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Summary

Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the 

focus of therapeutic interventions; however, current therapies are effective in only some patients 

and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, 

we analyzed population and single-cell RNA profiles of CD8+ tumor-infiltrating lymphocytes 

(TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that 

can be uncoupled from T cell activation. This distinct dysfunction module is downstream of 

intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell 

resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional 

module, as a regulator of dysfunction, and use CRISPR/Cas9 genome editing to show that it drives 

a dysfunctional phenotype in CD8+ TILs. Our results open novel avenues for targeting 

dysfunctional T cell states, while leaving activation programs intact.
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Introduction

During persistent immune activation, such as uncontrolled tumor growth or chronic viral 

infections, the ability of CD8+ lymphocytes to secrete pro-inflammatory cytokines and 

elaborate cytotoxic function becomes compromised to different extents (Anderson et al., 

2016; Baitsch et al., 2012; Kim and Ahmed, 2010; Wherry and Kurachi, 2015; Zuniga et al., 

2015). Such dysfunctional or “exhausted” CD8+ cells are believed to constitute a barrier to 

successful anti-tumor and anti-viral immunity. Gaining a clear molecular understanding of 

the dysfunctional T cell state can thus help develop successful therapeutic interventions.

Dysfunctional CD8+ T cells from LCMV infected mice (Blackburn et al., 2009; Wherry et 

al., 2007) and cancer (Baitsch et al., 2011; Fourcade et al., 2010; Matsuzaki et al., 2010; 

Sakuishi et al., 2010) differ profoundly from memory CD8+ T cells and co-express multiple 

co-inhibitory or immune checkpoint receptors such as PD-1, Lag-3, and Tim-3. Indeed, 

therapeutic targeting of co-inhibitory receptors, such as CTLA-4 and PD-1, with blocking 

antibodies has achieved great success in cancer patients. However, many patients still fail to 

respond and some cancers are refractory to these therapies (Restifo et al., 2016). Thus, to 

identify novel therapeutic targets and stratify patients, it is important to better understand the 

dysfunctional T cell state.

A major challenge to developing therapies that specifically target the dysfunctional CD8+ T 

cell state is that current markers and transcriptional signatures of dysfunction are closely 
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intertwined with the activated CD8+ T cell state (Doering et al., 2012; Fuertes Marraco et al., 

2015; Tirosh et al., 2016). This is not surprising given that T cell dysfunction arises in the 

face of chronic T cell activation. Thus, both dysfunctional CD8+ T cells and activated CD8+ 

T cells up-regulate genes involved in activation of the cell cycle, T cell homing and 

migration, as well as effector molecules, such as granzymes and co-stimulatory and co-

inhibitory receptors that mark T cells for subsequent regulation (Giordano et al., 2015; 

Wherry et al., 2007). Moreover, both cell types down-regulate memory cell gene signatures 

(Doering et al., 2012; Wherry et al., 2007). Indeed, T cell dysfunction likely evolved as a 

physiological process to balance T cell activation with self-regulation in the face of chronic 

antigen persistence, thereby limiting immunopathology. As a result, it has been challenging 

to identify markers and approaches that would specifically target the dysfunctional T cell 

state, while preserving the activated T cell state, as well as to identify bona fide 

dysfunctional T cells in vivo.

Here, we used an integrated experimental and computational approach to systematically 

dissect the molecular pathways associated with activation and dysfunction within CD8+ 

tumor-infiltrating lymphocytes (TILs). We find that metallothioneins, intracellular zinc 

chaperones, are highly enriched in the most dysfunctional CD8+ TILs and demonstrate that 

targeted deletion of metallothioneins results in loss of T cell dysfunction and significantly 

reduced tumor growth, despite no reduction in the expression of co-inhibitory molecules. We 

analyzed metallothionein-deficient CD8+ TILs and identified a novel dysfunction gene 

module that is distinct from that of T cell activation. Using single-cell RNA-Seq, we show 

that the activation and dysfunction gene modules are mutually exclusive at the single-cell 

level and that cells primarily expressing the dysfunction module are absent among 

metallothionein-deficient CD8+ TILs. We further use CRISPR/CAS9 genome editing of 

primary T cells to demonstrate that one of the major predicted regulators of the dysfunction 

module, the zinc-finger transcription factor Gata-3, is a key driver of T cell dysfunction in 

CD8+ T cells in cancer. Our analysis identifies a gene module that is expressed in 

dysfunctional T cells but not in activated T cells, and defines critical molecular nodes that 

control this module, opening the way to develop targeted therapy specific for the 

dysfunctional T cell state.

Results

Transcriptional signatures for CD8+ T cell dysfunction and activation are intertwined

CD8+ tumor-infiltrating lymphocytes (TILs) exhibit distinct functional phenotypes that we 

(Sakuishi et al., 2010) and others (Baitsch et al., 2011; Fourcade et al., 2010; Matsuzaki et 

al., 2010; Zhou et al., 2011) have previously defined using a combination of co-inhibitory 

receptors as markers. Specifically, cell surface expression of T cell immunoglobulin and 

mucin domain–containing-3 (Tim-3) and Programmed cell death-1 (PD-1) can be used to 

partition CD8+ TILs into three different groups: Tim-3−PD-1− (DN; double negative), 

Tim-3−PD-1+ (SP; single positive), and Tim-3+PD-1+ (DP; double positive). DN TILs 

exhibit full effector function, SP TILs exhibit partial dysfunction, and DP TILs exhibit 

severe dysfunction, as reflected by the respective differences in their ability to produce 

effector cytokines (Sakuishi et al., 2010).
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To study the molecular programs associated with the functional spectrum of CD8+ TILs, we 

measured the transcriptional profiles of CD8+ DN, SP, and DP TILs (Figure 1A, Methods 
and Resources (Johnson et al., 2007; Reich et al., 2006; Subramanian et al., 2005)). We did 

not examine CD8+ Tim-3+PD1− TILs, because these cells are rarely observed in growing 

tumors. For comparison, we profiled CD8+ CD44hiCD62Low effector/memory (EffMem) 

and naïve CD8+ CD44lowCD62Lhigh T cells from non-tumor bearing mice. We identified 

3,031 genes that were differentially expressed (Methods and Resources and Table S1) 

across the three TILs subpopulations (Figure 1B). The gene expression profiles of DP and 

SP TILs were similar to each other, while the profile of DN TILs was distinct and shared 

some features with both naïve and EffMem CD8+ T cells (Figure 1B).

We identified 10 clusters (k-means clustering; C1-C10, Methods and Resources) with 

distinct gene expression patterns across the cell populations (Figure 1B, Figure S1). Some of 

these clusters showed either gradual increase or gradual decrease from DN to SP to DP 

TILs, suggesting a possible association with the functional differences observed in these 

populations. Of the ten clusters, only cluster 2 (C2) was significantly enriched for genes up-

regulated in a viral CD8+ T cell exhaustion signature (Doering et al., 2012) (Figure 1C, 

P<0.0002, hypergeometric test). However, cluster 2 was also strongly enriched (P<10−5) for 

genes up-regulated in an in vivo CD8+ T cell activation signature (Sarkar et al., 2008) 

(Figure 1C). Conversely, clusters 3 and 4 were enriched for genes highly expressed in naïve 

T cells (Figure 1B, P<0.004, 10−5, respectively, Table S2).

The transcriptional coupling of T cell activation and dysfunction has been observed 

previously (Doering et al., 2012; Tirosh et al., 2016) and is not surprising given that T cell 

dysfunction/exhaustion arises from chronic T cell activation due to antigen persistence. This, 

however, raises the fundamental question of whether a distinct gene module for T cell 

dysfunction exists and, if so, is it exclusively expressed by a subset of CD8+ TILs. We 

hypothesized that characterizing CD8+ TILs following perturbations of the dysfunctional 

state might allow us to refine the dysfunction signature. We therefore focused on the 

members of cluster 2. Ranking cluster 2 genes by their differential expression across the 

three TIL subpopulations, we identified metallothionein 1 (MT1) as the top-ranking gene in 

this cluster (Figure 1D, Table S1).

