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The Structure Inventory of the Nuclear Pore Complex

Thomas U. Schwartz
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract

The nuclear pore complex is the principal gateway for molecular exchange between nucleus and 

cytoplasm across the nuclear envelope. Due to its sheer size of estimated 50–112 MDa and its 

complex buildup from about 500–1000 individual proteins, it is a difficult object to study for 

structural biologists. Here I review the extensive ensemble of high-resolution structures of the 

building blocks of the NPC. Concurrent with the increase in size and complexity, these latest, large 

structures and assemblies can now be used as the basis for hybrid approaches, primarily in 

combination with cryo-electron microscopic analysis, generating the first structure-based assembly 

models of the NPC. Going forward, the structures will be critically important for a detailed 

analysis of the NPC, including function, evolution, and assembly.
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Introduction

One of the hallmarks of eukaryotic life is the compartmentalization of the cell in the form of 

membrane-enclosed organelles. By establishing a nucleus, eukaryotes spatially separate 

transcription from translation, which enables the sophisticated gene expression regulation 

that sets them apart from prokaryotes [1,2]. To cope with the enormous burden of molecular 

exchange across the nuclear envelope, nuclear pore complexes (NPCs) have evolved to 

exchange cargo at an enormous speed and with high selectivity. It is estimated that an 

individual NPC in a human cell can transport up to 80 MDa of material within 1 second [3]. 

How the NPC is built to perform this task is a central question of cell biology.

NPCs are remarkably complicated and elaborate protein assemblies. Analyzing the protein 

composition of NPCs from various eukaryotic origin reveals that they all share a set of ~30 

nucleoporins (Nups) [4–9]. By various electron microscopic techniques an eightfold 

rotational symmetry of the NPC is observed, therefore it is assumed that most nucleoporins 

occur in multiples of eight within the NPC [10–13]. NPCs are positioned in circular 
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openings that perforate the nuclear envelope, at sites where inner and outer nuclear 

membrane are fused. Structures of the assembled NPC have been visualized by various EM 

techniques, with the best resolved density maps obtained using cryo electron tomography 

(cryo-ET) with human and frog specimen [14,15]. In these maps the principal dimensions 

and the organization into distinct subassemblies are observable (Figure 1). The donut-shaped 

NPC is split into three ring moieties, each displaying a lattice-like arrangement. The three 

rings are termed cytoplasmic ring, inner ring, and nucleoplasmic ring, respectively. The 

connections between the three rings are less well delineated and appear as rather loose. The 

three rings are sandwiched between cytoplasmic extensions and a massive nuclear structure 

called basket. These more peripheral structures are visible in several EM applications 

[16,17], but they are currently left out from cryo-ET studies of the NPC for technical 

reasons. A majority of the structural elements of the NPC have been elucidated primarily 

using X-ray crystallography, mainly over the past decade. This inventory now constitutes an 

essential component for generating detailed composite structures of the NPC. The level of 

detail is dictated by the 2–3 nm resolution attained with cryo-ET analysis [14,15,18], which 

is sufficient to place protein domains in a growing number of NPC subassemblies.

The assembly from subcomplexes

The NPC is a remarkably modular structure. While the eightfold rotational symmetry was 

recognized early on in the microscopic analysis of the NPC [19] further degrees of 

modularity were successively discovered over time. The protein inventory of the NPC has 

been studied for a very diverse set of eukaryotes, including trypanosomes, fungi, plants, 

animals and humans [4–9]. In all cases about 30 different nucleoporins were found (Figure 

2). Nup names are historically based on their molecular weight. Since the homology 

between many nucleoporins was not appreciated early on, it lead to the unfortunately 

convoluted Nup nomenclature of today. However, it is now evident that a set of about 20 

nucleoporins appears to be universally conserved among all eukaryotes [8,20,21]. The other 

~10 Nups are more divergent and are likely to define species-specific differences. 

Throughout this review I will use separate abbreviations for S. cerevisiae (sc) and H. sapiens 
(hs) as guides through the muddled nomenclature. With mass estimates for the entire NPC 

ranging from ~50 to ~112 MDa [22–24] it is obvious that this can only be accounted for 

assuming multiple copies of each Nup. All published stoichiometric measurements are based 

on the assumption that the eightfold rotational symmetry is maintained on the protein level, 

i.e., that nucleoporins occur in multiples of eight copies [5,25]. Nucleoporins are organized 

in a small set of subcomplexes [26], which are primarily defined by the stability of protein 

interactions. Many of these subcomplexes can be isolated by pull-down experiments [24,27–
30]. The stability of them varies from species to species, but that they are principally 

conserved is generally accepted. The thermophilic fungus Chaetomium thermophilum (ct), 

and its closely related family members, are valuable model organisms since they often 

provide subcomplexes of higher stability for biochemical and structural analysis [9,31–34].

