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Abstract The performance of branch-and-bound algorithms for deterministic global optimization is strongly
dependent on the ability to construct tight and rapidly convergent schemes of lower bounds. One metric of
the efficiency of a branch-and-bound algorithm is the convergence order of its bounding scheme. This article
develops a notion of convergence order for lower bounding schemes for constrained problems, and defines
the convergence order of convex relaxation-based and Lagrangian dual-based lower bounding schemes. It is
shown that full-space convex relaxation-based lower bounding schemes can achieve first-order convergence
under mild assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points,
at Slater points, and at infeasible points when second-order pointwise convergent schemes of relaxations are
used. Lagrangian dual-based full-space lower bounding schemes are shown to have at least as high a con-
vergence order as convex relaxation-based full-space lower bounding schemes. Additionally, it is shown that
Lagrangian dual-based full-space lower bounding schemes achieve first-order convergence even when the dual
problem is not solved to optimality. The convergence order of some widely-applicable reduced-space lower
bounding schemes is also analyzed, and it is shown that such schemes can achieve first-order convergence un-
der suitable assumptions. Furthermore, such schemes can achieve second-order convergence at KKT points, at
unconstrained points in the reduced-space, and at infeasible points under suitable assumptions when the prob-
lem exhibits a specific separable structure. The importanceof constraint propagation techniques in boosting the
convergence order of reduced-space lower bounding schemes(and helping mitigate clustering in the process)
for problems which do not possess such a structure is demonstrated.
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1 Introduction

Global optimization has found widespread applications in various areas of engineering and the sciences [11].
Deterministic global optimization algorithms attempt to determine an approximate optimal solution within a
specified tolerance and terminate with a certificate of its optimality in finite time [13]. While efficient algo-
rithms are known for classes of convex optimization problems [4], no such algorithms are currently known for
most classes of nonconvex problems. Deterministic global optimization algorithms for nonconvex problems
usually involve the concept of partitioning the domain of (‘branching on’) the decision variables [13]. The
performance of branch-and-bound algorithms for deterministic global optimization is strongly dependent on
the ability to construct tight and rapidly convergent relaxations of nonconvex functions.

Since the worst-case running time of all known branch-and-bound algorithms is exponential in the di-
mension of the variables partitioned, it may be advantageous to utilize ‘reduced-space’ algorithms which only
require branching on a subset of the variables (as opposed to‘full-space’ branch-and-bound algorithms which
may branch on all of the variables) to guarantee convergence. Despite the potential advantages of reduced-space
algorithms for nonconvex problems [3, 9, 10, 38], such methods have not been widely adopted in the litera-
ture and in commercial software. One potential reason is that most widely-applicable reduced-space branch-
and-bound algorithms often do not seem to exhibit favorableconvergence rates compared to their full-space
counterparts [22]. The convergence properties of reduced-space branch-and-bound algorithms have not been
thoroughly investigated, although some progress has been made in this direction [8, 38]. The reader is directed
to the work of Epperly and Pistikopoulos [10] for a survey of reduced-space branch-and-bound algorithms.

One metric of the efficiency of a deterministic branch-and-bound algorithm is the order of convergence
of its bounding scheme, which, for the case of unconstrainedoptimization, compares the rate of convergence
of an estimated range of a function to its true range [23]. Recently, Bompadre and coworkers [5, 6] devel-
oped the notions of Hausdorff and pointwise convergence orders of bounding schemes and established sharp
rules for the propagation of convergence orders of boundingschemes constructed using McCormick [20], Tay-
lor [25], and McCormick-Taylor [28] models. In addition, they showed that if a function is twicecontinuously
differentiable, the scheme of relaxations corresponding to its envelopes is at least second-order pointwise con-
vergent which, in turn, implies Hausdorff convergence of atleast second-order. Najman and Mitsos [24] used
the framework developed in [5, 6] to establish sharp rules for the propagation of convergence orders of multi-
variate McCormick relaxations [37]. Khan and coworkers [17] developed a continuously differentiable variant
of McCormick relaxations [20, 37], and established second-order pointwise convergence of schemes of the dif-
ferentiable McCormick relaxations for twice continuouslydifferentiable functions. Also note the definition of
rate of convergence of bounding schemes for geometric branch-and-bound methods proposed by Schöbel and
Scholz [30], and the proof of second-order Hausdorff convergence of centered forms in [18, 31]. Establishing
that a scheme of relaxations is at least second-order Hausdorff convergent is important from many viewpoints,
notably in mitigating the so-called cluster effect in unconstrained global optimization [7, 39]. Recently, the
authors of this work have analyzed the cluster problem for constrained global optimization and determined
that, under certain conditions, first-order convergence ofthe lower bounding scheme may be sufficient to avoid
the cluster problem at constrained minima [15]. However, an analysis of convergence order for constrained
problems is currently lacking.

