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Abstract Several Hybrid Transactional Memory
(HyTM) schemes have recently been proposed to com-

plement the fast, but best-effort nature of Hardware

Transactional Memory (HTM) with a slow, reliable

software backup. However, the costs of providing con-

currency between hardware and software transactions
in HyTM are still not well understood.

In this paper, we propose a general model for

HyTM implementations, which captures the ability of
hardware transactions to buffer memory accesses. The
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model allows us to formally quantify and analyze the
amount of overhead (instrumentation) caused by the

potential presence of software transactions. We prove

that (1) it is impossible to build a strictly serializable

HyTM implementation that has both uninstrumented

reads and writes, even for very weak progress guaran-
tees, and (2) the instrumentation cost incurred by a

hardware transaction in any progressive opaque HyTM

is linear in the size of the transaction’s data set. We

further describe two implementations which exhibit op-
timal instrumentation costs for two different progress

conditions. In sum, this paper proposes the first for-

mal HyTM model and captures for the first time the

trade-off between the degree of hardware-software TM

concurrency and the amount of instrumentation over-
head.

Keywords Hardware Transactional Memory · Instru-

mentation · Lower bounds

1 Introduction

Hybrid transactional memory. Since its introduction by

Herlihy and Moss [29], Transactional Memory (TM)
has been a tool with tremendous promise. It is therefore

not surprising that the recently introduced Hardware

Transactional Memory (HTM) implementations [1, 37,

39] have been eagerly anticipated and scrutinized by

the community.
Early experience with programming HTM, e.g. [4,

16,18,31,45], paints an interesting picture: if used care-

fully, HTM can significantly speed up and simplify con-

current implementations. At the same time, it is not
without its limitations: since HTMs are usually imple-

mented on top of the cache coherence mechanism, hard-

ware transactions have inherent capacity constraints on
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the number of distinct memory locations that can be ac-

cessed inside a single transaction. Moreover, all current

proposals are best-effort, as they may abort under im-

precisely specified conditions. In brief, the programmer

should not solely rely on HTMs.

Several Hybrid Transactional Memory (HyTM)

schemes [13, 15, 32, 35] have been proposed to com-

plement the fast, but best-effort nature of HTM with

a slow, reliable software transactional memory (STM)

backup. These proposals have explored a wide range of
trade-offs between the overhead on hardware transac-

tions, concurrent execution of hardware and software,

and the provided progress guarantees.

Early HyTM proposals [15,32] share interesting fea-

tures. First, transactions that do not conflict on the
data items they access are expected to run concurrently,

regardless of their type (software or hardware). This

property is referred to as progressiveness [24] and is be-

lieved to allow for higher parallelism. Second, hardware
transactions usually employ code instrumentation tech-

niques. Intuitively, instrumentation is used by hardware

transactions to detect concurrency scenarios and abort

in the case of data conflicts.

Reducing instrumentation in the frequently exe-

cuted hardware fast-path is key to efficiency. In partic-
ular, recent work by Riegel et al. [41] surveys a series of

techniques to reduce instrumentation. Despite consid-

erable algorithmic work on HyTM, there is currently

no formal basis for specifying and understanding the
cost of building HyTMs with non-trivial concurrency.

In particular, what are the inherent instrumentation

costs of building a HyTM? What are the trade-offs be-

tween these costs and the ability of the HyTM system

to run software and hardware transactions in parallel?

Modelling HyTM. To address these questions, we pro-

pose the first model for hybrid TM systems which for-

mally captures the notion of cached accesses provided

by hardware transactions, and defines instrumentation

costs in a precise, quantifiable way.

Specifically, we model a hardware transaction as a
series of memory accesses that operate on locally cached

copies of the memory locations, followed by a cache-

commit operation. In case a concurrent (hardware or

software) transaction performs a (read-write or write-
write) conflicting access to a cached base object, the

cached copy is invalidated and the hardware transac-

tion aborts. Thus, detecting contention on memory lo-

cations is provided “automatically” to code running in-

side hardware transactions.

Further, we notice that a HyTM implementation im-

poses a logical partitioning of shared memory into data

and metadata locations. Intuitively, metadata is used by

transactions to exchange information about contention

and conflicts, while data locations only store the val-

ues of data items read and updated within transac-

tions. Recent experimental evidence [36] suggests that

the overhead imposed by accessing metadata, and in
particular code to detect concurrent software transac-

tions, is a significant performance bottleneck. There-

fore, we quantify instrumentation cost by measuring

the number of accesses to metadata memory locations
which transactions perform. Our framework captures

all known HyTM proposals which combine HTMs with

an STM fallback [13, 15, 32, 35, 40].

The cost of concurrency. We then explore the implica-

tions of our model. The first, immediate application is

an impossibility result showing that instrumentation is
necessary in a HyTM implementation, even if we only

provide sequential progress, i.e., if a transaction is only

guaranteed to commit if it runs in isolation.

The second application concerns the instrumenta-

tion overhead of progressive HyTM schemes, which con-

stitutes our main technical contribution. We prove that

any progressive HyTM, satisfying reasonable livenesss
guarantees, must, in certain executions, force read-only

transactions to access a linear (in the size of their data

sets) number of metadata memory locations, even in

the absence of contention.

Our proof technique is interesting in its own right.

Inductively, we start with a sequential execution in

which a “large” set Sm of read-only hardware trans-
actions, each accessing m distinct data items and m

distinct metadata memory locations, run after an exe-

cution Em. We then construct execution Em+1, an ex-

tension of Em, which forces at least half of the trans-
actions in Sm to access a new metadata base object

when reading a new (m + 1)th data item, running after
Em+1. The technical challenge, and the key departure

from prior work on STM lower bounds, e.g. [9, 21, 25],

is that hardware transactions practically possess “auto-

matic” conflict detection, aborting on contention. This

is in contrast to STMs, which must take steps to detect
contention on memory locations.

This linear lower bound is tight. We match it
with an algorithm which, additionally, allows for unin-

strumented writes, invisible reads and is provably

opaque [25]. To the best of our knowledge, this is the

first formal proof of correctness of a HyTM algorithm.

Low-instrumentation HyTM. Our main lower bound

result shows that there are high inherent instrumen-
tation costs to progressive HyTM designs [15, 32]. In-

terestingly, some recent HyTM schemes [13, 35, 36, 41]

sacrifice progressiveness for constant instrumentation
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cost (i.e., not depending on the size of the data set).

Instead, only sequential progress is ensured. (Despite

this fact, these schemes perform well due to the limited

instrumentation in hardware transactions.)

We extend these schemes to provide an upper bound

for non-progressive low-instrumentation HyTMs. We

present a HyTM with invisible reads and uninstru-
mented hardware writes which guarantees that a hard-

ware transaction accesses at most one metadata object

in the course of its execution. Software transactions are

mutually progressive, while hardware transactions are

guaranteed to commit only if they do not run concur-
rently with an updating software transaction. This al-

gorithm shows that, by abandoning progressiveness, the

instrumentation costs of HyTM can be reduced to the

bare minimum required by our first impossibility result.
In other words, the cost of avoiding the linear instru-

mentation lower bound is that hardware transactions

may be aborted by non-conflicting software ones.

Roadmap. The rest of the paper is organized as follows.

Section 2 introduces the basic TM model and defini-

tions. Section 3 presents our first contribution: a for-
mal model for HyTM implementations. Section 4 for-

mally defines instrumentation and proves the impos-

sibility of implementing uninstrumented HyTMs. Sec-

tion 5 establishes a linear lower bound on metadata ac-
cesses for progressive HyTMs while Section 6 describes

our instrumentation-optimal opaque HyTM implemen-

tations. Section 7 presents the related work and Sec-

tion 8 concludes the paper.

2 Preliminaries

Transactional Memory (TM). A transaction is a

sequence of transactional operations (or t-operations),
reads and writes, performed on a set of transactional ob-

jects (t-objects). A TM implementation provides a set

of concurrent processes with deterministic algorithms

that implement reads and writes on t-objects using a
set of base objects. More precisely, for each transaction

Tk, a TM implementation must support the following

t-operations: readk(X), where X is a t-object, that re-

turns a value in a domain V or a special value Ak /∈ V

(abort), writek(X, v), for a value v ∈ V , that returns
ok or Ak, and tryC k that returns Ck /∈ V (commit) or

Ak. Note that a TM interface may additionally provide

a startk t-operation that returns ok or Ak, which is the

first t-operation transaction Tk must invoke, or a tryAk

t-operation that returns Ak. However, the actions per-

formed inside the startk may be performed as part of

the first t-operation performed by the transaction.

Configurations and executions. A configuration of

a TM implementation specifies the state of each base

object and each process. In the initial configuration,

each base object has its initial value and each process is

in its initial state. An event (or step) of a transaction in-
voked by some process is an invocation of a t-operation,

a response of a t-operation, or an atomic primitive oper-

ation applied to base object along with its response. An

execution fragment is a (finite or infinite) sequence of
events E = e1, e2, . . .. An execution of a TM implemen-

tation M is an execution fragment where, informally,

each event respects the specification of base objects and

the algorithms specified by M. In the next section, we

define precisely how base objects should behave in a
hybrid model combining direct memory accesses with

cached accesses (hardware transactions).

The read set (resp., the write set) of a transaction

Tk in an execution E, denoted RsetE(Tk) (and resp.

WsetE(Tk)), is the set of t-objects that Tk attempts to
read (and resp. write) by issuing a t-read (and resp. t-

write) invocation in E (for brevity, we sometimes omit

the subscript E from the notation). The data set of Tk is

Dset(Tk) = Rset(Tk) ∪ Wset(Tk). Tk is called read-only

if Wset(Tk) = ∅; write-only if Rset(Tk) = ∅ and updat-
ing if Wset(Tk) 6= ∅. Note that we consider the conven-

tional dynamic TM model: the data set of a transaction

is identifiable only by the set of t-objects the transac-

tion has invoked a read or write in the given execution.

