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Abstract The performance of branch-and-bound algorithms for detestic global optimization is strongly
dependent on the ability to construct tight and rapidly esgent schemes of lower bounds. One metric of
the efficiency of a branch-and-bound algorithm is the cayeece order of its bounding scheme. This article
develops a notion of convergence order for lower boundifgses for constrained problems, and defines
the convergence order of convex relaxation-based and hgigna dual-based lower bounding schemes. It is
shown that full-space convex relaxation-based lower bimgndchemes can achieve first-order convergence
under mild assumptions. Furthermore, such schemes caevactécond-order convergence at KKT points,
at Slater points, and at infeasible points when secondrgrdi@twise convergent schemes of relaxations are
used. Lagrangian dual-based full-space lower boundingreek are shown to have at least as high a con-
vergence order as convex relaxation-based full-spacer Ibagnding schemes. Additionally, it is shown that
Lagrangian dual-based full-space lower bounding schectas\a first-order convergence even when the dual
problem is not solved to optimality. The convergence ordesomne widely-applicable reduced-space lower
bounding schemes is also analyzed, and it is shown that shelmes can achieve first-order convergence un-
der suitable assumptions. Furthermore, such schemes k@vasecond-order convergence at KKT points, at
unconstrained points in the reduced-space, and at infegmints under suitable assumptions when the prob-
lem exhibits a specific separable structure. The importahcenstraint propagation techniques in boosting the
convergence order of reduced-space lower bounding sch@néselping mitigate clustering in the process)
for problems which do not possess such a structure is deratecst
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1 Introduction

Global optimization has found widespread applicationsarious areas of engineering and the scienté} [
Deterministic global optimization algorithms attempt tetefmine an approximate optimal solution within a
specified tolerance and terminate with a certificate of itsnegdity in finite time [L3]. While efficient algo-
rithms are known for classes of convex optimization protdéh no such algorithms are currently known for
most classes of nonconvex problems. Deterministic glop&ihazation algorithms for nonconvex problems
usually involve the concept of partitioning the domain dirénching on’) the decision variable$3. The
performance of branch-and-bound algorithms for detestimglobal optimization is strongly dependent on
the ability to construct tight and rapidly convergent reiians of nonconvex functions.

Since the worst-case running time of all known branch-amghld algorithms is exponential in the di-
mension of the variables partitioned, it may be advantag¢outilize ‘reduced-space’ algorithms which only
require branching on a subset of the variables (as oppostdlispace’ branch-and-bound algorithms which
may branch on all of the variables) to guarantee converg&espite the potential advantages of reduced-space
algorithms for nonconvex problems,[9, 10, 38], such methods have not been widely adopted in the litera-
ture and in commercial software. One potential reason isrttust widely-applicable reduced-space branch-
and-bound algorithms often do not seem to exhibit favorablevergence rates compared to their full-space
counterparts42]. The convergence properties of reduced-space branciv@mad algorithms have not been
thoroughly investigated, although some progress has beele in this directiong, 38]. The reader is directed
to the work of Epperly and Pistikopoulo(] for a survey of reduced-space branch-and-bound algosithm

One metric of the efficiency of a deterministic branch-and+id algorithm is the order of convergence
of its bounding scheme, which, for the case of unconstragpiization, compares the rate of convergence
of an estimated range of a function to its true rang@l.[Recently, Bompadre and coworkers, p] devel-
oped the notions of Hausdorff and pointwise convergencererdf bounding schemes and established sharp
rules for the propagation of convergence orders of bounsiingmes constructed using McCormi2Kj| Tay-
lor [25], and McCormick-Taylor 28] models. In addition, they showed that if a function is twamatinuously
differentiable, the scheme of relaxations correspondiritstenvelopes is at least second-order pointwise con-
vergent which, in turn, implies Hausdorff convergence deast second-order. Najman and Mits@d][used
the framework developed irb] 6] to establish sharp rules for the propagation of convergemders of multi-
variate McCormick relaxations3f’]. Khan and coworkersl[7] developed a continuously differentiable variant
of McCormick relaxationsZ0, 37], and established second-order pointwise convergenaghehses of the dif-
ferentiable McCormick relaxations for twice continuouslifferentiable functions. Also note the definition of
rate of convergence of bounding schemes for geometric brand-bound methods proposed by Schobel and
Scholz B0], and the proof of second-order Hausdorff convergence ufieced forms in 18, 31]. Establishing
that a scheme of relaxations is at least second-order Hefisdovergent is important from many viewpoints,
notably in mitigating the so-called cluster effect in unswained global optimization7[ 39]. Recently, the
authors of this work have analyzed the cluster problem foistrained global optimization and determined
that, under certain conditions, first-order convergenddé®fower bounding scheme may be sufficient to avoid
the cluster problem at constrained mininidb][ However, an analysis of convergence order for constdaine
problems is currently lacking.

In this work, we investigate the convergence orders of samiespace and reduced-space deterministic
branch-and-bound algorithms by extending the convergemedysis of Bompadre and coworkers to con-
strained problems. Specifically, we propose a definitionarsfvergence order for lower bounding schemes,
analyze the convergence orders of commonly-used fullesfmeeer bounding schemes, and analyze the conver-
gence orders of some widely-applicable reduced-space loaending schemes in the literature. Throughout
this work, we tacitly assume that a branch-and-bound dlgaritilizes efficient heuristics for finding feasible
points which determine a global optimal solution early othie branch-and-bound tree.

This paper is organized as follows. Sectbformulates the problem of interest, and provides some back-
ground definitions. SectioB develops the notion of convergence order of a lower bounsidhgme, and Sec-
tion 4 provides some results on the convergence orders of comrogely full-space lower bounding schemes.
Sectionb lists some widely-applicable reduced-space lower bounsgainemes in the literature, provides some



Convergence-Order Analysis of Branch-and-Bound Algamitfor Constrained Problems 3

results on their convergence orders, and highlights theitapce of constraint propagation in reduced-space
branch-and-bound algorithms. Finally, Sect®lists the conclusions and some avenues for future work.

2 Problem Formulation and Background
Consider the problem

min f(x.y) P)

s.t.g(x,y) <0,
h(x,y) =0,
xeX, yey,

whereX C R™ andY c R™ are nonempty convex sefs; X x Y — R andg: X x Y — R™ are partially convex
with respect t, i.e., f(-,y) andg(-,y) are convex oiX for eachy € Y, h: X x Y — R™€ is affine with respect

to x, i.e.,h(-,y) is affine onX for eachy € Y, and0 denotes a vector of zeros of appropriate dimension. The
following assumption will be made throughout this work.

Assumption 1 The setsX andY are compact, and the functiorfisg, andh are continuous oX x Y.

When the dimensiony of theY-space corresponding to the nonconvexities in the funstioiProblem )
is significantly smaller than the dimensiog of the X-space, it may be computationally advantageous to
partition only theY-space during the course of a branch-and-bound algoritlssutaing, of course, that the
reduced-space algorithm is guaranteed to converge). Howibe convergence rate of a reduced-space branch-
and-bound algorithm may be different compared to a similfirsipace algorithm, which makes it difficult to
judge a priori whether using a reduced-space branch-andebapproach would be advantageous. Before we
analyze the convergence orders of some full-space andedeipace lower bounding schemes in the literature,
we need to define formally the notion of convergence ordercémstrained problems. For this purpose, we
review some relevant definition§,[6].

Throughout this work, we usi to denote the set of nonempty, closed, and bounded intempeless of
Z C R", Ry andR_ to respectively denote the sets of nonnegative and nomgoséals,zj to denote the
i component of a vectaz, (21,22, ,Zy) to denote a vector € R" with components,z,---,z, € R,

(v,w) to denote the column vectdv" WT]T corresponding to (column) vectovsandw, ||z|| to denote the

Euclidean norm of a vectare R", m to denote a vector-valued function with domaimnd codomailR™ "

corresponding to vector-valued functiogsZ — R™ andh : Z — R", conS) to denote the convex hull of a
setSc R", and in{S) to denote the interior of a s&cC R".

Definition 1 (Width of an Interval) LetZ = [Z,2]] x --- x [z;,Z] be an element ofR". The width ofZ,
denoted byw(Z), is given by

W(Z) = max (2’ —7).

Definition 2 (Distance Between Two Setd)etZ,V c R". The distance betweehandV, denoted byl(Z,V),
is given by
d(Z,V) = inf ||z—V].
zeZ,

veV

Note that the above definition of distance does not define dankbbwever, it will prove useful in defining
a measure of infeasibility for points X x Y for Problem P). The following result holds.



4 Rohit Kannan, Paul I. Barton

Lemmal Letz,v € R", and let KC R" be a convex cone. Then
d({z},K) —d({v}.K) <d({z—v},K).
Proof See B2]. O
Corollary 1 Letz,v € R™™". Then
d({z},R™ x {0}) —d({v},R™ x {0}) <d({z—V},R™ x {0}).
Proof This result is a direct consequence of Lemina O

Lemma 2 All norms onR" are equivalent. Specifically, jf(|, and||-||, are two norms inR" for any pq €
NU {+o} with p# q, then there exist constants,c; € R, such that g|z||, < ||z|4 < c2[|z],, ¥z € R".

Furthermore, for(p,q) = (1,2), ¢, = 1 provides a valid upper bound and fgp,q) = (+,2), ¢ = v/n
provides a valid upper bound.

Proof For the first part of the lemma, see, for instan@9, [Theorem 4.2]. The second part of the lemma
follows from the inequalities

n n n n
lzZi5=YyZ<yZ+ 20z[z)| = 12|
2 i; i; i;j:;l ! !

and

n
2 2
25 = 3 # <n max 2 =nlz|
i= =4y
for anyz € R". O

Definition 3 (Lipschitz Continuous Function) Let Z ¢ R". A function f : Z — R is said to be Lipschitz
continuous with Lipschitz constaM > 0 if | f(z1) — f(z2)| < M||z1 — 22|, Vz1,22 € Z.

Remark 1Locally Lipschitz continuous functions are Lipschitz donbus on compact subsets of their do-
mains. Therefore, the assumption that the functibng, andh in Problem P) are Lipschitz continuous on
X %Y is not particularly strong when Assumptidris made.

Definition 4 (Hausdorff Metric) Let X = [x-,xV] andY = [y-,yV] be two intervals inlR. The Hausdorff
metric betweerX andY, denoted bydy (X,Y), is given by

_ L u_ _ i _ i _
G (X,Y) = ma{[x- —y*[, 0 —y9) max{r;gxryg@x Yl maxipls y|}.

Definition 5 (Inclusion Function) LetV ¢ R" and supposé: V — R™Mis continuous. For ang C V, letf(Z)
denote the image & underf. A mappingF : IV — [R™is called an inclusion function fdron1V if, for every
Z eV, we havef(Z) C F(Z).

Definition 6 (Range Order) Let V C R" be a bounded set. Ldt:V — R be continuous, and €t be an
inclusion function forf onIV. The inclusion functiorF is said to have range of order> 0 at a pointv € V
if there existst > 0 such that for every € IV with v € Z,

w(F(2)) < tw(Z)°.

The functionf itself is said to have a range of order> 0 atv ¢ V if its image  has range of orden atv.
The functions= and f are said to have ranges of order> 0 onV if they have ranges of order (at leastyt
eachv € V, with the constant independent o¥.
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The reader is directed to RemaBior a discussion on the assumption that the/set the above definition
be bounded. Since the convergence order analysis in thik iwa@symptotic in nature (see Rematkand
Lemmab), we will need the following asymptotic notations.

Definition 7 (Big O and Little o Notations)LetZ C R, f:Z — R, andg: Z — R. We say thaf (z) = O(g(z))
asz— ze Zif and only if there exis®,M > 0 such that

If(2)| <Mlg(z)|, VzeZwith|z—Z <.
Similarly, we say thaf (z) = o(g(z)) asz— z < Z if and only if for all M’ > 0 there exist®’ > 0 such that
|f(2)] <M'|g(2)|, VzeZwith|z—Z <.
Note that unless otherwise specified, we conszdel0 in this work.
The following lemma is from Proposition 11.7 ifh4].

Lemma 3 Let Zc R" be nonempty, and :fZ — R and g: Z — R be bounded on Z. Then

supf(z) —supg(2)| < sudf(z) —g(2)|,

zeZ zeZ zeZ
inf f(2) —infg(2)| < fgzldf(Z) —9(2)|.

Definition 8 (Convex and Concave Relaxations{siven a convex seZ C R" and a functionf : Z — R, a
convex functionf$¥: Z — R is called a convex relaxation df on Z if f5V(z) < f(z), vz € Z. Similarly, a
concave functiorf5¢: Z — R is called a concave relaxation bfonZ if {3%(z) > f(z),vVze Z.

Definition 9 (Convex and Concave Envelopes¥iven a convex set C R" and a functiorf : Z — R, a convex
function f5“*": Z — R is called the convex envelope 6fon Z if f3"*"is a convex relaxation of onZ and
for every convex relaxatiori’ : Z — R, we havef;"*™(z) > £Y(z), vz € Z. Similarly, a concave function
f7%¢™:Z — R is called the concave envelope bfon Z if f;>*"is a concave relaxation df on Z and for

every concave relaxatioff: Z — R, we havef;**™(z) < f5%(z), vz € Z.

The following result establishes sufficient conditionsl@ver semicontinuity of the convex envelope. Note
that a weaker version of this result is presente®8) Corollary 17.2.1], and stronger versions of this resudt ar
stated without proof ing, Page 349] (where the assumption that the funcfias bounded above is relaxed)
and in B4, Page 253] (where the assumptions that the functimbounded above and the $®tis bounded
are relaxed).

Lemma 4 LetWcC R™ be a nonempty compact convex set antiVf— R be a lower semicontinuous function
on W bounded above by M. Lgff™ denote the convex envelope of f on W. TRgi¥'is lower semicontin-
uous on W.

Proof The functionf is lower semicontinuous on the compact\#&iff its epigraph{(x,r) : x e W,r > f(x)}
is closed. Consequently, the &t= {(x,r) : x e W,r > f(x),r <M} is compact. Theorem 17.2 ig§] implies
that conyS) is a compact convex set. Therefore, the set ¢8nv {(x,r) : x e W,r > f(x)} is closed, which
implies that{ (x,r) : x € W,r > f7"*™(x) } is closed, which in turn implies thdf;"*"is lower semicontinuous
onW. O

Remark 2 Although convex and concave relaxations of classes of fmmeican be constructed on general con-
vex sets, the typical application requires constructionetdixations on bounded intervals. Therefore, we will
implicitly assume that the se¥ andY are intervals and that relaxations are constructed onvialtem sub-
sequent sections. The assumption thandY are intervals is not restrictive since general convex cairgs
definingX andY that are available in factorable form can be equivalentigrreulated to appear as part of the
constraintg andh. The proposed definitions of convergence order in the neticsewill be based on schemes
of relaxations constructed on intervals. Note that similations of convergence order can be developed for
schemes of relaxations constructed, for instance, on &iawl
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3 Definitions of Convergence Order

This section reviews the definitions of convergence ordérscbemes of relaxation®,[ 6] and defines the
convergence order of a (reduced-space) lower boundingrezHeis also shown that the convergence order of
a convergent scheme of relaxations at a point is governeldedyrty intervals around that point. We begin with
the following definition, adapted fron®[ Definition 6], that defines schemes of relaxations in a redtgpace.

Definition 10 (Schemes of Convex and Concave Relaxationkgt V ¢ R™ andW C R™ be nonempty
convex sets, and ldt: V x W — R. Suppose, for everg € IW, we can construct functionf¥,, : V x Z — R
andf{S, :V x Z — R that are convex and concave relaxations, respectivefypalV x Z. The sets of functions
(1 7)zew and (1S 7)zenw define schemes of convex and concave relaxationfsinfW, respectively, and
the set of pairs of function§fY ,, 5%, )zenw defines a scheme of relaxations bfin W. The schemes of
relaxations are said to be continuous wHgh, and 7, are continuous oW x Z for eachZ € IW.

Bompadre and coworker5,[6] define Hausdorff convergence of inclusion functions. Nb#g an inclusion
function can be associated with schemes of relaxations atwaal way (see g, Definition 7]).

Definition 11 (Hausdorff Convergence Order of an Inclusion Rinction) LetV € TR™ andW c R™ be
nonempty setd): V x W — R be a continuous function, artdl be an inclusion function di onI(V x W).

The inclusion functiorH is said to have Hausdorff convergence of orfier 0 at a pointw € W if for each
boundedQ c W with w € Q, there existg > 0 such that

dny (R(V x Z),H(V x2)) < Tw(Z)P, vZeIQwithw e Z.

Moreover,H is said to have Hausdorff convergence of orfles 0 onW if it has Hausdorff convergence of
order (at least]3 at eachw € W, with the constant independent oiv.

In the context of (constrained) global optimization, thiédiwing definition of convergence of schemes of
convex and concave relaxations is more pertinent.

Definition 12 (Convergence Order of Schemes of Convex and Coave Relaxations)LetV ¢ R™, W C
R™ be nonempty convex sets, afidV x W — R be a continuous function. LétY ,)zenw and (17 ,)zew
respectively denote schemes of convex and concave redazaif f in W.

The scheme of convex relaxatiof;",,)zemw is said to have convergence of orger- 0 atw € W if for
each bounde® c W with w € Q, there existg®” > 0 such that

; _ : cv < 7OV B ;
(v,zg/xz f(v,2) (v,z;rel{/xz fyyz(v,2) <TW(Z)F, VZeIQwithw e Z.

Similarly, the scheme of concave relaxatidi§S ,)zenw is said to have convergence of orgier- 0 atw € W
if for each bounde® c W with w € Q, there existg® > 0 such that

sup £$8,(v,z)— sup f(v,2) < 1°W(Z)P, VvZeIQwithweZ.
(v,2)eVxZ (v,z)eVxZ

The scheme of relaxation{$Y, 7, 175, ;) zeiw is said to have (Hausdorff) convergence of orfler 0 atw € W
if the corresponding schemes of convex and concave retassatiave convergence of orders (at le@sgt
w. The scheme$f\Y ,)zew and (15 ,)zew are said to have convergence of orfler- 0 onW if they have
convergence of order (at leag)at eachw € W, with constantg® and1°¢ independent ofv.

Definition 13 (Pointwise Convergence Order of Schemes of Ceex and Concave Relaxations)etV C
R™, W C R™ be nonempty convex sets, afidV x W — R be a continuous function. L&Y ,)zenw and
(135 2)zew respectively denote schemes of convex and concave redagaif f in W. The scheme of convex
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relaxations( f3¥ ,)zcmw is said to have pointwise convergence of orgler 0 atw € W if for each bounded
Q c W with w € Q, there existg®’ > 0 such that

sup |f(v,2) — %z (v,2)| < T™W(Z)Y, VZ eIQwithwe Z.
(v,2)eVxZ

Similarly, the scheme of concave relaxatidri§S ;) zciw is said to have pointwise convergence of orger 0
atw € W if for each bounde®@ c W with w € Q, there existg®® > 0 such that

sup |35, (v,2) — f(v,2)| < 1%W(Z)", VZeIQwithw e Z.
(v,2)eVxZ

The scheme of relaxatiorfd¥ ,, £55 ) zew is said to have pointwise convergence of orger 0 atw € W if

the corresponding schemes of convex and concave relagdtae pointwise convergence of orders (at least)
y atw. Furthermore, the schemes of relaxations are said to hameypge convergence of ordgr> 0 onW if
they have pointwise convergence of order at lgest eachw € W, with constantg® and 7°¢ independent of

W.

Note that we simply say that a scheme of relaxatidf$; ,, 155 ,)zemw, of a functionf : V xW — R in
W has (pointwise) convergence ordenof O if it has (pointwise) convergence of ordeonW.

Remark 3Definitions11, 12, and13are based on a modification (sd®[Definition 9.2.35]) of the definitions
of convergence order proposed H 6], which incorporates the s€ Note that the use of the s@tis necessary
when the schemes of relaxations are constructed on unbdwade, but may be omitted (setW) when the
schemes of relaxations are constructed over bounded skish(vg the typical application). Henceforth, the
use ofQ shall be omitted for brevity since we are only interesteddmpact set¥ andW (see Assumptiod).