The largest subcomplex of the NPC is the Y complex, which forms a Y-shaped structure, 

hence its name [35]. In its simplest from the Y complex has six members, scNup84 

(hsNup107), scNup85 (hsNup85), scNup120 (hsNup160), scNup133 (hsNup133), 

scNup145C (hsNup96), and scSec13 (hsSec13) (Fig. 3a) [33]. Depending on the species, it 
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can have up to four additional proteins, Nup37, Nup43 ELYS or ELY5, and Seh1 

[6,28,36,37]. The Y complex is one of the principal scaffold elements of the NPC that shares 

intriguing similarities with vesicle coats [38–40]. The Y complex is now considered to be 

the main component of the nuclear and cytoplasmic rings [14,18,41,42]. The second major 

scaffold unit is the inner ring complex (IRC), comprising scNup53/59 (hsNup35), scNic96 

(hsNup93), scNup188 (hsNup188) or scNup192 (hsNup205), and scNup157/170 

(hsNup155) [43]. The trimeric scNsp1 (hsNup62)-scNup57 (hsNup54)-scNup49 (hsNup58) 

complex is anchored to the IRC via scNic96 (hsNup93) [32,44–46]. Sandwiching the central 

three-ring stack are cytoplasmic and nucleoplasmic elements. A second pool of scNsp1 

(hsNup62) forms a complex together with scNup82(hsNup88) and scNup159 (hsNup214) 

[47,48], located on the cytoplasmic side. This complex further recruits scDyn2 [49], as well 

as scNup116 or scNup100 or scNup145N(hsNup98) [50]. HsNup358 is another major 

cytoplasmic Nup, but missing in yeast.

On the nucleoplasmic side, several proteins, scNup1, scNup2(hsNup50), scNup60, 

hsNup153 and scMlp1/2(hsTpr) are thought to build up the nuclear basket.

Finally, the NPC assembly is anchored in the pore membrane via a set of transmembrane 

proteins, scNdc1(hsNdc1), scPom33, scPom34, scPom152, hsPom121 and hsNup210. 

Below, I take an inventory of the protein structures that make up the NPC and highlight 

general principles, differences between organisms, and discuss open questions.

Components of the nuclear ring and the cytoplasmic ring

The notion that the nucleoplasmic and cytoplasmic rings may be predominately built from Y 

complex units was originally based on immunogold labeling experiments and computational 

modeling [5,24]. Even though the resolution of these studies was limited, they indicated a 

tendency for the Y complex components to be more peripheral than the components that are 

now considered to be the members of the IRC. In addition, Lutzmann et al. showed that the 

seven Y complex components from S. cerevisiae could be recombinantly expressed and 

reconstituted into a stable assembly of distinct shape, indicating that a high-resolution 

structural analysis may be feasible [35].

Closely following the technological developments in recombinant protein production, 

particularly of assemblies, the Y complex has been crystallized in pieces, increasing in size 

and complexity over the years. Structure prediction tools indicated early on that the majority 

of the complex would likely be built from mainly two simple elements, stacks of α-helical 

repeats and β-propeller structures [26,38,51]. Structural comparison with other cellular 

systems and the understanding that Sec13 is part of the NPC and COPII vesicle coats led to 

the provocative hypothesis that vesicle coats and the NPC are evolutionarily linked 

[38,39,52].

Experimental analysis partially confirmed, and partially discredited the computational 

structure predictions (Figure 3). Sec13, Seh1, Nup37, and Nup43 are indeed all βpropeller 

proteins [40,53–55]. In addition, scNup120 (hsNup160), Nup133, and hsELYS have N-

terminal β-propeller domains, as predicted, each followed by a large, α-helical region 
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[51,54,56,57]. But this highly simplistic categorization into β-propellers and αhelical repeats 

glosses over many, structurally highly significant findings.

First, Sec13 and Seh1 fold into unusual six-bladed, open β-propellers, which are closed by a 

seventh blade provided in trans by their respective binding partners. Interestingly, both, 

Sec13 and Seh1, can be found in complex with multiple proteins. Besides scNup145C 

(hsNup96) in the NPC, Sec13 can also bind Sec31 and Sec16 in the COPII vesicle coating 

system [53,58]. These interactions are mutually exclusive. Sec13 and Seh1 are furthermore 

found as a member of the SEACAT/GATOR2 amino-acid sensing arm of the TOR/mTOR 

pathway presumably anchored via an insertion-blade as well [59,60].

