in the co-
ordination space, i.e.

∀t ∈ {0, . . . ,T −1}, ∀i 6= j,


(t +1, t) /∈Ci j
and
(t, t +1) /∈Ci j

(8)

actual trajectory (xi(t),xj(t))

diagonal path xi = xj
xi

xj

segment {xi(t)+1}  ×  {xj(t),...,xi(t)+1}

t = t0

t = t2

Cij

Cij

t = t3

t = t4

T

T

0

t = t1

Fig. 5 Trajectory of the robots in the coordination space under control
law G. At time t = t0, a disturbance makes robot j stop (d j(t0) = 0).
The system leaves the diagonal path, and the control law allows robot
i to proceed until time t = t2 where robot i is commanded to stop, i.e.
ai(t2) = 0 (see Figure 4). Finally, disturbance for robot j goes away,
and robot j proceeds. It’s only at time t = t3 that the control law allows
robot i to proceed. Robot i reaches its goal at time t = t4 and robot j
right after. No collision occurred and note how the control law ensured
that the actual trajectory in the coordination space remains on the same
side as the diagonal path with respect to each connected component
of the obstacle region. This is what enables to guarantee liveness, as
changing the homotopy class may lead to a deadlock configuration with
respect to other robots.

This assumption is typically negligible as the geometric
distance traveled by a robot in one time step is small. It can
also be satisfied by planning the reference trajectories with
robots modeled with slightly larger bodies than actual robots
(to ensure a sufficient safety margin).

The following lemma is a preliminary to prove that the
control strategy is collision-free.

Lemma 1 Under control law G and assuming that Equa-
tion (8) holds, we have for all i, j ∈ {1, . . . ,n} and for all
t ∈ N s.t. xi(t)≥ x j(t) :

Ci j ∩ ({xi(t)}×{x j(t), . . . ,xi(t)}) = /0 (Ei, j,t )

Proof Initially, we have x1(0) = x2(0) = . . . = xn(0) = 0 and
the state of robots does not belong to Ci j, so that (Ei, j,0)
holds for all i, j ∈ {1, . . . ,n}.

Now, assume that (Ei, j,t ) holds at some arbitrary time
step t ∈ N for all i, j ∈ {1, . . . ,n} s.t. xi(t)≥ x j(t).

For each i, j ∈ {1, . . . ,n}, consider two options:

– If xi(t) = x j(t), then (Ei, j,t) ≡ (E j,i,t) hold and consider
three options:

– If xi(t +1) = x j(t +1), (Ei, j,t+1)≡ (E j,i,t+1) will be
satisfied as planned trajectories are collision-free.

– If robot i moves one step forward while robot j is
stopped, then by Equation (8), we have (xi(t +1),x j(t +
1)) = (xi(t)+1,xi(t)) /∈Ci j, and as planned trajecto-
ries are collision-free (xi(t + 1),xi(t + 1)) /∈ Ci j, so
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that {xi(t + 1)}×{x j(t + 1),xi(t + 1)}∩Ci j 6= 0, so
that (Ei, j,t+1) is satisfied with xi(t +1) > x j(t +1).

– If robot i moves one step forward while the other
one j is stopped,, we use the symmetric reasoning to
obtain that (E j,i,t+1) holds.

– If xi(t) > x j(t) then we have xi(t + 1) ≥ x j(t + 1) and
consider three options:
– If neither of robots moves, (Ei, j,t+1) will still be ob-

viously satisfied as (Ei, j,t+1)≡ (Ei, j,t) which holds.
– If robot i does not move, then we have:
{xi(t +1)}×{x j(t +1), . . . ,xi(t +1)}

= {xi(t)}×{x j(t +1), . . . ,xi(t)}
⊆ {xi(t)}× [x j(t), . . . ,xi(t)]

which does not intersect Ci j as (Ei, j,t ) holds, so that
(Ei, j,t+1) is satisfied.