Remark 4The pointwise convergence order of a convergent schemerviegcand concave relaxations on
W is governed by the strength of the relaxations over smadiriais inW. This observation is made pre-
cise in Lemmab. Also note that the pointwise convergence order of scherhestteer convex, or concave
relaxations (as per Definitioh3) can be arbitrarily high for nonlinear functions in contrés the pointwise
convergence order of schemes of conaad concave relaxations (see Theorem 25).[For instance, consider
the functionf : [0,1] x [0,1] =:V x W — R with f(v,w) = Vv? — /wand a corresponding scheme of convex re-
laxations( f$".,)zeiw defined byf&Y., (v, z) = v2 — /W on [wh,wY] C [0, 1]. The scheme of convex relaxations
(15%.2)zemw has arbitrarily high pointwise convergence ordeién

Remark 5Unlike the pointwise convergence order of a scheme of rélaxs, the convergence order of a
scheme of convex and concave relaxations can be arbitkagtyfor any function. For instance, consider the
scheme of constant relaxations of the functfari0, 1] x [0, 1] =:V xW — R with f(v,w) = w— /v defined by
G, (v,2) =wh — 1, £$%, (v, 2) =wV on[wh,wY] C [0, 1]. The scheme of constant relaxatidii§’.,, £ ;) zew
has arbitrarily high convergence order\df but is not pointwise convergent of any orderWn

Lemma5 Let VC RV, W C R™ be nonempty compact convex sets andvVfx W — R. Let (7% ,)zemw
denote a scheme of convex relaxations of f in W with pointeasgergence ordey®” > 0 and corresponding
prefactort® > 0 (on W). If there exist constanis> y*Y, T > 0, and d > 0 such that for every Z IW with
w(Z) <9,
sup [f(v,2) - \z(v,2)| < Tw(Z)",
(v,2)eVxZ

then(f%Y.;)zew converges pointwise with ordgrto f on W.

Proof Since(fSY,)zenw converges pointwise with ordefY to f onW which is compact, there exisk8 > 0
such that

sup |f(v,z) — &z (v,2)| < rc"W(Z)ch <M, VZelw.
(v,2)eVxZ
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The desired result then follows from the fact that for evéry W,

sup [f(v.2)— 57 (v.2)] < (r+M) w(z)".
(v,2)eVxZ oY

O

Results similar to Lemma& are applicable to other notions of convergence order pteden this work.
Note that if the constand in Lemma5 is relatively small, then the bound on the prefactor obthican be
relatively large making the result weak on intervals witfz) >> 6.

The next result shows that for schemes of relaxations, thiemof pointwise convergence is stronger than
the notion of convergence in Definitid® (also see§, Theorem 1)).

Lemma6 LetV cC R™, W C R™ be nonempty compact convex sets, afftf ;) zerw and (155 ) zemw respec-
tively denote schemes of convex and concave relaxationbafraded function fV xW — R in W. If either
scheme has pointwise convergence of ogder0, it has convergence of ordé > .

Proof By noting from Definition13 that
sup [f(v,z) — {7 (v,2)] < T™W(W)Y, VZelw,
(v,2)eVxZ
sup [RG5Sz (v,2) — f(v,2)] < T*W(W)Y, VZeIW,
(v,2)eVxZ

the result follows from Lemma via

inf f — inf Y < s f — Y VZ € TW.
(V,Z;GVXZ (sz) (V,ZI)€V><Z VXZ(V’Z)_(v,z)g\?xZ‘ (V,Z) VXZ(sz)‘v S ’
and
sup £, (v.2)— sup f(v,2)< sup |RC,(v.2)—f(v,2)l, VZeIWw.
(v,2)eVxZ (v,z)eVxZ (v,2)eVxZ
O

The following lemma establishes mild sufficient conditiamsder which the scheme of envelopes of a
function is first-order pointwise convergent.

Lemma 7 LetWC R™ be a nonempty compact convex set and\f— R be Lipschitz continuous on W. Let
(7™ 5™z denote the scheme of envelopes of f inW. Then the s¢Hght&”, f5°°™) 2 is at least
first-order pointwise convergent on W.

Proof We wish to show that there exists> 0 such that for every < W,

supf(z) - f7"™M2)| < Tw(2),
zeZ

sudf(z) — f59°™z)| < Tw(Z).
zeZ

Consider the scheme of relaxatioffs", f5¢)z<iw defined by
Ccv _ H cc —
f7'(z) = min f(w), f7%(z) = wgzxf(w), VZ € IW.

From the fact thatf$" and f7¢ are convex and concave relaxationsfoin Z and the assumption thdt is
Lipschitz continuous, we have th@i$", fS¢) zcnw Is at least first-order pointwise convergentwnThe desired
result then follows from the definition @ff5"*™, 7™ zcqw. O
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The definitions provided thus far facilitate a theoretiazlgsis of the (reduced-space) convergence order
of a scheme of relaxations to a corresponding scalar fumabiq in the context of global optimization, provide
a way to analyze theoretically the (reduced-space) coemeryorder of a (lower) bounding scheme for an
unconstrained problem. The subsequent definitions seekaadnaturally the analysis of convergence order
to constrained problems.

Definition 14 (Convergence Order of a Lower Bounding Schemeonsider ProblemR) (satisfying As-
sumptionl). For anyZ € IY, let 7 (Z) = {(x,y) € X x Z: g(X,y) < 0,h(x,y) = 0} denote the feasible set of
Problem P) with y restricted taZ.

Consider a scheme of lower bounding problé#&Z) )z vy for Problem P). We associate with the scheme
(Z(2))zery @ scheme of pairs0'(Z), #c(Z))zery, Wwhere(0'(Z))zery is a scheme of lower bounds on the

scheme of problem " r)n'y(z) (X,Y) and(.%c(Z))zery is a scheme of subsetsRf" "™ that indicate
y)ed Ze
the feasibility of the lower bounding scherﬁéf( ))zery. The scheme$d'(Z))zery and (Sc(2))zery (are

required to) satisfy

0Z)< min_ f(x,z), VZely,
(x,2)e.7(2)

d(#(2),R™ x {0}) < (EXXZ),RMX{O}>, VZ ey,

0(2) = +o <= d(S£(Z2),R™ x {0}) >0, VZely,

where {g} (X x Z) denotes the image of x Z under the vector-valued functio[ﬂ . The scheme of lower

bounding problem$.#(Z))zc1y is said to have convergence of orger- 0 at

1. afeasible poiny €Y if there existst > 0 such that for every € IY withy € Z,

min _ f(x,2) — 0(Z) < w(Z)P.
(x,2)e.7(2)

2. aninfeasible poing € Y if there existst > 0 such that for everg € IY withy € Z,

d (E(x xZ),R™ x {0}) —d(A(2).R™ x{0}) < w(2)P.

The scheme of lower bounding problems is said to have coaxergof orde3 > 0 onY if it has convergence
of order (at leastp at eachy €'Y, with constantg andt independent of.

Remark 6 Definition 14 is motivated by the requirements of a lower bounding schenfiethom feasible and
infeasible regions in a branch-and-bound procedi8¢ The first condition requires that the sequence of lower
bounds converges rapidly to the corresponding sequencéohom objective values on nested sequences of
intervals converging to a feasible point of Probld®h On nested sequences of intervals converging to an infea-
sible point of ProblemR), the second condition requires that the sequence of loagrding problems rapidly
detect the (eventual) infeasibility of the correspondiagugences of intervals for Probleif)(In simple terms,
the first condition can be used to require that feasible paiith ‘good objective values’ are fathomed rather
easily, while the second condition can be used to requireitfeasible points that are ‘close to the feasible
region’, as determined by the distance functibrare fathomed with relatively less effotq]. Note that Def-
inition 14 reduces to the definition of convergence order for uncomsdaminimization in B9, Definition 1]
whenny, m;, andmg are all set to zero.
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Definition 14 can be readily applied to analyze the convergence order ofizex relaxation-based lower
bounding scheme as follows.

Suppose, for each € Y, we associate a convex s€Z) such thaiX > X(Z) > Zx(Z), whereZx(Z) :=
{xeX:3yeZs.tg(x,y) <0,h(x,y) =0} denotes the projection of* (Z) on X. The setX(Z) could, for
instance, correspond to an interval subseXdhat is obtained using bounds tightening techniq@svhen
y is restricted taZ (the motivation for considering the s¥{Z) in the definition of convergence order below
will become clear in SectioB). Note that the restrictioiX(Z) D .#x(Z) can be relaxed when optimality-
based bounds tightening techniques are employed. Alsothatainless otherwise specified, we simply use
X(Z)=X,VZelY.

By an abuse of Definitiori0, let (f;‘(z)xz)zgﬂy and (gf("(z)xz)zgy denote continuous schemes of con-
vex relaxations off andg, respectively, irY, and Iet(hg(‘{Z)Xz,h;C(Z)Xz)ngy denote a continuous scheme of
relaxations oh in Y. For anyZ € IIY, let

FZ) = {(xY) €X(Z) < Z: 6712 (Y) < ONS5 5 (X,Y) <O, 5(xy) >0}

denote the feasible set of the scheme of convex relaxafitreslower bounding schemeZ (Z))zery with
. H cv

(0@~ (min, . a02)

(Jc(2))zery = ({(V»W) ERM xR™ 1V =g5i7)7(%2),h{l7),2(%,2) W <h{z), 7 (X, 2)

for some(x,z) € X(Z) x Z})ZGHY 1)

is said to have convergence of orger- 0 at

1. afeasible poiny € Y if there existsr > 0 such that for every € IY withy € Z,

min f X,Z) — min fCV X.Z <TWZB
(x,2)€.7(2) ( ) (X2)eFNZ) X(Z)xz( ) )_ ( )

2. an infeasible poing € Y if there existst > 0 such that for everyg € IY with y € Z,
d (m (X(Z2) x Z2),R™ x {0}) —d(#£(2),R™ x {0}) < Tw(2)P,

where.#(Z) is defined by Equation].

Definition 14 can also be used to analyze the convergence orders of gitert@ver bounding schemes
such as those based on Lagrangian duality (see Set&phn

4 Full-Space Branch-and-Bound Algorithms

In this section, we present some results on the convergedee of lower bounding schemes for ProbleR) (
when both theX andY sets may be partitioned during the course of the branchkandd algorithm (we
consider schemes of relaxationsdrx Y instead of schemes of relaxationsyims was considered in Sectidhn

This section is divided into two parts. First, we look at tlmergence order of lower bounding schemes
which utilize convex and concave relaxations (see, formimsg, [, 17, 20, 36, 37] for techniques to construct
relaxations) of the objective and the constraints for theelobounding scheme. Next, the convergence order
of duality-based lower bounding schemes (see, for instdApes investigated.
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4.1 Convex relaxation-based branch-and-bound

This section derives bounds on the convergence order ofegomlaxation-based lower bounding schemes
by making assumptions on the convergence orders of the sshefielaxations used by the lower bounding
schemes. The reader is directed§ [6], [24], and [L7] for details on how to construct schemes of (convex)
relaxations that have the requisite convergence orders.

The following result establishes a lower bound on the cajerece order of the lower bounding scheme at
infeasible points based on the convergence orders of schefmenvex relaxations of the inequality constraints
and schemes of relaxations of the equality constraintse Muatt this is the primary result that is used to derive
a lower bound on the convergence order of such relaxatisaéblbpwer bounding schemes at infeasible points.

Lemma 8 Let(gJ ) zer(xxv)ys § =1,---, M, denote continuous schemes of convex relaxations,of-ggm,,
respectlvely, in XY with p0|ntW|se convergence orde,lg’,l >0,- , > 0and corresponding constants

Tg"l, R £ and(hkz,hkz)z@l(xw) k=1, ---,mg, denote contlnuous schemes of relaxations, of-h, hy,

respectively, in XY with pointwise convergence ordegs; > 0, -, Yhm: > 0 and corresponding constants
Thi, -+, Thme. Then, there exists > 0 such that for every Z I(X x Y)

d (E(Z),Rm' X {0}) —d(A(2),R™ x{0}) < w(Z)P,
where ¢ (Z) is defined as

Fe(Z) :i={(v,w) e R™ x R™ : v =g3'(x,y),h$(x,y) <w < h$(x,y) for some(x,y) € Z},

andp is defined as

‘= min min min .
B {Je{l 80 I }W’k}

Proof Suppos& € I(X xY). Then for eactj € {1,--- ,m }, ke {1,--- ,mg}, we have from Definitiori3 that

max |g; (x,y) — 6% (x,y)| < TS/ w(Z)"%1,

(xy)ez
max (X, y) — g2 (%,¥)| < Thiw(Z)"h,
max I (X,y) — RS (X, ¥)| < Thew(Z)"¥,

since (977 )zerxxy) and (W7, he%)zer(x <) converge pointwise t@; and hy, respectlvely, onX x Y with
ordersy;§ and y. Let (x$V,y8¥) € Z and (v, wgY) € #c(Z) such thatvg’ = g5¥(x$¥,y5"), heY (xS, y8¥) <
wg < h%(x$Y,ye"), andd({(ve",w§")},R™ x {0}) = d (S (Z),R™ x {0}) The existence ofx$’,yS') and
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(v$¥,wg") follows from the continuity oBS", h$", andh$® and the compactness &f We have

<x§v,y§V>} EM x {0}) A ({(v8we) ) E™ x {0})
(xS, <v%v,w§V>} EM x {0})

<[90Z",y2) —vZ'l + (g, y2") —wg'l
<lla(xz’,yz") — 6z’ (<", y2) || + max{[[h(xZ".yZ") = hz' (" y2) I, Ih(xz", y2) — hZ(xz", y2') I}

< maxaty) ~g'(c.)l -+ max{ max htx.y) - Exy)ll. max x.y) ~ hEx )l |

(xy)ez

< ; rr;aexzrgr (X,y) —gf7(x, Y)+max{ zl meaelehk(x Y) =R (x,y)], Z max|h|<(X y)— k.,CZ(x,y)}

< ; vr_r_ z T W(Z)

=
(Z w(X x Y)%i P 4 Y Thiw(X ><Y)Vh=kl3> w(Z)P,
k=1

where Corollaryl is used to derive Step 2, Step 3 follows from the triangle uradity, and Lemma is used to
derive Step 6. The desired result follows by choosirag

T(ZT XXYYSJﬁ—I—ZTthXXY)Wk B)

O

Note that the conclusions of Lemnhold even when the schemes of convex relaxati@f$ ) zcx «v),
Vie{l, - ,m },.and(hg’z)ZGWXy), vke {1,---,mg}, are merely lower sernicontinuous, and the schemes of
concave relaxatron@ﬁfz)ZGH<ny>, vk e {1,---,mg}, are merely upper semicontinuous.

Remark 7The analysis in Lemm®& can be refined under the following assumptions. {-@,’z)ZeH(xwy
j=1---, m, denote schemes of convex relaxationgof - - ,gml, respectively, inX x Y with convergence
ordersBC" >0,---,Bgm >0 and corresponding constam§ -, Tgm » and Iet(hﬁ"z,hkz)kﬂ(xm k=
1 ,mE denote schemes of relaxationshgf- - hmE, respectrvely, inX x Y with convergence ordef8, ; >
0,---,Bhme > 0 and corresponding constartgy, - - - , Thme. Suppose for each interval € I(X xY), there
exists(xz,yz) € Z such that

0 ({0xz.y2)} B™ x {0}) = d ([ﬁ} @).B" x {0}> ,
(Xz,yz) € argmingj(x,y), Vje{l,---,m},
(xy)ezZ

either(xz,yz) € argminhg(X,y), or (xz,yz) € argmaxhc(x,y), Vke {1,---,me}.
(xy)ez (xy)ez

Then, there exists > 0 such that for everg € I(X xY)

g (m 2).E™ {0}> —d(Se(2).R™ x {0}) < Tw(2),
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wheref is defined as

‘= min min  BEY. min .

B {je{l,»»»,ml} g”’ke{1,~~,mE}ﬁh’k}

Note that the above assumptions are trivially satisfied whablem P) only has one constraint (cf. Exam-
plel).

The following example demonstrates the importance of acseffily high convergence order at nearly-
feasible points (also se&§, Example 4]).

Example 1Let X =[0,0],Y = [-1,1], m = 1, andme = 0 with f(x,y) =y andg(x,y) = —y. For any|0, 0] x
V- W =1 Z € (X xY), let ££(x,y) =y, g2(x,y) = —yY — (y! —y*-)? for some constantr > 0. Note that
(f2Y)zer(x xv) has arbitrarily high pointwise convergence order and ety high convergence order 00xY,
whereaggg’)zei(x xy) has mi{a, 1}-order pointwise convergence andorder convergence oXix Y.

Pick & € (0,1) and lete € (0,5). Lety- = —6 — &, yY = —& +£. The width ofZ isw(Z) = 2¢. We have
0(2) = [0 — &,0 + €], which yieldsd(g(Z),R™) = & — ¢ (this confirms thag is infeasible at eactx,y) € Z).
Furthermoreg$’(Z) = [6 — &€ — (2£)%, 8 — € — (2¢)°], which yieldsd(g$(Z),R™ ) = max{0,5 — € — (2¢)9}.
Therefore, fore sufficiently small, the lower bounding problem detects thieasibility of Z and we have
d(g(2),R™) —d(g%'(2),R™) = (2¢)9, which implies that convergence of the lower bounding sehetrthe
infeasible point0, —d) is at most of orden.

Fora = 1, the maximum value of for which the intervalZ can be fathomed by infeasibility by the lower
bounding scheme is = g, whereas fora = 0.5, the maximum value of for which the intervalZz can be

2
fathomed by infeasibility by the lower bounding scheme is (% V”Z“) , Which isO(8?) for & < 1.

Therefore, a lower bounding scheme with a low convergenderaat infeasible points may result in a
large number of partitions on nearly-feasible points bettey are fathomed, thereby resulting in the cluster
problem.

The next result shows that under mild assumptions on thectiige the constraints, and the schemes of
relaxations, first-order convergence to a global minimuguiaranteed.

Theorem 1 Consider Problen{P). Suppose f,gj=1,---,m, and i, k=1,--- ,mg, are Lipschitz contin-
uous on Xx Y with Lipschitz constants MMg1,---,Mgm, Mh1,---,Mhm, respectively. Letf7")zerxxv),
_(9?’2)2e11<><x_v): i = 1, e,m, denote continuous schemes of convex relaxations of, f—,-ggml, respectively,
in X x'Y with pointwise convergence ordef8 > 1, y&‘i >1,--+,Y¥5m = 1and corresponding constants",
T&‘i, - ,-rg‘(nl . .Let(hﬁj’z, hﬁfz)zg_ﬂ(xm, k=1,---,mg, denote continuous schemes of relaxation.slof-h, Prme
respectively, in X< Y with pointwise convergence ordegs; > 1,-- -, yame > 1 and corresponding constants

Th1, -, Thme. The scheme of lower bounding proble((Z))zcy(x «y) with

oz = min  f2Y(x, > ,
@z = (o min, F00)

(Fe(2)zerxxv) = ({ (v, w) € R™ xR v =gZ'(x,y), hZ'(x,y) <w < hZ(x,y)

for some(x,y) € Z})ZGH(XXY)

is at least first-order convergent on>xY .

Proof Lemmas8 establishes first-order convergence at infeasible pgintg) € X x Y with the prefactorr’
independent ofx,y); therefore, it suffices to prove first-order convergencesasible pointgx,y) € X x Y
with a prefactor independent ¢f,y).

In order to do so, supposg (X x Y) # 0 and consideZ € I(X x Y) such thaZnN.# (X xY) # 0. Let

FNZ):={(xy) € Z: 97 (x,y) <0,h7'(x,y) < 0,hF(x,y) > 0}
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denote the feasible set of the convex relaxation-based loawending scheme. Then

min  f(x,y) — min  f&Y(x,

By TOOY) = T ) P2 (0Y)
= min  f(x,y)— min f(x, +( min _ f(x,y)— min fCVx,)
((x,y)eaff‘(Z) ) (xy)eFN(Z) ( y)) (xy)eFN(Z) 0e) (xy)eF%(Z) Z/(%Y)
< min  f(x,y) — min  f(x, +  max |f(xy)— &V (xy)l, 2
(,min, 09 = min )+, max If(y) - 15(cy) @

where the above inequality follows from Lemm8aThe second term in Equatio)(can be bounded from
above as
max | f(xy) = f£(xy)| < tPw(2)",
(xy)eZ%(2)
since(f$Y)zerx «y) converges pointwise tb on X x 'Y with ordery{¥ > 1.