Second, with regard to the helical domains in scNup84 (hsNup107), Nup85, scNup120 

(hsNup160), Nup133, and scNup145C (hsNup96), their three-dimensional structures fall 

into three distinct categories (Fig. 3d–f). They all form elongated structures, but their helical 

arrangements are quite distinct [22,57]. We previously categorized the helical domains of 

scNup84(hsNup107), Nup85 and scNup145C(hsNup96) into one group, which we termed 

the ancestral coatomer element 1 (ACE1) (Fig. 3d), because it is specifically related to 

Sec31 and Sec16 in the COPII vesicle system [40,58]. Characteristic for the ACE1 element 

is a distinct fold-back architecture that involves a core set of ~28 α-helices, generating three 

subdomains. The first three helices of the ACE1 pair with helices α13–19 to form the trunk, 

helices α5–11 the crown, and α21–28 the tail [22]. This fold is clearly distinct from the large 

class of so-called α-solenoid proteins, which are built from continuous stacks of two- or 

three-helix elements [61]. ACE1 proteins cannot be superimposed on α-solenoid proteins in 

a meaningful way (Figure 3) and homology modeling programs such as HHpred [62] also 

distinguish between these folds unambiguously. This structural similarity provides specific, 

experimental evidence that the NPC and vesicle coating systems have architectural 

similarities that point to a likely common ancestor dating back to the early eukaryotic 

evolution.

ScNup120(hsNup160) forms a unique L-shaped molecule, with little overall similarity to 

any other protein (Fig. 3e) [54,56,63,64]. The N-terminal β-propeller is fully integrated into 

an ~80 kDa N-terminal domain (NTD) which also contains ~15 additional α-helices. There 

is no regularity within this helical arrangement. The topology of the scNup120(hsNup160)-

NTD, with its interwoven secondary structure elements, suggests that it is rather inflexible. 

The C-terminal domain (CTD), however, is different. It emanates from the NTD at a 90° 

angle and is largely built from 7 helical pairs that stack on top of one another similar to 

HEAT and TPR-repeat proteins. In contrast to the NTD, the CTD allows for significant 

bending flexibility.

In contrast to scNup120(hsNup160), Nup133 has a flexibly connected N-terminal βpropeller 

and C-terminal α-helical domain [51,65]. The Nup133-CTD has 28 α-helices and is 

elongated (Fig. 3f) [57]. It can be split into 4 separate subdomains, which are flexibly 

connected.

Taken together, the differences in the helical topologies of the Y complex constituents are 

important in order to understand the possible flexibilities of the assembled Y complex. 
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Within the past two years, three labs have determined the structure of the assembled Y 

complex independently, each using a different strategy. Stuwe et al. solved the 7.4 Å crystal 

structure of a heterohexameric sc(Nup145C-Nup120-Nup85-Nup84-Sec13-Seh1) assembly 

using a synthetic antibody as a crystallization-chaperone (Fig. 3b) [66]. Kelley et al. solved 

the 4.1 Å crystal structure of a heterotetrameric Nup120-Nup145C-Nup85-Sec13 assembly 

from M. thermophila (mt) and combined it with previously solved crystal structures to 

generate a composite structure of the Y complex (Fig. 3a) [33]. Finally, von Appen et al. 

used a ~2 nm cryo-ET map to build a backbone model of a nonameric human Y complex 

based on existing crystal structures and homology modeling (Fig. 3c) [14]. All these 

approaches have their individual strengths and limitations. The heterohexameric yeast 

structure by Stuwe et al. (Fig. 3b) is the largest continuous Y fragment, but the limited 

resolution does not allow for complete sequence assignment, and the synthetic antibody may 

influence the conformation. The heterotetrameric complex by Kelley et al. (Fig. 3a) provides 

the details of the intricate interaction between the three arms of the Y, but it must be 

combined with other fragments, from other species, to generate a composite structure. The 

nonameric human Y structure benefits from using cryo-ET data to being perhaps the closest 

match to the in vivo situation, however, the resolution is rather modest and the model 

incomplete at the junction of the three arms of the Y structure (Fig. 3c). Taken together, 

though, these three structures are highly complementary and in combination provide a fairly 

complete picture of the Y complex. The overall dimensions of the assembly are about 40 nm 

by 20 nm by 8 nm, reflective of the highly branched shape. When superposed, the three 

structures are not identical, but differ by the relative position of the three arms. These 

differences can largely be explained by the expected flexibility of the Y complex and are 

reflected in observations made in numerous experiments, including EM and crystallographic 

analyses, modeling, as well as limited proteolysis [14,18,54,66,67].