For any finite execution E and execution fragment
E′, E · E′ denotes the concatenation of E and E′ and

we say that E · E′ is an extension of E. For every

transaction identifier k, E|k denotes the subsequence

of E restricted to events of transaction Tk. If E|k is

non-empty, we say that Tk participates in E, and let
txns(E) denote the set of transactions that participate

in E. Two executions E and E′ are indistinguishable to

a set T of transactions, if for each transaction Tk ∈ T ,

E|k = E′|k.

Complete and incomplete transactions. A trans-

action Tk ∈ txns(E) is complete in E if E|k ends with

a response event. The execution E is complete if all

transactions in txns(E) are complete in E. A transac-
tion Tk ∈ txns(E) is t-complete if E|k ends with Ak or

Ck; otherwise, Tk is t-incomplete. Tk is committed (resp.

aborted) in E if the last event of Tk is Ck (resp. Ak). The

execution E is t-complete if all transactions in txns(E)
are t-complete. A configuration C after an execution

E is quiescent (resp. t-quiescent) if every transaction

Tk ∈ txns(E) is complete (resp. t-complete) in E.

Contention. We assume that base objects are accessed
with read-modify-write (rmw) primitives [19,27]. A rmw

primitive 〈g, h〉 applied to a base object atomically up-

dates the value of the object with a new value, which
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is a function g(v) of the old value v, and returns a re-

sponse h(v). A rmw primitive event on a base object is

trivial if, in any configuration, its application does not

change the state of the object. Otherwise, it is called

nontrivial.

Events e and e′ of an execution E contend on a base

object b if they are both primitives on b in E and at

least one of them is nontrivial.

In a configuration C after an execution E, every

incomplete transaction T has exactly one enabled event

in C, which is the next event T will perform according

to the TM implementation. We say that a transaction

T is poised to apply an event e after E if e is the next
enabled event for T in E. We say that transactions T

and T ′ concurrently contend on b in E if they are each

poised to apply contending events on b after E.

We say that an execution fragment E is step
contention-free for t-operation opk if the events of E|opk

are contiguous in E. An execution fragment E is step

contention-free for Tk if the events of E|k are contigu-

ous in E, and E is step contention-free if E is step
contention-free for all transactions that participate in

E.

TM correctness. A history exported by an execu-
tion fragment E is the subsequence of E consist-

ing of only the invocation and response events of t-

operations. Let HE denote the history exported by

an execution E. Two histories H and H ′ are equiva-
lent if txns(H) = txns(H ′) and for every transaction

Tk ∈ txns(H), H |k = H ′|k. For any two transactions

Tk, Tm ∈ txns(E), we say that Tk precedes Tm in the

real-time order of E (Tk ≺RT
E Tm) if Tk is t-complete

in E and the last event of Tk precedes the first event of
Tm in E. If neither Tk precedes Tm nor Tm precedes Tk

in real-time order, then Tk and Tm are concurrent in

E. An execution E is sequential if every invocation of

a t-operation is either the last event in H or is immedi-
ately followed by a matching response, where H is the

history exported by E. An execution E is t-sequential

if there are no concurrent transactions in E.

Let E be a t-sequential execution. For every oper-
ation readk(X) in E, we define the latest written value

of X as follows: (1) If Tk contains a writek(X, v) pre-

ceding readk(X), then the latest written value of X is

the value of the latest such write to X . (2) Otherwise,

if E contains a writem(X, v), Tm precedes Tk, and Tm

commits in E, then the latest written value of X is the

value of the latest such write to X in E. (This write

is well-defined since E starts with T0 writing to all t-

objects.) We say that readk(X) is legal in a t-sequential
execution E if it returns the latest written value of X ,

and E is legal if every readk(X) in H that does not

return Ak is legal in E.

For a history H , a completion of H , denoted H̄ , is

a history derived from H as follows:

1. for every incomplete t-operation opk that is a readk∨
writek of Tk ∈ txns(H) in H , insert Ak some-
where after the last event of Tk in E; otherwise if

opk = tryCk, insert Ak or Ck somewhere after the

last event of Tk

2. for every complete transaction Tk in the history de-
rived in (1) that is not t-complete, insert tryC k ·Ak

after the last event of transaction Tk.

Definition 1 (Opacity and strict serializability)

A finite history H is opaque if there is a legal t-

complete t-sequential history S, such that for any two

transactions Tk, Tm ∈ txns(H), if Tk ≺RT
H Tm, then

Tk ≺RT
S Tm, and S is equivalent to a completion of

H [25].

A finite history H is strictly serializable if there is

a legal t-complete t-sequential history S, such that for
any two transactions Tk, Tm ∈ txns(H), if Tk ≺RT

H Tm,

then Tk ≺RT
S Tm, and S is equivalent to cseq(H̄), where

H̄ is some completion of H and cseq(H̄) is the subse-

quence of H̄ reduced to committed transactions in H̄.

TM-liveness. A liveness property specifies the condi-

tions under which a t-operation must return. A TM

implementation provides wait-free (WF) TM-liveness

if it ensures that every t-operation returns in a finite
number of its steps. A weaker property of obstruction-

freedom (OF) ensures that every operation running step

contention-free returns in a finite number of its own

steps. The weakest property we consider here is sequen-

tial TM-liveness that only guarantees that t-operations
running in the absence of concurrent transactions re-

turns in a finite number of its steps.

3 Hybrid Transactional Memory (HyTM)

Direct accesses and cached accesses. We now

describe the execution model of a Hybrid Transac-

tional Memory (HyTM) implementation. In our HyTM
model, every base object can be accessed with two kinds

of primitives, direct and cached.

In a direct access, the rmw primitive operates on the

memory state: the direct-access event atomically reads

the value of the object in the shared memory and, if
necessary, modifies it.

In a cached access performed by a process i, the

rmw primitive operates on the cached state recorded in

process i’s tracking set τi. One can think of τi as the L1
cache of process i. A hardware transaction is a series

of cached rmw primitives performed on τi followed by

a cache-commit primitive.
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More precisely, τi is a set of triples (b, v, m)

where b is a base object identifier, v is a value, and

m ∈ {shared , exclusive} is an access mode. The triple

(b, v, m) is added to the tracking set when i performs

a cached rmw access of b, where m is set to exclusive
if the access is nontrivial, and to shared otherwise. We

assume that there exists some constant TS (represent-

ing the size of the L1 cache) such that the condition

|τi| ≤ TS must always hold; this condition will be en-
forced by our model. A base object b is present in τi

with mode m if ∃v, (b, v, m) ∈ τi.

A trivial (resp. nontrivial) cached primitive 〈g, h〉
applied to b by process i first checks the condition
|τi| = TS and if so, it sets τi = ∅ and immediately

returns ⊥ (we call this event a capacity abort). We as-

sume that TS is large enough so that no transaction

with data set of size 1 can incur a capacity abort. If the

transaction does not incur a capacity abort, the pro-
cess checks whether b is present in exclusive (resp. any)

mode in τj for any j 6= i. If so, τi is set to ∅ and the

primitive returns ⊥. Otherwise, the triple (b, v, shared)

(resp. (b, g(v), exclusive)) is added to τi, where v is the
most recent cached value of b in τi (in case b was previ-

ously accessed by i within the current hardware trans-

action) or the value of b in the current memory config-

uration, and finally h(v) is returned.

A tracking set can be invalidated by a concurrent

process: if, in a configuration C where (b, v, exclusive) ∈
τi (resp. (b, v, shared) ∈ τi), a process j 6= i applies any

primitive (resp. any nontrivial primitive) to b, then τi

becomes invalid and any subsequent cached primitive
invoked by i sets τi to ∅ and returns ⊥. We refer to this

event as a tracking set abort.

Finally, the cache-commit primitive issued by pro-

cess i in configuration C with a valid τi does the follow-
ing: for each base object b such that (b, v, exclusive) ∈
τi, the value of b in C is updated to v. Finally, τi is set

to ∅ and the primitive returns commit.

Note that HTM may also abort spuriously, or be-
cause of unsupported operations [39]. The first cause

can be modelled probabilistically in the above frame-

work, which would not however significantly affect our

claims and proofs, except make for a more cumbersome
presentation. Also, our lower bounds are based exclu-

sively on executions containing t-reads and t-writes.

Therefore, since our primary focus in this paper are

lower bounds, we only consider contention and capac-

ity aborts.

Slow-path and fast-path transactions. In the fol-

lowing, we partition HyTM transactions into fast-path
transactions and slow-path transactions. Practically,

two separate algorithms (fast-path one and slow-path

one) are provided for each t-operation.

A slow-path transaction models a regular software

transaction. An event of a slow-path transaction is ei-

ther an invocation or response of a t-operation, or a

rmw primitive on a base object.

A fast-path transaction essentially encapsulates a
hardware transaction. An event of a fast-path transac-

tion is either an invocation or response of a t-operation,

a cached primitive on a base object, or a cache-commit :

t-read and t-write are only allowed to contain cached
primitives, and tryC consists of invoking cache-commit.

Furthermore, we assume that a fast-path transaction Tk

returns Ak as soon an underlying cached primitive or

cache-commit returns ⊥. Figure 1 depicts such a sce-

nario illustrating a tracking set abort: fast-path trans-
action T2 executed by process p2 accesses a base object

b in shared (and resp. exclusive) mode and it is added

to its tracking set τ2. Immediately after the access of b

by T2, a concurrent transaction T1 applies a nontrivial
primitive to b (and resp. accesses b). Thus, the tracking

set of p2 is invalidated and T2 must be aborted in any

extension of this execution.

We provide two key observations on this model re-

garding the interactions of non-committed fast path
transactions with other transactions. Let E be any ex-

ecution of a HyTM implementation M in which a fast-

path transaction Tk is either t-incomplete or aborted.

Then the sequence of events E′ derived by removing all
events of E|k from E is an execution of M. Moreover:

Observation 1 To every slow-path transaction Tm ∈
txns(E), E is indistinguishable from E′.

Observation 2 If a fast-path transaction Tm ∈
txns(E) \ {Tk} does not incur a tracking set abort in

E, then E is indistinguishable to Tm from E′.