Let (x3,y7) € argmin f(x,y) and(x$',y$') € argmin f(x,y). The first term in Equation2) can be
(xy)eZ(2) (xy)eF(2)
bounded from above as

min  f(x,y) — min f(x, = f(x5,y3) — F (x5, y5
(,min, 109 = min xy) ) = T0x2) -~ 1088)
< Mg /Nx+nyw(Z),

where the last step follows from the Lipschitz continuityfodn X x Y and Lemma2.
Plugging in the above bounds in Equati@), (ve get

min  f(x,y) — min f&Y(xy) < (Ms/n T&W(X x YL w(Z),
Lmin f0ey) = min,F200y) < (Mey/mcERy £ tew0oo) T wiz)

which establishes first-order convergencé€ #f(Z))z1(x .y, at feasible pointsx,y) € X x'Y with the prefactor
independent ofx, y). O

The following examples show that the convergence orderefdier bounding scheme may be as low as
one under the assumptions of Theorém

Example 2Let X = [-1,1],Y = [-1,1], m = 1, andmg = 0 with f(x,y) = 2x+ 2y andg(x,y) = —x— .
For any [x-,xVY] x [y-,yV] =: Z € I(X x Y), let f$V(x,y) = 2x+ 2y and g'(x,y) = —xY —yY. The scheme
(f3Y)ze1(xxy) has arbitrarily high pointwise convergence orderox Y and the schemégs’)zcyx «y) has
first-order pointwise convergence &nx Y. Note that(g5")zcr(x <y has arbitrarily high convergence order on
XxY.

Letxt =y = —¢,xY =yY = g with 0 < £ < 1. The width ofZ isw(Z) = 2¢. The optimal objective value
of Problem P) onZ is 0, while the optimal objective of the lower bounding peblonZ is —4¢. Convergence
at the point(0,0) is, therefore, at most first-order.

Example 3LetX =[-1,1],Y = [-1,1], m = 1, andme = 0 with f (X,y) = 2x+ 2y andg(x,y) = —x—Yy. For any
XE XY x Y- W] =1 Z e I(X x Y), let ££¥(x,y) = 2" + 2y~ andgg¥(x,y) = —x—Y. The scheméfs") .y xxy)
has first-order pointwise convergence ¥nx Y and the schemég’)zcyx «y) has arbitrarily high pointwise
convergence order 0¥ x Y. Note that( f£¥)zcy(x «v) has arbitrarily high convergence orderXn Y.

Letxt =y- = —¢,xV = yY = g with 0 < £ < 1. The width ofZ isw(Z) = 2¢. The optimal objective value
of Problem P) onZ is 0, while the optimal objective of the lower bounding peblonZ is —4¢. Convergence
at the point(0,0) is, therefore, at most first-order.
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Example 4LetX [0,0,Y =[-1,1], m = 1, andme = 0 with f(X,y) = y andg(x,y) = min{—0.5y, —y}. For
any[0,0] x [y~ Y] =:Z e I(X xY) with y- <0< yY, let

v_ 0.5y 0.5y yY
fcv X? ) 5 X7 y
z ( Y) Y, 0z ( Y) yU y|_ yU y|_

Note thatg$" corresponds to the convex envelopegodn Z. The schemé f7V)zcpx vy has arbitrarily high
pointwise convergence order &nx Y and the schemgg?’)zc1(x xy) has first-order pointwise convergence on
X x Y. Note that(gS")zci(x xy) has arbitrarily high convergence orderXn< Y.

Lety- = —¢, yY = £ with 0 < £ < 1. The width ofZ is w(Z) = 2¢. The optimal objective value of Prob-
lem (P) on Z is 0, while the optimal objective of the lower bounding peblonZ is —£. Convergence at the
point (0,0) is, therefore, at most first-order.

Example 5LetX =[0,0],Y = [—1,1], my =0, andmg = 1 with f(x,y) =y andh(x,y) = min{—0.5y, —y}. For
any[0,0] x [y~ yW] = Z e I(X xY) with y- <0< yV, let

—05y- 05 .
EV(X’y) =Y, h%v(x, y) = _Wyu _y|_y y+ yU)iﬁ ) hZ (X y) mln{_0'5y7 _y}

Note thath3’ and hS® correspond to the convex and concave envelopdsaf Z, respectively. The scheme
(7Y)ze1(xxy) has arbitrarily high pointwise convergence ordedor Y and the schemgng’, he®)zcyx «y) has
first-order pointwise convergence #nx Y. Note that(h$", h%®)zcy(x «y) has arbitrarily high convergence order
onX xY.

Lety- = —¢, yY = £ with 0 < £ < 1. The width ofZ is w(Z) = 2¢. The optimal objective value of Prob-
lem (P) on Z is 0, while the optimal objective of the lower bounding peablonZ is —£. Convergence at the
point (0,0) is, therefore, at most first-order.

Despite the fact that the schemes of relaxations used in flea® and5 correspond to the envelopes
of the functions involved (unlike those used in Exampeasnd 3), we only have first-order convergence at
the global minimizex0,0). However, the reader can verify that first-order conver¢mmér bounding schemes
may be sufficient to mitigate the cluster problem in Examglasd5, whereas at least second-order convergent
lower bounding schemes are required to mitigate the clgstdlem in Example® and3 [15]. Furthermore,
Examples2 to 5 illustrate that high convergence orders of schemes of atilaxs of the objective and con-
straints do not guarantee a high convergence order of ther loaunding scheme (cf. Remafkat constrained
minima (which may be required to mitigate clustering). Tikibecause a high convergence order of a scheme
of relaxations of the objective function may only place drie§on on the gap between the minimum value of
the relaxation and the minimum value of the objective fumtitvithout taking the feasible region into account;
this restriction may not be sufficient in a constrained sgthiecause the gap between the minimum value of the
relaxed problem and the minimum value of the original probleay be relatively large when their respective
feasible regions are taken into consideration (see Exa8fplean extreme case). Similarly, a high convergence
order of a scheme of relaxations of the constraints may ndueég infeasible regions of the search space in
which the objective function value is less than the optincahétrained) objective value (Exam@erovides
an extreme case), potentially leading to relatively langgarestimation gaps.

The following result proves second-order convergence réicepoints inX x Y.

Theorem 2 Consider Problen{P). Suppose f is Lipschitz continuous on<X with Lipschitz constant M
Let (f£¥)zcr(xxv) denote a continuous scheme of convex relaxations of f wititveise convergence order
y§¥ > 2 and corresponding constamf".

uppose there exists a feasible pofrt,y') € .7 (X x Y), continuous schemes of convex relaxations
S th ts a feasibl ty) e Z(X xY t h f laxat
(g‘j:j’z)ZGWXy), j=1,---,m, of o, ---,0m, respectively, in X<Y, continuous schemes of relaxations
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(hﬁj’z,h@)kﬂ(xm, k=1,---,mg, of hy,--- hy, respectively, in XY, and a constand > 0 such that for
each Ze T(X x Y) with (x',y") € Z and WZ) < &, we have

d (51(2), argmin f(x,y)) < tw(2)Y (3)
(xy)eFN(Z)

for constantsy > 2and 7 > 0. Then, the scheme of lower bounding problé#4Z))zcy(x «y) With

oz = min VX, > ,
@z = (o min, E00)
(@) zetpon = ({(v:W) €R™ X BT v = g(x,y), hg'(x.y) < w < hF(x.y)

for some(x,y) € Z})ZGH(XXY)
is at leastmin{y%", y}-order convergent atx', yf).

Proof Suppose € I(X x Y) such thatx,y") € Z andw(Z) < &. From the proof of Theorerh, we have

min  f(x,y) — min  f$Y(x,
By XY 7y T T2 V)
< min  f(x,y) = min  f(x, +< min  f(x,y) — min  f&Y(x, >
(<x,y>e,@<2> (.y) (xy)eZY(2) ( y)) (xy)eFN(2) () (xy)eFN(Z) 2/(xy)
< min _ f(x,y) — min  f(x, 1wz 4
<(,min, f0y) = min () ) +iwE) @

Consider(x3,y5) € argmin f(x,y). Choose(%z,z) € .Z(Z) and (x$,y$) € argmin f(x,y) such that
(xy)EF(2) (xy)eF(2)

d({(%2,92)}, {(x3",¥2")}) < tw(Z)Y (note that(%Xz,¥7) and (x',yS¥) exist by assumption). The first term in

Equation 4) can be bounded from above as

min  f(x,y) = min  f(x,y) = f(x3,y5) — f(x5",ys
LB (x,y) (xy)e B (z) (xy) = f(xz,yz) = F(x7".yZ)

S f()A(Z»)A’Z) - f(xgvvy%v)
<Mid({(%2,92)}{(x2",¥2)})
< Mg fW(Z)y,

where Step 3 above follows from the Lipschitz continuityfofTherefore, from Equatiord,

min  f(x,y) — min  f$Y(x,
xR V) T g, T2 06Y)

< ('V'f FW(X Y)Y IR 4 gonyx Y)V?V*mi"{ﬁvvv}> w(Z)™nOR )

The desired result follows by analogy to Lem@hy noting that the lower bounding schef® (Z))zcr(x )
has convergence of order at least ongxty’) from Theoreml. 0

The key assumption of TheoreZnEquation 8), is rather unwieldy since verifying it involves the soturti

of the optimization problerrz : mir(12>f(x,y) for eachZ € I(X x Y) with (xf,y") € Z andw(Z) < &. The
X,y)eFV

following more restrictive (but potentially more easilyrifable) condition implies Equatiorsj:
36>0,>0,y>2: dy(F(2),7Z)) < tw(Z)’, YZeI(XxY)with (x,y") € Zandw(z) < 5.

The following example shows that the convergence order neagiblow as two under the assumptions of
Theorem?2.



Convergence-Order Analysis of Branch-and-Bound Algamitfor Constrained Problems 17

Example 6Let X = [-1,1],Y = [-1,1], m = 1, andmg = 0 with f(x,y) = —xy andg(x,y) = x+y— 1. For
any [x-,xY] x [y-,yW] =1 Z e (X xY), let

f(xy) = max{ —x"y+ (—x)y" — (—=x)y, —=x"y+ (—xyY — (=x WU}, o (xy) =x+y—1

The scheme f2)zcr(x «v), which corresponds to the scheme of convex envelopek @fi X x Y, has (at
least) second-order pointwise convergenceXonY (see b, Theorem 10]) and the schen(@}’)zer(x v) has
arbitrarily high pointwise convergence orderXm Y. Note that( f7*)zcyx «v) has arbitrarily high convergence
order onX x Y.

Letxt =y* =0.5—¢,xY =yY = 0.5+ with 0 < £ < 0.5. The width ofZ isw(Z) = 2¢. The optimal objec-
tive value of ProblemR) on Z is —0.25, while f$¥(0.5,0.5) = —0.25— €2 andgg’(0.5,0.5) = 0. Convergence
at the point(0.5,0.5) is, therefore, at most second-order.

Note that the use of feasibility-based bounds tightenicgrgues is ineffective in boosting the conver-
gence order for the above example. This is in contrast toithi#éas Example16 where the use of constraint
propagation techniques improves the convergence ordexdoiced-space branch-and-bound algorithms (see
Examplesl7 and18in Section5.2).

Remark 8 Theorem2 requires, at a minimum, second-order pointwise converg@fithe scheme of convex
relaxations( f£¥)zerx «v), Which cannot be achieved in general by relaxations coctgtipurely using interval
arithmetic R3]. Consequently, lower bounding schemes constructed tistagval arithmetic can, in general,
only be expected to possess first-order convergence (seeerh#). When the functiond, g, andh are twice
continuously differentiable, reference®7] and [35] imply that polyhedral outer-approximation schemes of
second-order pointwise convergent schemes of relaxattbhas are employed by most state-of-the-art soft-
ware for nonconvex problem#) [2, 21, 36], also produce second-order pointwise convergent schefes
relaxations.

The following corollary of Theorer@ shows that second-order convergence is guaranteed a$ paint €
X xY such thag(x,y) < 0, assuming ProblenP{ contains no equality constraints (note the weaker assampt
on the pointwise convergence order of the schéfg¥)z.;x vy, and the slight abuse of notation in the de-
scription of #c(Z) where we simply discard the components correspondiigstncemg = 0). A consequence
of the corollary is that second-order convergence to uricained minima is guaranteed.

Corollary 2 Consider ProblentP) with mg = 0. Suppose f is Lipschitz continuous onxX . Let(f£¥)zcr(x «v)
denote a continuous scheme of convex relaxations of frYXvith pointwise convergence ordgt’ > 1, and
convergence ordgBf¥ > 2 with corresponding constant". Furthermore, Ie(g]?j’z)ZQH(ny), j=1,---,m, de-
note continuous schemes of convex relaxations,of g gm , respectively, in XY with pointwise convergence
ordersy&‘i >0,-++,Ygm > 0and corresponding constanrg"l, o Tom -

SupposgxS,y®) € X x Y is such thag(xS,y®) < 0 (i.e. (xS,y®) is a Slater point). Then, the scheme of
lower bounding problem&#'(Z))zey(x xy) with

oz = min  f$Y(x, ) ,
(O@zeion = min, E00)

(He(2))zerxv) = (02 (2))zer(x xv)
is at leastB¢V-order convergent atxS,y®).

Proof Since we are interested in the convergence order at théfeasiint(xS, yS), it suffices to show that the
assumptions of Theorethhold.

Let gj(x5,y%) = —¢ <0, j = 1,---,m. Sinceg; is continuous for each € {1,---,m} by virtue of
Assumptionl, there exist®; > 0, Vj € {1,---,m}, such that|(x,y) — (x5,y5)|,, < &; implies |gj(x,y) —
0i(x5,y%)| < 4 (see Lemma).

™
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Defined:= _min }6,-, and note thab > 0. ConsideZ € I(X x Y) such tha(x5,y%) € Z andw(Z) < &.

ISER

Foreachx,y)€Z,j € {1, - ,m} we havelg; (x,y) —gj(x5,y%)| < &. Consequently, for eaghe {1,---,m},
gi(x,y) < =%, V(x.y) € Z. Sinceg'(x,y) < g(x,y) < —3,V(x,y) € Z, we havegs'(x,y) < -3, ¥(x,y) € Z,
i.e. every point irZ is feasible for ProblemR) and the lower bounding problemo(Z).

Therefored:= min 6,, any(%z,9z) € argmin f(x,y), y=pf'+1, andf = 0 satisfies the (neces-

et m} (xy)eF™(2)

sary) assumptions of Theoredwhich yield an upper bound on the first term in Equatién The second term
in Equation 4) can be bounded from above as

min  f(x,y) — min  f&Y(x, min_f(x,y) — min_fZ¥(x,
(xy)eZ%(Z) () (xy)eZ(2) 2 xy)= (xy)ez () (xy)ez %y

< tPw(z)P"

since f3" converges with ordeff to f on X x Y, and.#%(Z) = Z. Substituting the above bounds in Equa-
tion (4), we obtain

min  f(x,y) = min  f&Y(x, < 1w (2)P7",
(xy)eZ(2) (x.y) (xy)eF™(2) 2 (xy) < TWE)

The desired result follows by analogy to Lem#y noting that the lower bounding sche® (Z))zcx «v)
is at least first-order convergent(a®, yS) from Theorem. O

Note that the bound on the prefactor obtained from CoroRdny convergence at points where a constraint
is ‘nearly active’ can be relatively large (also see the camtafter Lemmd).

Remark 9Corollary 2 does not apply to Problenf) with active constraints; however, Theor@wan be used

to demonstrate second-order convergence when Prolffeooitains active convex constraints (note that this
includes affine equality constraints) if the schemes ofxadlans of the active constraints are the (convex)
functions themselves and the scheme of convex relaxatidhg @bjective function is second-order pointwise
convergent. Example8 and 9 illustrate cases where the above modification of Coroladoes not apply
when the schemes of relaxations of active convex constranetnot the constraints themselves (note that if the
schemes of relaxations of active convex constraints usetharconstraints themselves, then the convergence
orders of the lower bounding schemes in these examples veewdbitrarily high at their minimizers), thereby
highlighting the importance of convexity detection in btiog the convergence order.

The following example shows that the convergence orderefdiver bounding scheme is dictated by the
convergence ordeff’, of the schemgfz")zcyx «y) when the assumptions of Corollayare satisfied.

Example 7Let X = [0,0],Y = [0,1], m = 1, andme = 0 with f(x)y) = y* —y? andg(x,y) = 1 — 2y. For

any [0,0] x [y-,yY] =1 Z € I(X x Y), let f8V(x,y) = y* — (Y- +yY) y+y‘-yU 0%'(x,y) = 1—2y. The scheme
(f2Y)zerx xy) has second-order pointwise convergence and second-oodeergence orX x Y, while the

scheme(g3 )Ze]l (xxy) has arbitrarily high pointwise convergence ordepor Y.

Lety- =L g W= \/é + & with 0 < € <0.25. The width ofZ isw(Z) = 2¢. The optimal objective value
of Problem P) onZ is —0.25, while the optimal objective of the lower bounding prablenZ is —0.25— £2.

Convergence at the ponﬁt), \[> is, therefore, at most second-order.

Example 8Let X = [-3,3],Y = [-3,3], m = 1, andmg = 0 with f(x,y) = x+y andg(x,y) = x> +y* — 8.
For any[xt xY] x [y-,yV] =1 Z € [(X xY), let fV(x,y) = x+Y, 0'(X,y) = X* +y2 — 8— (W(Z))2. The scheme
(7¥)zer(xxy) has arbitrarily high pointwise convergence ordenor Y, while the schemég}’) zer(x «v) has
second-order pointwise convergenceXor Y.

Letxt =y- = —2—¢,xY =yY = —2+ £ with 0 < £ < 1. The width ofZ is w(Z) = 2¢. The optimal
objective value of ProblemPj on Z is —4, while the optimal objective of the lower bounding problem
Zis —V16+8e2 = —4— €24 O(e*) for € < 1. Convergence at the poifit-2,—2) is, therefore, at most
second-order.
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Example 9Let X =[0,1],Y =[0,1], m = 1, andmg = 0 with f(x,y) = —x—yandg(x,y) = x*> +2xy+y> — 1.
For any[x-,xY] x [y-,yV] =: Z € I(X x Y), let

fEV(xy) = —Xx—y, ¥ (xYy)=x+2max{xy+y-x—x-y- xy+yx—xyW} +y? - 1.

The scheme(f7")zcrx«v) has arbitrarily high pointwise convergence order Xnx Y, while the scheme
(97")zer(xxv) has second-order pointwise convergenceony.

Letxt =y- =05—¢,xY =yY = 0.5+ ¢ with 0 < £ < 0.5. The width ofZ is w(Z) = 2¢. The optimal
objective value of ProblenPj onZ is —1, while the point(0.5—0.25¢2,0.5+ 0.5¢2) is feasible for the lower
bounding problem o with objective value-1— 0.25¢2. Convergence at the poif®.5,0.5) is, therefore, at
most second-order.

The next result provides a slight generalization of Corglaby showing that under the assumptions of
Corollary 2, the lower bounding scheme?’(Z))zcyx «v) in fact exhibits (at least) second-order convergence
on a neighborhood ofxS,yS) (this result is motivated by the assumptions on the convesy@rder of the
lower bounding scheme in the analysis of the cluster prolfefh5]).