– If robot i moves, then by construction of G and be-
cause xi(t) > x j(t), we have:
Ci j ∩ ({xi(t)+1}×{x j(t), . . . ,xi(t)+1}) = /0 (9)
Taking into account that xi(t + 1) = xi(t) + 1 and
x j(t +1) ∈ {x j(t),x j(t)+1}, we obtain:
{xi(t +1)}×{x j(t +1), . . . ,xi(t +1)}

= {xi(t)+1}×{x j(t +1), . . . ,xi(t)+1}
⊆ {xi(t)+1}×{x j(t), . . . ,xi(t)+1}

which does not intersect Ci j by Equation (9), so that
(Ei, j,t+1) holds.

By induction, we conclude that (Ei, j,t ) is satisfied for all t ∈
N and i, j ∈ {1, . . . ,n} s.t. xi(t)≥ x j(t). ut

Theorem 3 Under control law G and and assuming that
Equation (8) holds, the trajectory in the coordination space
is collision-free, i.e.

∀t ∈ N, (x1(t), . . . ,xn(t)) /∈C.

Proof Take an arbitrary time step t ∈N. Assume that (x1(t) . . .
xn(t))∈C. Then, there exists i, j such that (xi(t),x j(t))∈Ci j
and we can assume without loss of generality that xi(t) ≥
x j(t). This is in contradiction with Lemma 1. ut

3.3.2 Liveness

First, we characterize our assumptions on disturbances. Clearly,
it is possible to construct a disturbance function that will
prevent the system from reaching configuration (T, . . . ,T )
under any control law. For example, if for a given robot
i ∈ {1, . . . ,n}, we have ∀t ∈ N, di(t) = 0, then it is impossi-
ble for robot i to reach its goal. Therefore, in the following
analysis, we assume that disturbances do not prohibit any of
the robots from reaching its goal, i.e. we consider systems in
which disturbances may delay any given robot for arbitrarily
long, but the robot will eventually be able to reach the goal.
Formally, we say that disturbances are non-prohibitive if for

any controller that satisfies

∀t ∈ N,


x1(t) = x2(t) = . . . = xn(t) = T
or
∃i ∈ {1, . . . ,n} : xi(t) < T and ai(t) = 1

,

the system will eventually reach the goal, i.e there exists
t f ∈ N such that (x1(t f ), . . . ,xn(t f )) = (T, . . . ,T ). In other
words, as long as the controller lets at least one unfinished
robot proceed at any point of time, all robots will eventually
reach their goal. The time of goal achievement t f might be
affected by disturbances, but disturbances will not prevent
goal achievement in finite time.

Under non-prohibitive disturbances, the control law G
guarantees liveness:

Lemma 2 Under control law G, there is at least one robot
proceeding at any point of time, i.e.

∀t ∈ N,


x1(t) = x2(t) = . . . = xn(t) = T
or
∃i ∈ {1, . . . ,n} : xi(t) < T and ai(t) = 1

Proof Define I(t)⊆ {1, . . . ,n} as follows:

I(t) := argmin
i

xi(t) =
{

i : ∀ j 6= i x j(t)≥ xi(t)
}

I(t) is non-empty and finite as it is an argmin over a finite
set. By construction of G, we have:

∀i ∈ I(t) ai(t) = Gi(x1(t), . . . ,xn(t)) = 1 or xi(t) = T

There are two scenarios: a) Either for all i ∈ I(t), xi(t) = T ,
then mini xi(t) = T , so that we have x1(t) = x2(t) = . . . =
xn(t) = T . b) Or there exists some i ∈ I(t) such that xi(t) <

T and ai(t) = Gi(x1(t), . . . ,xn(t)) = 1. This concludes the
proof. ut

Theorem 4 Control law G ensures liveness under non pro-
hibitive disturbances, i.e.

∃t f : x1(t) = x2(t) = . . . = xn(t) = T

Proof This is a direct consequence of the preceding lemma
and of the assumption made on disturbances. ut

3.3.3 Local optimality

The proposed control strategy is locally optimal: it mini-
mizes the travel time for each robot to reach their destina-
tion among solutions within the assigned homotopy class,
i.e. among solutions respecting the same relative order be-
tween robots at intersection areas. This result can be inter-
preted as the equivalent in our feedback control approach
to the locally optimal left-greedy solution of (Ghrist et al,
2005; Ghrist and Lavalle, 2006). It is intuitive given that the
control strategy consists in moving forward unless the con-
figuration of robots would cross the boundary of the ”homo-
topy corridor” χδ , which is a greedy strategy.
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Theorem 5 Control law G is locally optimal, i.e. it mini-
mizes travel time for each robot to reach their destination
among solutions within the assigned homotopy class.