Metallothionein deficiency affects tumor growth in a T cell intrinsic manner

Metallothioneins are cysteine-rich intracellular proteins with high affinity for zinc that serve 

as zinc chaperones and regulate zinc metabolism. Consequently, metallothioneins can impact 

immune responses through actions on diverse zinc-dependent proteins, including zinc-finger 

transcription factors and kinases (Bonaventura et al., 2015; Hamer, 1986). We confirmed that 

both MT1 and its co-regulated paralog MT2 are consistently up-regulated in highly 

dysfunctional CD8+ DP TILs in two different mouse tumor models (Figure S2A). Given the 

role of MT1 and MT2 in zinc regulation, we further examined whether zinc availability is 

modulated in these TILs populations and found that the availability of intracellular zinc 

closely parallels the up-regulation of MT1 and MT2 in DP CD8+ TILs (Figure S2B). Thus, 

the expression of MT1 and MT2 and elevated zinc status correlate with loss of effector 
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function and acquisition of a dysfunctional phenotype. We therefore hypothesized that MT1 

and 2 may regulate CD8+ T cell dysfunction and impact anti-tumor immunity.

To examine the role of MT1 and 2 in regulating T cell dysfunction and tumor growth, we 

investigated the effect of MT1 and MT2 deficiency using knockout mice. There was a 

significant delay in the growth of B16F10 melanoma in mice deficient in both MT1 and 

MT2 (MT−/−) compared to littermate controls (Figure 2A). Furthermore, CD8+ T cells 

isolated from the tumors and tumor draining lymph nodes of MT−/− mice exhibited 

increased proliferation in response to stimulation with tumor-specific antigen, indicating an 

improved anti-tumor CD8+ T cell response (Figure 2B). MT1 and MT2 deficiency also 

reversed the increased zinc observed in DP CD8+ TILs (Figure S2B). To confirm a T cell 

intrinsic role of metallothioneins in regulating anti-tumor responses, we used a system in 

which adoptive transfer of Ova-specific OT1 CD8+ T cells to mice bearing MC38 tumors 

that express Ova (MCA38-Ova) shows tumor growth control. We overexpressed MT1 in 

OT1 CD8+ T cells and transferred these cells or control OT-1 CD8+ T cells into wildtype 

(WT) mice bearing MC38-Ova tumors. Recipients of MT-OT1 CD8+ T cells failed to exhibit 

tumor growth control compared to recipients of control OT-1 CD8+ T cells (Figure 2C). 

Indeed, tumor growth in recipients of MT-OT1 CD8+ T cells resembled that of mice that did 

not receive any tumor antigen-specific CD8+ T cells. These results indicate a CD8+ T cell 

intrinsic role of MT. Taken together, our data support that expression of metallothioneins in 

CD8+ T cells plays a critical role in suppressing anti-tumor CD8+ T cell responses.

Metallothionein deficiency uncouples co-inhibitory receptor expression from a T cell 
dysfunction phenotype

We next analyzed the functional phenotype of CD8+ TILs isolated from WT and 

MT−/−tumor-bearing mice. Consistent with retarded tumor growth, the effector function of 

MT−/− CD8+ Tim-3+ TILs was significantly improved, with higher production of IL-2, 

TNFα, and granzyme B (Figure 2D and S2C), and a higher percentage of polyfunctional T 

cells (Figure 2E). However, despite the enhanced effector function and retarded tumor 

growth in MT−/− mice, Tim-3 and PD-1 expression was either unchanged or even increased 

on MT−/− CD8+ TILs (Figure 2F), such that in the setting of metallothionein deficiency, 

Tim3 and PD-1 expression is no longer associated with a dysfunctional T cell phenotype, but 

rather with an activated T cell phenotype. This uncoupling of co-inhibitory receptor 

expression from a dysfunctional T cell phenotype suggested that co-inhibitory receptors may 

be part of a transcriptional program that is associated with T cell activation, and is separable 

from the transcriptional program that drives dysfunction in CD8+ T cells.

Expression profiling of MT−/− TILs identifies distinct programs for T cell activation and T 
cell dysfunction

To identify putative gene programs that are distinctly associated with T cell dysfunction, we 

leveraged our observation that the dysfunctional phenotype of WT Tim3+PD-1+ CD8+ TILs 

is absent in MT−/− Tim3+PD-1+ TILs (Figure 2D–F). We hypothesized that comparing 

transcriptional profiles between the dysfunctional (WT) and activated (MT−/−) CD8+ TILs 

populations could identify gene modules and pathways that are specific to the dysfunctional 

phenotype. We surmised that while both programs should be co-expressed in the CD8+ 
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Tim3+PD1+ population in dysfunctional (WT) cells, any modules related to the dysfunction 

phenotype per se should be absent from the functional (MT−/−) cells. We therefore profiled 

the CD8+ DN, SP, and DP TIL populations from both WT and MT−/−tumor-bearing mice 

and then performed unsupervised principle component analysis (PCA) of the samples using 

the 4,155 genes that were both highly expressed and variable across the CD8+ TIL subsets 

(Figure 3A and B, Methods and Resources (Langmead et al., 2009; Li and Dewey, 2011; 

Picelli et al., 2013)).

The first principle component (PC1; 38% of variance) distinguished the DN, SP, and DP 

populations of CD8+ TILs similarly for WT and MT−/− mice and in a manner reflecting their 

transcriptional activation status (Figure 3B, X-axis; black, blue, red, respectively). In each of 

WT or MT−/−, the DN, SP, and DP profiles had respectively increasing scores on PC1, with 

DP populations scoring highest (Figure 3C). MT−/− DPs scored higher than WT DPs, and 

had the strongest association with PC1. Thus, we inferred that PC1 separated cells based on 

their activation status, with high activation associated with high PC1 scores. Indeed, cell 

cycle associated signatures were highly enriched for the PC1 loadings (P<10−3, GSEA Pre-

ranked test, Table S3); a signature for CD8+ in vivo activation (Sarkar et al., 2008) was 

positively correlated with PC1 (Figure 3E, Methods and Resources); and naïve and in vitro 
activated CD8+ T cells isolated from non-tumor bearing WT mice had low and high PC1 

scores, respectively (Figure S3). Interestingly, previously annotated signatures of T cell 

dysfunction/exhaustion (Doering et al., 2012) and our cluster 2 gene signature (Figure 1D) 

were also positively correlated with PC1 (Figure 3E), consistent with the coupling between 

activation and dysfunction/exhaustion. Collectively, these data indicate that PC1 captures a 

transcriptional signature for CD8+ T cell activation and that the enrichment of previously 

annotated T cell exhaustion signatures with PC1 genes likely reflects the coupling of the T 

cell activation and dysfunction gene modules.

Conversely, while PC2 (8.4% of variance) clearly distinguished the DN, SP, and DP CD8+ 

TILs populations from WT mice, it did not distinguish between these populations from 

MT−/− mice (Figure 3D) and did not separate naïve and in vitro activated T cells (Figure S3). 

Since T cell dysfunction is observed in WT but not in MT−/− CD8+ TILs, we hypothesized 

that PC2 and its associated genes could contribute to the uniquely dysfunctional phenotype 

in WT CD8+ TILs. Interestingly, PC2 genes had no significant association with known 

signatures of T cell activation, with previously annotated signatures of T cell dysfunction/

exhaustion, or with other features of T cell biology (Table S3). Thus, our analysis shows that 

while the WT TIL populations have independent contributions from both PC1 and PC2 

(Figure 3C, D), previously annotated signatures of T cell dysfunction only account for the 

separation observed on PC1.