Corollary 3 Consider ProblentP) with me = 0. Suppose f is Lipschitz continuous onxX . Let(f£¥)zcx «v)
denote a continuous scheme of convex relaxations of fxrYXvith pointwise convergence ordg > 1, and
convergence ordeBf¥ > 1 with corresponding constant”. Furthermore, Ie(g]?j’z)ZGH(XXY), j=1---,m, de-
note continuous schemes of convex relaxations,of g gm , respectively, in XY with pointwise convergence
ordersya‘i >0,-+,Ygm > 0and corresponding constantgy"l, g -

SupposéxS,yS) € X x Y such thag(xS,yS) < 0 (i.e. (x5,yS) is a Slater point). Therd > 0 such that the
scheme of lower bounding problem®’(Z))zcy(x y) With

oz = min &Y x,y) ,
(O@yzason =, min E0n)

(He(2))zenxxv) = (02'(Z))zerxx)

is at leastBf-order convergent of (x,y) : || (X,y) — (x5,y®)[|, < 3}.

[
Proof Let gj(x5,yS) = —¢; <0, j = 1,---,m. Sinceg; is continuous for each € {1,---,m}, there exists
3;>0,vj € {1,---,m}, suchthat|(x,y) — (x3,y%), < & implies|gj (x,y) — gj(x°,y®)| < &j (see Lemma).
Defined:= min &, note thas > 0, and letd := 3.
je{Lm}
ConsideiZ € I(X x Y) with ZN {(x,y) : [[(x,y) — (x5,y®)
of Corollary2, it can be shown that

< &} #0andw(Z) < d. Similar to the proof

llo

min_ f(x,y) — min  f&(xy) < 18w(2)P.
L (x,y) L 7' (xy) < T17'W(Z)

The desired result follows by analogy to Lem#iay noting that the lower bounding sche® (Z))zcx «v)
has at least first-order convergence{dr,y) : [|(x,y) — (x5,y5)||,, < 8} from Theoren. O

™

While it may appear that the neighborhood of a Slater pointvbith second-order convergence of the
lower bounding scheme is guaranteed by Corolzugan be unnecessarily small, Examgl@ shows that a
stronger result cannot be deduced without additional agsans.

A natural question is whether second-order convergenceasagteed oiX x Y when second-order point-
wise convergent schemes of (convex) relaxations, @i, - - - ,Om, h1,- - - ,hme are used by the lower bounding
scheme. The following example shows that even when schefmesmvex) envelopes are used to underes-
timate smooth functiong, g, andh, at most first-order convergence can be guaranteed atrcguaits in
XxY.
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Example 10Let X = [0,0],Y = [-1,1], m = 1, andme = 0 with f(x,y) = —y andg(x,y) = y>. For any
[0,0] x [—€,e] =:Z € I(X xY) with € >0, let

—0.25¢3 4 0.75¢%y, if y<0.5¢
fZ'y) = -y, gZ'(xy) = {ys if y>0.5¢

Note that the schemf7")zc1(x «y) has arbitrarily high pointwise convergence ordeor Y and the scheme
(97")zer(x xv)» which is the scheme of convex envelopegyain X x Y [19], has (at least) second-order point-
wise convergence o x Y. Also note thatgg")zcy(x «y) has arbitrarily high convergence orderXnx Y.

The width of Z is w(Z) = 2¢. The optimal objective value of Probler®)(on Z is 0, while the optimal
objective of the lower bounding problem @his —£. Convergence at the poii0,0) is, therefore, at most
first-order.

Despite the fact that we only have first-order convergentgeaglobal minimizer in Exampl&0, the reader
can verify that the natural interval extension-based lola@rnding scheme along with the interval bisection
branching rule and lowest lower bound node selection ruefiicient to mitigate the cluster problem for this
case 15].

The following result establishes second-order convergeria convex relaxation-based lower bounding
scheme at a feasible poif’,y") € X x Y when second-order pointwise convergent schemes of ridasaire
used and the dual lower bounding scheme (see Se¢t®iis second-order convergent @, y’). This result
will be used to prove second-order convergence of such gamlaxation-based lower bounding schemes at
KKT points in Corollary4.

Theorem 3 Consider ProblentP), and let(x,y") € X x Y be a feasible point. Suppose the dual lower bound-
ing scheme has convergence of ordigr> 0 at (x',y") with a corresponding scheme of bounded dual vari-

oy 5 () : . A A
ables((u A ))ZGH(XXY) (not necessarily optimal, but which yieBd-order convergence di',y"))

fyf ff
with (uzx y A% ’y)> e R x R™, Hll(zx ’y)‘
stantsﬁ,)\_ > 0 (see Sectiod.2). Let (f7")zerxxy) (9?’2)Zeﬂ<><xv): j=1,---,m;, denote continuous schemes
of convex relaxations of f,1g---,0m, respectively, in Xx Y with pointwise convergence ordey®’ > 1,
> 1 *,Ygm = 1and corresponding constants”, tg o1 T o - Let(hﬁz,hkz)zﬂ(xw) k=1,---,mg,
denote continuous schemes of relaxations10f-h hmE, respectively, in XY with pointwise convergence
ordersyh1 > 1,---, yhme > 1and corresponding constantgs, - - -, Thme - Then, the scheme of lower bounding
problems(f(Z))zGMxm with

< p and HA(ZXf’yf)Hw <A, VZeI(X xY), for some con-

o(Z = min  f8Y(x, ) ,
(O@yzeson = (, min )

(H(2))zenixxv) i= ({(v,w) e R™ xR™ :v=g5’(x,y),h?(x,y) <w < hF(x,y)
for some(x,y) € Z})

ZEI(XxY)
is at Ieastmin{min{y?",. min_ g%, min } Bd}-orderConvergenta([xf,yf),
le{l,---,m} ke{1,-
P f Let3:=mi i v i v i | — 7y> A ::A<Xf-,yf> 7
roof Let mln{min{ f ,je{Tiiiml} g”’ke{T»l»rij}mk}’ﬁd ,and lety, := 7 2 VZ e

I(X xY), denote the scheme of dual variables corresponding to takldwer bounding scheme (we omit
the dependence of the dual variables (ahy’) for ease of exposition). Since we are concerned about the
convergence order at the feasible pdixft y"), it suffices to show the existence of> 0 such that for every

Z e I(X xY) with (x,y") € Z,

min  f(x,y) — min  f&xy) < Tw(Z)P.
3 TOOY) = T, ) 12 06Y) S TWE)
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ConsiderZ € I(X x Y) with (x,y") € Z. By virtue of the assumption that the dual lower boundingesoé,
with the dual variables fixed to(t7,Az))ze1(x ). has convergence of ordgg at (x',y"), we have

min _ f(X,y)— min [f(x,y)+u£g(x,y)+)\;h(x,y) S-[dw(z)ﬁd. )
(xy)eZ(2) (xy)ez

ChooseAz ,Az € RTEsuchthalz =Az —Az_, Az |, <A, and|Az |, <A.

Lety:=mi v i ¥ i .We h
ety mln{yc,je{T!r?ml}ygy],ke{m{r’]mE}mk} e have

min [ (x.y)+H3gxy) +AZh(xy)| - min f£(x.y)
(xy)ez FV(Z)

< min_[£(c.y)+ H3gxy) +AZn0xy)] -

(xy)e

sup  min_ [15/(xy)+ HTGE'(x.y) +AThS(x,y) + AZhE(x,y)]
HU>0,A1>0A,<0 (xy)ez

< min_[£0cy)+H3g06y) +AZ hxy) A7 h(xy)| -

(xy)e

min, [(800y) + HEGE/06Y) + AL hE(xy) ~ Az _hg(xy)]

< max [(F(x,y) ~ 1£0cy) + HE (9(xy) — 68/ 0xy)) +

AT (N(xy) NS (xy)) + A% (RE(xy) —h(x,y))]

< max (f(x,y) - f8(x,y)) + max uz (g(x,y) —g3’(x,y))+
(xy)ez (xy)ez

max Az . (h(x,y) —h$(x,y)) + (m?XZA 7 (&) = h(x,y))

<y>€Z
L mE
<t8w(Z f+Zur ()% 42 Z ThkW(Z
V v rrE v v
<[ t®w(x x V) y+;ur°VWXxY AR Z ThiW(X x Y)Y | w(Z)Y, (6)

where Step 1 follows from weak duality and Step 3 follows frioemmag3.
Therefore, from Equation®) and @), we have

min _f(xy) — min _f&(xy)= min_ f(x,y) — min_[f(x,y)+HIgxy) +ATh(xY)|+

(xy)e7(2) (xy)eZV(Z) (xy)eZ(2) (xy)ez
min_| f T Ath ~  min &
(x.,y)lez[ (X,Y) + Hz9(X,y) +Az (x,y)} L (X,y)
<tw(Z)P,

where the prefactor is defined as

v mo v Mg _
T:= (r?vw(x Y)W P > HIg WX Y)¥i P Z AThiW(X x Y )P tqw(X x Y)ﬁdﬁ> .
j=1 k=1
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4.2 Duality-based branch-and-bound

In this section, we investigate the convergence order of grdrajian dual-based lower bounding scheme.
Before we define the convergence order of the scheme, thahgign dual problem is introduced and some of
its properties are outlined.

The dual problem of ProblenP) that is obtained by dualizing all of the constraimfs,y) < 0 and
h(x,y) = 0Ois given by

supq(u,A) (D)
u,A

stpueRT A cR™,

whereq: R} x R™ — R, defined by

a(uA) == min Fy)+HTg0y) +ATh(GY), V(HA) € RD xR™,
(Xy)eXxY
is the Lagrangian dual function. Let miR)(and supD) respectively denote the optimal objective values of
Problem P) and ProblemD). From weak duality, we know that miR) > sup ©), which validates the use of
Problem D) as a lower bounding problem.
The following result shows that the lower bounds obtaineddilying the Lagrangian dual Probleid)(are
stronger than those obtained by solving any convex relaxdiased lower bounding problem.

Lemma9 Consider Problen{P), and suppose Z I(X xY). Let ¥ and g3’ denote convex relaxations of f
and g, respectively, on Z, and 13" and h$® denote convex and concave relaxations, respectively, af
Z. Furthermore, assume that strong duality holds for thevearrelaxation-based lower bounding problem

mi(r%) £2¥(x,y). Then the lower bound obtained by solving the Lagrangiarl digblem is at least as strong as
FeV

that obtained by solving the above convex relaxation-bése&dr bounding problem, i.e.,

sup min [f(x,y)+uTg(x,y)+ATh(x,y)} — min f$V(x,y) > 0.
u>0a (Xy)eZ FN(Z)

Proof Since strong duality holds for the convex relaxation-bdseer bounding problem, the difference be-
tween the lower bounds can be rewritten as

sup min_[F(x,y)+HTg(x.y) +ATh(xy)| -
u>0A (XY)€Z

sup  min [ 5/(xy) + HTGE"(x,Y) +AThE(x,y) + AZhS°(x.y)]
u>0,A1>0A,<0 (xy)ez

= supmin [F(uy)+HTgxY) +AThOGY) +A3h(x,y)| -
U>0.A1>0.4,<0 (XY)€Z

sup  min [1£(x,y) + HTGE'(x,) + AThE'(x,y) + AZhE(x,y)]
p>0A1>0A,<0 (XY)€Z
>0,
where the last step follows from the fact thék,y) € Z, 4 > 0,A1 > 0,A2 <0,
F06Y) +HTgxY) +ATh(xY) +Azh(xY) = £ (x.y) + g8 (x.y) + AThS'(x,y) + AZhEF(x.y).
|

The following result due to Durg] establishes the condition under which the dual lower baonghdroblem
detects infeasibility.
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Lemma 10 Consider ProblengP) (satisfying Assumptiot). We have
sup D) = o > conv( [E} (X x Y)) N(R™ x {0}) = 0.
Proof The result follows, in part, by replacingx,y) = 0with h(x,y) <0and—h(x,y) < 0and using Theorem

2in[8]. O

Definition 14 can be applied to analyze the convergence order of the ah@ligydbased lower bounding
scheme as follows.
The scheme of dual lower bounding proble($(Z))zcy(x «y) with

(0@ zercen = | sup min_[f(xy)+HTgxy) +A h(xy)] ,
p=0A (XY)EZ ZEI(XxY)

(Fe@))zetixonn) = (conv( i <Z>>)
ZEI(X xY)

is thus said to have convergence of orfler O at
1. afeasible poinfx,y) € X x Y if there existst > 0 such that for everg € I(X x Y) with (x,y) € Z,

min _ f(v,w)— sup min [f(V,W)+HTg(V,W)+ATh(V,W)} < tw(z)P.
(vw)e.Z(Z) U>0.A (vw)ezZ

2. an infeasible pointx,y) € X x Y if there existst > 0 such that for everg € I(X x Y) with (x,y) € Z,

d (ﬁ(zm‘” X {0}) —d <conv (H(Z)) ,R™ x {0}) <Tw(Z)P.

We associate with the dual lower bounding sche(€(Z))zyx «y), at a feasible pointx,y), a scheme

of dual variablei(yéx’”,/\(Zx’y)))ZGWXy) corresponding to the solution of the scheme of dual lowending
problems(&/(Z))zcrx vy With (X,y) € Z (note that supl) may not be attained, in which case we assume that
dual variables that yield a dual function value arbitracilyse to the supremum are available). Using Leni®a

we next show that if the convex relaxation-based lower bowngroblem corresponding to Problei®) ¢hat

is obtained by replacing the functions in Proble®p \{ith their envelopes is infeasible, then siy) & +o.

Lemma 11 Let (gﬁ"Z)ZQH(XXY), j=1,---,m, denote (any) schemes of convex relaxations;0f-g,gm in
X xY and(hf7. %) zerxv), k=1,---.me, denote (any) schemes of relaxations of ht ,hy in X x Y.
Then for each Z I(X x Y), we have

d (H(Z),Rm' x {0}) >d (conv (Em) ,R™ x {0}) >d(S(2),R™ x{0}),

where #¢(Z) is defined as
Ic(Z) = {(v,w) e R™ x R™ : v =g2'(x,y),h3'(x,y) <w < h$(x,y) for some(x,y) € Z}.
Proof The first inequality trivially holds. To prove the secondduoelity, we first notice that
d(A(2),R™ x {0}) =d (A(Z),R™ x {0}),
whereJ_C(Z) is defined as
Io(Z) = {(v,w) ER™ x R™ : v > g&’(x,y),hS(x,y) <w < h$¥(x,y) for some(x,y) € Z} .

Note that.#(Z) is a convex set since it can be represented as the direct stmo obnvex sets.

, [a]
Since con»( {h

(Z)) is the smallest convex set that encloz{%(Z), the desired result follows. O
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Theorem 4 Consider Problen{P). Suppose strong duality holds for the scheme of convexatiexbased
lower bounding problems for Problef) obtained by using the schemes of (convex) envelopesgyfahd

h. If the assumptions of Theorehhold for the functions fg, h, and the schemes of (convex) envelopes of
f, g, andh, the dual lower bounding scheme is (at least) first-orderveogent on X< Y. Furthermore, if the
assumptions of Theorethhold for the schemes of (convex) envelopes @ &ndh and (x,yf) € X x Y, the
dual lower bounding scheme is (at least) second-order agawe at(x', y’).

Proof From Lemmall, we have that the convergence order of the dual lower bogretiheme at an infeasible
point (x,y) € X x Y is at least as high as the convergence ordéxat) of the convex relaxation-based lower
bounding scheme obtained by using the schemes of (convesioges off , g, andh. Lemma9 implies that the
lower bounds obtained using the dual lower bounding schematdeast as tight as the lower bounds obtained
using the schemes of (convex) envelopes aj, andh. The desired result follows from Definitidi. O

Note that the conclusions of Theoredrhold even if the schemes of relaxations fofg, andh do not
correspond to their envelopes, so long as the (remainirsginastions of Theorem are satisfied.

Remark 10The assumption of strong duality is in fact not required tovsfirst-order convergence of the dual
lower bounding scheme when all functions in Probldfdre Lipschitz continuous. For this case, the proof
of first-order convergence at infeasible points followsyifrbemmataz, 8, and11, and the proof of first-order
convergence at feasible points follows from Proposition [8].

Theorem4 makes no assumptions on the boundedness of schemes of daalesa This is reflected in
the application of the dual lower bounding scheme to Exarbflehere the optimal scheme of dual variables
can be unbounded (note, however, that first-order conveegefithe dual lower bounding scheme at the global
minimizer of Examplel0 can be achieved using bounded schemes of dual variablestivhelnal problem is
not solved to optimality). Furthermore, Examplshows that the convergence order of the dual lower bounding
scheme can be as low as two(at,y") when the assumptions of Theoréhare satisfied for the schemes of
(convex) envelopes df, g, andh (see Lemmad.4). The following result shows that in the absence of equality
constraints, the dual lower bounding scheme has arbitraigh convergence order at unconstrained points.

Proposition 1 Consider Problen{P) with me = 0. Suppose f andjgVj € {1,---,m}, are Lipschitz contin-
uous on Xx Y . Furthermore, supposeS,yS) € X x Y such thag(x>,yS) < 0 (i.e. (xS,yS) is a Slater point).
The dual lower bounding scheme has arbitrarily high coneaag order atxS,yS).

Proof The proof is relegated to Appendi 1 since it is similar to the proof of Corollarg. O

Remark 11Propositionl as stated does not apply to Proble) with active constraints; however, it can be
modified to demonstrate second-order convergence whetelRTd@B) contains active convex constraints (note
that this includes affine equality constraints¥ ifs twice continuously differentiable, and strong dualibids

for the scheme of relaxations of ProbleR) {n which only the active (convex) constraints are included f is
replaced by its scheme of convex envelopes (see Rethapkopositionl can also be extended to demonstrate
arbitrarily high convergence order of the dual lower bongdscheme on a neighborhood ©f,yS) in a
manner similar to Corollarg.

The next result shows that the dual lower bounding schenee@@sl-order convergent at KKT points when
the functionsf, g, andh in Problem P) are twice continuously differentiable.

Theorem 5 Consider Problen{P). Supposent(X x Y) is nonempty, and fg, andh are twice continuously
differentiable orint(X x Y). Furthermore, suppose there exigxs,y*) € int(X x Y), p* € RT', andA™ € R™
such that(x*,y*, u*,A™) is a KKT point for Problen{P). The dual lower bounding scheme is at least second-
order convergent afx*,y*).
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Proof LetL(x,y,H,A) := f(x,y)+H"g(X,y) +/\Th(x,y) denote the Lagrangian of Proble®)(Since we are
concerned about the convergence order at the feasible oint), it suffices to show the existence of> 0
such that for every € I(X x Y) with (x*,y*) € Z

min  f(x,y)— sup min L(X,y,d,A < TW(Z)%.
i, (x,y) “Zog <Xwez( Y.H,A) (2)

We have

sup min L(x,y,d,A) > min L(xyu A%
u>0A (Xy)ezZ (xy)ez

= min (LY 1A+ L0y A (- x)
(xy)ez

FOLOC Y 1A (y —y') — Ow(Z)?)]

. . s\ K 2
7({2)'22[]‘()( YY) —0w(Z)%)]

> f(x",y") —O(W(2)?).

Note that Step 3 above uses<*, y*, u*,A") = f(x*,y*), OxL(x*,y*, u*,A") = 0, andOy L (x*,y*, u*,A") =
by virtue of the assumption thé&t*,y*, u*,A™) is a KKT point for ProblemR). Therefore,

min f(va) — Sup min L(vavl'lvA) < O(W(Z)z)v
(xy)eZ(2) u>0A (xy)ez

which establishes the existencemwfor all Z € I(X x Y) with (x*,y*) € Z by analogy to Lemm& since the
dual lower bounding scheme is at least first-order converan*, y*). O

A corollary of Theorem$ and5 is that second-order convergence at KKT points is guardriteeconvex
relaxation-based lower bounding schemes in which secoterointwise convergent schemes of relaxations
are used.

Corollary 4 Consider Problem(P). Supposeant(X x Y) is nonempty and fg, and h are twice continu-
ously differentiable orint(X x Y). Furthermore, suppose there exigts,y*) € int(X x Y), p* € R, and
A" € R™ such that(x*,y*, u*,A") is a KKT point for Problem(P). Let (f7Y)zer(xxv) (g] ) zer(xxy)s 1 =
1,---,m, denote continuous schemes of convex relaxations af, f,-ggm , respectively, in %Y with point-
wise convergence ordegs’ > 2, VCV >2,- g¥n| > 2 and corresponding constant$", rgl, -, Tgm - Let
(hkz,hkz)ZGWXY) k=1--- me, denote contlnuous schemes of relaxations0f-h, hy, respectlvely, in
X xY with pointwise convergence ordefs; > 2, , hme > 2 and corresponding constantg 1, -, Thmg -
Then, the resulting scheme of convex relaxation-basedrlbmmding problems for ProblerfP) is at least
second-order convergent at*,y*).