Proof This result is a direct adaptation of the proof of ”op-
timality under assigned priorities in the absence of kinody-
namic constraints” that can be found in (Gregoire, 2014).

ut

3.4 Extension under disturbances on the planned geometric
paths

The results presented in this paper consider that robots are
still able to precisely follow the initially planned geometric
paths and that disturbances only affect the time execution
of the plan. A major possible extension of this work is to
handle small disturbances affecting the geometric paths as
well, and we provide here some insights on the matter.

xi

xj

T
diagonal path xi = xj

0

T

Cij C'ij

Fig. 6 Under small disturbances on the geometric paths, the coordina-
tion space has the same topological structure.

For sufficiently small disturbances on the geometric paths
and assuming the diagonal path is not in direct contact with
the obstacle region (some security margin exists), then the
new coordination space corresponding to the new geomet-
ric paths will have the same topological structure as de-
picted in Figure 6. As a consequence, a new corridor χ ′δ can
be derived and locally-optimal navigation can be performed
within this corridor. We believe that our theoretical frame-
work can be extended to obtain provably locally-optimal
navigation under space-time disturbances on the initial plan,
which is beyond the scope of this paper and will be the focus
of our future work.

4 Experimental Evaluation

In this section we will discuss the results of experimental
comparison of RMTRACK approach against a baseline live-
ness preserving method ALLSTOP and a reactive method
ORCA using multi-robot simulation. The naive strategy ALL-
STOP used as a baseline merely consists in stopping all
robots in the team every time any single robot is forced to
stop, which is a very conservative and non optimal approach.

Experiment Setup

The comparison was performed in three environments: Empty
hall, Office corridor and Warehouse as shown in Figure 7.
A single problem instance in one of the environments con-
sists of n robots attempting to move from randomly gen-
erated origins to randomly generated destinations. We first
find collision-free multi-robot trajectories from the origins
to the destinations and then let each robot follow the given
trajectory while randomly disturbing its advancement with
specified intensity. More precisely, every second we decide
with probablity corresponding to the disturbance intensity
whether during the following second the robot will be pre-
vented from moving.

To ensure that the initial coordinated trajectories can be
found in a reliable and tractable fashion, the test environ-
ments satisfy so-called well-formed infrastructure property3

(Čáp et al, 2015a). This allowed us to use revised prioritized
planning approach (Čáp et al, 2015a) to efficiently find the
initial trajectories for the robots to follow.

In Empty hall and Warehouse environment we generated
10 instances with 10 robots and 10 instances with 50 robots;
In Office corridor environment we generated 10 instances
with 10 robots and 10 instances with 35 robots. Note that
a single instance represents a specific assignment of origins
and destinations to the robots.

An illustrative video, the source codes of all algorithms
and benchmark instances are available at :
http://agents.fel.cvut.cz/~cap/rmtrack/.

Comparision of RMTRACK and ALLSTOP

First, we compare two liveness-preserving control laws to
handle disturbances: 1) ALL-STOP: the baseline law that
makes entire multi-robot team stop whenever a single robot
is disturbed and 2) RMTRACK: the law proposed in Sec-
tion 3.2. For each instance and disturbance intensity ranging
from 0 % to 50 %, we run both algorithms and measured the
time it took for each robot to reach its destination.

3 In a well-formed infrastructure a start and destination of each robot
is constrained to lie at a position where it does not completely prevent
other robots from reaching their goals - most man-made infrastruc-
tures, e.g. a national road network system, satisfy the property.
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Empty hall with 25 robots Office corridor with 25 robots Warehouse with 30 robots

Fig. 7 Maps used for experimental comparison. The figures show an example problem instance in each environment. The filled circles represent
robots. The arrows indicate the desired destination of each robot.

Empty hall Office corridor Warehouse

●●●●●● ● ● ● ●
●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (10 rob.)

●●●●●● ● ● ● ●
●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (50 rob.)

●●●●●● ● ● ● ●
●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (10 rob.)