The purpose of the flexibility in the context of the NPC is not yet understood. The Beck 

group proposed a model for the CR and NR segments of the NPC, in which eight copies of 

the Y complex form a circular head-to-tail arrangement [14,18]. Two such eight-membered 

rings arrange in a slightly offset manner to generate the so-called ‘reticulate two-ring 

model’. This NPC model requires some flexibility of the Y complex such that it can adopt 

the two different conformations of the two rings. The observed flexibility of isolated Y 

complexes is, however, much more pronounced than required for docking into the cryo-ET 

map [14]. Therefore, one can speculate about several possibilities that may explain the 

existence of the observed Y complex flexibility. First, averaging procedures in cryo-ET may 

filter out certain, less populated conformational states of the Y complex; such states may 

conceivably be more distorted. Second, the assembly pathway of the NPC may require more 

extreme contortions of the Y complex. Building the 3D structure of the NPC in a confined 

space, from many subcomplexes, is a complicated puzzle that is difficult to imagine being 

carried out with rigid protein assemblies. Further, it is unclear if the transport of certain 

molecules or other factors may require NPC conformational flexibility. Last but not least, the 

NPC composition may not be monolithic, but possibly the Y complex may need to adapt to 

different structural contexts, within different NPCs within a cell, or between different cell 

types.
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Components of the inner ring complex

The IRC of the NPC consists of scNup53/59 (hsNup35), scNic96 (hsNup93), scNup157/170 

(hsNup155), Nup188 and scNup192 (hsNup205) [9,31]. The trimeric sc(Nsp1-Nup57-

Nup49) hs(Nup62-Nup58-Nup54) FG-Nup complex is anchored to the IRC via scNic96 

(hsNup93) [32,45]. The scNup53/59 and scNup157/170 pairs result from the whole genome 

duplication that occurred about 100 million years ago in yeast evolution, and are therefore 

specific to S. cerevisiae and very close relatives [68]. Other organisms typically have only 

one paralog of each protein.

The structural characterization of the IRC lags behind the analysis of the Y complex (Fig. 4). 

scNup53 (hsNup35) is a largely unstructured protein, except for a central 12 kDa 

dimerization domain (Fig. 4a) [69]. scNic96 (hsNp93) has isolated N-terminal helices, but is 

otherwise structured around a 65 kDa ACE1 domain (Fig. 4b) [44,70], as described above 

for the Y complex members Nup84, Nup85, and Nup145C (Fig. 3d). scNup157/170 is 

completely structurally characterized, and consists of an N-terminal β-propeller loosely 

integrated with a C-terminal stacked, α-helical domain (Fig. 4c.) [57,71]. It is interesting to 

note that scNup157/170 (hsNup155) has a recognizable structural homolog in the Y 

complex as well, namely Nup133 [57]. The helical domains superpose reasonably well, but 

the N-terminal β-propeller appears to be more flexibly attached in Nup133 [57,71]. These 

structural similarities between components of the Y complex and the IRC suggest divergent 

evolution from an ancestral NPC in early eukaryotic evolution, which likely consisted of 

fewer nucleoporins than all the extant versions of the NPC [38,40,72].

Finally, Nup188 and scNup192 (hsNup205) are the largest universally conserved Nups and 

their structures are related. Both proteins form superhelical arrangements with considerable 

flexibility. The predominant shape of the isolated proteins is that of a question mark, as 

determined by negative stain EM analysis [73,74]. However, other states can also be found 

in 2D classifications. An N-terminal 110–130 kDa region has been crystallized from 

mtNup188, scNup192, and ctNup192 [74–76]. In Nup188, the fragment is a circular 

arrangement of 52 α-helices with an integrated SH3-like domain. In Nup192, the ends of 

this domain, in contrast, do not meet but arrange to form a lock washer. While the middle, 

~40 kDa region of Nup188 and Nup192 is not known experimentally, it can be modeled with 

high confidence. Together with the crystal structure of the 40 kDa C-terminal domain the 

full-length structure can be composed reasonably well (Fig. 4d) [74]. The superhelical 

structures of Nup188 and Nup192 are reminiscent of nuclear transport factors, such as 

importin-α and importin-β[77–80]. This raised the question of a potential functional 

relationship. Indeed, mtNup188 and mtNup192 have been shown to have FG-binding 

activity and they can be transported through the NPC by facilitated diffusion [74] 

Furthermore, ctNup53 binds ctNup192 involving the same residues with which it also binds 

importin-α, another indication of relatedness [76]. While the structure inventory of the IRC 

is largely completed, the assembly is still, compared to the cytoplasmic ring, poorly 

understood. Binary interactions are well characterized. scNic96(hsNup93) binds Nup188 

and scNup192 (hsNup205) in a mutually exclusive manner [32,81]. scNup53 binds 

scNup192, but not scNup188. And Nup53 also binds Nup157 as well as Nic96 directly. 