Proof The result holds as a consequence of Theor8raad5, by usingu, = p*, Az = A", g = |4,
A = ||A"||,, in Theorem3. i

The following example shows that the convergence order neagstow as two under the assumptions of
Theoremb.

Example 11Let X = [-2,2],Y = [0,3], m = 1, andmg = 1 with f(x,y) = X+, g(x,y) = —y*+y+2, and
h(x,y) = x. Consider interval§0,0] x [2—€,2+ €] =: Z € [(X x Y) with 0 < € < 1. Note thatw(Z) = 2¢, and
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that (0 2, é, 1) is a KKT point for Problem ). The optimal objective value of ProblerR)(on Z is 2, while
the optimal objective value of the Lagrangian dual-basee:tdounding problem o# can be derived as

O(Z)= sup min_x-+y+p (—y?+y+2) +Ax
u=0A (Xy)€Z

:sugmin{(2—£)+u(—(2—8)2+(2—£)+2),(2+£)+u(—(2+£)2+(2+£)+2)}
u>

=supmin{(2—¢)+p (3e — €?),(2+ &)+ u (-3e —€?) }
H=0

:(2—5)+%(3£—£2)

where Step 2 follows from the fact that the minimum of a coeclanction on an interval is attained at one of
its endpoints, and the value gfin Step 4 is obtained by equating the two arguments of the imire function
in Step 3. Convergence of the dual lower bounding scheme gidint(0, 2) is, therefore, at most second-order.

Finally, we show that the dual lower bounding scheme is (@st)efirst-order convergent even when the
dual problem is not solved to optimality.

Theorem 6 Consider Probler(P). Suppose f,g j=1,---,m, and k, k=1,--- ,mg, are Lipschitz con-
tinuous on XxY with Lipschitz constants MMg1,---,Mgm, Mh1,---,Mhme, respectively. Furthermore,
suppose the dual lower bounding scheme involves at most hiterations of an algorithm applied to the
dual at each node of the branch-and-bound tree. In additsuppose the branch-and-bound algorithm uses

first-order (Hausdorff) convergent schemes of constargxegions (g'j-_z,g?z)z Hoty)' j=1,---,m, on
! ’ < X

XxY to overestimatégj (2) and first-order (Hausdorff) convergent schemes of cons&axations

)ZGH(XXY)
(h'lzvz’hkj-rz)zg(xw)’ k=1,---,mg, on XxY to overestimatéhy(Z) )Ze]l xy) (such schemes of constant re-
laxations can be obtained, for example, using intervalhamietic [23]), setsu; = 0 at each iteration of the
algorithm applied to the dual on Z ing < 0 (i.e., when inequality constraint j is determined to be inaz
on Z by Q‘Jz) and determines the dual lower bounding problem on Z to fesaBible either whenLQ > 0 for
any je {1,---,m} (i.e., when inequality constraint j is determined to be dis$iable on Z by bz) or when

o¢ [hk,z» hﬁz} for any ke {1,---,mg} (i.e., when equality constraint k is determined to be us$atile on Z

by (h,';vz, ht{z)). Assume that the absolute values of the schemes of duablesigenerated by the dual lower
bounding scheme are bounded from above by Mhen the dual lower bounding scheme is at least first-order
convergent on XY .

i L_ gV =1 --- L_ hy =1...-

Proof From the assumption th{glvz’ghz)zeu(xw)’ j=1,---,m, and (hk=z’hkvz>zgn(><xv)’ k=1---,mg,
are first-order convergent o x Y, the determination of infeasibility of the dual lower boimgl problem on
Zif g5, >0foranyje{l,---,m},orif0¢ [hkz,hll({z] for anyk € {1,---,me}, Proposition 1 in §], and
Lemma8, we conclude that the dual lower bounding scheme has atflestsbrder convergence at infeasible
points (although the dual lower bounding scheme detectasilbility of infeasible points iiX x Y at least as
quickly as any convex relaxation-based lower bounding mehgsee Lemmal), we assume that the schemes

L gV . L_py —1.... ' i ibili
(91,2791,Z>Z€H o i= ,my, and(hkvz’hkz)zg(xw)’ k=1,---,mg, are available to detect infeasibility
since we are onIy allowed to use at mogtiterations of an algorithm applied to the dual).

Next, supposeZ (X xY) # 0 andZ € I(X x Y) with ZN.Z (X xY) # 0. Let J; denote the set of in-
equality constraints that are potentially active at somiatpa Z as determined b)(gijZ,gJsz), ie.Jz =

{j e{l,---,m}: g}{z > 0}. Let (ﬂz,/\_z) € R x R™ denote the pair of dual variables corresponding to
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the dual lower bound o# after at moshy iterations of an algorithm applied to the dual wjihz =0, V| €

{1,--- ,;m}\Jz, and let(Xz,yz) € argminf (x,y) + Hrg(X,y) —i—A;h(x,y). Note that the conditionjz = 0,
(xy)ez

Vj e {1,---,m}\Jz can be guaranteed by a suitable initialization of the duahisées and by suitably mod-

ifying the dual variables generated by the algorithm apbteethe dual (this modification of the dual lower

bounding scheme is once again necessitated by the assaortimitoat moshy iterations of an algorithm ap-

plied to the dual are used). For eajch Jz, we have

U
97z — (g?engj (x,y) < 1jW(Z)

for some constartt; > 0 by virtue of the fact that the scheme of constant conca\ae(adbns(g}’z)z IXY)
Z) 710X x

has first-order convergence &nx Y. Sinceg‘j{Z >0,V]j € Jz, andg; is Lipschitz continuous oiX x Y, this
implies

gi(X,y) = — (Tj+ Mg j/m+1y)W(Z), VY(X,y)€Z Vje.

Let (x5,y5) € argmin f(x,y). We have
(xy)e#(2)

in _ fooy)— min [f m Azh
Smin Fy) = min [£0xy) +EEg0.Y) +Azh(xy)

. T
=f(xz,yz) - [f(XZaYZ) + H39(Xz,Yz) +Azh(Xz7YZ)]
* * < <7 1. - 7 _T * * < s
= (f(xz.y2) = f(Xz,¥2)) = > Hjz9j(Xz,yz) +Az(h(xz,yz) —h(Xz,yz))
JeJz
— — — rrE - — —
<Mz, y2) = (2. Y2) [+ 5 Hiz (1) + Mg /i my) WZ) + 5 Az Mkl (%2, Y7) — (%2, ¥2) |
=1

i€z

me
< (Mf,/nx+ny+ Me (Tj 4+ Mg j/Nx +y) + Z Mth.’k,/nX—kny) w(Z)
1€ k=1
m me
< (Mf\/nx+ny+ > Moo (Tj+Mgj/Mt1y) + 5 Mth,k\/nerny) w(Z),
=1 k=1

which establishes the desired result. O

5 Reduced-Space Branch-and-Bound Algorithms

In this section, we present some results on the convergenegsoof some widely-applicable reduced-space
lower bounding schemes in the literatuge 10] for Problem P) when only the sef may be partitioned during
the course of the algorithm. This section is divided into fpasts. First, we consider a convex relaxation-
based reduced-space lower bounding scheme for a subclsshdém P) [10] and investigate its convergence
order. Next, we look at the convergence order of a dualisedareduced-space lower bounding schepe [
Section 3.3] for ProblemR). Algorithm 1 outlines a generic reduced-space branch-and-bound thigofor
Problem P).
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Algorithm 1 A generic reduced-space branch-and-bound algorithm

Initialize :

1. lteration countek = 0, boundsX® andY® on x andy, respectively, after the optional application of
preprocessing techniques to the input data, and toleranses €' > 0, ande¥ > 0 such that' + ! < ¢.

2. Domain of the root nodM? := X° x Y0, and the initial partition??® = {M°}.

3. Current best feasible poirft(x’,y")} = 0, upper boundJBD = +o, lower bound for the root node
LBDP = —oo, minimum {(x*,y*)} = 0, and the optimal objective function vallBD* = oo,

repeat

1. If ¥ =0, terminate. Otherwise, pickn € {ne NU{0} : M" € 27K} using some node selection
heuristic and se?1 « 22K\ (MM},

2. (Optional) Solve the (reduced-space) upper boundingl@no onM" with a tolerance otY to try
and determine a feasible point. UpdatBD, (x',y) if a feasible solution better than the current best
solution is obtained. _ _

3. (Optional) Apply finite reduced-space bounds-tightgriiechniques to obtaiX" c X", Y" C Y".
SetX" «— X", Y" — Y, If either X" or Y" is empty,goto Step 6.

4. Solve the reduced-space lower bounding probleriviBrio '-optimality to obtain the lower bound
LBD" (if the lower bounding problem oM" is infeasible, seLBD" = +). If noden can be fath-
omed,goto Step 6.

5. PartitionM" into M™ andM™ by branching only on th¥-space. Sep?*t1 — Zk+1 MM} U
{M™}, LBD™ = LBD"™ = LBD".

6. Set*tl — ki1 (MP e k1 BDP >UBD—¢}, k—k+1.

until 2% =0
SetUBD* = UBD and(x*,y*) = (x',y") if UBD < +o.

It should be noted that Algorithrh merely provides the backbone of a generic reduced-spacetand-
bound algorithm. In practice, the order in which the subfols are solved may vary and additional subprob-
lems may be solved to speed up the convergence of the algorithe reader is directed to referencég][
and P] for two widely-applicable instances of Algorithiy and for examples of their application. In the re-
mainder of this section, we investigate the convergencersrdf the reduced-space lower bounding schemes
described in10] and [9].

5.1 Convex relaxation-based branch-and-bound for prableitn special structure

Epperly and Pistikopouloslp] proposed a reduced-space branch-and-bound algorithPrédiem P) when
me = 0 (note that this condition can be relaxed as detailed bekmg the functiond andg;, Vj € {1,--- ,m/},
in Problem P) are each of the form

w(x,y) =wAX)+ $ wP)wE(y) +wP(y), W)

i€
whereQ is a finite set of indices, and the function8, w8, wC, andwP satisfy:

. w” andw?® are convex oiX.

wC andwP are continuous oM.

. Strongly consistent convex and concave relaxationsvaitahle forw® andwP onY.
wB andw® have continuous tight bounds.

. For each € Q, at least one of the following two conditions must hold:

a. wB(x) = ¢'x for some constarg; € R™,

b. w&(y) >0forally €.

arwWNER
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Epperly and Pistikopoulodl]] state that equality constraints can be equivalently refdated using pairs
of inequalities; however, the above assumptions restnetftinctional forms of the equality constrairttg
k=1,---,mg, to

hi(x,y) = ZD (e ) wWE(y) +wP(y). (Weg)
IS

Suppose for each < LY, we associate an intervl(Z) such thatdX > X(Z) > .#x(Z), whereIX denotes

the interval hull ofX (note that we make the implicit assumption (see RenZrthat X is an interval in
this section). Assumption 3 can be restated as followsethrists a continuous schentets", W s®)zcry, of

relaxations ofv®, i € Q, inY with pointwise convergence ordgr > 0, and there exists a continuous scheme of
convex relaxations(,wg*c")zEHy, of wP in Y with pointwise convergence ordg?:¢¥ > 0. Assumption 4 can be
replaced by the following: there exist schemes of consﬁslakations(wf’z",V\)f’zu)zgmx and(wf’z",wf’zu)zgy,

i € Q, of wP andwf in X andY, respectively, with (Hausdorff) convergence ordﬂFsC >0 andBiC’C >0.1In
addition, we assume that the range ordewdfVi € Q, is greater than zero on (cf. Lemmal2).

Under the above assumptions, Epperly and Pistikopoul6sghow that underestimating each function
w(x,y) of the form W) using the schem@@‘?z)xz)zgﬂy of convex relaxations defined by

W)z (%,Y) = WA(X) + wPCCVXZ<x y) W (y), (W)

where, for eache Q, the scheme of convex relaxatlo(nrﬂ{BX 7)x2 )zery is obtained using McCormick’s product
rule [20] as

.. V\FU CCV(y)—l—\NB(X) V\FU |Z , } .
mFL () + WP w.BL ’

WE WSS (y) + WF(X)WE’ZU - WiB,’xLiz)Wf’zuv

V\F L c cc(y) +WiB(X)WE’zL _V‘)i?;z WfiL }’ if WEXLQZ) <0
mF“ MEZ () + WP OOWES — Wik W
V\FL CCC(Y) +WE(X)W, i,Z _V\)ia,)i_(z)

yields a convergent reduced-space lower bounding schettheawy accumulation point of the sequence of
lower bounding solutions solving Problef) (vhen the subdivision process is exhaustivé&@nd the selection
procedure is bound improving.

vaCCVXz(x y) = { max

|Z ’ .
max }, otherwise

Before we investigate the convergence order of the redepade lower bounding scheme 0], we look
at the propagation of the convergence orders of the retaxattheme$ i77zL7WE"zU)Z€]IDX: (wf’zc",wf"zcc)zgy,
(WE'ZL,WE’ZU)ZGHY, VieQ, and(w?’c")z@ly to the convergence order of the reduced-space scheme aéxconv
relaxations(m@("(z>xz)26ﬂy. Note that unless otherwise specified, we simply X§8) = OX(= X), VZ € IY.
The following result provides sufficient conditions for tkeheme of convex relaxations defined by<) to

have pointwise convergence of a given ordeiYon

Lemma 12 Let X € R™, Y C R"Y be nonempty compact convex sets anKfx Y — R be a function of the
form (W) such that
FrX XY 3 (%y) — WAX) + 3 wPOOwE (y) +wP(y).
ic
Assume that & w8, Vi € Q, and W are continuous, and for eachd Q, wF has range of ordenr® > 1

on Y with corresponding constar{t”. Let (W5, w{5)zery and (w5 ™)ze1y respectively denote continuous
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schemes of relaxations ofwi € Q, and W in Y with pointwise convergence ordeys > 1 and yP< > 1
and corresponding constants” and 12:¢V. Let (\NE’ZL,WE"ZU)ZeHDx and (vvf’zL,wf’ZU)zGHy respectively denote
schemes of constant relaxations @iw X and W in Y, Vi € Q, with (Hausdorff) convergence ordeﬁg’C >0

and Bic’c > 1 and corresponding constantf’C and ric’c. Then the continuous scheme of convex relaxations
(f)(é\(/Z>XZ)Z€]1Y of the form(W*®") defined by

Tl 2 (X Y) %Wﬂz (XY) +W2Ny), V(xy) €X(Z)xZ,

has pointwise convergence of order at leash {miQn{ min {aic, ,Bicvc, If}} , yD7CV} onvY.
le

Proof From Equation\(v®¥), we have for eackx,y) € X(Z) x Z:

f(x,y>—f§¥z>xz<x,y>—(w“(x)a mew(mwo(y)) ( X) + %wmxzxy +w§°“<y>>

=3 (WEOOWE(Y) —WR T, () + (W) ~wR(y))

i€

Depending on whethenfs, > 0, wfy(, < 0, or O€ (w.B"L w2 | for eachi € Q, we have that

iX(2) ,x<z>]
(WB( WE(y) — vaCC"Xz(x y)) is bounded from above either by

[WBOOWE(y) — (Wil W () +wBOwss —whil, w) |

or by
[WEOOWE(Y) — (W i) +wP WSy —w, iy ) |

i,X(Z) i,.X

for each(x,y) € X(Z) x Z. Consequently, it is sufficient to show the existence of tamtsty, 72 > 0 such that

() ox () xZ (‘”A(X)ine \’\'?(X)\Nic(y)Jr\AP(y)) -
(WA(XH- (4501 + P Ll )+W§’°V<y>> < tw(2)
and
(X,y)renxaz)z()xz <WA( )+|€ wWe (X)W (y) +wP (y)) —
(WX)+. (W) WPl — iy wf) + w2 CV(y)> < Tw(2)Y,

wherey := min{mig{ min{UF,BiC’C,}f.:}},yD=C"} to prove that(fgY, ,)zerv converges pointwise t6
e

with ordery onY. The ensuing arguments prove the eX|stence_Lpfne eX|stence of, can be proven analo-
gously.
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We havey(x,y) € X(Z) x Z:
(w00 3 wbnfio) +wPt) -

( +Z> WEZ(y) WP OwZ — i w )+w?°“<y>))

—(_ wF(x)m»F(y)—(wﬁ*x%z)wf’zw(ynm?(x)wﬁz“—M?’;iawﬁz“))+(wD<y>—mfz°’°V<y>). )

Note that)v\/ic(y) —WE’ZU‘ can be bounded from above as

’ ’_ ‘( ' maxvvC( )) (m&XWiC(Y)—wvaU)

‘WC maxvvc( )'

maxvvc( ) —

yez
< (Ti ry(z)®mn{a A | ’°w<2>‘3i°“m‘”{"f’ ”) w(z)"m o A5}

<Mw(2)R", wyez,

with MC := C "w(Y)ai C-BC" 4 ric"CW(Y)Bic‘cfﬁic‘r andﬂlc’r = min{oric,ﬁlc’c}.

The first term in Equation7) can be bounded as

3 (W 0n ) = (Wil iz )+ wP oo’ —wiiowy’))
=2 [(wPo0 —wxty ) (WPy) —ws’) +wiily, (WP - )]
< 3 19800 WG | ) | [ty (W) —wiE )|

< %MiB‘?w(szc

i€

<MEW(2)", V(xy) €X(Z) % Z, ®)

where the constantd®®, Y€, andMEC, yBC, vi € Q, can be computed as

M= 5 MPCW(Y)F e min Oy = min{ BT

i€
MEC (M)A M2 o

B,
MEL = maxwB(x) — minwB(x) + TBW(X)B "
xeX xeX

MB2 = maxw®(x) + T2w(X)P".
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The second term in Equatioi)(is simply bounded as

Ccv

wWoy) w2 (y) < w2, ez, ©)

From Equationsg) and @), we have

max
(xy)ex(z2)xz

(M<x>+ mﬁx)mﬂymmy)) .

i€
(10003 (w0 +on ) + B0 )
< (MBCW(Y)VBC’V—k TD’CVW(Y)VD‘CV*V> w(z),
which proves the existence of. O
The following remark is in order.

Remark 12

1. Supposef is Lipschitz continuous ol for eachi € Q. We then haver® > 1,Vi € Q. If y° > 1 andB"*° >
1, ? € Q, andy?® > 1, we have from Lemma2 that(fﬁ‘(’z>xz)2dy has at least first-order convergence
onY.

2. LetX=1[1,2],Y =[-1,1], and f(x,y) = xy. For any[—¢,&] =: Z € IY with £ > 0, consider the scheme of
convex relaxation$f§‘(z>xz)zgﬂy of finY with

fX(z)xz(X.y) = max{y — ex+€,2y + ex— 2¢}.

The above scheme corresponds to the tightest possible eafesonvex relaxations in the reduced-space,
but has at most first-order pointwise convergenceroithis is in contrast to Theorem 10 iB][where
the scheme of convex envelopes of any twice continuouskegrdifitiable function was shown to have
pointwise convergence order of at least twoXor Y. Note that ifQ = 0, the pointwise convergence order
of the scheme of convex reIaxatithj‘(’z>Xz)26Hy is dictated by the pointwise convergence order of the

scheme(w?’c")zﬂy, and second-order pointwise convergencéfﬂzyz)zgﬁ\( can be achieved by using
the scheme of convex envelopeswt if it is twice continuously differentiable. Also note thah@orem 2

in [5], which states that the pointwise convergence order of araehof relaxations of a nonlinear twice
continuously differentiable function can be at most twoXor Y, naturally holds oveY as well.

The following result establishes a lower bound on the cayereece order of the reduced-space lower bound-
ing scheme proposed id(] at infeasible points.