Intuitively, these observations say that fast-path trans-

actions which are not yet committed are invisible

to slow-path transactions, and can communicate with

other fast-path transactions only by incurring their
tracking-set aborts. Figure 2 illustrates Observation 1:

a fast-path transaction T2 is concurrent to a slow-

path transaction T1 in an execution E. Since T2 is t-

incomplete or aborted in this execution, E is indistin-
guishable to T1 from an execution E′ derived by remov-

ing all events of T2 from E. Analogously, to illustrate

Observation 2, if T1 is a fast-path transaction that does

not incur a tracking set abort in E, then E is indistin-

guishable to T1 from E′.

4 Defining Instrumentation

Now we define the notion of code instrumentation in

fast-path transactions.



6 Dan Alistarh et al.

Fast-Path

(access of b)

T2 A2

T1

E

(b, v, exclusive) ∈ τ2 after E

(a) τ2 is invalidated by (fast-
path or slow-path) transac-
tion T1’s access of base ob-
ject b

Fast-Path

(write to b)

T2 A2

T1T1

E

(b, v, shared) ∈ τ2 after E

(b) τ2 is invalidated by
(fast-path or slow-path)
transaction T1’s write to
base object b

Fig. 1: Tracking set aborts in fast-path transactions

W2(X, v)

W1(X, v)

Fast-Path

Slow-Path

T2

T1

E
Aborted or incomplete

fast-path transaction T2

(a)

W1(X, v)

Slow-Path

T1

E′

(b)

Fig. 2: Execution E in Figure 2a is indistinguishable to T1 from the execution E′ in Figure 2b

An execution E of a HyTM M appears t-sequential

to a transaction Tk ∈ txns(E) if there exists an execu-

tion E′ of M such that:

– txns(E′) ⊆ txns(E) \ {Tk} and the configuration

after E′ is t-quiescent,

– every transaction Tm ∈ txns(E) that precedes Tk in

real-time order is included in E′ such that E|m =
E′|m,

– for every transaction Tm ∈ txns(E′), RsetE′(Tm) ⊆
RsetE(Tm) and WsetE′(Tm) ⊆ WsetE(Tm), and

– E′ · E|k is an execution of M.

Intuitively, as the name indicates, execution E appears

t-sequential to a transaction Tk participating in E if Tk

cannot distinguish E from a t-complete execution E′

which includes all the t-complete transactions preceding
Tk in E and performing the same steps as in E.

Definition 2 (Data and metadata base objects)
Let X be the set of t-objects operated by a HyTM im-

plementation M. Now we partition the set of base ob-

jects used by M into a set D of data objects and a set M

of metadata objects (D ∩ M = ∅). We further partition

D into sets DX associated with each t-object X ∈ X :
D =

⋃
X∈X

DX , for all X 6= Y in X , DX ∩ DY = ∅, such

that:

1. In every execution E, each fast-path transac-

tion Tk ∈ txns(E) only accesses base objects in⋃
X∈DSet(Tk)

DX or M.

2. Let E ·ρ and E ·E′ ·ρ′ be two t-complete executions,

such that E and E · E′ are t-complete, ρ and ρ′ are

complete executions of a transaction Tk /∈ txns(E ·
E′), Hρ = Hρ′ , and ∀Tm ∈ txns(E′), Dset(Tm) ∩
Dset(Tk) = ∅. Then the states of the base objects⋃
X∈DSet(Tk)

DX in the configuration after E · ρ and

E · E′ · ρ′ are the same.

3. Let execution E appear t-sequential to a transaction
Tk and let the enabled event e of Tk after E be a

primitive on a base object b ∈ D. Then, unless e

returns ⊥, E · e also appears t-sequential to Tk.

Intuitively, the first condition says that a transaction is

only allowed to access data objects based on its data
set. The second condition says that transactions with

disjoint data sets can communicate only via metadata

objects. Finally, the last condition means that base ob-

jects in D may only contain the “values” of t-objects,

and cannot be used to detect concurrent transactions.
Note that our results lower bound the number of meta-

data objects that must be accessed by some fast-path

transaction in a given execution, thus from a cost per-

spective, D should be made as large as possible.

All HyTM proposals we are aware of, such as Hy-

bridNOrec [13,40], PhTM [35] and others [11,15,32,42],

conform to our definition of instrumentation in fast-
path transactions. For instance, HybridNOrec [13, 40]

employs a distinct base object in D for each t-object

and a global sequence lock as the metadata that is ac-
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cessed by fast-path transactions to detect concurrency

with slow-path transactions. Similarly, the HyTM im-

plementation by Damron et al. [15] also associates a dis-

tinct base object in D for each t-object and additionally,

a transaction header and ownership record as metadata
base objects. In fact, our framework even characterizes

conventional STMs such as DSTM [28] and NOrec [14]

which maintain similar separation between data and

matadata base objects.

Definition 3 (Uninstrumented HyTMs) A HyTM

implementation M provides uninstrumented writes

(resp. reads) if in every execution E of M, for every
write-only (resp. read-only) fast-path transaction Tk,

all primitives in E|k are performed on base objects in

D. A HyTM is uninstrumented if both its reads and

writes are uninstrumented.

Observation 3 Consider any execution E of a HyTM

implementation M which provides uninstrumented

reads (resp. writes). For any fast-path read-only (resp.

write-only) transaction Tk 6∈ txns(E), that runs step-
contention free after E, the execution E appears t-

sequential to Tk.

Impossibility of uninstrumented HyTMs. We now

show that any strictly serializable HyTM must be in-
strumented, even under a very weak progress assump-

tion by which a transaction is guaranteed to commit

only when run t-sequentially (also known as minimal

progress [25]):

Definition 4 (Sequential TM-progress for

HyTMs) A HyTM implementation M provides

sequential TM-progress for fast-path transactions (and
resp. slow-path) if in every execution E of M, a

fast-path (and resp. slow-path) transaction Tk returns

Ak in E only if Tk incurs a capacity abort or Tk

is concurrent to another transaction. We say that

M provides sequential TM-progress if it provides
sequential TM-progress for fast-path and slow-path

transactions.

Theorem 4 There does not exist a strictly serializable
uninstrumented HyTM implementation that ensures se-

quential TM-progress and TM-liveness.

Proof Suppose by contradiction that such a HyTM M
exists. For simplicity, assume that v is the initial value

of t-objects X , Y and Z and transactions are exe-

cuted by distinct processes. Let E be the t-complete

step contention-free execution of a slow-path transac-
tion T0 that performs read0(Z) → v, write0(X, nv),

write0(Y, nv) (nv 6= v), and commits. Such an execu-

tion exists since M ensures sequential TM-progress.

By Observation 3, any transaction that runs step

contention-free starting from a prefix of E must return

a non-abort value. Since any such transaction reading

X or Y must return v when it starts from the empty

prefix of E and nv when it starts from E.
Thus, there exists E′, the longest prefix of E

that cannot be extended with the t-complete step

contention-free execution of a fast-path transaction

reading X or Y and returning nv. Let e be the en-
abled event of T0 in the configuration after E′. Without

loss of generality, suppose that there exists an execution

E′ · e · Ey where Ey is the t-complete step contention-

free execution fragment of some fast-path transaction

Ty that reads Y is returns nv (Figure 3a).

Claim 5 M has an execution E′ · Ez · Ex, where

– Ez is the t-complete step contention-free execution

fragment of a fast-path transaction Tz that writes

nv 6= v to Z and commits

– Ex is the t-complete step contention-free execution
fragment of a fast-path transaction Tx that performs

a single t-read readx(X) → v and commits.

Proof By Observation 3, the extension of E′ in which Tz

writes to Z and tries to commit appears t-sequential to

Tz. By sequential TM-progress, Tz completes the write

and commits. Let E′ · Ez (Figure 3b) be the resulting
execution of M.

Similarly, the extension of E′ in which Tx reads X

and tries to commit appears t-sequential to Tx. By se-

quential TM-progress, Tx commits and let E′ · Ex be
the resulting execution of M. By the definition of E′,

readx(X) must return v in E′ · Ex.

Since M is uninstrumented and the data sets of Tx

and Tz are disjoint, the sets of base objects accessed in

the execution fragments Ex and Ey are also disjoint.
Thus, E′ · Ez · Ex is indistinguishable to Tx from the

execution E′ · Ex, which implies that E′ · Ez · Ex is an

execution of M (Figure 3c).

Finally, we prove that the sequence of events,

E′ · Ez · Ex · e · Ey is an execution of M.
Since the transactions Tx, Ty, Tz have pairwise dis-

joint data sets in E′ · Ez · Ex · e · Ey, no base object

accessed in Ey can be accessed in Ex and Ez . The read

operation on X performed by Ty in E′ · e · Ey returns

nv and, by the definition of E′ and e, Ty must have ac-
cessed the base object b modified in the event e by T0.

Thus, b is not accessed in Ex and Ez and E′ ·Ez ·Ex · e
is an execution of M. Summing up, E′ · Ez · Ex · e · Ey

is indistinguishable to Ty from E′ · e ·Ey, which implies
that E′ ·Ez ·Ex ·e ·Ey is an execution of M (Figure 3d).

But the resulting execution is not strictly serializ-

able. Indeed, suppose that a serialization exists. As the
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R0(Z)→ v W0(X, nv) tryC0W0(Y, nv) (event of T0)

e

Ry(Y )→ nv

returns new value

Slow-path Fast-path

T0 Ty

(a) Ty must return the new value

R0(Z)→ v W0(X, nv) tryC0W0(Y, nv) Wz(Z, nv)

write new value

Slow-path Fast-path

T0 Tz

(b) Since Tz is uninstrumented, by Observation 3 and
sequential TM-progress, Tz must commit

R0(Z)→ v W0(X, nv) tryC0W0(Y, nv) Rx(X)→ v

returns initial value

Wz(Z, nv)

write new value

Slow-path Fast-path Fast-path

T0 Tz Tx

(c) Since Tx does not access any metadata, it cannot abort and must return
the initial value value of X

R0(Z)→ v W0(X, nv) tryC0W0(Y, nv) Rx(X)→ v

returns initial value

(event of T0)

e

Ry(Y )→ nv

returns new value

Wz(Z, nv)

write new value

Slow-path Fast-path Fast-pathFast-path

T0 Tz Tx Ty

(d) Ty does not contend with Tx or Tz on any base object

Fig. 3: Executions in the proof of Theorem 4; execution in 3d is not strictly serializable

value written by T0 is returned by a committed trans-

action Ty, T0 must be committed and precede Ty in the

serialization. Since Tx returns the initial value of X , Tx

must precede T0. Since T0 reads the initial value of Z,

T0 must precede Tz. Finally, Tz must precede Tx to re-
spect the real-time order. The cycle in the serialization

establishes a contradiction.