Taken together, a tetrameric ct(Nup53-Nic96-Nup157-Nup192) complex can be assembled 
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in vitro, but it does not seem to adopt a defined three-dimensional structure [31,32]. 

Consistent with a rather flexible assembly, the interactions sites between the IRC often 

comprise just short sequence elements, as shown for Nup53 and Nic96. Fitting to this 

concept of a ‘string-puppet-like’ assembly of the IRC is that the trimeric Nsp1 complex is 

primarily anchored to Nic96 only through an extended peptide interaction (Fig. 4e) [32]. The 

C-terminal, helical portions of Nsp1, Nup57, and Nup49 assemble in a 1:1:1 stoichiometry 

and together form an unusual tripartite trimeric coiled-coil, which folds back to form a 

‘number 4’ shaped structure (Fig. 4e). This trimeric assembly then binds a 40-residue 

peptide of Nic96, which seems to serve as a flexible anchor to the IRC. The trimeric 

assembly is likely conserved in all eukaryotes, as exemplified by the very similar trimeric 

Nup62-58-54 complex structure from X. laevis (Fig. 4f) [45].

Another curious element of the IRC is scNup145N (hsNup98), which is autocatalytically 

generated from its precursor scNup145 (hsNup98–96), together with scNup145C (hsNup96) 

[82]. ScNup145C (hsNup96), as mentioned above, is a core member of the Y complex, 

where it connects the long stalk to the hub. Nup145N has multiple binding partners, 

including Nup145C, as well as Nup157 and Nup192 in the IRC [31,32], and also Nup82 on 

the cytoplasmic side [50] (see below).

Components of the cytoplasmic side

Several nucleoporins are exclusively localized to the cytoplasmic side of the NPC and build 

the substructure commonly referred to as the cytoplasmic filaments (CFs). In comparison to 

the central three ring architecture of the NPC, the CFs are very different between species and 

need to be discussed separately.

In yeast, CFs comprise Nup82, Nup159, Gle1, Gle2, Dyn2, and Nup42 (Fig. 2). Nup82, 

Nup159, together with a pool of Nsp1 that is separate from the central Nsp1-Nup57-Nup49 

complex, form a trimeric 1:1:1 complex at the base of the filaments [48,83]. The three 

proteins are likely held together by an interaction between their C-terminal coiled-coil 

regions. Dyn2 is recruited to this complex via Nup159 [49,84]. In addition, the N-terminal β-

propeller domain of Nup82 interacts with Nup159 through a second interface (Fig. 5a) [85]. 

The Nup82 β-propeller further recruits Nup145N, Nup100 or Nup116 via their 

autoproteolytic domains, in a mutually exclusive manner [50,85]. This way, Nup116 anchors 

the mRNA export factor Gle2 through a GLEBS motif within its FG-rich, disordered N 

terminus [86].

At the N-terminal end of Nup159, separated by a long FG-rich middle segment, its 

βpropeller domain interacts with the RNA helicase Dbp5, which is regulated by its binding 

partner Gle1 (Fig. 5b) [87]. Finally, Gle1 recruits the FG-Nup Nup42 to complete the 

cytoplasmic filaments [88]. Anchoring of the cytoplasmic filaments to the NPC core is not 

entirely clear, but Nup100, Nup116, or Nup145N may play an important role through 

interaction with Nup192 [31,32]. Importantly, this interaction requires the central, 

disordered protein segment of Nup145N (or Nup100 or Nup116). While Nup145N can also 

bind Nup145C of the CR, this interaction is mutually exclusive with Nup82 binding. 

Therefore, Nup145C cannot serve as an anchoring point for the cytoplasmic filaments [50].
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The human CFs are more elaborate than their counterparts in yeast. This is primarily due to 

the presence of the vertebrate-specific Nup358, a massive, multidomain protein [89,90]. 