Lemma 13 Consider Problen{P), and suppose functions;,gj = 1,---,m, are each of the fornfw) and
functions i, k=1,---,mg, are each of the fornfWeg). Let (g]?}g((z>xz)z€ﬂy, j=1,---,m, denote continu-
ous schemes of convex relaxations gf ¢ ,gm , respectively, in Y with pointwise convergence orqu§>
0,---,¥§m > 0and corresponding constantgv,--- , Tgm» and Iet(hﬁj’x<z)xz,hﬁ&(z>xz)z€ﬂy, k=1,---,mg,
denote continuous schemes of relaxations;of-h, hy, respectively, in Y with pointwise convergence orders
¥h1>0,---,yhme > 0and corresponding constantss,- - - , Thme. Then, there exists > 0 such that for every
ZelY

d (EO((Z) xZ),R™ x {0}> ~d(£(2),RD x{0}) < Tw(z)’,
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where #¢(Z) is defined as

Ic(Z) = {(v,w) €R™ X R™ :v=g5i7),7(X,Y), (7). (%Y) W < hSlz) 2 (X.Y)

for some(x,y) € X(Z) x Z}

andf3 is defined as

‘=min min ¥, min :
P {ie{l.,---,ml}va”ke{l,---,me}mk}
Proof The proof is similar to that of Lemm@&and is therefore omitted. O

Definition 15 (Feasible Point in the Reduced-Space&}onsider ProblemR). A pointy €Y is said to be
feasible (in the reduced-space) if there existsX such that(x,y) is feasible for ProblemR).

The following result establishes first-order convergerfa® reduced-space lower bounding scheme pro-
posed in LO] at a feasible point in the reduced-space when first-ordietywse convergent schemes of relax-
ations are used and the reduced-space dual lower boundirgisqsee Sectidh?2) is first-order convergent.

Theorem 7 Consider Problen{P). Suppose the functions f ang, g = 1,---,m, are each of the fornfw)
and functions y k=1,--- ,mg, are each of the forrWe). Letyf € Y be afeasible point in the reduced-space
for Problem(P). Suppose the reduced-space dual lower bounding schem&¢sten5.2) has convergence

of order B4 at yf and a corresponding scheme of dual variab(e(sug,)\g))z N (not necessarily optimal,
but which yieldB4-order convergence at') with (p{,)\{) € R x RM, HugH < u and H/\%H <A,

VZ ¢ 1Y, for some constantg,A > 0. Let (f;‘(’z>xz)zgm, (gf&(z>xz)zgm, j=1,---,m, denote continu-
ous schemes of convex relaxations of {,-g ,0m, respectively, in Y with pointwise convergence orders
V' > 1 ¥51 > 1, ¥gm = 1and corresponding constant$", 7¢, -, Tghy - Let(hﬁ}’xg)xz,hﬁfx<z)xz)z€ﬂy,
k=1,---,mg, denote continuous schemes of relaxations; of-h, hny, respectively, in Y with pointwise con-
vergence ordergh1 > 1,---, Yhme > 1 and corresponding constants, - - - , Thm . Then, the scheme of lower
bounding problem$.2(Z))zery with

oz = min SV X, ) ,
(0(Z))zerv (<X7y>€ycv(z) X(2)x2(%.Y) Jery

(A(2))zery = ({(v,w) €R™ xR™ v =g5is), 7 (% Y),h{(z)2(%Y) W < hSls) 7 (X.Y)

for some(x,z) € X(Z) x Z})zaw

is at Ieaslmin{min{y?", yg‘j min }Wm,k} ,ﬁd}-order convergent ay'.

min ,
jeflom ¥ kel mg

Proof The proof is similar to that of Theore®and is therefore omitted. a

Definition 16 (Unconstrained Point in the Reduced-Spacefonsider ProblemR) with mg = 0. A point
y €Y is said to be unconstrained (in the reduced-space) if thésesé > 0 such that’z € Y with ||z—y]|| < 9,
we haveg(x,z) < 0, ¥x € X.

The next result establishes first-order convergence ofatieced-space lower bounding scheme proposed
in [10] at unconstrained points in the reduced-space when a fidst-gonvergent scheme of relaxations of the
objective is used by the (convergent) lower bounding scheme
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Proposition 2 Consider ProblenfP) with mg = 0. Suppose the functions f angg = 1,--- ,m, are each of

the form(W). Let( f§‘(’z)xz)26ﬁy denote a continuous scheme of convex relaxations of f infYowmitvergence
order 3¢¥ > 0 and corresponding constamt", (g(j:?l)((Z)XZ)Zg]]Y, j=1,---,m, denote continuous schemes of
convex relaxations ofig-- -, gm , respectively, in Y with pointwise convergence ordgts> 0, -, ygr, >0
and corresponding constanté"l, ey Tom -

Supposeg® €Y is an unconstrained point in the reduced-space, and thensefof lower bounding problems
(Z(2))zery with

oz = min  fgl, (X, > ,
(O@per = min,  aen)

(Fe@)zer = (Bizp2X(2) < 2))

has convergence of ordg € (0, 3¢Y] at yS. Then the scheme of lower bounding problgta¥Z))zc1y is at
leastB¢V-order convergent ay®.

Proof The proof is relegated to Appendix 2 since it is similar to the proof of Corollarg. O

Note that Propositio2 can be generalized in a manner similar to Corolfaty show that the above lower
bounding scheme hgf-order convergence on a neighborhood/af

The following example shows that the convergence orderefélduced-space lower bounding scheme is
dictated by the convergence ordgf), of the scheméfQ(’Z)Xz)ngy under the assumptions of Propositi&n

Example 12LetX = [-1,0.1],Y = [~1,1], m = 1, andme = 0 with f (x,y) = x*>+y? andg(x,y) = x+y—0.5.
For any[y-,yY] =: Z € T, let

X2 — (YW —yh)3, if0 e [y-,yV]

flz)z(%Y) =
e x2+min{(y-)2, (y)?} — (y —y-)3, otherwise
0%(2)xz(%Y) = X+y—05.

The scheméf;g‘(z)xz)kﬂy has first-order pointwise convergenceYoand third-order convergence ¥nwhile
the schemégi‘?z)xz)zﬂy has arbitrarily high pointwise convergence orderYon

Let y- = —¢, yY = £ with 0 < £ < 0.1. The width ofZ is w(Z) = 2¢. The optimal objective value of
Problem P) on Z is 0, while the optimal objective of the lower bounding preblonZ is —8¢3. Convergence
at the pointy = 0 is, therefore, at most third-order.

It is natural to wonder at this stage whether the reducedesfmver bounding scheme if(] has ‘similar
convergence properties’ to the full-space lower boundoigme that was analyzed in Sectét. Examplel6
presents a case where the reduced-space lower boundingesain¢l0] only has first-order convergence at a
constrained minimizer that is a KKT point (cf. Exam@leTheoren? and Corollary). The following example
shows that the reduced-space lower bounding scheni€]imay have a convergence order as low as one even
for unconstrained problems with smooth objective function

Example 13Consider the following instance of Problef){
ryiyn 2 + X2y —xy? + (y—0.5)?
s.t.xe[-1,1],ye€[0,1].

The global minimum,(x*,y*), of the above ‘unconstrained problem’ x5 = ZTm -3,y = @1 — 1 with
optimal objective value* = 2(x*)? + (x*)2y* — x*(y*)? + (y* — 0.5)2.
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Considerly" — €,y* + €] =: Z € IY with € € (0,0.25]. The reduced-space lower bounding schemd @ [
yields
0(Z) = min 2 +w; +w;+ (y—0.5)

X,Y, W1, W2
s.t.owy > xe(y" —g),
wy > y-HP(y +e) = (y +e),
w2 > Y2 = x(y +€)? = (Y + €)%,
Wy > (V)2 -2y y—e2—x(y — &)’ +(y' —¢)?,
xe[-L1,yely ' —ey +¢l.

Note that the pointxy, y5, W ;. Wh ;) = (X*,y", (X")2(y" — &), —(y" )2 — £2 = X' (y* — £)2+ (y* — £)?) is feasible
for the lower bounding scheme with objective valig3? +wj , +wh , + (y* —0.5)2 = v* +2x"y* e — (x") 2 —
x*&? — 2y*e. Therefore, we have
oo Y 7 Mg Rzaloy) 2 0%+ X e84 2 e -2y e
= (0.5(x")2+0.5x" e +y" —X"y") W(Z)
— 05(1+ X W(2)
> 0.5w(2),

which establishes that the reduced-space lower boundhrgreein [LO] has at most first-order convergence at
(the reduced-space minimizar).

Remark 13Examplel3 provides an instance of Problei) for which the minimum is unconstrained but the
reduced-space lower bounding schemelid) js only first-order convergent at the reduced-space mzemi
Therefore, the lower bounding scheme 18] could face severe clustering for this example39]. Note that
this is in contrast to the full-space lower bounding scheim&gctiord which can achieve at least second-order
convergence at the above minimizer and thereby mitigateniing.

The presence of the termxdy and —xy? in the objective function in Exampl&3 plays a crucial role in
limiting the convergence order of the reduced-space lowainding scheme inl0] (see Remarkl2). Ad-
ditionally, the analysis in Exampl&3 implies that the scheme of relaxations of its objective fiomchas at
most first-order Hausdorff convergenceYnTheoreml0in Section5.2implies that the reduced-space lower
bounding scheme irLp] has second-order convergence at KKT points when all oftihetfons in ProblemR)
are twice continuously differentiable and separable &mdy.

5.2 Duality-based branch-and-bound

Dur and Horst 9, Section 3.3] outlined a reduced-space branch-and-bolgioditam in which they used La-
grangian duality to obtain lower bounds (also s8ed]). Dur and Horst §] prove that when a constraint
qualification holds for the reduced-space convex relaratimsed lower bounding scheme with each function
in Problem P) replaced by its (convex) envelope ¥nx Z (for eachZ € 1Y), the subdivision process is ex-
haustive orY, and the selection procedure is bound improving, then aoyraalation point of the sequence of
reduced-space dual lower bounding solutions solves Rroie

The reduced-space Lagrangian dual lower bounding protsemedssence the same as its full-space coun-
terpart ProblemDD), with the major difference being that we only branch onYhgpace in the reduced-space
dual lower bounding scheme to converge. We associate wéthettiuced-space dual lower bounding scheme,
(Z(2))zery, at a feasible point in the reduced-spgece scheme of dual variablégu?,A%))zcry correspond-
ing to the solution of the scheme of dual lower bounding pFots(&(Z))zcry With y € Z. Dur and Horst 9,
Section 4] also outlined classes of problems for which tldeiced-space dual lower bounding problem can be
solved to optimality. The following result, analogous toebhemd4, holds.
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Theorem 8 Consider Problem(P). Suppose strong duality holds for the reduced-space comlaxation-
based lower bounding scheme for Problé®) obtained by using the schemes of (convex) envelopesgyf f,
and h. Then, the reduced-space dual lower bounding scheme hasasit &s high a convergence order as
the reduced-space convex relaxation-based lower bounsithgme obtained by using schemes of (convex)
envelopes.

Proof The proof is similar to that of Theorethand is therefore omitted. O

The following result from §] states that when the constraints in Probléngre affine orX x Y, the lower
bounding scheme corresponding to schemes of (convex)apag&provides the same scheme of lower bounds
as that obtained using the dual lower bounding scheme.

Lemma 14 Consider Problen{P), and suppose the constraints in Probl¢éR) are affine inx andy, i.e.g:
(X,y) — Agx+Bgy —cg and h : (X,y) — Apx+ Bpy — ch. In addition, suppose Problei) is feasible and
strong duality holds for ProblertP) for y restricted to any feasible point in Y. Then the lower boungioled
by solving the dual problem on&IY is the same as the lower bound obtained by solving the ritaxaf the
original problem on Z with the objective function f repladedits convex envelope onZ.

Proof See Proposition 2.1 ir9]. O

Lemmal3(in conjunction with Lemmad. 1) guarantees that the reduced-space dual lower boundiegngech
has at least first-order convergence at infeasible pointhéosubclass of ProblenP) for which the algorithm
of Epperly and Pistikopoulos is applicable when the fumﬂiwic, Vi € Q, andwP corresponding to each of
the constraints are Lipschitz continuous. The followinguteshows that first-order convergence at infeasible
points is guaranteed for a more general class of problemiseiriarm of ProblemR) even when constraint
propagation techniques are not used.

Lemma 15 Let X C R™, Y C R"™ be nonempty compact convex setsXfx Y — R be Lipschitz continuous

on Xx Y with Lipschitz constant M Suppose f is partially convex with respeciia.e. f(-,y) is convex on

X for eachy € Y. For any Z€ IV, let §"$": X x Z — R denote the convex envelope of f o X. Assume

that for eachx € X, there exists a subgradiesfy; x) € &k f (x,y)|x=x such that each;§y;X), i =1,---,ny, is
Lipschitz continuous on Y with Lipschitz constant Mhen, the reduced-space scheme of convex envelopes

cv,en : .
(fX%5") 7opy has pointwise convergence of order at least one on Y .

Proof We wish to prove the existence of a constant 0 such that

max _[f(x,y) — fugMx,y)| < w(Z), VZelY.
(x,y)eEXxZ

Note that the existence of the maximum in the above expredsimws from the (Lipschitz) continuity of,
Lemmad4, and the compactness Xfx Y. ConsideiZ € IY, and let(x3,y3) € argmax|f(x,y) — f5 25X, y)|-

(X,y)eEX*Z
We have
max _[f(x,y) — {07 Y) = F0G,y7) — 570G, ¥7)
(x,y)eEXxZ
=max f(xz,y) — iz (.Yl (10)

Sincef(-,y) is convex orX for eachy € Y, we have

f(x,y) > f(x5,y) +5(y;x5) T (x—x5)
= f(xz,y) +wz(x,y)
> F9EMx5,Y) + WL 2 (X,Y),  Y(X,Y) € X xZ,
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wheres(y;x7) € d«f(X,y)|x=x; is a subgradient of (,y) atx; such thats(y;x7), Vi € {1,---,n}, is Lip-
schitz continuous o with Lipschitz constanMs, f5"*™(x%,-) denotes the convex envelope bfx3,-) on
Z, wz(x,y) := s(y;x3) " (x —x3) is a function of the form\/), andwg", is a convex relaxation ofi; on
X x Z of the form ) with first-order (pointwise) convergent schemes of estimsaof s(y; x3) used in its
construction.

Sincef is Lipschitz continuous oX x Y and f5"*™(x3, -) is the convex envelope df(x3,-) onZ, we have
from Lemmay that

max f(,Y) — 15z, Y)| < Mw(2).
ye
BL B

Using Lemmal2 with wB(x) = (x — X 2), WE(Y) = S(Y:X5), Wi = r;ry)rg (% —%2), wi."'U _ T&X(Xi -%2),

W (y) =Wy = mins (y; x5), andwy(y) = w3’ = maxsi(y; x;), we can show the existence of a constant
’ ’ yeZ ’ ’ yeZ

T > 0 such that

max _|wz(X,y) —Wghz(x,y)| < TW(Z).
(x,y)eXxZ

From the above two inequalities, we have

; ;pg(xle(f(xay) +wz(x,y)) = (f7°™xz,y) + Wz (x, ) | < (Ms +T) w(2).

Usingwz(x3,y) = 0, we obtain
may (x5,y) — (1506, Y) + ¥Rz 0Y)) | < (M + ) w(2).

Since the convex envelope df on X x Z, 5", is, by definition, tighter than the convex relaxation

f79eMx35, ) +wg’, , atxy, we have from EquatioriL() that
max f(xz.y) — K120, y)| < (Mr +T) w(2),
which proves the existence of O

Note that the assumptions of Lemrb&are readily satisfied if is a Lipschitz continuous function of the
form (W) that is composed of continuous functioms, w?, Vi € Q, andwP and Lipschitz continuous functions
wE, Vi € Q. An instance for which the assumptions of Lemffare not satisfied i (x,y) = |y||x+y+ 1|
with X = [-1,1] andY = [-1,1]. The following examples provide instances for which theuagstions of
Lemmal5 are satisfied, but where the functions involved are not irfaha (W).

Example 14LetX = [-1,1],Y = [~1,1], andf(x,y) = exp(xy). We haveM; = v/2exp(1), s(y; X) = yexp(xy),
andMs = 2exp(1) satisfying the assumptions of Lemrha

Example 15LetX = [-1,1],Y =[-1,1], andf (x,y) = —|y|\/X+ Y+ 3. We haveM; =4, s(y;x) = —2\/%,

andMs = 1 satisfying the assumptions of Lemra

The next result shows that the reduced-space dual lowedimyischeme has arbitrarily high convergence
order at unconstrained points in the reduced-space.

Proposition 3 Consider Problen{P) with me = 0. Suppose’® € Y is an unconstrained point in the reduced-
space. Furthermore, suppose the reduced-space dual loserding scheme has convergence of ofler O
atyS. Then the reduced-space dual lower bounding scheme hasaailyihigh convergence order atS.

Proof The proof is relegated to Appendix 3 since it is similar to the proof of Propositidn a

The following result establishes first-order convergerfdd® reduced-space dual lower bounding scheme
even in the absence of constraint propagation.
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Theorem 9 Consider Problen{P). Suppose f,gj=1,---,m, and i, k=1,--- ,mg, are Lipschitz contin-
uous on Xx Y with Lipschitz constants MMg1,---,Mgm ;Mn 1, - ,Mhme, respectively, and assume that the
assumptions of Lemnib hold for g and h. Assume, in addition, that Proble¢R) is feasible, and that strong
duality holds for ProblentP) for y restricted to any feasible pointin Y. Furthermore, suppbeeset of optimal
dual variables for ProblentP) restricted to any feasiblg € Y is bounded (with the bound independeny)of
Then the reduced-space dual lower bounding scheme is dtflesisorder convergenton Y .

Proof Lemmatall, 13, and15imply that the dual lower bounding scheme is at least firdeoconvergent at
any infeasible poiny € Y with the prefactor independent pf(note that the conclusion of Lemni& does not
depend on the schemes of relaxations of the constraintg bethe form (v<)).

DefineF(y,H,A) := m|n f(x,y) 4+ HTg(x,y) + A Th(x,y). We first show thaF (-, u,A) is Lipschitz con-

tinuous onY for any (u, /\) e R x R™. Consider(u,A) € RT' x R™ andyy,y, € Y. We have
|F(yl7“7A)_F(y27lJ7A)|

= ‘ (Q;ig f(X,y1) +Hg(X,y1) +/\Th(x,y1)) - (rxr;i;g f(X,y2) +Hg(X,y2) +/\Th(x,yz)) '
< @X)(f(x,yl) —f(x,y2)) + KT (9(x,y1) — 9(%,y2)) + AT (h(x,y1) - h(x,yz)))

<max|f (x,y) — f(x.y2)| +max| KT (g(x y1) — gx.y2)) |+ max|AT(h(x.y2) ~h(x.y2)|

m me
< Mi+ 5 [Hj|Mgj + I)\kl'V'h,k> llyr—vell,
( 2, 2,

where Step 2 follows from Lemn and Step 4 follows from the Lipschitz continuity of the ftioas involved.
SupposeZ (Y) # 0 andZ € 1Y such thaZ N.% (Y) # 0. Since strong duality holds for Problei) fvith y
restricted to any feasible point ¥y Problem P) can be equivalently expressed Das
min  f(x,y) = min su F(y,U,A).
uweﬁa)( Y) wi(“JERﬁMME (yu )
By strong duality an& N.% (Y) # 0, there exists a minimizelys, 43, A7) of the above ‘dual form’ of Prob-
lem (P) wheny is restricted t&Z. We have

min_f(y) —  sup min [0y +HTg0y) +AThoy)|
(xy)EF(2) (1.A)eR™ xRME (XY)EXXZ
F(yz,uz,Az)—  sup  minF(y,p,A)
(mA)eR™ xRrmE V<2

< POz H2.A3) - min F (1 kz.02)
| yZ7lJZ7AZ (YZ7IJ§7A;)|

(Mf + ZL|IJ] z[Mgj + Z )‘kZ|th> Iyz —yzll

<[ Mi+S MaMg i+ S MoMy w(Z),
(f ,; 9i kzl hk)ﬂ()

whereyz € argminF (y, u3,A%), Me := supmax{ || 4*(Y)l«, |1A“(Y)|l., } is an upper bound on the norm of
yez yey
pairs of optimal dual variablequ*(y),A™(y)) € argmaxF (y, 4, A), and the penultimate step follows from the
u>0A
Lipschitz continuity ofF (-, 4,A) onY. 0
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The assumption that the set of optimal dual variables foblero (P) restricted to any feasiblec Y is
bounded can be replaced with the less restrictive assumttat there exists an optimal dual variable pair
(H*(y),A"(y)) € argmaxF (y, i, A) for eachy € Y such that supnax{Hp Meos 1A (V)]0 } < Meo.