In this work, we investigate the convergence orders of some full-space and reduced-space deterministic
branch-and-bound algorithms by extending the convergenceanalysis of Bompadre and coworkers to con-
strained problems. Specifically, we propose a definition of convergence order for lower bounding schemes,
analyze the convergence orders of commonly-used full-space lower bounding schemes, and analyze the conver-
gence orders of some widely-applicable reduced-space lower bounding schemes in the literature. Throughout
this work, we tacitly assume that a branch-and-bound algorithm utilizes efficient heuristics for finding feasible
points which determine a global optimal solution early on inthe branch-and-bound tree.

This paper is organized as follows. Section2 formulates the problem of interest, and provides some back-
ground definitions. Section3 develops the notion of convergence order of a lower boundingscheme, and Sec-
tion 4 provides some results on the convergence orders of commonly-used full-space lower bounding schemes.
Section5 lists some widely-applicable reduced-space lower bounding schemes in the literature, provides some
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results on their convergence orders, and highlights the importance of constraint propagation in reduced-space
branch-and-bound algorithms. Finally, Section6 lists the conclusions and some avenues for future work.

2 Problem Formulation and Background

Consider the problem

min
x,y

f (x,y) (P)

s.t. g(x,y)≤ 0,

h(x,y) = 0,

x ∈ X, y ∈Y,

whereX⊂R
nx andY⊂R

ny are nonempty convex sets,f : X×Y→R andg : X×Y→R
mI are partially convex

with respect tox, i.e., f (·,y) andg(·,y) are convex onX for eachy ∈Y, h : X×Y→R
mE is affine with respect

to x, i.e.,h(·,y) is affine onX for eachy ∈Y, and0 denotes a vector of zeros of appropriate dimension. The
following assumption will be made throughout this work.

Assumption 1 The setsX andY are compact, and the functionsf , g, andh are continuous onX×Y.

When the dimensionny of theY-space corresponding to the nonconvexities in the functions in Problem (P)
is significantly smaller than the dimensionnx of the X-space, it may be computationally advantageous to
partition only theY-space during the course of a branch-and-bound algorithm (assuming, of course, that the
reduced-space algorithm is guaranteed to converge). However, the convergence rate of a reduced-space branch-
and-bound algorithm may be different compared to a similar full-space algorithm, which makes it difficult to
judge a priori whether using a reduced-space branch-and-bound approach would be advantageous. Before we
analyze the convergence orders of some full-space and reduced-space lower bounding schemes in the literature,
we need to define formally the notion of convergence order forconstrained problems. For this purpose, we
review some relevant definitions [5, 6].

Throughout this work, we useIZ to denote the set of nonempty, closed, and bounded interval subsets of
Z ⊂ R

n, R+ and R− to respectively denote the sets of nonnegative and nonpositive reals,zj to denote the
j th component of a vectorz, (z1,z2, · · · ,zn) to denote a vectorz ∈ R

n with componentsz1,z2, · · · ,zn ∈ R,

(v,w) to denote the column vector[vT wT]
T

corresponding to (column) vectorsv andw, ‖z‖ to denote the

Euclidean norm of a vectorz∈R
n,

[

g
h

]

to denote a vector-valued function with domainZ and codomainRm+n

corresponding to vector-valued functionsg : Z→ R
m andh : Z→ R

n, conv(S) to denote the convex hull of a
setS⊂ R

n, and int(S) to denote the interior of a setS⊂ R
n.

Definition 1 (Width of an Interval) Let Z = [zL
1,zU

1 ]× ·· ·× [zL
n ,zU

n ] be an element ofIRn. The width ofZ,
denoted byw(Z), is given by

w(Z) := max
i=1,··· ,n

(zU
i −zL

i ).

Definition 2 (Distance Between Two Sets)Let Z,V ⊂R
n. The distance betweenZ andV, denoted byd(Z,V),

is given by
d(Z,V) := inf

z∈Z,

v∈V

‖z−v‖.

Note that the above definition of distance does not define a metric; however, it will prove useful in defining
a measure of infeasibility for points inX×Y for Problem (P). The following result holds.
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Lemma 1 Let z,v ∈ R
n, and let K⊂ R

n be a convex cone. Then

d({z},K)−d({v},K)≤ d({z−v},K).

Proof See [32]. ⊓⊔

Corollary 1 Letz,v ∈ R
m+n. Then

d({z},Rm
−×{0})−d({v},Rm

−×{0}) ≤ d({z−v},Rm
−×{0}).