Nup358 contains an N-terminal ~80 kDa stacked α-helical domain followed by eight 

independent Ran-binding elements. Four of these elements are either Ran-GTP binding 

domains (RanBDs) [91] or Ran-GDP binding zinc finger modules [92,93]. RanBD has been 

shown to be critically important for protein export, specifically the disassembly of cargo-

NTR-RanGTP complexes [94–97]. The exact role of the Ran-GDP binding zinc fingers is 

still unclear, but one reasonable hypothesis is that they help in creating a ‘Ran sink’ at the 

NPC periphery. Such a function may be unnecessary in yeast, where the cell volume is much 

smaller (40–80fl for yeast vs. 500–4000fl for human cells) [98] and protein diffusion may 

suffice to replenish the Ran pool at the NPC. An E3 ligase domain, critical for RanGAP 

recruitment to the NPC [99–101], and a cyclophilin domain [102,103] complete Nup358.

The CF elements described for yeast are conserved in human as well. Although the human 

Nups are not tested as extensively as the fungal Nups, phylogenetic analysis suggests that 

the binary interactions between orthologs should be conserved across species. Thus, CFs 

share conserved features across all species, but vertebrates in particular have acquired 

additional functions.

One major function of the cytoplasmic filaments is the regulation of mRNA export, a 

process which is covered in several recent reviews [104–106].

Components of the nuclear basket

The nuclear basket of the NPC is structurally poorly understood. In yeast, it contains Nup1, 

Nup2, Nup60, Mlp1 and Mlp2. Nup1, Nup2 and Nup60 all harbor large FG-extensions 

combined with rather small, folded regions (Fig. 2). Nup1 and Nup60 have recently been 

shown to induce membrane curvature, mediated by an N-terminal amphipathic helix, 

followed by a short helical regions that infers NPC binding [107]. How these helical regions 

specifically connect to the NPC is not yet known. Similarly, Nup2 has been localized to the 

nucleoplasmic side, but the molecular details of its NPC integration are unknown. The bulk 

of the nuclear basket is likely built of Mlp1 and Mlp2, two related ~210 kDa proteins 

primarily composed of predicted coiled-coil regions [108]. Again, the direct interaction with 

the NPC core, as well as any detail on forming the distal ring through which the eight 

nucleoplasmic filaments are co-joined is not clear yet [109]. In humans, the nuclear basket 

contains, at least, hsTpr (scMlp1/2 ortholog), hsNup50 (scNup2 ortholog) and Nup153. The 

latter contains Ran-GDP binding zinc finger modules [92,93] closely related to those found 

in Nup358 on the CFs.

The lack of structural knowledge of the basket is unfortunate, but can likely be contributed 

to the difficulty of working with large proteins such as hsTpr (scMlp1/2). Since the nuclear 

basket is involved in various important processes, such as mRNA export and DNA repair 

[110], the field would benefit immensely from a better structural understanding.
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Membrane nucleoporins

Membrane anchorage of the NPC is another element of the NPC whose structural analysis is 

yet underdeveloped. Two types of direct membrane interaction are observed among 

nucleoporins, namely through amphipathic or through transmembrane helices. Amphipathic 

helices can partially insert into the membrane. This way, they can either induce or sense 

positive membrane curvature[111–113]. The N-terminal β-propellers of scNup120, 

hsNup133 and xlNup155 have all been shown to contain curvature-sensing amphipathic 

lipid packing sensor (ALPS) motifs and therefore are candidates for membrane binding 

[65,114]. For hsNup133 and xlNup155 this has been experimentally confirmed 

[14,114,115]. ScNup53, scNup1, and scNup60, on the other hand, appear to induce 

membrane curvature upon binding via amphipathic helices [107,116]. In contrast, Ndc1, 

scPom33, scPom34, and scPom152 are all Nups with trans-membrane helices. While Ndc1 

is the only universally conserved transmembrane-Nup, even this protein is not essential 

[117], except in yeast, where it has a second, critical function in the spindle pole body 

[118,119]. Therefore, it is possible that, in the end, the amphipathic helices are more 

important for NPC anchorage to the pore membrane than the transmembrane helices are. To 

say so conclusively, structural studies of the relevant proteins and subcomplexes, including 

the membrane, will be necessary.