U>0A

A corollary of Theorem& and9 is that first-order convergence is guaranteed for the corelexation-
based reduced-space lower bounding schemé&Ghwhen first-order pointwise convergent schemes of re-
laxations onY are used in its construction. Instead of proving first-or@mvergence of the lower bounding
scheme in 10] at feasible points under the assumption that schemes afdealioptimal dual variables exist,
we show that the reduced-space lower bounding scheni@jrehjoys first-order convergence at any feasible
point in the reduced-space under the (less restrictive)nagson that strong duality holds for Problef) (vith
y fixed to the feasible point.

Corollary 5 Consider Problem(P). Suppose the functions f ang,¢/j € {1,---,m}, are Lipschitz con-
tinuous on Xx'Y with Lipschitz constants MMg1,---,Mgm , respectively, and are each of the fo(wv).
Furthermore, suppose functiong, k= 1,--- ,mg, are Lipschitz continuous on XY with Lipschitz constants
Mh1,- -+, Mnme, respectively, and are each of the fofWe). Supposg’ €Y is a feasible point in the reduced-
space and strong duality holds for Problef) wheny is fixed toy'. Let (fg‘(z)xz)zgﬂy, (g]??;((z)xz)kgy,
j=1,---,m, denote continuous schemes of convex relaxations af, f--ggm , respectively, in Y with point-
wise convergence ordefg¥ > 1, yCV >1,--+,Ygm > 1and corresponding constants”, rg" -, Tgm - Let
(hk,X( )xZ’hk,X( )XZ)ZGHY’ k=1,- -,mE denote contlnuous schemes of relaxations of h, hny , respectively,
in Y with pointwise convergence ordefig; > 1,---,yhme > 1 and corresponding constant 1, -, Thmg -
Thefn, the scheme of lower bounding probledZ))zcry proposed in L0] is at least first-order convergent
aty'.

Proof Let (uyf,/\yf) e argmaxF (y', 4, A) be an optimal pair of dual variables fpfixed toy' in Problem P).
u>0A

Suppos€ € LY with y' € Z. Similar to the proof of Theorer8, we have

min  f(x,y) — su min | f(x,y)+u1"g(x,y) +ATh(x,
oy (V) = s i [£00y)+ HTg0xy) +ATh(xy)
<|F (yf w, Ay) sup min F(y, 4,A)
(uA)eR™ xRTE YEZ
< [F (L' AY) —minF (., /\y)'
<t'w(2),

for some constartt’ > 0. The result then holds as a consequence of Thedrh»ymlsingu%f = pyf, /\%f = /\yf,
U= Hyny ,andA = H/\ny in Theorem?. ]

The following example shows that the convergence ordereofeétiuced-space dual lower bounding scheme
may be as low as one at constrained minima.

Example 16Consider the following instance of Problef){
R
st.x+y<1,
€ [—171},)/6 [071]
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The optimal solution i$x*, y*) = (0.5,0.5) with optimal objective value-0.25. When the inequality constraint
is dualized, the following dual function is obtained:

a(u) = rTX1_iyn —Xy+H(X+y—1)
s.t.xe[-1,1],y€[0,1].
Considery-,yY] = [0.5—£,0.5+ ¢] =: Z € IY with £ € (0,0.5]. In order to derive the dual function

q(p) = min —xy+H(X+y—1)

xe[-11]
yey- Wi
as an explicit function oft, we partition the domain gfi to obtain
q(k) = q min{(u =y, (u+1y- —2p}, ify- <p<yV
(M+1)y- -2y, if p > yY

when the bounds oxare taken to bé-1, 1] irrespective of the bounds gnThe dual lower bound can therefore
be derived as: o -1y

su =

Supdl) = T 00y 3y
Therefore, forfy-,yV] = [0.5— £,0.5+ €], the dual lower bound can be derived as

(—05—£)(05+€)  (0.5+¢)2

S — —_
ugng) l1+e 1+¢

Consequently,

2 2
min _ —xy — supq(u) = —0.25+ (05+¢e)° 07%e+e >0.75¢,

(xy)eZ(2) =0 1+  1l+¢
which implies that the dual lower bounding scheme is at mosttdirder convergent gt.

Remark 14Example 16 provides an instance of ProblerR)(for which both the reduced-space dual lower
bounding scheme9] and the reduced-space lower bounding schemd.th (this follows from Lemmal4)
are only first-order convergent at the minimizer. Furtheemdor eacty € [0, 1], the reduced-space objective
functionv: [0,1] — R can be derived as

v(y) =min —xy
s.t.x+y<1
xe[-1,1],

which reduces to(y) = y* —y. It can be seen that = 0.5 is an unconstrained minimum of the reduced-space
objectivev(y), which implies that at least second-order convergence @frélduced-space lower bounding
scheme is typically required gt to mitigate clusteringq, 39].

Therefore, neither reduced-space lower bounding schembeaxpected to avoid clustering for this ex-
ample. Note that this is in contrast to the full-space lowarritling schemes in Sectidrwhich can achieve at
least second-order convergencéxty*) and thereby mitigate clusteringd)].

Note, however, that the use of constraint propagation igales by reduced-space lower bounding schemes
can potentially increase their convergence order as demated by Example47 and18. This demonstrates
the importance of constraint propagation techniques inaged-space lower bounding schemes, which has not
been emphasized i9[10].
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Example 17Consider the instance of Proble®) {n Examplel6with Z = [y-,yY] € [0,1], y- <0.5,yY > 0.5.

Suppose we use constraint propagation to dexi{@) = [—1,1—y-]. The dual function can be derived as
HOY =y YW - 1), if <y
q(u) = q min{u (¥ —y5) YWY = 1), (u+ Dy —2p}, ify-<p <y,
(u+1)y-—2p, if >y

which yields the dual lower bound

_ Y-y -2)
SUpA(K) = =5 o +y

Considenyt = 0.5— ¢, yY = 0.5+ ¢ for somee < (0,0.5). The dual lower bound reduces to

—£3-4.5¢2-0.75¢ - 0.375

supa(k) = 15+ 3¢
Consequently,
. €34 4.5¢2 4+ 0.75¢ +0.375
min  —Xy — Ssu =—-0.25+
(xy)eZF(2) Y Q(I?Q(IJ) 1.5+3¢

1
=025+ (€% +4.562+0.75¢ +0.375) (1+2¢) *

1
=025+ ¢ (€% +4.56% +0.75¢ +0.375) (1—2¢ +4e? + O(£3))
=324+ 0(ed)
< 1€,
for some constart > 0 (where we may assume that the above inequality holds f00.5 as well).

_ Consider any nondegenerate interZat= [y-,yV] c [0,1] with 0.5 € Z and construcZ > Z such that
Z=[y* —¢&,y" +e]with € = max{y¥ —y*,y* —y-}. We have

min  —Xxy — su min —Xy+ Hg(X%,y)] < min _ —xy — su min. _[—Xy+ Hg(X,
(xy)eF(Z) Y uz(?(x,y)eX(Z)xZ[ Y+ Ha(Y) (xy)e#(2) y uzg(x,y)eﬂz)xz[ Y+ HIxY)
<1e?
<tw(z)?,

which implies that the reduced-space dual lower boundihgree with constraint propagation is second-order
convergent ay*.

Figurelillustrates the performance of the lower bounding scheroasidered in this work in a bare-bones
branch-and-bound framework for ExamptE8and 17. The branch-and-bound framework was implemented
in MATLAB ®, and the (convex) lower bounding problems were solved usiegCVX [12] package. The
lowest lower bound node selection rule and the intervaldbise branching rule (which bisects the domain
of the variable whose interval has the largest width) weredusy the branch-and-bound algorithm. Since
Examplel6is not particularly challenging, it is assumed that a locder finds its global solution at the root
node of the branch-and-bound tree (i.e., the upper bouret te she optimal objective value at the root node).
In addition, the bounds or andy were modified to{—l,l— l—‘{,%] and [l—{zo,l], respectively, to prevent the
full-space lower bounding schemes from branching at thengptsolution and (fortuitously) converging early
(this modification enables a truer characterization of thevergence rates of the lower bounding schemes).

Figurelaplots the number of iterations of the branch-and-boundrétgo versus the (absolute) termina-
tion tolerance for the full-space lower bounding schentes réduced-space lower bounding schemes without
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(a) Comparison of the number of branch-and-bound iteration (b) Comparison of the number of branch-and-bound iteration
versus the termination tolerance between the differeneifow of the reduced-space lower bounding schemes without con-
bounding schemes straint propagation with the predictions from the clusterbp

lem model for different termination tolerances

Fig. 1: (Left Plot) Plots of the number of iterations of theabch-and-bound algorithm versus the absolute
termination tolerance for the lower bounding schemes dened in this work for Exampl&6. The solid line
indicates the number of iterations of the full-space lonaurizling schemes, the dashed line indicates the num-
ber of iterations of the reduced-space lower bounding sekemithout constraint propagation, and the dash-
dotted line indicates the number of iterations of the redegace lower bounding schemes with constraint
propagation. (Right Plot) Comparison of the number of ttere of the reduced-space branch-and-bound al-
gorithms without constraint propagation for Examf@with the corresponding cluster problem model. The
dashed line indicates the number of iterations of the redhspace lower bounding schemes without constraint
propagation, and the dash-dotted line indicates the pestlicumber of iterations from the cluster problem
model.

constraint propagation (see Examp®), and the reduced-space lower bounding schemes with eantgtrop-
agation (see Exampl&7). Note that both full-space (reduced-space) lower boundchemes considered in
this work result in the same lower bound for this problem (seemal4). It can be seen that the full-space
lower bounding schemes and the reduced-space lower baysdiremes with constraint propagation perform
significantly better than the reduced-space lower boundaigmes without constraint propagation for small
tolerances, and that they exhibit a much more favorablergrelith a decrease in the termination tolerance as
well. Furthermore, the advantage of using constraint gyafpan techniques in the reduced-space lower bound-
ing schemes is evident, and its use puts the reduced-spaeelbounding schemes at an advantage compared
to the full-space lower bounding schemes. Figlisdlustrates that the dependence of the number of iterations
on the termination tolerance for the reduced-space lowendiog schemes without constraint propagation is
in good agreement with their associated cluster problemetso@ee 15, Corollary 4] for the details of the
cluster problem model). Note that the prediction of the nemdf iterations from the cluster problem model
in Figure 1bis obtained by fitting the prefactor in the cluster model. (irgtercept of the line in the plot; the
slope of the line is determined by the cluster model usingetitegnate of the convergence order of the lower
bounding scheme obtained from this work) against the nurabiterations obtained from the computational
experiments. It is worth mentioning at this stage that orlgib versions of the lower bounding schemes con-
sidered in this work have been used to generate Fitjutee performance of the lower bounding schemes may
be significantly different if they are implemented within tate-of-the-art branch-and-bound framework that
solves additional subproblems to speed up their conveegenc

The following example illustrates another instance of Rnab(P) for which constraint propagation plays
a crucial rule in boosting the convergence order of the comstaxation-based reduced-space lower bounding
scheme in10].
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Example 18Consider the following instance of Problef){

nQiyn exp(x) —4x+y

s.t.x2 4+ xexp(3—y) < 10,
x€[05,2,y€[-1,1].

The optimal solution of the above problem, which is a comsé@ minimum, is(x*,y*) ~ (1.029,0.838)
(the ‘exact’ optimal solution can be determined as followsis the (unique real) root of the functidd —

exp(x))(10x—x3) —x?—10in|[0.5,2], andy* := 3—In (M)) with optimal objective value approximately

equal to—0.480. The reader can verify that*, y*, u*) is a KKT point for Problem®), whereu* := Wl&y)
This implies, in particular, that the full-space lower bdimg schemes in Sectichcan be designed to be at
least second-order convergent(at,y*) (see Theorenb and Corollary4). The reader can also verify that
second-order convergence of the lower bounding scheme maylfficient to mitigate the cluster problem
around(x*,y*) [15].

Since all of the functions in the above instance of ProblBjrae in the form{V), both the reduced-space
lower bounding schemes considered in this section can béogetpto solve it. The ensuing arguments show
that the convex relaxation-based reduced-space lowerdimgischeme inJ0] is only first-order convergent
aty* when constraint propagation techniques are not used.

Considery-,yV] :=[y* —¢&,y" 4+ €] =: Z € IY with 0 < £ < 0.1. The reduced-space lower bounding scheme
in [10] yields
0(Z)= rQlyn exp(x) —4x+y

s.t.x? 4 2exg3—y) +xexp(3—y-) — 2exp(3—y-) < 10,
X2 +0.5exp3—y) +xexp(3—yY) —0.5exp3—yV) < 10,
x€ 05,2,y e [y-,y”].

Note that the point

2 u
o) (\/(exp(S—yU)) +40+2(exp(3;yU)—exp(3—y*))—exp(3—y ),W)

is feasible for the above lower bounding scheme with objectalue expx’,) — 4x5 4-y,. Furthermore,

X; —X =
z 2

o (\/(exp(S—yU))2+40+2(exp(3—yU) —exp(3—y*)) —exp(3—yY)

V/(exp(3—y*))?+ 40— exp(3—w)>
2

>0.2e40(¢),
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where the details pertaining to the derivation of the aboeguality are presented in Appendivd. Therefore,
we have

H f _ H fC > * _4 * _ f _4 f f
Smin f0y) = min ) Z(x0) 2 (exp) ¢ +y) — (expd) X 1)
exp(x”) exp(xfz)> +4 (xfz - x*)
(4—exp(x)) (xz— ) +o(’xz—x

() wof(4 )

)

(Y

e+0(¢)

>0.2
>0.05w(Z)

for € < 1, which establishes that the reduced-space lower bourstihngme in 10] has at most first-order
convergence af* (note that first-order convergence of the scheme followsft@orollary5). This is rather
unfortunate becausg can be seen to be an unconstrained minimizer of the redyssszk ©bjective function

v:[—1,1] — R, which can be derived (arouryd= y*) to be

v(y) = exp(X“(y)) —4x"(y) +y, Vvye[0.51],

wherex* : [0.5,1] 5 y—— [0.5,2] is given by

(exp(3—y))2 +40—exp(3—vy)

2 )
which implies that at least second-order convergence ofdtlaced-space lower bounding schemg*ais
typically required to mitigate clusterin@[39].

We next show that when constraint propagation is used to {efact) bounds fok on Z, second-order
convergence of the reduced-space lower bounding schenigicdn be achieved. Note that féy-,yV] :=
[y — €,y + €] =: Z € IY with 0 < € < 0.1, the best possible (interval) bounds that can be obtaioex dre
X € X(Z) = [x5,x¥] with

X(y) =

u_ \/(exp(3—yu))2+40—exp(3—yu)

X% =05 x= 5

The reduced-space lower bounding schemd@\vith constraint propagation yields

0(Z)= rglyn exp(x) —4x+y
st +xd exp(3—y) +xexp(3—y-) —xF exp(3—y-) < 10,
x>+ 0.5exp(3—y) +xexp3—y”) —0.5exp3—y’) < 10,
x€ [05,xz],y € Y-y

By noticing that the first constraint in the above relaxatib®roblem P) is always active at the solution of the
relaxed problem, we can reformulate the reduced-space loowending problem as

0(Z)= min exp(Xz(y)) —4(xz(y)) +,
yely- ]

wherexz : Z > y+— [0.5,x] is given by

- V (exp(3—y1))2 + 40+ 4 (exp(3— ) — exp(3—y)) — exp(3— )
Xz(y) = 3 .
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We have (see Appendik.4 for details)
L _ U ERVEN _
%(y) - X(y) = (exp(3—y-) +exp(3—y) +4x7) (exp(3—y-) —exp(3—VY))
2 (\/(exp(S—y'-))2+40—1—4x§J (exp(3—y-) —exp(3—y)) + \/(exp(s—y))2—|—40>

(exp(3—y") —exp3—y))
2

a (exp(3—y-) —exp(3—y))
2 (\/(exp(3—yL))2+4O+4x§ (exp(3—y-) —exp(3—y)) + \/(exp(3—Y))2 +4o)

)

with 0 < a < T+ O(e?) for somef > 0. Consequently, we hawgy € Z that
- 2 ERVAN _
By) - X (y) < (fe+0(g?)) (exp(3—y*-) —exp(3—Y))
2 (\/(exp(3—y'-))2 +40+ 4 (exp(3—y-) —exp(3—y)) + \/(exp(S—Y))z +4o)

<71’ +0(e%

for someT > 0, since exp3—y-) —exp(3—y) is O(¢). Note that<z(y) > x*(y), VZ. Therefore, on intervals
Y —e,y +e]=:ZclY with0< £ <0.1, we have

_ i cv — H *
(Xﬁyr)gg;(Z)f(x,y) (wagygv(z) fX(z)xz(%.Y) mlnf(x ¥),y) — ryglznf(xZ(y) ,Y)

<maxf(x'(y),y) — f(xz(y),y)
yeZ

= maxexp(x'(y)) — expixz(y)) +4xz(y) — 4 (Y)|

= max (4 exp(x'(¥))) (R () ~X'(¥)) + 0% (y) ~X ()|
< r;gﬂ(fz(y) =X (y)) +0(Xz(y) —X"(¥))|

<21’ +0(e?)

<Tw(2)?

for € < 1, which establishes second-order convergence of the sclaeyi when restricted to symmetric
intervals aroung. B

Consider any nondegenerate interdak [y-,yY] € IY with y* € Z andw(Z) < 0.1, and construcZ > Z
such tha = [y* — €,y + €] with £ = max{y” —y*,y* —y-}. We have

min  f(x,y) — min f X,y) < min xy) — min _ f&¥ X,
Bz OV T ) (2 (¥) < (xy)eF(2) fey) (xy)eF(Z) X(z)xz(*Y)
<TW(Z)?
<4TW(Z)?,

which implies that the convex relaxation-based reducedspmlual lower bounding scheme with constraint
propagation is second-order convergent‘at

Finally, we show that the reduced-space dual lower boundoigeme in 9] has at least second-order
convergence at' even when constraint propagation is not used to infer boansisConsideffy-,yY] =: Z € Y
with w(Z) < 0.1. The feasible region of the original problem dis given by

F(2)={(xy) €[05,2 x [y-, Y] : x<x(y)}.
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The convex hull of the feasible region @ns given by

con(.F(2)) = {(xy) € [0.5,2] x [y-,y’] : x < “(y) },
wherex;,“° denotes the concave envelopexbbnZ. Itis not hard to see thaly (7 (Z),con\(.Z (Z))) < Tw(Z)?
for someT > 0 (this partly follows from the fact that" is twice continuously differentiable dy* — 0.1,y* +
0.1] and the fact tha@x}’CC)ZGHY converges pointwise td" with order at least two ofy* —0.1,y* +0.1]). Since
the dual lower bounding scheme produces a lower bound thatéast as tight as any convex relaxation-based
scheme, we have

ooy ) SR T T T HACYILS i TN = oz zy T V)
:f(X*’W) - f(~z, ~Z)
<t(%z,9z) — 1(%2,¥2)
<Mt (%2,Yz) — (%z,92) I
<M¢Tw(Z)?,

where (%z,5z) € argmin  f(x,y), (%z,¥z) € Z(Z) is chosen such thal(%z,9z) — (%z,¥7)|| < Tw(Z)?,
(x,y)econU.7 (Z))

andM; denotes the Lipschitz constant bfon [0.5,2] x [-1,1]. Since the Lagrangian dual-based reduced-

space lower bounding scheme is at least first-order corveagg* from Theoren®, it is at least second-order

convergent ay* by analogy to Lemma.