A novel signature for T cell dysfunction

We leveraged the uncoupling of T cell activation from T cell dysfunction to annotate a novel 

and distinct signature for T cell dysfunction. To this end, we generated two scores for each 

gene: one for its association with activation and the other for dysfunction. Since only WT 

TILs exhibit dysfunction, as reflected on PC2, we computed the “dysfunction score” only 

from the WT subpopulation samples. Each gene’s dysfunction score was defined as (−1) 
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times the Pearson correlation coefficient between the gene’s expression profile across the 

WT samples and those samples’ PC2 scores (Figure 4A, Y axis). Since the MT−/− TILs have 

the least dysfunction and separate best on PC1 (Figure 3C), we computed an “activation 

score” for each gene to be the Pearson correlation coefficient between a gene’s expression 

profile across the MT−/− samples, and those samples’ PC1 scores (Figure 4A, X axis). 

Finally, we ranked the genes with respect to the four corners of the plot, by projecting each 

gene onto each of the two diagonals to identify genes associated with dysfunction but not 

activation (upper left corner), activation but not dysfunction (lower right corner), both 

activation and dysfunction (upper right corner), and neither (bottom left corner) (Figure 4A, 

marked “1”-”4”, respectively). Finally, we generated gene signatures for each of these four 

modules (Methods and Resources and Table S4).

As expected, the activation/dysfunction module had high scores for genes previously 

associated with T cell dysfunction such as co-inhibitory receptors (e.g., PD-1, Tim-3, TIGIT, 

and CTLA-4). Interestingly, we also observed high scores for several co-stimulatory 

receptors of the TNF receptor family, including TNFRSF9 (4-1BB), TNFRSF4 (OX-40), 

and TNFRSF18 (GITR) (Figure 4B). The presence of TNF receptor family co-stimulatory 

receptors together with co-inhibitory receptors in this module could reflect shared regulatory 

mechanisms for these receptors.

Furthermore, each of the four modules was significantly associated with distinct signatures 

(mHG ranked test; Figure 4C). As expected, the activation/dysfunction module was enriched 

for signatures of CD8+ T cell activation in vivo (Sarkar et al., 2008) and in vitro (Methods 
and Resources), as well as for previously annotated signatures for T cell dysfunction 

(Doering et al., 2012) and our cluster 2 gene signature (Figure 1D). The activation module 

was most significantly associated with the signature for in vitro activation (Figure 4C). The 

module with neither high activation nor high dysfunction scores was enriched for naïve 

CD8+ T cell signatures and memory CD8+ T cell signatures (Methods and Resources, 

(Eden et al., 2007; Wagner, 2015)). Accordingly, we termed it a naïve/memory-like module. 

The dysfunction module was enriched for a CD8+ Treg signature (Kim et al., 2015), 

suggesting that mechanisms present within the dysfunctional CD8+ T cell population are 

shared with T cells that exhibit regulatory functions.

To test the relevance of our newly identified modules to human tumors we compared our 

module scores to two signatures we recently obtained from CD8+ TILs from melanoma 

patients by single cell RNA-Seq (Tirosh et al., 2016). In human melanoma TILs, we found 

evidence for a similar phenomenon with genes in the dysfunction module in human TILs 

having higher scores for the dysfunction module in our mouse TILs analysis compared to 

genes in the activation module (p<0.03, Kolmogorov-Smirnov (KS) test, Figure 4D). Thus, 

the dysfunction module may be distinguishable in human TILs and may be clinically 

relevant.

The dysfunction and activation gene modules are uncoupled at the single-cell level

The difference in transcriptional states of the bulk DN, SP, and DP populations between WT 

and MT−/− could stem from either changes in cell intrinsic states or from changes in the 

proportion of cells exhibiting different transcriptional states. To test whether the CD8+ TILs 
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in vivo include cells that express only the dysfunction module but not the activation module, 

we analyzed 1,061 CD8+ TILs with single-cell RNA-seq (516 WT and 545 MT−/− cells that 

passed QC thresholds from 1,504 processed cells, Methods and Resources). We then 

assigned each cell with “signature scores” based on the relative extent to which it expressed 

the different module signatures (while controlling for the cell’s profile complexity, a 

measure of quality, Methods and Resources).

The activation and dysfunction module scores were negatively correlated across cells (Figure 

5A), such that a higher expression of one module’s genes by a cell predicts lower expression 

of the other module’s genes in the same cell. Similarly, the dysfunction module score was 

also negatively correlated with the in vivo CD8+ activation signature (Sarkar et al., 2008). In 

contrast (Figure 5B), the expression of the in vivo CD8+ activation signature (Sarkar et al., 

2008) positively correlated with that of our annotated activation and activation/dysfunction 

signatures, as well as with the expression of a previously annotated signature of viral 

exhaustion (Doering et al., 2012) and our cluster 2 signature (Figure 1B). These observed 

trends were present in both the WT and MT−/−cells.

Next, unsupervised clustering of the CD8+ TILs (using a k-nearest-neighbor graph followed 

by the Infomap clustering algorithm (Rosvall and Bergstrom, 2008) as previously described 

(Shekhar, 2016); Methods and Resources) partitioned the cells into 7 clusters (visualized 

and colored in Figure 5C). Cluster 7 was enriched for cells with high levels of the activation 

module signature, whereas Cluster 5 was enriched for cells with high expression of the 

dysfunction module signature (Figure 5D and F). Indeed, cells in cluster 7 had higher 

expression of perforin and several granzymes compared to those in cluster 5, suggesting 

better functional potential (Figure S4; p < 10−8, Wilcoxon rank sum test). Consistent with 

these transcriptional signatures, cluster 5 is significantly enriched with cells from WT, where 

we observed T cell dysfunction; whereas cluster 7 is enriched for MT−/− TILs, in which 

there is improved effector function (Figure 5E and G). Thus, the dysfunction and activation 

transcriptional signatures are enriched in different cells and the presence of these modules in 

WT versus MT−/− CD8+ TILs is aligned with the observed differences in their functional 

phenotypes. Furthermore, cells expressing the activation versus dysfunction modules can 

indeed be distinguished and CD8+ T cells indeed exist in vivo that express our 

computationally-derived dysfunction module (Figure 4).

Gata-3 regulates dysfunction in CD8+ TILs

To validate that members of the dysfunctional signature perform important functions and to 

identify candidate transcription factors (TFs) that may be critical for inducing T cell 

dysfunction independent of activation, we scored each TF that was consistently differentially 

expressed across our datasets for its rank in the four modules (Figure 6A). In the dysfunction 

module, Gata-3, a zinc-finger transcription factor, was the top ranking transcription factor, 

followed by IKZF2, another zinc-finger TF, from a TF family known to regulate lymphocyte 

development (Kim et al., 2015) and then SUDS3.

Several lines of evidence supported a role for Gata-3 in regulating CD8+ TIL dysfunction. 

Genes bound by Gata-3 in nTregs are enriched in both the dysfunction (P=0.013, 

hypergeometric test) and activation/dysfunction (P=0.0056) module signatures; it is the top 
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ranking TF member of the dysfunction module (Figure 6A); and it is a member of cluster 2 

(Figure 1B). We therefore hypothesized that Gata-3 may be involved, together with MT1 and 

MT2, in regulating CD8+ T cell dysfunction. We analyzed Gata-3 expressing CD8+ TILs 

from WT tumor-bearing mice and found that Gata-3 is expressed on a subpopulation of 

CD8+ Tim3+ TILs (Figure 6B), which upon stimulation expressed significantly lower levels 

of IFNγ and IL-2, as well as significantly higher levels of IL-10 compared to Gata-3− CD8+ 

TILs (Figure 6C). Thus, Gata-3+ CD8+ TILs are dysfunctional, producing low levels of pro-

inflammatory cytokines and also actively producing the suppressive cytokine IL-10.