●●●●●● ● ●
●

●
●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (35 rob.)

●●●●●● ● ● ● ●
●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (10 rob.)

●●●●●● ● ● ●
●

●

0

50

100

150

200

0 25 50
disturbance intensity [%]

av
g.

 tr
av

el
 ti

m
e 

[s
]

Avg. travel time (50 rob.)

Fig. 8 Experimental comparison of ALL-STOP strategy with RMTRACK. Each datapoint is an average travel time of a single robot from its origin
to its destination under the given disturbance intensity using one of the two evaluated control strategies. The dashed line represents the average
lower bound on the travel time under the given disturbance intensity. The dotted line representes the average travel time from origin to destination
assuming no disturbance and no need for coordination between robots. The bars represent standard deviation of the difference between the travel
time under the evaluated algorithm and the lower bound travel time.

In order to isolate the effect of each control law on the
travel time from the effect of disturbances and the effect of
the quality of the initial plan, we compute a lower-bound on
the travel time of each robot assuming fixed disturbance and
fixed initial plan. Such a lower bound is obtained by simulat-
ing the robot such that the inter-robot collisions are ignored
and thus all robots always command to proceed at maximum
advancement rate along their initial trajectory. Then the av-
erage advancement rate of the robot and consequently the
travel time is affected solely by disturbances. In fact, for uni-
formly distributed random disturbance with equal intensity
q for all robots, this corresponds to robots advancing on ex-
pectation at 1− q fraction of the original advancement rate
1. Thus, the lower bound on expected travel time under dis-
turbance intensity q can be also computed as E(t f )/(1−q),
where E(t f ) denotes expected travel time in the absence of
disturbance.

It is easy to see that this lower bound represents the best
possible travel time that can be achieved by RMTRACK,
for instance, the travel time when the paths of the robots
do not overlap. On the other hand, it is not difficult to con-
struct a combination of problem instance and disturbances
for which the behavior of RMTRACK degenerates to that of
ALLSTOP. Curiously, since ALLSTOP proceeds only when
none of the robots is disturbed, which for uniformly dis-

tributed disturbance with intensity q at each robot happens
with probability (1−q)n, the expected travel time for ALL-
STOP strategy can be consequently computed as E(t f )/(1−
q)n, where E(t f ) is again the expected travel time without
disturbance and n is the number of robots in the system.

Consequently, we expect the average traveltime under
RMTRACK strategy to be bounded from below by the lower-
bound travel time and by the ALLSTOP travel time from
above. The actual travel time under RMTRACK will then
depend on the ”interdependency” of initial trajectories and
the level of disturbance. Given these two bounds, an inter-
esting question is how will RMTRACK strategy perform in
characteristic real-world environments.

The results of performance comparison of RMTRACK
with respect to ALLSTOP and the lower bound travel time
for the three test environments are shown in Figure 8. We
can see that consistently over all test environments and for
different numbers of robots, the baseline strategy ALLSTOP
quickly becomes impractical when the disturbance inten-
sity is high. In contrast, the average travel time under RM-
TRACK remains reasonable even for high intensities of dis-
turbance. Further, it is encouraging that for all three envi-
ronments we tested on, the average travel time under RM-
TRACK remains close to the lower-bound travel time.
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Empty hall Office corridor Warehouse
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Fig. 9 Experimental comparison of ORCA and RMTRACK. The average travel time is computed if there is at least five instances for given number
of robots and disturbance intensity successfuly solved by both evaluated algorithms. The dotted line representes the average travel time from origin
to destination assuming that no disturbance and no need for coordination with other robots. The bars represent standard deviation of the difference
between the travel time under the evaluated algorithm and the average travel time from origin to destination ignoring collisions with other robots
and disiturbance.