5 Linear Instrumentation Lower Bound

In this section, we show that giving HyTM the abil-

ity to run and commit transactions in parallel brings

considerable instrumentation costs. We focus on a nat-

ural progress condition called progressiveness [22–24]
that allows a transaction to abort only if it experiences

a read-write or write-write conflict with a concurrent

transaction:

Definition 5 (Progressiveness for HyTMs) We
say that transactions Ti and Tj conflict in an execu-

tion E on a t-object X if X ∈ Dset(Ti) ∩ Dset(Tj) and

X ∈ Wset(Ti) ∪ Wset(Tj).

A HyTM implementation M is fast-path (resp. slow-

path) progressive if in every execution E of M and

for every fast-path (and resp. slow-path) transaction

Ti that aborts in E, either Ai is a capacity abort or Ti

conflicts with some transaction Tj that is concurrent to

Ti in E. We say M is progressive if it is both fast-path

and slow-path progressive.

We show that for every opaque fast-path progressive

HyTM that provides obstruction-free TM-liveness, an

arbitrarily long read-only transaction might access a

number of distinct metadata base objects that is linear

in the size of its read set or experience a capacity abort.

The following auxiliary results will be crucial in

proving our lower bound. We observe first that a fast

path transaction in a progressive HyTM can contend

on a base object only with a conflicting transaction.

Lemma 1 Let M be any fast-path progressive HyTM

implementation. Let E · E1 · E2 be an execution of M
where E1 (and resp. E2) is the step contention-free exe-
cution fragment of transaction T1 6∈ txns(E) (and resp.

T2 6∈ txns(E)), T1 (and resp. T2) does not conflict with

any transaction in E ·E1 ·E2, and at least one of T1 or

T2 is a fast-path transaction. Then, T1 and T2 do not
contend on any base object in E · E1 · E2.

Proof Suppose, by contradiction that T1 or T2 contend
on the same base object in E · E1 · E2.

If in E1, T1 performs a nontrivial event on a base

object on which they contend, let e1 be the last event

in E1 in which T1 performs such an event to some base
object b and e2, the first event in E2 that accesses b.

Otherwise, T1 only performs trivial events in E1 to base

objects on which it contends with T2 in E · E1 · E2:

let e2 be the first event in E2 in which E2 performs a
nontrivial event to some base object b on which they

contend and e1, the last event of E1 in T1 that accesses

b.
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Let E′
1 (and resp. E′

2) be the longest prefix of E1

(and resp. E2) that does not include e1 (and resp.

e2). Since before accessing b, the execution is step

contention-free for T1, E ·E′
1 ·E′

2 is an execution of M.

By construction, T1 and T2 do not conflict in E ·E′
1 ·E′

2.
Moreover, E · E1 · E′

2 is indistinguishable to T2 from

E·E′
1 ·E

′
2. Hence, T1 and T2 are poised to apply contend-

ing events e1 and e2 on b in the execution Ẽ = E·E′
1 ·E

′
2.

Recall that at least one event of e1 and e2 must be non-
trivial.

Consider the execution Ẽ · e1 · e′
2 where e′

2 is the

event of p2 in which it applies the primitive of e2 to the

configuration after Ẽ · e1. After Ẽ · e1, b is contained in
the tracking set of process p1. If b is contained in τ1 in

the shared mode, then e′
2 is a nontrivial primitive on b,

which invalidates τ1 in Ẽ · e1 · e′
2. If b is contained in τ1

in the exclusive mode, then any subsequent access of b

invalidates τ1 in Ẽ ·e1 ·e
′
2. In both cases, τ1 is invalidated

and T1 incurs a tracking set abort. Thus, transaction

T1 must return A1 in any extension of E · e1 · e2—a

contradiction to the assumption that M is progressive.

Iterative application of Lemma 1 implies the following:

Corollary 1 Let M be any fast-path progressive

HyTM implementation. Let E · E1 · · ·Ei · Ei+1 · · · Em

be any execution of M where for all i ∈ {1, . . . , m},
Ei is the step contention-free execution fragment of

transaction Ti 6∈ txns(E) and any two transactions in

E1 · · · Em do not conflict. For all i, j = 1, . . . , m, i 6= j,

if Ti is fast-path, then Ti and Tj do not contend on a
base object in E · E1 · · · Em

Proof Let Ti be a fast-path transaction. By Lemma 1,

in E ·E1 · · ·Ei · · · Em, Ti does not contend with Ti−1 (if

i > 1) or Ti+1 (if i < m) on any base object and, thus,

Ei commutes with Ei−1 and Ei+1. Thus, E ·E1 · · ·Ei−2 ·
Ei · Ei−1 · Ei+1 · · ·Em (if i > 1) and E · E1 · · · Ei−1 ·
Ei+1 ·Ei·Ei+2 · · ·Em (if i < m) are executions of M. By

iteratively applying Lemma 1, we derive that Ti does

not contend with any Tj, j 6= i.

We say that execution fragments E and E′ are simi-
lar if they export equivalent histories, i.e., no process

can see the difference between them by looking at the

invocations and responses of t-operations. We now use

Corollary 1 to show that t-operations only accessing

data base objects cannot detect contention with non-
conflicting transactions.

Lemma 2 Let E be any t-complete execution of a pro-
gressive HyTM implementation M that provides OF

TM-liveness. For any m ∈ N, consider a set of m exe-

cutions of M of the form E · Ei · γi · ρi where Ei is the

t-complete step contention-free execution fragment of a

transaction Tm+i, γi is a complete step contention-free

execution fragment of a fast-path transaction Ti such

that Dset(Ti) ∩ Dset(Tm+i) = ∅ in E · Ei · γi, and ρi is

the execution fragment of a t-operation by Ti that does
not contain accesses to any metadata base object. If, for

all i, j ∈ {1, . . . , m}, i 6= j, Dset(Ti) ∩ Dset(Tm+j) = ∅,
Dset(Ti)∩Dset(Tj) = ∅ and Dset(Tm+i)∩Dset(Tm+j) =

∅, then there exists a t-complete step contention-free ex-
ecution fragment E′ that is similar to E1 · · · Em such

that for all i ∈ {1, . . . , m}, E ·E′ · γi · ρi is an execution

of M.

Proof Observe that any two transactions in the execu-

tion fragment E1 · · · Em access mutually disjoint data
sets. Since M is progressive and provides OF TM-

liveness, there exists a t-sequential execution fragment

E′ = E′
1 · · · E′

m such that, for all i ∈ {1, . . . , m}, the

execution fragments Ei and E′
i are similar and E · E′

is an execution of M. Corollary 1 implies that, for

all i ∈ {1, . . . , m}, M has an execution of the form

E ·E′
1 · · · E′

i · · · E′
m · γi. More specifically, M has an ex-

ecution of the form E · γi · E′
1 · · · E′

i · · · E′
m. Recall that

the execution fragment ρi of fast-path transaction Ti

that extends γi contains accesses only to base objects

in
⋃

X∈DSet(Ti)

DX . Moreover, for all i, j ∈ {1, . . . , m};

i 6= j, Dset(Ti) ∩ Dset(Tm+j) = ∅ and Dset(Tm+i) ∩
Dset(Tm+j) = ∅.

It follows that M has an execution of the form E ·
γi · E′

1 · · · E′
i · ρi · E′

i+1 · · ·E′
m. and the states of each of

the base objects
⋃

X∈DSet(Ti)

DX accessed by Ti in the

configuration after E · γi · E′
1 · · · E′

i and E · γi · Ei are
the same. But E ·γi ·Ei ·ρi is an execution of M. Thus,

for all i ∈ {1, . . . , m}, M has an execution of the form

E · E′ · γi · ρi.

Finally, we are now ready to derive our lower bound.

Theorem 6 Let M be any progressive, opaque HyTM

implementation that provides OF TM-liveness. For ev-

ery m ∈ N, there exists an execution E in which some

fast-path read-only transaction Tk ∈ txns(E) satisfies
either (1) Dset(Tk) ≤ m and Tk incurs a capacity abort

in E or (2) Dset(Tk) = m and Tk accesses Ω(m) dis-

tinct metadata base objects in E.

Here is a high-level overview of the proof technique. Let
κ be the smallest integer such that some fast-path trans-

action running step contention-free after a t-quiescent

configuration performs κ t-reads and incurs a capacity

abort.
We prove that, for all m ≤ κ − 1, there exists a t-

complete execution Em and a set Sm with |Sm| = 2κ−m

of read-only fast-path transactions that access mutually
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disjoint data sets such that each transaction in Sm that

runs step contention-free from E
m

and performs t-reads

of m distinct t-objects accesses at least one distinct

metadata base object within the execution of each t-

read operation.

We proceed by induction. Assume that the induc-

tion statement holds for all m < κ−1. We prove that a

set Sm+1; |Sm+1| = 2κ−(m+1) of fast-path transactions,
each of which run step contention-free after the same

t-complete execution Em+1, perform m + 1 t-reads of

distinct t-objects so that at least one distinct metadata

base object is accessed within the execution of each t-
read operation. In our construction, we pick any two

new transactions from the set Sm and show that one

of them running step contention-free from a t-complete

execution that extends Em performs m + 1 t-reads of

distinct t-objects so that at least one distinct metadata
base object is accessed within the execution of each t-

read operation. In this way, the set of transactions is

reduced by half in each step of the induction until one

transaction remains which must have accessed a dis-
tinct metadata base object in every one of its m + 1

t-reads.

Intuitively, since all the transactions that we use in
our construction access mutually disjoint data sets, we

can apply Lemma 1 to construct a t-complete execu-

tion Em+1 such that each of the fast-path transactions

in Sm+1 when running step contention-free after Em+1

perform m+1 t-reads so that at least one distinct meta-
data base object is accessed within the execution of each

t-read operation.