To directly test the role of Gata-3 in regulating CD8+ T cell dysfunction, we knocked out 

Gata-3 in naïve CD8+ T cells using a lentivirus CRISPR/Cas9 targeting approach. We 

transduced sgRNAs, which were either non-targeting controls or targeted Gata-3 along with 

CRISPR/Cas9-expressing lentiviruses (Methods and Resources) into CD8+ T cells. We 

used PMEL transgenic mice in which all T cells have a single tumor antigen specific TCR 

with specificity for the mouse homologue of the human premelanosome protein. PMEL 

CD8+ T cells are normally ineffective at controlling growth of B16F10 melanoma tumors, 

such that perturbations that promote tumor clearance can be readily discerned. We first 

determined the efficiency of Gata-3 deletion by quantitative real time PCR (Figure 6D). 

Then, control or Gata-3 deleted PMEL CD8+ T cells were activated and equal numbers of 

cells were transferred into WT mice with established B16F10 melanoma tumor. Mice were 

then followed for tumor growth. Transfer of Gata-3 deleted PMEL CD8+ T cells 

significantly delayed tumor growth (Figure 6E). Furthermore, similar to MT−/− CD8+ T 

cells, the loss of Gata-3 in CD8+ T cells did not alter the expression of Tim-3 and PD-1 on 

CD8+ TILs (Figure 6F), but improved CD8+ T cell function with increased frequency of 

IFNγ+ and IL-2+ cells (Figure 6G). Taken together, these data support a role for Gata-3 as a 

regulator of T cell dysfunction.

Discussion

Here, we combined computational, molecular, and functional systems immunology, to derive 

a distinct signature for T cell dysfunction that is uncoupled from T cell activation. Although 

chronic activation is a pre-requisite to T cell dysfunction, our data show that these two T cell 

states are separable transcriptionally and genetically. Single-cell RNA-Seq of TILs supports 

our observation that T cells with either state exist in vivo. Importantly, the dysfunction and 

activation gene modules are consistent with signatures in CD8+ TILs in human melanoma 

(Tirosh et al., 2016), supporting their clinical relevance. The ability to dampen the 

dysfunction gene module while not interfering with the activation gene module of a T cell is 

highly desirable in the setting of cancer or chronic viral infection. In contrast, the ability to 

effectively engage the dysfunction gene module while dampening the activation gene 

module is desirable in the setting of autoimmunity.

We find that the expression of co-inhibitory receptors can be uncoupled from dysfunctional 

phenotype. Indeed, many co-inhibitory receptors are not in the dysfunction module but 

rather are in the activation/dysfunction gene module. Thus, while co-inhibitory receptors 

may set the stage for the development of T cell dysfunction, eventually chronic engagement 

of the TCR and co-inhibitory receptors must drive the cells to initiate a distinct gene 
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program for T cell dysfunction. It will be interesting to see how co-inhibitory receptor 

blockade alters the expression of the activation, dysfunction, and activation/dysfunction 

modules in cells.

The uncoupling of the dysfunction module from the activation module does not in itself 

determine any obvious relationship between the two modules or how they might be 

expressed in cells. Our single-cell analysis of TILs revealed that not only are the two 

modules negatively correlated with each other, but they also can be exclusively enriched in 

distinct populations of CD8+ T cells. These findings suggest that while dysfunctional T cells 

may have arisen from activated T cells, they acquire a distinct functional state with a 

transcriptional program that is no longer dependent on the activation module. Nevertheless, 

the fact that we observe enrichment for the activation and dysfunction modules in different 

cells in our single-cell analysis does not mean that our newly defined modules cannot be 

expressed in the same cells. How these modules are expressed in individual cells will best be 

discerned by examining cells throughout a time course of tumor development. Such a study 

will shed light on potential transitional T cell states.

Our data point to zinc regulation by metallothioneins and the function of zinc-dependent 

transcription factors as key features that lead to the development of the dysfunctional T cell 

phenotype. Interestingly, MT1 and MT2 are among the differentially expressed genes found 

in a signature of dysfunctional T cells from chronic LCMV viral infection (Doering et al., 

2012), as are several zinc finger-containing transcription factors. These observations support 

a role for metallothioneins and zinc regulation in determining effector CD8+ T cell 

phenotype and that zinc dysregulation may be at the core of the dysfunctional phenotype 

across multiple chronic disease conditions. Indeed, zinc is an essential metal required for the 

structure and function of over 1,000 zinc-finger containing proteins that include several 

families of transcription factors (GATA, IKAROS, nuclear hormone receptors, Kruppel-like 

factors), RING-domain ubiquitin ligases, serine-threonine kinases, and matrix 

metallopeptidases. Thus, one can envision how disruption of intracellular zinc availability 

can impact the structure and activity of multiple proteins that regulate cellular functions.

Consistent with this observation, our studies identify a novel role for the zinc-finger 

transcription factor Gata-3, as a driver of T cell dysfunction. Gata-3 has pleiotropic roles in 

immunity. While it is best known for promoting Type 2 immune responses, Gata-3 has also 

been implicated in playing a role in T cell lineage development, development of ILC2s, 

controlling CD8+ T cell proliferation, and more recently in regulatory T cell function 

(Tindemans et al., 2014). In the latter context, the role of Gata-3 in CD8+ T cell dysfunction 

may reflect aspects of its role in promoting regulatory functions in T cells. Identification of 

other factors that co-operate with Gata-3 to drive the dysfunction program in CD8+ T cells 

will pave the way for identification of the complete ensemble of transcriptional regulators 

that induce T cell dysfunction distinct from other functional or differentiation states in T 

cells.

Our newly identified dysfunction gene module shares some features with a recently 

identified signature for Ly49+ CD8+ T cells that have a regulatory phenotype (Kim et al., 

2015) but not with the other annotated T cell signatures. Interestingly, the stability of this 
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Ly49+ CD8+ Treg population is dependent on Helios (IKZF2), a zinc-finger of the IKAROS 

family, and the second-highest scoring TF (after Gata-3) of the TFs analyzed in our 

dysfunction gene module. Together, these data suggest that dysfunctional T cells may have 

adopted a regulatory program to curb their activity in face of antigen persistence and chronic 

activation. Further annotation of genes in the dysfunction module identified through our 

single cell analysis will shed light on the potential regulatory programs expressed by 

dysfunctional CD8+ T cells.

Our findings refine our current definition of the dysfunctional T cell state by providing 

precise molecular resolution of the distinct gene programs associated with T cell dysfunction 

versus activation. The presence of our newly defined gene modules in T cells isolated from 

human melanoma tissue indicate the robustness of our findings and opens the door for the 

identification of novel “druggable” targets for the treatment of cancer and other chronic 

diseases.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Requests of reagents should be direct and will be fulfilled by lead contact Ana C. Anderson.

Ana C. Anderson Brigham and Women’s Hosptial and Harvard Medical School 

acanderson@partners.org

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—6–8 week old female Balb/c, C57BL/6, pMEL, and OTI transgenic mice were 

purchased from the Jackson Laboratory. Mice deficient in metallothionein 1 and 2 (MT−/−) 

were purchased from the Jackson Laboratory and backcrossed onto the C57BL/6 

background for 5 generations and were confirmed to be >97% congenic with C57BL/6 by 

SNP analysis. All mice were housed under SPF conditions. All experiments involving 

laboratory animals were performed under protocols approved by the Harvard Medical Area 

Standing Committee on Animals (Boston, MA).