Comparision of RMTRACK and ORCA

Next, we compared RMTRACK strategy with a reactive col-
lision avoidance technique ORCA, which is a characteristic
representative of a family of popular collision avoidance al-
gorithms based on the reciprocal velocity obstacle paradigm
(Van Den Berg et al, 2011). Given the current velocities
of all robots in the neighborhood and the desired velocity
vector, it attempts to compute the closest velocity vector to
the current desired velocity that does not lead to future col-
lision with other robots, assuming that they will continue
moving at their current velocity. In our implementation, the
desired velocity at each time instance follows the shortest
path to destination. For each instance we run ORCA and
RMTRACK techniques for different disturbance intensities
ranging from 0 % to 50 %. During the experiment, we of-
ten witnessed ORCA leading robots to dead-lock situations
during which the robots either moved at extremely slow ve-
locities or even stopped completely. Therefore, if the robots
failed to reach their destination within 10 minutes4, we con-
sidered the run as failed.

Figure 9 summarizes the results of the comparison. We
can see that the success rate of ORCA deteriorates with in-
creasing disturbance intensity. This is perhaps surprising since
reactive methods are believed to be particularly well suited
for unpredictable environments. Among the reasons behind
this phenomenon seems to be that the reciprocal reactive al-
gorithms rely on all robots executing the same algorithm and
consequently on ”splitting” the collision avoidance effort.
This assumption is however violated if one of the robots is

4 Average travel time between origin and destination ignoring colli-
sions and without disturbance is around 25 second

disturbed and does not execute the velocity command that
the algorithm computed. The plots in the bottom row show
comparison of performance of RMTRACK and ORCA. We
can see that even when ORCA solves a given instance, the
expected travel time for a robot is on expectation longer,
especially so in cluttered environments and for high distur-
bance intensities.

5 Conclusion

The ability to guarantee safe and dead-lock free motion co-
ordination for autonomous multi-robot systems in unpre-
dictable environments is a standing challenge. To tackle this
challenge, this work proposed a new paradigm based on nav-
igation under homotopic constraints. We use the output of
any multi-robot trajectory planner to construct a maximal
set of homotopic solutions to the coordination problem and
show that remaining in this homotopy class is equivalent to
constraining robots to navigate within a subset χδ of the
constructed coordination space. Then, we propose a feed-
back controller which ensures that robots respect the con-
structed homotopic constraint.

With the proposed control scheme, collision avoidance
and deadlock avoidance are guaranteed even if unexpected
events require some or even all robots to stop for an arbitrary
(yet finite) time. Moreover, the control scheme is locally-
optimal as it minimizes travel time among solutions homo-
topic to the initial solution. The delay could not be smaller,
unless a completely new plan is computed. The obtained
control scheme is particularly useful for autonomous intra-
logistics systems where robots and humans share a common
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environment. It is remarkable that a quite theoretical result
on the existence of homotopy classes in the coordination
space can be leveraged to provide such guarantees at the sys-
tem level.

The experimental evaluation shows that the proposed method
is both more reliable and more efficient than the state-of-the
art reactive collision-avoidance methods.

There are two main perspectives for future work. First
of all, as detailed in Subsection 3.4, we would like to han-
dle space-time disturbances, i.e. disturbances affecting not
only the time execution of the plan but also requiring robots
to follow a slightly different geometric path. Future work
should extend our theoretical results to obtain a provably
locally-optimal controller under space-time disturbances. Un-
der major space-time disturbances, local approaches guar-
anteeing the system remains within the initially planned ho-
motopy class will prove inefficient. As a result, future work
should also study replanning in our homotopy class paradigm.
In the presented approach, the system is bound to remain in
the homotopy class of the initial solution. The system would
be able to reach the goal faster if it finds a new solution from
the current state and start navigating in its homotopy class.
It would be interesting to gain better understanding on when
the change in the homotopy class is unnecessary, when it is
significantly beneficial, and how to do it in a computation-
ally efficient manner.
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A Completion of the obstacle region

In this section, we construct the maximal set χδ ⊂ χ free. We start by
defining ∆ NW and ∆ SE as follows:

∆
NW :=

{
(a,b) ∈ [0,T ]2 : b > a

}
(10)

∆
SE :=

{
(a,b) ∈ [0,T ]2 : b < a

}
. (11)

Then, we build the completed obstacle region χobsδ as follows:

CNW
i j :=

(
(Ci j ∩∆

NW )+(R−×R+)
)
∩ [0,T ]2 (12)

CSE
i j :=

(
(Ci j ∩∆

SE)+(R+×R−)
)
∩ [0,T ]2 (13)

where A+B denotes the set of a+b with (a,b)∈ A×B, R+ := {x∈R :
x≥ 0} and R− := {x ∈R : x≤ 0}. The completion process is depicted
in Figure 2.