Figure 2 illustrates the performance of the convex relaxation-b&sé-space and reduced-space lower
bounding schemes in the bare-bones branch-and-boundnmaptation for Exampld.8 (note that we do not
consider the Lagrangian dual-based full-space and reegpmack lower bounding schemes for the numerical
experiments for this example because we do not have clasaddxpressions for the lower bounds obtained
using those schemes). Once again, the convex lower boumoidems were solved using the CVAZ]
package, and the lowest lower bound node selection ruleranihterval bisection branching rule were used
by the branch-and-bound algorithm. Since Exanif@és not particularly challenging, we assume that a local
solver finds its global solution at the root node of the braact-bound tree (i.e., the upper bound is set to the
optimal objective value of the problem at the root node).

Figure 2aplots the number of iterations of the branch-and-boundrélgo versus the (absolute) termi-
nation tolerance for the full-space convex relaxationeda®wer bounding scheme, the reduced-space con-
vex relaxation-based lower bounding scheme without camgtpropagation, and the reduced-space convex
relaxation-based lower bounding scheme with constraimpamgation. It can be seen that the full-space lower
bounding scheme and the reduced-space lower bounding saligmconstraint propagation perform signifi-
cantly better (for small tolerances) and exhibit a much nfaverable scaling with a decrease in the termination
tolerance compared to the reduced-space lower boundimgreetvithout constraint propagation. Furthermore,
there is a clear advantage in using constraint propagagicnntques in the reduced-space lower bounding
scheme, and its use makes the performance of the reduceelHspeer bounding scheme superior to that of
the full-space lower bounding scheme for this example. fei@b shows that the number of iterations versus
the termination tolerance for the reduced-space lower diogrscheme without constraint propagation closely
follows the prediction from its associated cluster problawndel (see15] for the details of the cluster problem
model). Note, once again, that the prediction of the numbie@tions from the cluster problem model in Fig-
ure 2bis obtained by fitting the prefactor in the cluster model agathe number of iterations obtained from
the computational experiments. We wish to reiterate thit basic versions of the convex relaxation-based
lower bounding schemes have been used to generate Rigineperformance of the lower bounding schemes
may be significantly different if they are implemented witls state-of-the-art branch-and-bound framework
that solves additional subproblems to speed up their cgavee.
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(a) Comparison of the number of branch-and-bound iteration (b) Comparison of the number of branch-and-bound iteration

versus the termination tolerance between the convex tigd@xa  of the convex relaxation-based reduced-space lower bound-

based lower bounding schemes ing scheme without constraint propagation with the préhst
from the cluster problem model for different terminatiofete
ances

Fig. 2: (Left Plot) Plots of the number of iterations of thabch-and-bound algorithm versus the absolute ter-
mination tolerance for the full-space and reduced-spanessorelaxation-based lower bounding schemes con-
sidered in this work for Exampl&8. The solid line indicates the number of iterations of thevesxrelaxation-
based full-space lower bounding scheme, the dashed lineaied the number of iterations of the convex
relaxation-based reduced-space lower bounding scherhewritonstraint propagation, and the dash-dotted
line indicates the number of iterations of the convex rdiaxabased reduced-space lower bounding scheme
with constraint propagation. (Right Plot) Comparison af tlumber of iterations of the convex relaxation-
based reduced-space branch-and-bound algorithm witlbastr@int propagation with the corresponding clus-
ter problem model. The dashed line indicates the numbeexatibns of the convex relaxation-based reduced-
space lower bounding scheme without constraint propagediod the dash-dotted line indicates the predicted
number of iterations from the cluster problem model.

The following result shows that the reduced-space dualideeanding scheme is second-order convergent at
KKT points even in the absence of constraint propagationnvaieof the functions in ProblenPj are twice
continuously differentiable and separableiandy.

Theorem 10 Consider Problen{P), and suppose f,jgj=1,---,m, and i, k=1,--- ,mg, are separable in
x andy. Supposént(X x Y) is nonempty, and fg, andh are twice continuously differentiable amt(X xY).
Furthermore, suppose there exigts,y*) € int(X x Y), u* € R, A™ € R™ such that(x*,y*, u*,A") is a
KKT point for Problem(P). The reduced-space dual lower bounding scheme is at leeshdeorder convergent
aty*.

Proof LetL(x,y,H,A) := f(x,y)+HTg(X,y) +/\Th(x,y) denote the Lagrangian of Proble®)(Since we are
concerned about the convergence order at the reducedfgaadele pointy*, it suffices to show the existence
of T > 0 such that for every € IY with y* € Z,

f(x,y)— sup min L(xy,4,A) < TW(Z)%
u>0A (Xy)EXxZ

min
(xy)eZ(2)



48 Rohit Kannan, Paul I. Barton

We have

S min L A)> min L AT
U0 oz Xy A) = min LY A7)

i * * * * * Nl %

> —

_<X-,yr;n€|>r<]xz [L(X YoM AT) A+ DL (XY, M7, A7) (X=X )}

= o min [L(X*»Y*,IJ*,A*)+DXL(x*,y*,u*,A*)T(X_X*)
(XY)EXXZ

(0 (6 y 1 AT x) ) iy —y)
FOLKCLY BTy - y') — Ow(2)?)]

= min [£0.y) - Ow(2)?)

> f(x",y") —O(W(2)?).

Note that we have used the fact thats partly convex with respect to in Step 2, thal (x*,y*, u*,A") =
f(x*,y*), OxL(x*,y*, u*,A") = 0, OyL(x*,y*,u*,A") = 0 in Step 4 since it is assumed that,y*, u*,A")
is a KKT point for Problem ), and thatDy(DXL(X*,y*,u*,A*)T(x—x*)) = 0in Step 4 by virtue of the
assumption that the Lagrangian is separabbeandy. Therefore,

min  f(x,y)— sup min L(X,y,H,A) < O(wW(Z)?),
min (x,y) uzo,a (x,y)eXxZ( Y:H,A) <O(W(Z))

which establishes the existencerdior all Z € TY with y* € Z by analogy to Lemma. O

Note that the assumption of separability in TheorEdtan be replaced with the weaker assumption that
02 L(x*,y*, u*,A") is the zero matrix.

Remark 15Similar to Corollary5, it can be shown that the reduced-space lower bounding sehefh0] has
second-order convergence at KKT points even in the absdroastraint propagation when all of the functions
in Problem P) are separable inandy and second-order pointwise convergent schemes of retersadire used.
Furthermore, under the above assumption of separabhigyreéduced-space lower bounding schemed@h [
and P] can be shown to possess second-order convergence ailidgasints and unconstrained points in the
reduced-space under suitable assumptions on the lowedimguschemes (see RemdrR). Consequently, the
convergence properties of the reduced-space lower bogirstinemes considered in this section are similar
to their counterpart full-space lower bounding schemeseictiBn4 when all of the functions in ProblentP)

are twice continuously differentiable and separablg andy. Examplell provides an instance wherein the
convergence order is exactly twoydtunder the assumptions of Theordi®

6 Conclusion

A definition of convergence order for constrained probleras been introduced. The definition reduces to
previously developed notions of convergence order for #s ©f unconstrained problems. An analysis of the
convergence order of some full-space and reduced-spacehbaand-bound algorithms has been performed.

It has been shown that convex relaxation-based full-spagerlbounding schemes enjoy first-order con-
vergence under mild assumptions and second-order comarge KKT points when second-order pointwise
convergent schemes of relaxations of the objective andahstaints are used. Furthermore, the importance of
a sufficiently high convergence order at nearly-feasibli@fsdias been demonstrated. Lagrangian dual-based
full-space lower bounding schemes have been shown to hdeeasitas large a convergence order as convex
relaxation-based lower bounding schemes. In additionast been shown that Lagrangian dual-based lower
bounding schemes where the dual function is not exactlyropéid still enjoy first-order convergence.
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The convergence order of the reduced-space convex raaxagised lower bounding scheme of Epperly
and Pistikopoulos has been investigated, and it has beewnstiat the scheme enjoys first-order conver-
gence under certain assumptions. However, their schembasanas low as first-order convergence even at
unconstrained points which can lead to clustering. It has Bken shown that the reduced-space dual lower
bounding scheme enjoys first-order convergence and thedritgergence order may be as low as one for con-
strained problems. In that regard, the importance of caimétpropagation in boosting the convergence order
of reduced-space lower bounding schemes has been dentedsfarthermore, it has been shown that when
all of the functions in ProblemR) are twice continuously differentiable and separabl& andy, the above
reduced-space lower bounding schemes can achieve semsrdzonvergence at KKT points, at unconstrained
points in the reduced-space, and at infeasible points.

Future work involves determining whether full-space lolweunding schemes can achieve second-order
convergence on a neighborhood of constrained minima teaKET points (such a result may be required to
mitigate the cluster problem at such constrained minima{&g Proposition 2], for instance), analyzing the
convergence orders of some other widely-applicable retispace lower bounding schemes in the literature
(see, for example 38]), and determining sufficient conditions on the constraimmpagation scheme to ensure
second-order convergence of reduced-space lower bousdirgnes at constrained minima that satisfy certain
regularity conditions.
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A Proofs

A.1 Proof of PropositiorL

Proposition 1 Consider Problen{P) with mg = 0. Suppose f andjgVj € {1,---,m}, are Lipschitz continuous on XY . Fur-

thermore, supposéxS,y®) € X x Y such thag(xS,y®) < 0 (i.e. (x5,yS) is a Slater point). The dual lower bounding scheme has
arbitrarily high convergence order gxS,yS).

Proof The arguments below are closely related to the proof of GogoP.
Since we wish to prove that the dual lower bounding schemaitiétsarily high convergence order at the feasible poirtyS),
it suffices to show that for eagh > 0, there exists > 0, & > 0 such that for everg € I(X x Y) with (xS,yS) € Z andw(Z) < 3,

min  f(x,y)—sup min [f(x,y)+pTgx,y)] < w2)?,
i (%.y) sup (X,y)ez[ (xy)+n'gx,y)] (2)

and the desired result follows by analogy to Lem#nby observing that the dual lower bounding scheme is at leesttdider
convergent axS,yS).

Let gj(x5,y5) = —¢j < 0, Vj € {1,---,m}. Sinceg; is continuous for eaclj € {1,---,m}, there existsg; > 0, Vj €
{1,---,m}, such that|(x,y) — (x3,y9)||., < &; implies|gj (x.y) — gj (x3,y%)| < & (see Lemma).

Defined := {Tin }61-, and note thad > 0. ConsideiZ € I(X x Y) such that(x5,yS) € Z andw(Z) < &. For eachx,y) €

je{Lm

Z, je{l---,m} we havelgj(x,y) —gj(xs,y5)| < %‘ Therefore, for eachj € {1,--- ,m}, gj(x,y) < —52‘ <0,vY(xy) € Z
Consequently,

sup min [f(x,y)+uTg(x,y)] > min_f(x,
uzgw)ez[( y)+Hr'g(xy)] Jmin_f(x.y)

= min f(x,
(xy)eZ(2) ()

since ProblemR) is effectively unconstrained over the small intenlaround(xS,y®), which impliest = 0 ands = {rlnin }5]‘
je{L.my
satisfy the requirements. O

A.2 Proof of Propositior?

Proposition 2 Consider Problen{P) with mg = 0. Suppose the functions f ang,g = 1,--- ,m, are each of the fornjw). Let
(f;‘(’z)xz)zﬂy denote a continuous scheme of convex relaxations of f in I asitvergence ordeffV > 0 and corresponding
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constantr{Y, (gJ?‘g«Z)Xz)ZEEY, j=1,---,m, denote continuous schemes of convex relaxations, of-ggm , respectively, in'Y with
pointwise convergence ordey§; > 0,---, 5y, > 0and corresponding constant§, -, Tgty -

Supposg® € Y is an unconstrained point in the reduced-space, and thensefof lower bounding problenis? (Z))zery with

oz = min &V X, >
(0(Z))zery ((va)egcv(z) x(z)xz( y) ey

(Fe@)zer = (Rizp2X(@) D),

has convergence of ordgd < (0,5¢'] at yS. Then the scheme of lower bounding problef§(Z))zcry is at leastB§V-order
convergent ayS.

Proof The proof is similar to the proof of Corollarg:

SinceyS is an unconstrained point in the reduced-spacegaigicontinuous for eache {1,--- ,m } by virtue of Assumptiord,
36 > 0 such thav'z € Y with || z—yS||,, < & (see Lemma), we haveg(x,z) < 0, ¥x € X.

ConsiderZ € IY with yS € Z andw(Z) < 3. We haveg(X(Z) x Z) ¢ R™ andgi‘zz)xz(X(Z) x Z) ¢ R™. Consequently,

min  f(x,y) — min &V x,y)= min f(x,y) — min X,
XY)eZ(2) (x.y) XY)eFN(2) x(z)2(%Y) (XY)EX(Z)xZ (x.y) (xy)eX(2)xZ x(z)x2(%:Y)

< rfCVW(Z)BfCV.

The desired result follows by analogy to LemiBdased on the assumption tha(Z))zc1y is at leastB-order convergent at
yS. u]

A.3 Proof of Propositior8

Proposition 3 Consider Problen{P) with me = 0. Suppose/S € Y is an unconstrained point in the reduced-space. Furthezmo
suppose the reduced-space dual lower bounding scheme hasrgence of orde > 0 at yS. Then the reduced-space dual lower
bounding scheme has arbitrarily high convergence ordesSat

Proof The proof is closely related to the proof of Proposition

Sincey® is an unconstrained point in the reduced-spaceggiicontinuous for eache {1,--- ,m } by virtue of Assumptiord,
there exist® > 0 such that/z € Y satisfying||z—y®||,, < & (see Lemma), we haveg(x,z) < 0,¥x € X.

ConsiderZ € IY with w(Z) < . Sinceg(X(Z) x Z) ¢ R™, Problem P) can be reformulated as

min _ f(x,y)=  min
(xy)e.Z(2) (xy)eX(Z2)xzZ

f(xy).
The dual lower bound can be bounded from below as

sup min  [f(xy)+uTgx,y)] > min  f(xy).
yzg(x,y)ex(z)xz[( y) H g( y)] (xy)eX(Z)xZ ( y)

The desired result follows by analogy to Lemmand the assumption that the dual lower bounding scheme east3-order
convergent ayS. ]



Convergence-Order Analysis of Branch-and-Bound Algamitfor Constrained Problems

A.4 Proof of Arguments in Exampl&3

Proof We first show thai, — x* > 0.2¢ +o(¢).

& ¥ = (\/(exp(3y“))2+40+2(exp(32yU)exp(3y*))exp(3))~i) B (eXp(3Y“))2;40exp(3y*)>
((exp(S—yU))z—(exp(S—y*))2> +2(exp(3-y") —exp(3-y")) + (exp(3—y*) —exp3—yV))
2 <\/(€XF(3—YU))2+4O+ 2(exp(3—y) —exp(3—y*)) + \/(GXF(S—y*))2+40> 2
(exp3—y") +exp3—y') +2) (Xp3 ) —exp3—y')) , (x0G-y) —exna-y))
2(/lexp(a—y))7 + 40+ 2(exm3 ) —exp3-y)) |/ (exma-y )+ 40) i
(exp(3—y*) +exp(3—y*) +2) (exp(3—yY) —exp(3—y*))
2(\/(exp(3fy*70,1))2+40+2(exp(3—y*—0‘1)7exp(37y*))+\/(exp(g,w))2+4o>

(exp(3—y*) —exp(3—yV))
2
>0.025(exp(3—y") —exp(3—y))
=0.025exgd3—y")e+o0(¢)
>0.2e+0(g).

>

+

Next, we derive an expression e (y) — x* (y).

_ N \/(exp(3fy'-))2+40+4x§J (exp(3fy'-)fexp(3fy))fexp(3fyL) \/(exp(S—y))2+40—exp(3—y)
Xz(y) —X'(y) = 5 - 5

((exp3—y))*— (exp(3—Y))%) +4¢ (exp(3— ") —exp(3-Y)) N
2 (\/(exp(S—yL))2 +40+ 4 (exp(3—y-) —exp(3—y)) + \/(exp(S—y))2+40>

(exp(3—y) —exp(3—y-))
2

(exp(3—y-) +exp(3—y) +4xY) (exp(3—y-) —exp(3—y))
2 <\/(exp(3fy'-))2+40+ 4% (exp(3—y-) —exp(3—y)) + \/(exp(3fy))2+40>

(exp(3—y-) —exp(3—y))
2

. (11)

We next establish the dependence of the different terms irafian (L1) on £. We first derive an expression for 8- y-) +
exp(3—y) +4x5.

exp(3—y-) +exp3—y) + 4

=exp3—y +¢&)+exp3-y) +2\/(exp(3—y* —£)?+40—2ex3—y* —¢)

= exp(3—y*) +exp(3—y) + cexp(3—y )+ O(&?) +2\/(exp(3fy*))2[1f 2¢+0(£2)] 440
—2exp3-y") [1—&+0(e?)]

=21/ (exp(3—y*))2+ 40+ exp(3—y) —exp(3—y*) + 3exp3—y*)e — _2eq3-y))e +0(g?).
(exp(3—y*))* +40
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Next, we derive an expression fox(exp(3—y-) —exp(3—y)).

4 (exp(3—y-) —exp(3—y)) = (2\/(exp(3fy* —£)24+40—2exp3—y 76)) (exp(3—y* +¢&)—exp(3—y))
= (2 (exp(3—y*))? + 40— 2exr(3fy“)> (exp(3—y* + &) —exp(3—Y)) +O(£?)

= (2 (exp(3—y*))2+40—2exp(3—y“)> (exp(3—y") —exp(3—y) +exp(3—y)e) + O(£?).

Finally, we consider\/(exp(Sf y-))? 4+ 40+ A (exp(3—y-) —exp(3—y)) + \/(exp(3f y))?+40.

\/(exp(S—y'-))2—|-40+4x§J (exp(3—y-) —exp(3—y)) + \/(exp(S—y))2 +40
= \/(exp(sfy* +8))2+40+ 4 (exp(3—y-) —exp(3—Y)) + \/(exp(Sfy))2+40
4 (exp(3—y-) —exp(3—y)) +2(exp(3—y*))?e + O(?)
(exp(3—y*))? + 40

(exp3—y))’e

:\/(exp(S—w))2+4O+ \/(exp(S—y))2+40+ — Y -
(exp(3fy*))2 +40

( <exrx3—y*>>2+4o—exm3—w>) (exp(3—y") —exp(3—y) + exp(3—y)e)

+1/(exp(3—y))2+40

= (exp(S—y*))2+4O\/l+

+0(&2).

(exp(3—y*))2+40
Substituting the above expressions in Equatibl),(we get
%(y) X (y) = a (exp3—y) — exp3-y) ,
2 (\/(exp(S—yL))z—«—40—«—4x§J (exp(3—y-) —exp(3—y)) + \/(exp(S—y))2+4O>

with

a = \/(exp(S—y*))2+4O— \/(exp(S—y))2+40+ exp(3—y) —exp(3—y")—
(Viexwa-y))? +40-exma-y)) (expia-y) - expia-y)
(exp(3—y*))?+40
3(exp(3—y))%e _( (exp(3fy*))2+407exp(3fy*))exp(Sfy*)s
(exp(3—y*))?+40 (exp(3—y*))2+40

_ ( exp(3—y*) +exp(3—y)
V(exp(3—y))? + 40+ / (exp(3—

( (exp(3—y*))? +40— exIO(S—y“)) (exp(3—y*) —exp(3—y))
(exp(3—y*))% +40
3(exp(3—y*))%e ( (exp(3—y*))?+40— exp(37y“)) exp(3—y")e

(exp(3fy*))2+40 (exp(37y*))2+40
< te+0(e?)

+3exp(3—y*)e—

+0(¢%)

= —1)<exrx3—>f*)—exp(3—y))—
y))?+40

+3exp3-y“)e—

+0(€?)

for some? > 0 sincey € Z = [V-,y/] with w(Z) = O(¢) and each term in the expression foris O(g). Note thata > 0 (since
Xz(y) 2 X (y): o
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