Tumor experiments—CT26 and B16F10 were purchased from ATCC. MC38-Ova was 

generously provided by Mark Smyth. CT26 and MC38-Ova (1×106) or B16F10 (5×105) 

were implanted subcutaneously into the right flank. Tumor size was measured in two 

dimensions by caliper and is expressed as the product of two perpendicular diameters. For 

adoptive transfer tumor experiments, naïve (CD8+CD62L+CD44lo) T cells from PMEL (for 

CRISPR/Cas9 targeting experiments) or OT-1 (for overexpression of MT) transgenic mice 

were isolated by cell sorting (BDFACS Aria) and activated by 2ug/ml each of plate-bound 

anti-CD3 and anti-CD28 antibodies for 48 hours, rested for 3 days, and then reactivated with 

1ug/ml of anti-CD3 and antiCD28 antibodies for 2 days prior to transfer into recipient mice. 

Retroviral and lentiviral infections of primary T cells were optimized and experiments were 

performed as described in the respective figure legends. Briefly, retrovirus was used to spin-

infect T cells one day after activation and lentivirus was used to infect T cells twice, at 16 

hours prior to activation and at 4 hours post activation. Targeting efficiency of retrovirus was 

determined by measuring GFP expression in both control and MT overexpressing cultures; 
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whereas effective CRISPR/cas9-mediated deletion of the target gene using lentivirus was 

determined by qPCR.

METHOD DETAILS

Isolation and analysis of TILs—TILs were isolated by dissociating tumor tissue in the 

presence of collagenase D (2.5 mg/ml) for 20 min prior to centrifugation on a discontinuous 

Percoll gradient (GE Healthcare). Isolated cells were then used in various assays of T cell 

function. Cells were cultured in DMEM supplemented with 10% (vol/vol) FCS, 50 µM 2-

mercaptoethanol, 1 µM sodium pyruvate, nonessential amino acids, L-glutamine and 100 

U/ml penicillin and 100 µg/ml streptomycin.

Flow cytometry: Single cell suspensions were stained with antibodies against surface 

molecules. CD4 (RM4–5), CD8 (53–6.7), and PD-1 (RMP1–30) antibodies are purchased 

from BioLegend. Tim-3 (5D12) antibody was generated in house. Fixable viability dye 

eF506 (eBioscience) was used to exclude dead cells. For intra-cytoplasmic cytokine staining, 

cells were stimulated with 12-myristate 13-acetate (PMA) (50ng/ml, Sigma-Aldrich, MO), 

ionomycin (1µg/ml, Sigma-Aldrich, MO) in the presence of Brefeldin A (Golgiplug, BD 

Bioscience) for four hours prior to staining with antibodies against surface proteins followed 

by fixation and permeabilization and staining with antibodies against IL-2 (JES6-5H4), 

TNF-α (MP6-XT22) (eBioscience), IFN-γ (XMG-1.2), and Granzyme B (GB11) 

(Biolegend). For measurement of intracellular zinc, cells were stained with 1 µM Zinpyr-1 

(Santa Cruz) in PBS for 20 min at 37deg, washed with media, followed by regular surface 

staining. All data were collected on a BD LsrII (BD Biosciences) and analyzed with FlowJo 

software (Tree Star).

Proliferation assays: Tumor draining lymph nodes and tumor infiltrating lymphocytes were 

harvested and incubated with or without tumor specific antigen (gp100, 5mM) for four 

consecutive days and cell proliferation was measured by 3H incorporation assay.

Generation of lentiviral constructs and CRISPR/CAS9 targeting—The initial 

guide sequences were selected based on the exon structure of target genes and ranked by the 

repertoire of potential off-target sites to select designs that minimize the possibility of off-

target cleavage. The guides were then cloned into CRISPR-Cas9 vectors via golden-gate 

cloning as described previously (Cong et al., 2013). The final guide sequence selected for 

Gata3 is: 5’ – GGTATCCTCCGACCCACCACG. The vector used is a lenti-viral vector, 

pCKO_2, bearing mammalian-codon-optimized SaCas9 linked to puromycin selection 

cassette (Ran et al., 2015; Shalem et al., 2014), and an sgRNA-expression cassette that has 

been modified to enhance RNA expression. The constructs were sequence verified and then 

tested to screen for the efficiency of each guide using a mouse T-lymphocyte cell line, EL4 

(ATCC) before moving on to lentiviral production. To quantify the genomic modification 

induced by the CRISPR-Cas9 system, genomic DNA was extracted using QuickExtract 

Solution (Epicentre), as described previously (Cong et al., 2013). Indel formation was 

measured by either SURVEYOR nuclease assay (IDT DNA) or targeted deep sequencing as 

described previously (Cong et al., 2013). Briefly, the genomic region around the CRISPR-

Cas9 targeting site was amplified, and then subject to either SURVEYOR nuclease digestion 
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following re-annealing or re-amplified to add on Illumina P5/P7 adapters with barcodes for 

deep-sequencing analysis using the MiSeq sequencing system (Illumina).

After screening of guides in cell lines, the top-ranked guides based on their targeting 

efficiency were used for viral production. 293FT cells (Thermo Fisher) were maintained as 

recommended by the manufacturer in 150 µm plates. For each transfection, 10 µg of pVSVG 

envelope plasmid, 15 µg of pDelta packaging plasmids, and 20 µg of pCKO_2 vector 

carrying the construct of interest were used. The transfection was either carried out using 

lipofectamine 2000 (Thermo Fisher) following the manufacturer’s recommendations, or with 

PEI, where 5:1 ratio of PEI solution was added to the DNA mixture, and incubated for 5 

minutes before adding the final complex onto cells. After incubation for 16 hours, 20 mL of 

fresh warm media was applied to replace the old growth media. Virus was harvested 

between 48h and 72h post transfection by taking the supernatant and pelleting cell debris via 

centrifugation. The viral particles were then filtered through a 0.45 µm filtration system 

(Millipore), and then either directly used as purified supernatant, or concentrated further 

with 15-mL Amicon concentrator (Millipore). Lentiviral vectors were titered by real-time 

qPCR using a customized probe against the transgene.

For all primary T-cell experiments, the efficacy of the CRISPR-Cas9 lentiviral vectors was 

first tested by transducing in vitro primary mouse T-cell culture, followed by cleavage 

measurement and qPCR detection of target gene knock-down. The most efficient viral 

constructs were then used for downstream experiments.

RNA processing

Microarray processing and analysis: Samples consisting of naive (CD62L hiCD44 ow) and 

effector/memory (CD62L lowCD44 hi) CD8+ cells from non tumor-bearing Balb/c mice, 

CD8+Tim3−PD1+ (DN) TILs, CD8+Tim3−PD1+(SP), and CD8+Tim3+PD1+ (DP) TILs were 

loaded on Affymetrix GeneChip Mouse Genome 430 2.0 Arrays.

Individual: CEL files were RMA normalized and merged to an expression matrix using the 

ExpressionFileCreator of GenePattern with default parameters (Reich et al., 2006). 

COMBAT (Johnson et al., 2007) was used to correct for batch effects (samples were 

generated in three batches), and probe intensity values below 20 or above 20,000 were 

collapsed to 20 and 20,000, respectively. Gene-specific intensities were then computed by 

taking for each gene j and sample i the maximal probe value observed for that gene : yij = 

max(pi | s.t. pi in set_probes_gene_j), and samples were transferred to log-space by taking 

log2(intensity). Differentially expressed genes were annotated as genes with either (1) an 

FDR-corrected ANOVA p-value smaller or equal to 0.01 computed across the DN, SP and 

DP subpopulations and a fold-change of at least 1.3 between any of the three 

subpopulations, or (2) a fold-change of at least 2 between any of the three subpopulations. 