We use min(x,y) and max(x,y) operators on two points x,y in the
coordination space, defined component-wise as :

(min(x,y))i := min(xi,yi) (14)

(max(x,y))i := max(xi,yi). (15)

Property 2 (Invariance through min and max operators) For all x,y ∈
χδ , we have min(x,y) ∈ χδ and max(x,y) ∈ χδ .

B Proof of Theorem 1

Proof (Necessary condition) We first prove that taking values in χδ

is a necessary condition for being homotopic to δ by contradiction.
Consider a solution ϕ . Assume that ϕ is homotopic to δ , but it does
not take only values in χδ . As a consequence, it takes some value
xc ∈ χobsδ at some point τc such that (ϕi,ϕ j)(τc) = (xc

i ,x
c
j) ∈ CNW

i j

for some i, j ∈ {1 . . .n} (or, equivalently, (xc
j,x

c
i ) ∈CSE

ji ). By construc-
tion of CNW

i j , there exists (x0
i ,x

0
j) ∈ Ci j distinct from (xc

i ,x
c
j) (because

ϕ is collision-free) such that x0
i ≥ xc

i and x0
j ≤ xc

i . Consider the maxi-
mal segment Σ ⊂ [0,T ]2 going through points (x0

i ,x
0
j) and (xc

i ,x
c
j). As

ϕ is assumed to be homotopic to δ , there exists a continuous trans-
formation H : [0,1]→ Φ such that H(0) = ϕ and H(1) = δ . For all
α ∈ [0,1], H(α) intersects Σ . H(α) = ϕ intersects at configuration
(xc

i ,x
c
j) and H(1) intersects Σ at a configuration on the image of δ . As

a consequence, by continuity, H(α) goes through (x0
i ,x

0
j) for some α ,

which is absurd as H(α) should be a solution for all α ∈ [0,1] (solution
H(α) should be collision-free in particular). ut
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Fig. 10 Illustration of the transformation of ϕ1 into max(ϕ1,ϕ2). Two
cases may appear, and in both cases, the transformation remains within
χδ .

Proof (Sufficient condition) Now, we prove that taking values in χδ

is a sufficient condition. Consider two arbitrary solutions ϕ1,ϕ2 ∈ Φ

taking values in χδ and the following continuous transformation H
defined as follows for all α ∈ [0,1], τ ∈ [0,1]:

H(α)(τ) := min(ϕ1(τ +α),max(ϕ1(τ),ϕ2(τ))) (16)

where ϕ1(τ +α)≡ (T . . .T ) if τ +α > 1 by convention.
We have H(0)(τ) = min(ϕ1(τ),max(ϕ1(τ),ϕ2(τ))) = ϕ1(τ), so

that H(0) = ϕ1. Moreover,

H(1)(τ) = min(ϕ1(1+ τ),max(ϕ1(τ),ϕ2(τ))) (17)

= min(T,max(ϕ1(τ),ϕ2(τ))) (18)

= min(T,max(ϕ1(τ),ϕ2(τ))) (19)

= max(ϕ1(τ),ϕ2(τ)). (20)

As a result, H(1) = max(ϕ1,ϕ2). Finally, by Property 2 (see also Fig-
ure 10), ϕ1 and ϕ2 taking values in χδ implies that for all α ∈ [0,1],
H(α) takes values in χδ . Moreover, H(α) is non-decreasing as min
and max operators do not affect that property. As a result, H continu-
ously transforms ϕ1 into max(ϕ1,ϕ2) while remaining in Φ . By sym-
metry of the roles played by ϕ1 and ϕ2, there also exists a continuous
transformation transforming ϕ2 into max(ϕ1,ϕ2) while remaining in
Φ . As a result, ϕ1 and ϕ2 are both homotopic to max(ϕ1,ϕ2), so that
ϕ1 and ϕ2 are homotopic solutions. In particular, choosing for ϕ1 an
arbitrary solution taking values in χδ and ϕ2 ≡ δ , we obtain that any
solution taking values in χδ is homotopic to δ . ut