Integrative approaches to determine the structure of the assembled NPC

The combined efforts, from several labs over the past decade, to determine crystal structures 

of nucleoporins have generated an invaluable set of building blocks that can now be used for 

integrative approaches to determine the assembled NPC structure. The assembled NPC is 

currently best studied by cryo-ET. This approach generates structures of 2–4 nm resolution, 

using a number of clever experimental tricks to improve the intrinsically high signal-to-noise 

ratio of the recorded images [14,15,120]. While docking of crystal structures into EM maps 

is highly accurate below ~10 Å resolution, when secondary structure elements start to 

become visible, reasonable assumptions can already be made at the current stage. This is 

particularly true for the Y complex, due to its large and relatively distinct shape, albeit with 

the caveat of being relatively flexible. The Beck group was the first to seriously attempt to 

position multiple copies of the Y complex into the cryo-ET map of a human NPC [18]. The 

proposed model has eight Y-complexes arranged in so-called ‘head-to-tail’ rings, with the 

‘head’ defined as the Nup120 arm of the Y complex, and the ‘tail’ defined as Nup133, 

positioned at the end of the long stalk. These rings are positioned symmetrically, both on the 

nucleoplasmic and the cytoplasmic side of the NPC [14]. Density analysis further suggests 

that CR and NR both contain two rings each, for a total of 32 copies of the Y complex per 

human NPC [14,18]. Positioning the components of the IRC is much more difficult and still 

tentative, primarily due to the absence of crystal structures of large assemblies. Another 

problem is that the current cryo-ET resolution does not allow for a proper distinction 

between various scaffold nups, which look rather indistinguishable at this level of detail. 

However, there is no doubt that the two approaches are converging and that the existing 

resolution gap will narrow over time. One important technique might be especially useful 

going forward, namely single particle cryo electron microscopy (cryo-EM). Using this 

method, one should be able to obtain larger subassemblies and visualize them at near atomic 
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resolution [121,122]. The most prominent bottleneck going forward are the ill-defined 

contact sites between neighboring subcomplexes, which appear to be only weakly bound to 

one another. Establishing those contact sites with high confidence will undoubtedly further 

refine current models of the assembled NPC.

Differences between species

While a majority of nucleoporins is conserved between all eukaryotes, it is becoming 

obvious that the NPC structures of various species have substantial differences. Those 

differences are especially pronounced when examining the nucleoplasmic and cytoplasmic 

extensions of the NPC by scanning electron microscopy [13,16,123], but they also include 

the three main scaffolding rings. Size estimates for the metazoan NPC and its yeast 

counterpart differ dramatically (~112 MDa vs. ~50 MDa) [22–24]. Unfortunately, an in situ 
tomographic reconstruction of the yeast NPC does not yet exist, which would provide the 

best data to differentiate possible gross differences between the species. Without that data, 

one is largely left with speculations. Since the core scaffold elements are mostly conserved 

(Fig. 2), a difference in mass by more than a factor of 2 would be most easily explained by 

differences in Nup copy numbers. For instance, the cytoplasmic and nucleoplasmic 8-

membered Y complex double rings, observed in the human NPC, may indeed only be single 

rings in yeast. Knockdown of the cytoplasmic and metazoan-specific Nup358 reduces the 

CR to a single ring, without a catastrophic effect for the NPC integrity as a whole [14]. This 

indicates that the difference between a single- and a double-Y ring may be smaller than 

anticipated. Another important aspect to consider is that the Y complex itself, for example, 

is about 50% larger in mass in human versus in thermophilic fungi. Such differences may 

well exist in other subcomplexes, too. Another ill-defined aspect of the NPC architecture is 

the potential role that nuclear transport receptors (NTRs) may play in it. NTRs are well 

known for their role in facilitating cargo transport through the NPC [77,124,125]. However, 

the evolutionary relationship between NTRs and certain scaffold nups [74–76] indicates that 

a strict separation of function may be an oversimplification. Together with the dynamic 

nature of the NPC, i.e., specific Nups with rather short dwell times [126], it may take a 

considerable effort to establish the molecular differences between NPCs from diverse 

eukaryotes.

Outlook

Much progress has been made toward the complete structural characterization of the NPC, 

one of the largest macromolecular complexes in the cell. We are witnessing the integration 

of experimental data from different sources providing first models of the assembled NPC. 

Improvements on experimental and computational techniques will further refine existing 

NPC models over the next decade. A particularly important role will likely be played by 

cryo-EM methods, which may substitute crystallographic analysis going forward. 

Particularly the analysis of subassemblies should profit from the ongoing revolution in EM 

technology [127,128]. The next big challenge is to arrive at a complete molecular 

description of the NPC, ideally by positioning all individual Nups within the NPC. Due to 

the dynamic nature of the NPC this will not be a simple endeavor. Progress will depend on 

finding tailored solutions for the specific challenges of the system. A molecular description 
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of the NPC should provide a test bed for dissecting the many diverse functions that NPCs 

perform, which I have mentioned in this review only in passing. Discovering the specific 

differences between the NPC architecture of diverse species may be particularly insightful to 

trace the evolution of this ancient eukaryotic invention and to unravel adaptations to diverse 

life styles.
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Research Highlights

• The inventory of crystal structures of the NPC is reviewed

• The NPC is a modular assembly built from a limited set of protein domains

• Integrative approaches start to unravel the molecular NPC architecture
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Figure 1. Overview of the Nuclear Pore Complex
The NPC embedded in the double membrane surrounding the nucleus of eukaryotic cells. 