Fold-change between each two subpopulations was computed as the minimum between the 

fold-changes of the medians and the means of the subpopulation samples. A differential-

expression rank was computed for each gene as the mean between the gene’s ranking based 

on its ANOVA p-value and its ranking based on fold-change. Clusters of differentially 

expressed genes were generated by k-means clustering (Hartigan-Wong algorithm, run in R) 
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to 10 clusters of the scaled median values of the five sample types clustered over: DN, SP, 

DP, EffMem and naïve CD8. Enrichment analysis for each cluster with MSigDB v5.0 

(Subramanian et al., 2005) gene sets was computed as the hypergeometric p-value for the 

overlap between the cluster and the gene set of interest, out of the differentially expressed 

gene list. P-values for enrichment were FDR-corrected.

Population RNA-Seq processing and normalization: We profiled RNA from DP, SP, and 

DN from four WT and five MT−/− male mice in two batches (batch #1: 2 WT, 2 MT−/−, 

batch #2: 2 WT, 3 MT−/−). Samples were processed with SMART-Seq2 (Picelli et al., 2013), 

reads were aligned to the mouse mm9 transcriptome using Bowtie (Langmead et al., 2009), 

and expression abundance TPM estimates were obtained using RSEM parameters (Li and 

Dewey, 2011). Three samples were excluded from further analysis due to poor sequencing 

quality, and three additional samples were excluded due to being strong outliers on the first 

three principle components of the initial PCA (generated as described in next section; a 

trend similar to PC2 of Figure 3B, but not significant, was observed on PC4 prior to the 

latter sample exclusion). Each gene of each sample was assigned the value of log2(TPM+1). 

COMBAT (Johnson et al., 2007) was used to correct for batch effects, and was followed by 

Quantile Normalization to account for variability in library sizes.

To profile the RNA of in vitro activated CD8+ T cells, we isolated naïve CD8+ cells from 

non tumor bearing C57BL/6 mice and activated them with anti-CD3 and anti-CD28 in vitro. 

Samples were processed with the SMART-Seq2 protocol (Picelli et al., 2013), mapped to 

mm9 with Bowtie (Langmead et al., 2009) and TPM values were computed by RSEM (Li 

and Dewey, 2011).

Single-cell RNA-Seq: For single-cell RNA-Seq experiments, TILs from B16 melanomas 

were collected in 96-well plates, incorporating a population-well and an empty well in each 

plate as controls, and were processed from the four WT mice (two plates per mouse; total of 

eight WT plates) and five MT−/− mice (one plate each from two of the mice (MT−/−1,2) and 

two plates each from three of the mice (MT−/− 4,5,6)); total of eight MT−/− plates). Samples 

were produced in 2 biological batches (batch #1: WT1,2, MT−/− 1,2,3 , batch #2: WT3,4, 

MT−/− 4,5,6), and processed in 4 sequencing batches, where each sequencing batch 

consisted of two WT plates and two MT−/− plates.

Cells were sorted into 96-well plates with 5 µl lysis buffer comprised of Buffer TCL (Qiagen 

1031576) plus 1% 2-mercaptoethanol (Sigma 63689). Following sorting, plates were spun 

down for one minute at 3,000 rpm and immediately frozen at −80°C. For preparation of 

single-cell libraries we thawed the cells and purified them with 2.2x RNAClean SPRI beads 

(Beckman Coulter Genomics) without final elution (Shalek et al., 2013). The RNA captured 

beads were air-dried and processed immediately for cDNA synthesis. We performed 

SMART-seq2 following the published protocol (Picelli et al., 2013) with minor 

modifications in the reverse transcription (RT) step (MSK and AR, in preparation). We made 

a 25µl reaction mix for each PCR and performed 21 cycles for cDNA amplification. We used 

0.25ng cDNA of each cell and ¼ of the standard Illumina NexteraXT reaction volume in 

both the tagmentation and final PCR amplification steps. We pooled plates to 384 single-cell 

Singer et al. Page 14

Cell. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



libraries, and sequenced 50 × 25 paired-end reads using a single kit on the NextSeq500 5 

instrument.

QUANTIFICATION AND STATISTICAL ANALYSIS

Population RNAseq analysis

Principal component analysis: PCA was run on the centered expression matrix (as 

obtained in the previous section) of the 4,155 genes with mean expression ≥3 and a fold-

change of at least 1.5 between at least one pairs of samples. To investigate the association of 

the PCs with CD8+ T cell activation, the profiles from naïve and in vitro stimulated CD8+ T 

cells were quantile-normalized together with the samples by which the PCA was produced 

(above), and overlaid onto the PCA (following subtraction of the gene-specific values used 

for centering of the PCA-generating dataset).

Computing a dysfunction and activation score and the annotation of dysfunction and 
activation related gene modules and gene signatures: Each gene was assigned an 

“activation score” defined as the correlation of the gene’s expression across the samples with 

the PC1 values, computed over the MTKO samples. Additionally, each gene was assigned a 

“dysfunction score” to be (−1) times the correlation of the gene’s expression across the 

samples with the PC2 values, computed over the WT samples. These two scores placed the 

gene on the Activation / Dysfunction plot as shown in Figure 4A. We included in this 

analysis the 7,592 genes that had an assigned log2(TPM+1) expression value ≥ 4, in at least 

two of the samples. Following placement on the Activation / Dysfunction plot, each gene 

was assigned two rankings: on the Dysfunction ↔ Activation axis, and on the Activation

\Dysfunction ↔ Neither axis, by projecting each point onto the x=(−y) and x=y axes, 

respectively. We defined four rankings of the 7,592 genes, each ranking representing the 

association of these genes with one of the following: (1) dysfunction (and not activation): by 

the (−1)*x values of the x=(−y) projection (ranking from the Dysfunction corner to the 

Activation corner), (2) activation (and not dysfunction): by the x values of the x=(−y) 

projection (3) activation and dysfunction: by the x values of the x=y projection, and (4) 

neither: by the (−1)*x values of the x=y projection.

To check for statistically significant association of different expression signatures with these 

four rankings (dysfunction / activation / activation\dysfunction / neither) we used the XL-

mHG test (Eden et al., 2007; Wagner, 2015) to test for enrichment at the tops of the different 

ranked lists (one test for each module), requiring that the minimal number of genes in an 

enriched set to be 5 (X=5) and that the proportion of the ranked list to be considered in the 

enrichment portion be at most 30% of the list (L=30%). Our reported significance results are 

robust to a variety of XL-mHG parameters, including the completely unconstrained ranked 

test (X=0; L=100%).

From each of the four rankings, we annotated a gene signature of 100 genes, defining gene 

signatures for: (1) dysfunction (and not activation), (2) activation (and not dysfunction), (3) 

activation and dysfunction; and (4) neither. Each signature was defined to be the top-most 

ranked genes of the relevant ranking, which fulfilled the following constraints: all genes 

included in the Dysfunction signature had a dysfunction score of ≥0.3, all genes included in 
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the Activation signature had an activation score of ≥0.3 and all genes included in the 

Activation/Dysfunction signature had activation and dysfunction scores ≥0.3.

Single-cell RNA-Seq analysis—Paired reads were mapped to mouse annotation mm10 

using Bowtie (Langmead et al., 2009) (allowing a maximum of one mismatch in seed 

alignment, and suppressing reads that had more than 10 valid alignments), TPMs were 

computed using RSEM (Li and Dewey, 2011), and log2(TPM+1) values were used for 

subsequent analyses.

We filtered out low quality cells and cell doublets, maintaining for subsequent analysis the 

1,061 cells (516 WT and 545 MT−/−) that had (1) 1,500–6,000 detected genes (defined by at 

least one mapped read), (2) at least 100,000 reads mapped to the transcriptome, and (3) at 

least 20% of the reads mapped to the transcriptome. We restricted the genes considered in 

subsequent analyses to be the 9,863 genes expressed at log2(TPM+1)≥2 in at least twenty of 

the cells.