We now present the formal proof:

Proof In the constructions which follow, every fast-path

transaction executes at most m+1 t-reads. Let κ be the

smallest integer such that some fast-path transaction

running step contention-free after a t-quiescent config-
uration performs κ t-reads and incurs a capacity abort.

We proceed by induction.

Induction statement. We prove that, for all m ≤
κ− 1, there exists a t-complete execution Em and a set

Sm with |Sm| = 2κ−m of read-only fast-path transac-

tions that access mutually disjoint data sets such that
each transaction Tfi

∈ Sm that runs step contention-

free from E
m

and performs t-reads of m distinct t-

objects accesses at least one distinct metadata base ob-

ject within the execution of each t-read operation. Let

Efi
be the step contention-free execution of Tfi

after
Em and let Dset(Tfi

) = {Xi,1, . . . , Xi,m}.

The induction. Assume that the induction statement

holds for all m ≤ κ − 1. The statement is trivially true

for the base case m = 0 for every κ ∈ N.

We will prove that a set Sm+1; |Sm+1| = 2κ−(m+1)

of fast-path transactions, each of which run step

contention-free from the same t-quiescent configuration

Em+1, perform m+1 t-reads of distinct t-objects so that

at least one distinct metadata base object is accessed
within the execution of each t-read operation.

The construction proceeds in phases : there are ex-

actly |Sm|
2 phases. In each phase, we pick any two new

transactions from the set Sm and show that one of them

running step contention-free after a t-complete execu-

tion that extends Em performs m+1 t-reads of distinct
t-objects so that at least one distinct metadata base

object is accessed within the execution of each t-read

operation.

Throughout this proof, we will assume that any two

transactions (and resp. execution fragments) with dis-

tinct subscripts represent distinct identifiers.

For all i ∈ {0, . . . , |Sm|
2 − 1}, let X2i+1, X2i+2 6∈

|Sm|−1⋃

i=0

{Xi,1, . . . , Xi,m} be distinct t-objects and let v be

the value of X2i+1 and X2i+2 after Em. Let Tsi
denote

a slow-path transaction which writes nv 6= v to X2i+1

and X2i+2. Let Esi
be the t-complete step contention-

free execution fragment of Tsi
running immediately af-

ter Em.

Let E′
si

be the longest prefix of the execu-

tion Esi
such that Em · E′

si
can be extended nei-

ther with the complete step contention-free execu-

tion fragment of transaction Tf2i+1 that performs

its m t-reads of X2i+1,1, . . . , X2i+1,m and then per-

forms readf2i+1(X2i+1) and returns nv, nor with
the complete step contention-free execution frag-

ment of some transaction Tf2i+2 that performs t-

reads of X2i+21
, . . . , X2i+2,m and then performs

readf2i+2(X2i+2) and returns nv. Progressiveness and

OF TM-liveness of M stipulates that such an execu-
tion exists.

Let ei be the enabled event of Tsi
in the

configuration after Em · E′
si

. By construction, the

execution Em · E′
si

can be extended with at

least one of the complete step contention-free ex-

ecutions of transaction Tf2i+1 performing (m +
1) t-reads of X2i+1,1, . . . , X2i+1,m, X2i+1 such that

readf2i+1(X2i+1) → nv or transaction Tf2i+2 perform-

ing t-reads of X2i+2,1, . . . , X2i+2,m, X2i+2 such that

readf2i+2(X2i+2) → nv. Without loss of generality, sup-
pose that Tf2i+1 reads the value of X2i+1 to be nv after

Em · E′
0i

· ei.

For any i ∈ {0, . . . , |Sm|
2 − 1}, we will denote by αi

the execution fragment which we will construct in phase

i. For any i ∈ {0, . . . , |Sm|
2 − 1}, we prove that M has

an execution of the form Em · αi in which Tf2i+1 (or
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Tf2i+2) running step contention-free after a t-complete

execution that extends Em performs m + 1 t-reads of

distinct t-objects so that at least one distinct metadata

base object is accessed within the execution of each first

m t-read operations and Tf2i+1 (or Tf2i+2) is poised to
apply an event after Em · αi that accesses a distinct

metadata base object during the (m + 1)th t-read. Fur-

thermore, we will show that Em ·αi appears t-sequential

to Tf2i+1 (or Tf2i+2).

(Construction of phase i)

Let Ef2i+1 (and resp. Ef2i+2) be the complete

step contention-free execution of the t-reads of
X2i+1,1, . . . , X2i+1,m (and resp. X2i+2,1, . . . , X2i+2,m)

running after Em by Tf2i+1 (and resp. Tf2i+2). By the in-

ductive hypothesis, transaction Tf2i+1 (and resp. Tf2i+2)

accesses m distinct metadata objects in the execution

Em · Ef2i+1 (and resp. Em · Ef2i+2). Recall that trans-
action Tf2i+1 does not conflict with transaction Tsi

.

Thus, by Corollary 1, M has an execution of the form

Em · E′
si

· ei · Ef2i+1 (and resp. Em · E′
si

· ei · Ef2i+2).

Let Erf2i+1 be the complete step contention-free

execution fragment of readf2i+1(X2i+1) that extends

E2i+1 = Em · E′
si

· ei · Ef2i+1 . By OF TM-liveness,
readf2i+1(X2i+1) must return a matching response in

E2i+1 · Erf2i+1 . We now consider two cases.

Case I: Suppose Erf2i+1 accesses at least one metadata

base object b not previously accessed by Tf2i+1 .

Let E′
rf2i+1

be the longest prefix of Erf2i+1 which

does not apply any primitives to any metadata base

object b not previously accessed by Tf2i+1 . The execu-

tion Em · E′
si

· ei · Ef2i+1 · E′
rf2i+1

appears t-sequential
to Tf2i+1 because Ef2i+1 does not contend with Tsi

on any base object and any common base object ac-

cessed in the execution fragments E′
rx2i+1

and Esi
by

Tf2i+1 and Tsi
respectively must be data objects con-

tained in D. Thus, we have that |Dset(Tf2i+1)| = m + 1

and that Tf2i+1 accesses m distinct metadata base ob-

jects within each of its first m t-read operations and is

poised to access a distinct metadata base object during

the execution of the (m + 1)th t-read. In this case, let
αi = Em · E′

si
· ei · Ef2i+1 · E′

rf2i+1
.

Case II: Suppose Erf2i+1 does not access any metadata

base object not previously accessed by Tf2i+1 .

In this case, we will first prove the following:

Claim 7 M has an execution of the form E2i+2 =

Em · E′
si

· ei · Ēf2i+1 · Ef2i+2 where Ēf2i+1 is the t-

complete step contention-free execution of Tf2i+1 in
which readf2i+1(X2i+1) → nv, Tf2i+1 invokes tryCf2i+1

and returns a matching response.

Proof Since Erf2i+1 does not contain accesses to any

distinct metadata base objects, the execution Em ·E′
si

·

ei · Ef2i+1 · Erf2i+1 appears t-sequential to Tf2i+1 . By

definition of the event ei, readf2i+1(X2i+1) must access

the base object to which the event ei applies a nontrivial

primitive and return the response nv in E′
si

· ei ·Ef2i+1 ·
Erf2i+1 . By OF TM-liveness, it follows that Em · E′

si
·

ei · Ēf2i+1 is an execution of M.

Now recall that Em ·E′
si

·ei ·Ef2i+2 is an execution of

M because transactions Tf2i+2 and Tsi
do not conflict

in this execution and thus, cannot contend on any base

object. Finally, because Tf2i+1 and Tf2i+2 access disjoint

data sets in Em · E′
si

· ei · Ēf2i+1 · Ef2i+2 , by Lemma 1
again, we have that Em · E′

si
· ei · Ēf2i+1 · Ef2i+2 is an

execution of M.

Let Erf2i+2 be the complete step contention-free exe-

cution fragment of readf2i+2(X2i+2) after Em · E′
si

· ei ·
Ēf2i+1 ·Ef2i+2 . By the induction hypothesis and Claim 7,
transaction Tf2i+2 must access m distinct metadata

base objects in the execution Em ·E′
si

·ei ·Ēf2i+1 ·Ef2i+2 .

If Erf2i+2 accesses some metadata base object, then

by the argument given in Case I applied to transaction

Tf2i+2 , we get that Tf2i+2 accesses m distinct metadata

base objects within each of the first m t-read operations
and is poised to access a distinct metadata base object

during the execution of the (m + 1)th t-read.

Thus, suppose that Erf2i+2 does not access any

metadata base object previously accessed by Tf2i+2 . We

claim that this is impossible and proceed to derive a

contradiction. In particular, Erf2i+2 does not contend

with Tsi
on any metadata base object. Consequently,

the execution Em · E′
si

· ei · Ēf2i+1 · Ef2i+2 appears t-

sequential to Tx2i+2 since Erx2i+2 only contends with Tsi

on base objects in D. It follows that E2i+2 ·Erf2i+2 must

also appear t-sequential to Tf2i+2 and so Erf2i+2 cannot
abort. Recall that the base object, say b, to which Tsi

applies a nontrivial primitive in the event ei is accessed

by Tf2i+1 in Em ·E′
si

·ei ·Ēf2i+1 ·Ef2i+2 ; thus, b ∈ DX2i+1 .

Since X2i+1 6∈ Dset(Tf2i+2), b cannot be accessed by

Tf2i+2 . Thus, the execution Em ·E′
si

· ei · Ēf2i+1 ·Ef2i+2 ·
Erf2i+2 is indistinguishable to Tf2i+2 from the execution

Êi ·E′
si

·Ef2i+2 ·Erf2i+2 in which readf2i+2(X2i+2) must

return the response v (by construction of E′
si

).

But we observe now that the execution Em ·E′
si

·ei ·
Ēf2i+1 · Ef2i+2 · Erf2i+2 is not opaque. In any serializa-
tion corresponding to this execution, Tsi

must be com-

mitted and must precede Tf2i+1 because Tf2i+1 read nv

from X2i+1. Also, transaction Tf2i+2 must precede Tsi

because Tf2i+2 read v from X2i+2. However Tf2i+1 must
precede Tf2i+2 to respect real-time ordering of trans-

actions. Clearly, there exists no such serialization—

contradiction.