The experimental tomographic structure EMD-3105 [14] is decorated with the nuclear 

basket and cytoplasmic filaments depicted schematically. CR, cytoplasmic ring; IRC, inner 

ring complex; NR, nucleoplasmic ring.
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Figure 2. Components of the Nuclear Pore Complex
Nucleoporins making up the NPC are listed. Nomenclature for yeast (Saccharomyces 

cerevisiae) and metazoa, respectively, is indicated. Nucleoporins are ordered according to 

the subassemblies they belong to. Major domain elements are color coded and illustrated by 

representative crystal structures. Cartoon length approximately represents the molecular 

weight of each nucleoporin. The majority of nucleoporins is built up from a small set of 

architectural elements. Notes: aA chain of Immunoglobulin (Ig) folds is predicted with 

certainty for the luminal portions of scPom152 and hsNup210, respectively. The exact 
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number of Igs is unknown. bTMEM33 is the human homolog of scPom33, but it is not yet 

experimentally confirmed as a Nup.
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Figure 3. Structures of Elements of the Nucleoplasmic/Cytoplasmic Rings
The Y complex is considered to be the main building block of the NR and CR. Panels a-c 

show different structures of the Y complex. (a) Composite crystal structure of the complete, 

heptameric Y complex of S. cerevisiae [33]. (b) Crystal structure of a contiguous hexameric 

subassembly of the Y complex, with a synthetic antibody (sAb, grey) as crystallization 

chaperone (PDB 4XMM) [66] (c) Composite EM structure of the human Y complex, 

obtained by docking crystal structures into a 23 Å cryo-ET density map (PDB 5A9Q) [14]. 

The three assemblies are superposed using the Nup145C element as template. Differences in 

the position of the three extremities of the Y shaped structure can largely be explained by the 

intrinsic flexibility of complex. (d–f) Three differently stacked helical elements within the Y 

complex. scNup145C (PDB 3JRO) (d) adopts the characteristic ACE1 fold-back 

architecture, shared with three other scaffold nups. spNup120 (PDB 4FHN) (e) and 

hsNup133 (PDB 1XKS, 3I4R) (f) each combine their helical domain with an N-terminal β-

propeller domain, but are otherwise structurally distinct. Color gradient to indicate the N-to-

C-terminal direction.
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Figure 4. Structures of Elements of the Inner Ring Complex
The main members of the IRC have been crystallized mostly individually (a–d). (a) 

Composite structure of mtNup188, based on crystal structures (PDB 4KF7, 4KF8) and 

modeling [74]. (b) Composite structure of scNup157/170 (3I5P, 4MHC) [57,71]. (c) Crystal 

structure of Nic96 (PDB 2QX5, 2RFO) [70]. (d) Crystal structure of the dimerization 

domain of murine Nup35 (scNup53 homolog) (PDB 1WWH) [69]. (e) Crystal structure of 

the ct(Nsp1-Nup57-Nup49-Nic96) complex (Nic96 in red), obtained with a synthetic 

antibody (sAb, grey) as crystallization chaperone (PDB 5CWS) [32]. (f) Crystal structure of 

the metazoan Nup62-Nup58-Nup54 complex, obtained with a nanobody (grey) as 

crystallization chaperone (PDB 5C3L) [45]. The comparison of the Nsp1- and Nup62 

complexes shows the remarkable conservation across the evolution of opisthokonts.
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Figure 5. Structures of Elements of the Cytoplasmic Filaments
The structures represented in panels (a) and (b) are the most complex assemblies of the CFs 

known so far. (a) The trimeric sc(Nup159-Dbp5-Gle1) complex (PDB 3RRM) is an 

important regulatory element for mRNA export [87]. (b) The sc(Nup159-Nup82-Nup116) 

complex (PDB 3PBP) likely represents the anchoring element for the CF to the main NPC 

scaffold [85], because of the additional contacts scNup116 and its paralogs scNup100 and 

scNup145N can form with other nups [31,32,50]. (c, d) Ran interacts at the NPC periphery, 

including CF and basket and predominantly in metazoa, with elements that recognize either 

Ran-GDP (PDB 3GJ3–8, 3CH5) or Ran-GTP (PDB 1RRP) [91–93]. All images are paired 

with a schematic representation of the interacting protein fragments, color-coded to match 

the cartoons.
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