PCA of the Gene-by-Cell matrix revealed PC1 to be highly correlated with the cells’ gene-

counts (Gaublomme et al., 2015), and it was therefore excluded from subsequent analyses to 

reduce technical bias. We chose PCs 2–7 for subsequent analysis due to a drop in the 

proportion of variance explained following PC7. To visualize cell-to-cell variation we used 

tSNE (van der Maaten, 2008) to generate a two-dimensional non-linear embedding.

To obtain clusters of cells similar in their expression patterns, cells were clustered using the 

infomap algorithm (Rosvall and Bergstrom, 2008) which was ran on the binary k-nearest-

neighbor graph, where k=70 (Shekhar, 2016).

P-values for enrichment of each cluster with a given gene signature were computed by 

ranking the cells by their cell-specific-gene-signature-scores (see below), and computing the 

XL-mHG test (X=5; L=30% of ranked cell list) to generate a p-value for the enrichment of 

cells from the given cluster at the top of the ranked list.

Single-cell gene signature scoring: As an initial step, genes were binned into six bins based 

on their mean expression across cells, and into six (separate) bins based on their variance of 

expression across cells. Given a gene signature (list of genes), a cell-specific signature score 

was computed for each cell as follows: First, 1,000 random gene lists were generated, where 

each instance of a random gene-list was generated by sampling (with replacement) for each 

gene in the gene-list a gene that is equivalent to it with respect to the mean and variance bins 

it was placed in. Then, the sum of gene expression in the given cell was computed for all 

gene-lists (given the 1,000 random lists generated) and the z-score of the original gene-list 

for the generated 1,000 sample distribution is returned. For gene-signatures consisting of an 

upregulated and downregulated set of genes, two z-scores were obtained separately, and the 

down-regulated associated z-score was subtracted from the up-regulated generated z-score.

Generation of gene signatures from the literature—For the CD8+ in vivo activation 

signature, we used the intersection of the sets of genes published in Sarkar et al (Sarkar et 

al., 2008) as (1) DE between effector and naïve, (2) DE between effector and memory.
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For the LCMV exhaustion (viral exhaustion) signature, we identified differentially expressed 

genes between the acute and chronic conditions for each timepoint in (Doering et al., 2012), 

as genes significantly different under an FDR-corrected t-test (P<0.05) and that had a fold-

change in expression ≥2. The exhaustion set was taken as the union of the Day 15 DE genes 

and the Day 30 DE genes.

For the CD8+ Ly49+Treg signature, gene expression measurements for Ly49+ and Ly49-

CD8+ T cells (two replicates each) were downloaded from GEO (accession GSE73015) 

(Kim et al., 2015). Differentially expressed genes were determined as genes with (1) a mean 

fold-change ≥1.5 and (2) a fold-change ≥1.3 between the smallest sample from the 

upregulated condition and the largest sample of the downregulated condition.

For the in vitro activation signature, differentially expressed genes were determined as genes 

with (1) a mean fold-change ≥2 and (2) a fold-change ≥1.3 between the smallest sample 

from the upregulated condition and the largest sample of the downregulated condition.

For the naïve CD8+ T cell signature, a signature was compiled from 26 MSigDB (v5.0, c7) 

(Subramanian et al., 2005) gene signatures identified as up-regulated in naive CD8+ T cells 

when compared to effector, memory, or exhausted CD8+ T cells at various time points (Table 

S5). The 28 genes present in at least 10 of the analyzed sets were selected for this signature.

For the memory CD8+ T cell signature, we compiled 13 MSigDB (v5.0, c7) (Subramanian et 

al., 2005) gene signatures identified as upregulated in memory CD8+ T cells when compared 

to naïve, effector or exhausted CD8+ T cells at various time points (Table S5). The 23 genes 

present in at least 6 of the analyzed sets were selected for this signature.

DATA AND SOFTWARE AVAILABILITY

Data Resources

The data generated in this paper has been deposited in the Gene Expression Omnibus (GEO) 

under accession number XXX.

Integrated and normalized expression measurements of naïve, effector/memory and TILs 

subpopulations: Table S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Distinct gene modules for T cell dysfunction and activation can be 

uncoupled.

• Single-cell profiling of CD8 TILs shows that these modules are 

exclusive.

• Metallothioneins, zinc regulators, promote T cell dysfunction.

• Gata-3, a zinc-finger transcription factor, drives dysfunction in vivo.
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Figure 1. CD8+ T cell dysfunction and activation are transcriptionally intertwined
A) Outline of experimental strategy. CT26 colon carcinoma was used. B) Heatmap of the 

3031 differentially expressed genes across the TILs subpopulations. Naïve: 

CD8+CD62LhiCD44low cells from non tumor-bearing Balb/c mice, EffMem: Effector 

memory CD8+CD62LlowCD44hi cells from non tumor-bearing Balb/c mice, DN: 

CD8+Tim3−PD1, SP: CD8+Tim3−PD1+, DP: CD8+Tim3+PD1+ TILs from CT26 colon 

carcinoma. C) Cluster 2 is significantly enriched with genes up-regulated in a CD8+ viral 

exhaustion signature (Doering et al., 2012) as well as an in vivo CD8+ activation signature 
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(Sarkar et al., 2008). p-values determined by hypergeometric test. D) Heatmap of the top 

ranking genes from cluster 2. See also Suppl Fig 1 and Suppl tables 1 and 2.
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Figure 2. Metallothionein deficiency improves anti-tumor immunity and reverses T cell 
dysfunction
(A–B). Mice deficient in both MT1 and MT2 (MT−/−) and wild type (WT) littermate 

controls were implanted subcutaneously with B16F10 melanoma. A) Mean tumor growth. 

Statistical analysis was performed using linear regression ***p-value < 0.001. B) Tumor 

draining Lymph node (dLN, upper panel) and tumor-infiltrating lymphocytes (TIL, lower 

panel) were isolated from WT and MT−/− mice 15 days post tumor inoculation and 

stimulated with tumor antigen gp100. On day 3, tumor antigen-specific proliferation was 

measured by 3H incorporation. C) Naïve OT-1 cells were sorted, activated, and infected with 

empty retrovirus (control OT1) or MT1 retrovirus (MT OT1) prior to transfer (1 ×106 cells/

mouse) into WT mice that were subsequently implanted with MC38-OVA tumor the next 

day. Mean tumor growth is shown. Statistical analysis was performed using linear regression 
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**p-value < 0.01. D-E) MT−/− CD8+ TILs have increased functionality as compared to WT 

CD8+ TILs. TILs were isolated and stimulated with PMA/ionomyicin in the presence of 

brefeldin A for 4 hours prior to extracellular and intracellular staining and analysis by flow 

cytometry. *p-value < 0.05. F) Tim-3 and PD-1 expression in WT and MT−/− TILs. The DN, 

SP, and DP subpopulations are present in both the WT and MT−/− TILs. See also Suppl Fig 

2.

Singer et al. Page 24

Cell. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Transcriptional profiling of MT−/− enables uncoupling of activation and dysfunction in 
CD8+ TILs
A) Outline of experimental strategy. B16F10 melanoma was used. B) PCA analysis of WT 

and MT−/− DN, SP, and DP TILs populations. C and D) Bar plots for the means of the PC1 

(C) and PC2 (D) values for the DN, SP, and DP subpopulations. Error bars are the standard 

error of the mean estimator. P-values for significance are computed using standard t-test. *p-

value < 0.05, **p-value < 0.01. E) Correlations of PC1 and PC2 values with various 

signatures. PC1 shows strong positive correlation with an in vivo CD8+ activation signature 

(Sarkar et al., 2008), a CD8+ viral exhaustion signature (Doering et al., 2012) and our cluster 
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2 gene signature (Figure 1B), and strong negative correlation with a naïve CD8+ and a 

memory CD8+ signature (MSigDB (Subramanian et al., 2005), Methods and Resources). 