Letting E′
rf2i+2

be the longest prefix of Erf2i+2

which does not access a base object b ∈ M not pre-
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viously accessed by Tf2i+2 , we can let αi = E′
si

· ei ·
Ēf2i+1 · Ef2i+2 · E′

rf2i+2
in this case.

Combining Cases I and II, the following claim holds.

Claim 8 For each i ∈ {0, . . . , |Sm|
2 − 1}, M has an

execution of the form Em · αi in which

(1) some fast-path transaction Ti ∈ txns(αi) performs t-

reads of m + 1 distinct t-objects so that at least one

distinct metadata base object is accessed within the

execution of each of the first m t-reads, Ti is poised
to access a distinct metadata base object after Em·αi

during the execution of the (m +1)th t-read and the

execution appears t-sequential to Ti,

(2) the two fast-path transactions in the execution frag-
ment αi do not contend on the same base object.

(Collecting the phases)
We will now describe how we can construct the set

Sm+1 of fast-path transactions from these |Sm|
2 phases

and force each of them to access m+1 distinct metadata

base objects when running step contention-free after the
same t-complete execution.

For each i ∈ {0, . . . , |Sm|
2 − 1}, let βi be the subse-

quence of the execution αi consisting of all the events

of the fast-path transaction that is poised to access a

(m + 1)th distinct metadata base object. Henceforth,
we denote by Ti the fast-path transaction that partic-

ipates in βi. Then, from Claim 8, it follows that, for

each i ∈ {0, . . . , |Sm|
2 − 1}, M has an execution of the

form Em ·E′
si

· ei ·βi in which the fast-path transaction
Ti performs t-reads of m + 1 distinct t-objects so that

at least one distinct metadata base object is accessed

within the execution of each of the first m t-reads, Ti is

poised to access a distinct metadata base object after

Em · E′
si

· ei · βi during the execution of the (m + 1)th

t-read and the execution appears t-sequential to Ti.

The following result is a corollary to the above claim

that is obtained by applying the definition of “appears

t-sequential”. Recall that E′
si

· ei is the t-incomplete
execution of slow-path transaction Tsi

that accesses t-

objects X2i+1 and X2i+2.

Corollary 2 For all i ∈ {0, . . . , |(Sm|
2 − 1}, M has an

execution of the form Em · Ei · βi such that the config-

uration after Em · Ei is t-quiescent, txns(Ei) ⊆ {Tsi
}

and Dset(Tsi
) ⊆ {X2i+1, X2i+2} in Ei.

We can represent the execution βi = γi · ρi where fast-
path transaction Ti performs complete t-reads of m dis-

tinct t-objects in γi and then performs an incomplete

t-read of the (m + 1)th t-object in ρi in which Ti only

accesses base objects in
⋃

X∈DSet(Ti)

{X}. Recall that Ti

and Tsi
do not contend on the same base object in the

execution Em ·Ei ·γi. Thus, for all i ∈ {0, . . . , |Sm|
2 −1},

M has an execution of the form Em · γi · Ei · ρi.

Observe that the fast-path transaction Ti ∈ γi

does not access any t-object that is accessed by

any slow-path transaction in the execution fragment

E0 · · · E |Sm|
2 −1

. By Lemma 2, there exists a t-complete

step contention-free execution fragment E′ that is simi-
lar to E0 · · · E |Sm|

2 −1
such that for all i ∈ {0, . . . , |Sm|

2 −

1}, M has an execution of the form Em · E′ · γi · ρi. By

our construction, the enabled event of each fast-path

transaction Ti ∈ βi in this execution is an access to a
distinct metadata base object.

Let Sm+1 denote the set of all fast-path trans-

actions that participate in the execution fragment
β0 · · ·β |(Sm|

2 −1
and Em+1 = Em ·E′. Thus, |Sm+1| fast-

path transactions, each of which run step contention-

free from the same t-quiescent configuration, perform

m + 1 t-reads of distinct t-objects so that at least one

distinct metadata base object is accessed within the
execution of each t-read operation. This completes the

proof.

6 Instrumentation-optimal HyTM algorithms

In this section, we describe two “instrumentation-

optimal” progressive HyTMs. We show that these

implementations are provably opaque in our HyTM

model.

6.1 A linear upper bound on instrumentation

We prove that the lower bound in Theorem 6 is tight

by describing an ‘instrumentation-optimal” HyTM im-
plementation (Algorithm 1) that is opaque, progressive,

provides wait-free TM-liveness, uses invisible reads.

Base objects. For every t-object Xj , our implemen-

tation maintains a base object vj ∈ D that stores the

value of Xj and a metadata base object rj , which is a

lock bit that stores 0 or 1.

Fast-path transactions. For a fast-path transaction

Tk, the readk(Xj) implementation first reads rj to check
if Xj is locked by a concurrent updating transaction. If

so, it returns Ak, else it returns the value of Xj . Updat-

ing fast-path transactions use uninstrumented writes:

write(Xj , v) simply stores the cached state of Xj along
with its value v and if the cache has not been inval-

idated, updates the shared memory during tryCk by

invoking the commit-cache primitive.

Slow-path read-only transactions. Any readk(Xj)

invoked by a slow-path transaction first reads the value
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Algorithm 1 Progressive opaque HyTM implementation that provides uninstrumented writes and invisible reads;

code for process pi executing transaction Tk

1: Shared objects:

2: vj ∈ D, for each t-object Xj

3: allows reads, writes and cas
4: rj ∈ M, for each t-object Xj

5: allows reads, writes and cas

6: Local objects:

7: Lset(Tk) ⊆Wset(Tk), initially empty
8: Oset(Tk) ⊆Wset(Tk), initially empty

Code for slow-path transactions

9: readk(Xj ): // slow-path

10: if Xj 6∈ Rsetk then

11: [ovj , kj ] := read(vj)
12: Rset(Tk) := Rset(Tk) ∪ {Xj , [ovj , kj ]}
13: if rj 6= 0 then

14: Return Ak

15: if ∃Xj ∈ Rset(Tk):(ovj , kj) 6= read(vj) then

16: Return Ak

17: Return ovj

18: else

19: ovj := Rset(Tk).locate(Xj)
20: Return ovj

21: writek(Xj, v): // slow-path

22: (ovj , kj) := read(vj)
23: nvj := v

24: Wset(Tk) := Wset(Tk) ∪ {Xj , [ovj , kj ]}
25: Return ok

26: tryCk(): // slow-path

27: if Wset(Tk) = ∅ then

28: Return Ck

29: locked := acquire(Wset(Tk))
30: if ¬ locked then

31: Return Ak

32: if isAbortable() then

33: release(Lset(Tk))
34: Return Ak

35: for all Xj ∈Wset(Tk) do

36: if vj .cas([ovj, kj ], [nvj , k]) then

37: Oset(Tk) := Oset(Tk) ∪ {Xj}
38: else

39: undo(Oset(Tk))

40: release(Wset(Tk))
41: Return Ck

42: Function: isAbortable() :

43: if ∃Xj ∈ Rset(Tk): Xj 6∈Wset(Tk) ∧ read(rj) 6= 0 then

44: Return true

45: if ∃Xj ∈ Rset(Tk):[ovj , kj ] 6= read(vj) then

46: Return true

47: Return false

48: Function: acquire(Q):

49: for all Xj ∈ Q do

50: if rj .cas(0, 1) then

51: Lset(Tk) := Lset(Tk) ∪ {Xj}
52: else

53: release(Lset(Tk))
54: Return false

55: Return true

56: Function: release(Q):

57: for all Xj ∈ Q do

58: rj .write(0)

59: Return ok

60: Function: undo(Oset(Tk)):

61: for all Xj ∈ Oset(Tk) do

62: vj .cas([nvj , k], [ovj , kj ])

63: release(Wset(Tk))
64: Return Ak

Code for fast-path transactions

65: readk(Xj ): // fast-path

66: [ovj , kj ] := read(vj) // cached read

67: if read(rj) 6= 0 then

68: Return Ak

69: Return ovj

70: writek(Xj, v): // fast-path

71: write(vj , [nvj , k]) // cached write

72: Return ok

73: tryCk(): // fast-path

74: commit-cachei // returns Ck or Ak

of the object from vj , checks if rj is set and then per-
forms value-based validation on its entire read set to

check if any of them have been modified. If either of

these conditions is true, the transaction returns Ak.

Otherwise, it returns the value of Xj . A read-only trans-
action simply returns Ck during the tryCommit.

Slow-path updating transactions. The writek(X, v)

implementation of a slow-path transaction stores v and
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the current value of Xj locally, deferring the actual up-

date in shared memory to tryCommit.

During tryCk, an updating slow-path transaction Tk

attempts to obtain exclusive write access to its entire

write set as follows: for every t-object Xj ∈ Wset(Tk), it
writes 1 to each base object rj by performing a compare-

and-set (cas) primitive that checks if the value of rj is

not 1 and, if so, replaces it with 1. If the cas fails, then

Tk releases the locks on all objects Xℓ it had previously
acquired by writing 0 to rℓ and then returns Ak. In-

tuitively, if the cas fails, some concurrent transaction

is performing a t-write to a t-object in Wset(Tk). If all

the locks on the write set were acquired successfully, Tk

checks if any t-object in Rset(Tk) is concurrently be-
ing updated by another transaction and then performs

value-based validation of the read set. If a conflict is de-

tected from the these checks, the transaction is aborted.

Finally, tryCk attempts to write the values of the t-
objects via cas operations. If any cas on the individual

base objects fails, there must be a concurrent fast-path

writer, and so Tk rolls back the state of the base ob-

jects that were updated, releases locks on its write set

and returns Ak. The roll backs are performed with cas
operations, skipping any which fail to allow for concur-

rent fast-path writes to locked locations. Note that if a

concurrent read operation of a fast-path transaction Tℓ

finds an “invalid” value in vj that was written by such
transaction Tk but has not been rolled back yet, then

Tℓ either incurs a tracking set abort later because Tk

has updated vj or finds rj to be 1. In both cases, the

read operation of Tℓ aborts.

The implementation uses invisible reads (no non-
trivial primitives are applied by reading transactions).

Every t-operation returns a matching response within

a finite number of its steps.

Complexity. Every t-read operation performed by a

fast-path transaction accesses a metadata base object

once (the lock bit corresponding to the t-object), which

is the price to pay for detecting conflicting updating
slow-path transactions. Write operations of fast-path

transactions are uninstrumented.

Lemma 3 Algorithm 1 implements an opaque TM.

Proof Let E by any execution of Algorithm 1. Since

opacity is a safety property, it is sufficient to prove that

every finite execution is opaque [7]. Let <E denote a
total-order on events in E.

Let H denote a subsequence of E constructed by

selecting linearization points of t-operations performed

in E. The linearization point of a t-operation op, de-
noted as ℓop is associated with a base object event or

an event performed during the execution of op using

the following procedure.

Completions. First, we obtain a completion of E by

removing some pending invocations or adding responses

to the remaining pending invocations as follows:

– incomplete readk, writek operation performed by a
slow-path transaction Tk is removed from E; an in-

complete tryCk is removed from E if Tk has not per-

formed any write to a base object rj ; Xj ∈ Wset(Tk)

in Line 36, otherwise it is completed by including Ck

after E.

– every incomplete readk, tryAk, writek and tryCk

performed by a fast-path transaction Tk is removed

from E.

Linearization points. Now a linearization H of E

is obtained by associating linearization points to t-

operations in the obtained completion of E. For all t-
operations performed a slow-path transaction Tk, lin-

earization points as assigned as follows:

– For every t-read opk that returns a non-Ak value,
ℓopk

is chosen as the event in Line 11 of Algorithm 1,

else, ℓopk
is chosen as invocation event of opk

– For every opk = writek that returns, ℓopk
is chosen

as the invocation event of opk

– For every opk = tryCk that returns Ck such that
Wset(Tk) 6= ∅, ℓopk

is associated with the first write

to a base object performed by release when invoked

in Line 40, else if opk returns Ak, ℓopk
is associated

with the invocation event of opk

– For every opk = tryCk that returns Ck such that

Wset(Tk) = ∅, ℓopk
is associated with Line 28

For all t-operations performed a fast-path transaction

Tk, linearization points as assigned as follows:

– For every t-read opk that returns a non-Ak value,

ℓopk
is chosen as the event in Line 66 of Algorithm 1,

else, ℓopk
is chosen as invocation event of opk

– For every opk that is a tryCk, ℓopk
is the

commit-cachek primitive invoked by Tk

– For every opk that is a writek, ℓopk
is the event in

Line 71.

<H denotes a total-order on t-operations in the com-

plete sequential history H .

Serialization points. The serialization of a transac-

tion Tj , denoted as δTj
is associated with the lineariza-

tion point of a t-operation performed by the transac-

tion.

We obtain a t-complete history H̄ from H as follows.

A serialization S is obtained by associating serialization

points to transactions in H̄ as follows: for every trans-
action Tk in H that is complete, but not t-complete, we

insert tryCk · Ak immediately after the last event of Tk

in H .
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– If Tk is an updating transaction that commits, then

δTk
is ℓtryC

k

– If Tk is a read-only or aborted transaction, then δTk

is assigned to the linearization point of the last t-

read that returned a non-Ak value in Tk

<S denotes a total-order on transactions in the t-

sequential history S.

Claim 9 If Ti ≺H Tj, then Ti <S Tj

Proof This follows from the fact that for a given trans-

action, its serialization point is chosen between the first
and last event of the transaction implying if Ti ≺H Tj ,

then δTi
<E δTj

implies Ti <S Tj .

Claim 10 S is legal.

Proof We claim that for every readj(Xm) → v, there

exists some slow-path transaction Ti (or resp. fast-path)

that performs writei(Xm, v) and completes the event in

Line 36 (or resp. Line 71) such that readj(Xm) 6≺RT
H

writei(Xm, v).

Suppose that Ti is a slow-path transaction: since

readj(Xm) returns the response v, the event in Line 11

succeeds the event in Line 36 performed by tryCi. Since

readj(Xm) can return a non-abort response only after
Ti writes 0 to rm in Line 58, Ti must be committed in

S. Consequently, ℓtryC
i

<E ℓreadj(Xm). Since, for any

updating committing transaction Ti, δTi
= ℓtryC

i

, it

follows that δTi
<E δTj

.

Otherwise if Ti is a fast-path transaction, then
clearly Ti is a committed transaction in S. Recall that

readj(Xm) can read v during the event in Line 11 only

after Ti applies the commit-cache primitive. By the as-

signment of linearization points, ℓtryC
i

<E ℓreadj(Xm)

and thus, δTi
<E ℓreadj(Xm).

Thus, to prove that S is legal, it suffices to show

that there does not exist a transaction Tk that returns
Ck in S and performs writek(Xm, v′); v′ 6= v such that

Ti <S Tk <S Tj .

Ti and Tk are both updating transactions that com-

mit. Thus,

(Ti <S Tk) ⇐⇒ (δTi
<E δTk

)

(δTi
<E δTk

) ⇐⇒ (ℓtryC
i

<E ℓtryC
k

)

Since, Tj reads the value of X written by Ti, one of the

following is true: ℓtryC
i

<E ℓtryC
k

<E ℓreadj(Xm) or

ℓtryC
i

<E ℓreadj(Xm) <E ℓtryC
k

.

Suppose that ℓtryC
i

<E ℓtryC
k

<E ℓreadj(Xm).

(Case I:) Ti and Tk are slow-path transactions.

Thus, Tk returns a response from the event in

Line 29 before the read of the base object associated

with Xm by Tj in Line 11. Since Ti and Tk are both com-

mitted in E, Tk returns true from the event in Line 29

only after Ti writes 0 to rm in Line 58.

If Tj is a slow-path transaction, recall that

readj(Xm) checks if Xj is locked by a concurrent trans-
action, then performs read-validation (Line 13) be-

fore returning a matching response. We claim that

readj(Xm) must return Aj in any such execution.

Consider the following possible sequence of events:
Tk returns true from acquire function invocation, up-

dates the value of Xm to shared-memory (Line 36), Tj

reads the base object vm associated with Xm, Tk re-

leases Xm by writing 0 to rm and finally Tj performs

the check in Line 13. But in this case, readj(Xm) is
forced to return the value v′ written by Tm— contra-

diction to the assumption that readj(Xm) returns v.

Otherwise suppose that Tk acquires exclusive access

to Xm by writing 1 to rm and returns true from the
invocation of acquire, updates vm in Line 36), Tj reads

vm, Tj performs the check in Line 13 and finally Tk

releases Xm by writing 0 to rm. Again, readj(Xm) must

return Aj since Tj reads that rm is 1—contradiction.

A similar argument applies to the case that Tj is
a fast-path transaction. Indeed, since every data base

object read by Tj is contained in its tracking set, if

any concurrent transaction updates any t-object in its

read set, Tj is aborted immediately by our model(cf.
Section 3).

Thus, ℓtryC
i

<E ℓreadj(X) <E ℓtryC
k

.

(Case II:) Ti is a slow-path transaction and Tk is a

fast-path transaction. Thus, Tk returns Ck before the

read of the base object associated with Xm by Tj in

Line 11, but after the response of acquire by Ti in
Line 29. Since readj(Xm) reads the value of Xm to be

v and not v′, Ti performs the cas to vm in Line 36 af-

ter the Tk performs the commit-cache primitive (since

if otherwise, Tk would be aborted in E). But then the
cas on vm performed by Ti would return false and Ti

would return Ai—contradiction.

(Case III:) Tk is a slow-path transaction and Ti is

a fast-path transaction. This is analogous to the above

case.
(Case IV:) Ti and Tk are fast-path transactions.

Thus, Tk returns Ck before the read of the base ob-

ject associated with Xm by Tj in Line 11, but before

Ti returns Ci (this follows from Observations 1 and 2).
Consequently, readj(Xm) must read the value of Xm to

be v′ and return v′—contradiction.

We now need to prove that δTj
indeed precedes

ℓtryC
k

in E.

Consider the two possible cases:

– Suppose that Tj is a read-only transaction. Then,

δTj
is assigned to the last t-read performed by Tj
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that returns a non-Aj value. If readj(Xm) is not

the last t-read that returned a non-Aj value, then

there exists a readj(X
′) such that ℓreadj(Xm) <E

ℓtryC
k

<E ℓreadj(X′). But then this t-read of X ′

must abort by performing the checks in Line 13 or
incur a tracking set abort—contradiction.

– Suppose that Tj is an updating transaction that

commits, then δTj
= ℓtryC

j

which implies that

ℓreadj(X) <E ℓtryC
k

<E ℓtryC
j

. Then, Tj must

neccesarily perform the checks in Line 32 and return

Aj or incur a tracking set abort—contradiction to
the assumption that Tj is a committed transaction.

The proof follows.

The conjunction of Claims 9 and 10 establish that Al-
gorithm 1 is opaque.

Theorem 11 There exists an opaque HyTM imple-

mentation M that provides uninstrumented writes, in-

visible reads, progressiveness and wait-free TM-liveness
such that in every execution E of M, every read-

only fast-path transaction T ∈ txns(E) accesses

O(|Rset(T )|) distinct metadata base objects.

Proof (TM-liveness and TM-progress) Since none of
the implementations of the t-operations in Algorithm 1

contain unbounded loops or waiting statements, Al-

gorithm 1 provides wait-free TM-liveness i.e. every t-

operation returns a matching response after taking a

finite number of steps.
Consider the cases under which a slow-path trans-

action Tk may be aborted in any execution.

– Suppose that there exists a readk(Xj) performed by
Tk that returns Ak from Line 13. Thus, there exists

a transaction that has written 1 to rj in Line 50,

but has not yet written 0 to rj in Line 58 or some

t-object in Rset(Tk) has been updated since its t-

read by Tk. In both cases, there exists a concurrent
transaction performing a t-write to some t-object in

Rset(Tk), thus forcing a read-write conflict.