See also Suppl Fig 3 and Suppl table 3.
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Figure 4. Identification of gene modules for T cell activation and dysfunction
A) Genes were projected onto both diagonal axes to determine a ranking of genes for their 

association with (1) Dysfunction (2) Activation (3) Both dysfunction and activation (4) 

Neither. B) The distribution of genes by their dysfunction and activation scores reveals genes 

associated to different extents with the dysfunction and/or activation gene modules. Co-

inhibitory receptors reported to be associated with both activation and dysfunction 

transcriptional profiles (e.g. PD-1, CTLA4, Tim3, Lag3) are seen in the upper right corner. 

C) Enrichments of different signatures for the different modules of the activation/

dysfunction plot. Dashed line marks p=0.05 significance threshold. D) Genes from an 

exhaustion and activation signature defined in a human melanoma study (Tirosh et al., 2016) 

separate on the Dysfunction <-> Activation axis we have defined (as shown in A). Shown is 

the distribution of genes on the Dysfunction / Activation plot (left) and the Kolmogorov-

Smirnov plot of the values of the human signatures on the Dysfunction <-> Activation axis 

(Axis 1-2 in (A)) (KS p-value=0.027). See also Suppl table 4.
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Figure 5. The dysfunction and activation transcriptional programs are negatively correlated at 
the single-cell level
A) Expression of the dysfunction module at the single-cell level is negatively correlated with 

expression of the activation module (left, r = −0.42) and of an in vivo CD8+ activation 

signature (Sarkar et al., 2008) (right, r= −0.47). B) Expression of an in vivo CD8+ activation 

signature at the single-cell level is positively correlated with expression of (left to right) the 

activation module (r=0.57), the activation/dysfunction module (r=0.79), a viral LCMV 

exhaustion signature (r=0.85) and the cluster 2 genes (Figure 1B) (r=0.68). C), D) and E) A 

tSNE visualization (van der Maaten, 2008) of the 1061 single-cells analyzed, colored by (C) 

the partitioning into 7 clusters (infomap), (D) gene signatures of the four gene modules 

defined (by quantile), and (E) mouse type (WT or MT−/−). F) Association of different gene 

signatures with the single-cell clusters (XL-mHG test, threshold at top 30% of list). Dashed 

line marks p=0.05 significance threshold. G) Counts of cells from WT / MT−/− in the 

different clusters. Clusters significantly enriched for presence of WT (blue) or MT−/− cells 

(red) are marked. *p-value < 0.05, **p-value < 0.01, *** p-value < 0.001 (hypergeometric 

test). See also Suppl Fig 4.
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Figure 6. Gata3 drives the dysfunctional state in CD8+ T cells
A) Gata3, a zinc-binding TF, ranks first in the dysfunction module. B and C) WT mice were 

implanted subcutaneously with B16F10 melanoma cells. TILs were isolated on day 15 and 

analyzed for Gata3 expression and T cell function. B) Representative flow cytometry data 

showing Gata3 expression gated on CD8+ TILs. C) Cytokine expression of Gata3+ and 

Gata3CD8+ TILs. Statistical analysis was performed using paired student t test. *p-value < 

0.05, *** p-value < 0.001. D) Targeted deletion of Gata3 using CRISPR/Cas9 genome 

editing. Naïve CD8+ T cells were sorted from pmel transgenic mice, infected with control or 
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Gata3 lentivirus and activated with plate-bound anti-CD3 and anti-CD28 antibodies in the 

presence of IL-2 (Methods and Resources). Representative qPCR results showing Gata3 

mRNA level in control versus Gata3 lentivirus targeted CD8+ T cells. E) 1 × 106 CRISPR/

Cas9-targeted cells were transferred to WT mice (n=5/group) bearing B16F10 melanoma 

tumors (day 5 post tumor grafting). Mean tumor growth is shown. Data are representative of 

3 independent experiments. Statistical analysis was performed using linear regression. **p-

value < 0.01. F and G) TILs were isolated on day 21 after tumor cell injection and analyzed 

for Tim-3 and PD-1 expression (F) and cytokine production (G) by flow cytometry.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-PD-1 (clone: RMP1-30) Biolegend Cat#: 109109

Anti-Tim3 (clone: 5D12) Generated in house N/A

Rat anti-IL-2 (clone: JES6-5H4) Biolegend Cat#: 503807

Anti-TNF-α (clone: MP6-XT22), eBioscience Cat#: 117321

Anti-IFN-γ (clone: XMG-1.2) Biolegend Cat# 505829

Mouse anti-Granzyme B (clone: GB11) Biolegend Cat#: 515405

Rat anti-CD8 (clone: 53–6.7) Biolegend Cat# 100731

Chemicals, Peptides, and Recombinant Proteins

Zinpyr-1 Santa Cruz Cat#: sc-213182

Fixable viability dye eFluor506 eBioscience Cat#: 65-0866

Gp100 Genscript Cat#: RP20344

Critical Commercial Assays

High Sensitivity DNA Kit (Bioanalyzer) Agilent Cat#: 5067-4626

Qubit dsDNA, High Sensitivity 500rxn Thermo Fisher Scientific Cat#: Q32854

Nextera XT Sample Preparation Kit Illumina Cat#: FC-131-1096

NextSeq 500 high output kit V2, 75 cycles Illumina Cat#: FC-404-2005

Deposited Data

Data files for CD8+ populations, Microarray This paper need to get
accession number

Data files for bulk RNA sequencing This paper need to get
accession number

Data files for single-cell RNA sequencing This paper need to get
accession number

LCMV exhaustion signature (Doering et al., 2012) GSE41867

CD8+ Ly49+Treg signature (Kim et al., 2015) GSE73015

Experimental Models: Cell Lines

MC38-OVA Mark Smyth N/A

CT26 ATCC Cat#: CRL-2638

B16-F10 ATCC Cat#: CRL-6475

Experimental Models: Organisms/Strains

Balb/c Jackson Laboratory Cat#: 000651

C57BL/6 Jackson Laboratory Cat#: 000664

PMEL Jackson Laboratory Cat#: 005023

OTI Jackson Laboratory Cat#: 003831

MT−/− (backcrossed to C57BL/6 in house) Jackson Laboratory Cat#: 002211

Recombinant DNA
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REAGENT or RESOURCE SOURCE IDENTIFIER

SMARTER TSO (with LNA, 10 µM)) Exiqon 5’-
AAGCAGTGGTATC
AACGCAGAGTACr
GrG+G-3’

PCR oligonucleotide primer (10 µM) IDT 5’-
AAGCAGTGGTATC
AACGCAGAGT-3

Reverse Transcription DNA oligonucleotide 
primer
(RNase-free, 100 µM)

IDT 5-
AAGCAGTGGTATC
AACGCAGAGTACT
(30)VN-3

Sequence-Based Reagents

Gata3 CRISPR guide sequence Designed in house 5’ -
GGTATCCTCCGAC
CCACCACG

Software and Algorithms

GenePattern (Reich et al., 2006) http://software.broadinstitute.org/cancer/software/genepattern/

COMBAT (Johnson et al., 2007) http://www.bu.edu/jlab/wp-assets/ComBat/Download.html

Bowtie (Langmead et al., 2009) http://bowtie-bio.sourceforge.net/index.shtml

RSEM (Li and Dewey, 2011) http://deweylab.github.io/RSEM/

XL-mHG (Wagner, 2015) https://github.com/flocompbio/xlmhg

Other
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