– Suppose that tryCk performed by Tk that returns

Ak from Line 30. Thus, there exists a transaction
that has written 1 to rj in Line 50, but has not

yet written 0 to rj in Line 58. Thus, Tk encoun-

ters write-write conflict with another transaction

that concurrently attempts to update a t-object in

Wset(Tk).
– Suppose that tryCk performed by Tk that returns

Ak from Line 32. Since Tk returns Ak from Line 32

for the same reason it returns Ak after Line 13, the

proof follows.

Consider the cases under which a fast-path transaction

Tk may be aborted in any execution E.

– Suppose that a readk(Xm) performed by Tk re-

turns Ak from Line 67. Thus, there exists a con-

current slow-path transaction that is pending in its

tryCommit and has written 1 to rm, but not re-

leased the lock on Xm i.e. Tk conflicts with another
transaction in E.

– Suppose that Tk returns Ak while performing a

cached access of some base object b via a trivial

(and resp. nontrivial) primitive. Indeed, this is pos-
sible only if some concurrent transaction writes (and

resp. reads or writes) to b. However, two trans-

actions Tk and Tm may contend on b in E only

if there exists X ∈ Dset(Ti) ∩ Dset(Tj) and X ∈
Wset(Ti) ∪Wset(Tj). from Line 30. The same argu-
ment applies for the case when Tk returns Ak while

performing commit-cachek in E.

(Complexity) The implementation uses uninstrumented
writes since each writek(Xm) simply writes to vm ∈
DXm

and does not access any metadata base object.

The complexity of each readk(Xm) is a single access

to a metadata base object rm in Line 67 that is

not accessed any other transaction Ti unless Xm ∈
Dset(Ti). while the tryCk just calls cache-commitk that

returns Ck. Thus, each read-only transaction Tk ac-

cesses O(|Rset(Tk)|) distinct metadata base objects in

any execution.

6.2 Providing partial concurrency at low cost

We showed that allowing fast-path transactions to run

concurrently in HyTM results in an instrumentation
cost that is proportional to the read-set size of a fast-

path transaction. But can we run at least some transac-

tions concurrently with constant instrumentation cost,

while still keeping invisible reads?

Algorithm 2 implements a slow-path progressive
opaque HyTM with invisible reads and wait-free TM-

liveness. To fast-path transactions, it only provides

sequential TM-progress (they are only guaranteed to

commit in the absence of concurrency), but in return
the algorithm is only using a single metadata base ob-

ject fa that is read once by a fast-path transaction and

accessed twice with a fetch-and-add primitive by an up-

dating slow-path transaction. Thus, the instrumenta-

tion cost of the algorithm is constant.

Intuitively, fa allows fast-path transactions to detect

the existence of concurrent updating slow-path transac-

tions. Each time an updating slow-path updating trans-

action tries to commit, it increments fa and once all
writes to data base objects are completed (this part of

the algorithm is identical to Algorithm 1) or the trans-

action is aborted, it decrements fa. Therefore, fa 6= 0
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Algorithm 2 Opaque HyTM implementation with progressive slow-path and sequential fast-path TM-progress;

code for Tk by process pi

1: Shared objects:

2: vj ∈ D, for each t-object Xj

3: allows reads, writes and cas
4: rj ∈ M, for each t-object Xj

5: allows reads, writes and cas
6: Count, fetch-and-add object

Code for slow-path transactions

7: tryCk(): // slow-path

8: if Wset(Tk) = ∅ then

9: Return Ck

10: locked := acquire(Wset(Tk))
11: if ¬ locked then

12: Return Ak

13: Count.add(1)
14: if isAbortable() then

15: release(Lset(Tk))
16: Return Ak

17: for all Xj ∈Wset(Tk) do

18: if vj .cas((ovj , kj), (nvj , k)) then

19: Oset(Tk) := Oset(Tk) ∪ {Xj}
20: else

21: Return undo(Oset(Tk))

22: release(Wset(Tk))
23: Count.add(−1)
24: Return Ck

Code for fast-path transactions

25: readk(Xj ): // fast-path

26: if Rset(Tk) = ∅ then

27: l← read(Count) // cached read

28: if l 6= 0 then

29: Return Ak

30: (ovj , kj) := read(vj) // cached read

31: Return ovj

32: writek(Xj, v): // fast-path

33: vj .write(nvj , k) // cached write

34: Return ok

35: tryCk(): // fast-path

36: commit-cachei // returns Ck or Ak

means that at least one slow-path updating transaction

is incomplete. A fast-path transaction simply checks if
fa 6= 0 in the beginning and aborts if so, otherwise, its

code is identical to that in Algorithm 1. Note that this

way, any update of fa automatically causes a tracking

set abort of any incomplete fast-path transaction.

Theorem 12 There exists an opaque HyTM imple-

mentation that provides uninstrumented writes, invis-

ible reads, progressiveness for slow-path transactions,

sequential TM-progress for fast-path transactions and

wait-free TM-liveness such that in every its execution
E, every fast-path transaction accesses at most one

metadata base object.

Proof The proof of opacity is almost identical to the
analogous proof for Algorithm 1 in Lemma 3.

As with Algorithm 1, enumerating the cases under
which a slow-path transaction Tk returns Ak proves

that Algorithm 2 satisfies progressiveness for slow-path

transactions. Any fast-path transaction Tk; Rset(Tk) 6=
∅ reads the metadata base object Count and adds it
to the process’s tracking set (Line 27). If the value of

Count is not 0, indicating that there exists a concurrent

slow-path transaction pending in its tryCommit, Tk re-

turns Ak. Thus, the implementation provides sequential

TM-progress for fast-path transactions.

Also, in every execution E of M, no fast-path write-

only transaction accesses any metadata base object and

a fast-path reading transaction accesses the metadata
base object Count exactly once, during the first t-read.

7 Related work

The term instrumentation was originally used in the

context of HyTMs [13, 35, 40] to indicate the overhead

a hardware transaction induces in order to detect pend-

ing software transactions. The impossibility of design-

ing HyTMs without any code instrumentation was in-
formally suggested in [13]. We prove this formally in

this paper.

In [8], Attiya and Hillel considered the instrumenta-
tion cost of privatization, i.e., allowing transactions to

isolate data items by making them private to a process

so that no other process is allowed to modify the pri-

vatized item. The model we consider is fundamentally
different, in that we model hardware transactions at

the level of cache coherence, and do not consider non-

transactional accesses. (In particular, neither data nor
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meta-data objects are private in our model.) The proof

techniques we employ are also different.

Uninstrumented HTMs may be viewed as being

disjoint-access parallel (DAP) [9,30,34]. As such, some

of the techniques used in the proof of Theorem 4 extend
those used in [9,21,25]. However, proving lower bounds

on the instrumentation costs of the HyTM fast-path is

challenging, since such t-operations can automatically

abort due to any contending concurrent step.
Circa 2005, several papers introduced HyTM im-

plementations [6, 15, 32] that integrated HTMs with

variants of DSTM [28]. These implementations provide

nontrivial concurrency between hardware and software

transactions (progressiveness), by imposing instrumen-
tation on hardware transactions: every t-read operation

incurs at least one extra access to a metadata base ob-

ject. Our Theorem 6 shows that this overhead is un-

avoidable. Of note, write operations of these HyTMs
are also instrumented, but our Algorithm 1 shows that

it is not necessary.

Implementations like PhTM [35] and Hybrid-

NOrec [13] overcome the per-access instrumentation

cost of [15, 32] by realizing that if one is prepared to
sacrifice progress, hardware transactions need instru-

mentation only at the boundaries of transactions to de-

tect pending software transactions, à la Transactional

Lock Elision (TLE) [38]. Inspired by this observation,
our HyTM implementation described in Algorithm 2

overcomes the linear per-read instrumentation cost by

allowing hardware readers to abort due to a concur-

rent software writer, but maintains progressiveness for

software transactions, unlike [13,35,36]. Recent experi-
mental results on today Intel and IBM POWER8 HTMs

show that instrumentation is indeed a huge cost to con-

currency in opaque HyTMs [10, 11, 20], thus demon-

strating that the lower bound costs established in this
paper also exist in practice.

References [26, 40] provide detailed overviews on

HyTM designs and implementations. The software com-

ponent of the HyTM algorithms presented in this

paper is inspired by progressive STM implementa-
tions [14, 17, 33] and is subject to the lower bounds for

progressive STMs established in [8, 23, 25, 33].

8 Concluding remarks

We have introduced an analytical model for HyTM that

captures the notion of cached accesses as performed

by hardware transactions. We then derived lower and

upper bounds in this model that capture the inher-
ent tradeoff between the degree of concurrency between

hardware and software transactions, and the metadata-

access overhead introduced on the hardware.

To precisely characterize the costs incurred by hard-

ware transactions, we made a distinction between the

set of memory locations which store the data values of

the t-objects, and the locations that store the meta-

data information. To the best of our knowledge, all
known HyTM proposals, such as HybridNOrec [13, 40],

PhTM [35] and others [15,32] avoid co-locating the data

and metadata within a single base object.

Recent work has investigated alternatives to the
STM fallback, such as sandboxing [2, 12], or hardware-

accelerated STM [43, 44], and the use of both direct

and cached accesses within the same hardware transac-

tion to reduce instrumentation overhead [20,32,40,41].

Specifically, [20] showed how to build efficient HyTMs
for IBM POWER8 architectures which allow the use of

direct accesses within hardware transactions to reduce

instrumentation overhead. Another recent approach

proposed reduced hardware transactions [36], where a
part of the slow-path is executed using a short fast-

path transaction, which allows to partially eliminate

instrumentation from the hardware fast-path. Amalga-

mated lock elision (ALE) was proposed in [3] which im-

proves over TLE by executing the slow-path as a series
of segments, each of which is a dynamic length hardware

transaction. We plan to extend our model to incorpo-

rate such schemes in future work.

Our HyTM model is a natural extension of previ-
ous frameworks developed for Software Transactional

Memory, and has the advantage of being relatively sim-

ple. We hope that our model and techniques will enable

more research on the limitations and power of HyTM

systems, and that our results will prove useful for prac-
titioners.
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