Proof This result is a direct consequence of Lemma1. ⊓⊔

Lemma 2 All norms onR
n are equivalent. Specifically, if‖·‖p and ‖·‖q are two norms inRn for any p,q∈

N∪{+∞} with p 6= q, then there exist constants c1,c2 ∈ R+ such that c1‖z‖p ≤ ‖z‖q ≤ c2‖z‖p, ∀z ∈ R
n.

Furthermore, for(p,q) = (1,2), c2 = 1 provides a valid upper bound and for(p,q) = (+∞,2), c2 =
√

n
provides a valid upper bound.

Proof For the first part of the lemma, see, for instance, [29, Theorem 4.2]. The second part of the lemma
follows from the inequalities

‖z‖22 =
n

∑
i=1

z2
i ≤

n

∑
i=1

z2
i +

n

∑
i=1

n

∑
j=i+1

2|zi ||zj |= ‖z‖2
1

and

‖z‖22 =
n

∑
i=1

z2
i ≤ n max

i=1,··· ,n
z2
i = n‖z‖2∞

for anyz∈ R
n. ⊓⊔

Definition 3 (Lipschitz Continuous Function) Let Z ⊂ R
n. A function f : Z→ R is said to be Lipschitz

continuous with Lipschitz constantM ≥ 0 if | f (z1)− f (z2)| ≤M‖z1−z2‖, ∀z1,z2 ∈ Z.

Remark 1Locally Lipschitz continuous functions are Lipschitz continuous on compact subsets of their do-
mains. Therefore, the assumption that the functionsf , g, andh in Problem (P) are Lipschitz continuous on
X×Y is not particularly strong when Assumption1 is made.

Definition 4 (Hausdorff Metric) Let X = [xL ,xU] andY = [yL ,yU] be two intervals inIR. The Hausdorff
metric betweenX andY, denoted bydH(X,Y), is given by

dH(X,Y) = max{|xL −yL |, |xU−yU|}= max

{

max
x∈X

min
y∈Y
|x−y|,max

y∈Y
min
x∈X
|x−y|

}

.

Definition 5 (Inclusion Function) LetV ⊂R
n and supposef : V→R

m is continuous. For anyZ⊂V, let f(Z)
denote the image ofZ underf. A mappingF : IV→ IR

m is called an inclusion function forf on IV if, for every
Z ∈ IV, we havef(Z)⊂ F(Z).

Definition 6 (Range Order) Let V ⊂ R
n be a bounded set. Letf : V → R be continuous, and letF be an

inclusion function forf on IV. The inclusion functionF is said to have range of orderα > 0 at a pointv ∈V
if there existsτ ≥ 0 such that for everyZ ∈ IV with v ∈ Z,

w(F(Z))≤ τw(Z)α
.

The function f itself is said to have a range of orderα > 0 atv ∈V if its image f has range of orderα at v.
The functionsF and f are said to have ranges of orderα > 0 onV if they have ranges of order (at least)α at
eachv ∈V, with the constantτ independent ofv.
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The reader is directed to Remark3 for a discussion on the assumption that the setV in the above definition
be bounded. Since the convergence order analysis in this work is asymptotic in nature (see Remark4 and
Lemma5), we will need the following asymptotic notations.

Definition 7 (Big O and Little o Notations)Let Z⊂R, f : Z→R, andg : Z→R. We say thatf (z) = O(g(z))
asz→ z̄∈ Z if and only if there existδ ,M > 0 such that

| f (z)| ≤M|g(z)|, ∀z∈ Z with |z− z̄|< δ .

Similarly, we say thatf (z) = o(g(z)) asz→ z̄∈ Z if and only if for all M′ > 0 there existsδ ′ > 0 such that

| f (z)| ≤M′|g(z)|, ∀z∈ Z with |z− z̄|< δ ′.

Note that unless otherwise specified, we consider ¯z= 0 in this work.

The following lemma is from Proposition 11.7 in [14].

Lemma 3 Let Z⊂ R
n be nonempty, and f: Z→ R and g: Z→ R be bounded on Z. Then

∣

∣

∣

∣

sup
z∈Z

f (z)−sup
z∈Z

g(z)

∣

∣

∣

∣

≤ sup
z∈Z
| f (z)−g(z)|,

∣

∣

∣

∣

inf
z∈Z

f (z)− inf
z∈Z

g(z)

∣

∣

∣

∣

≤ sup
z∈Z
| f (z)−g(z)|.

Definition 8 (Convex and Concave Relaxations)Given a convex setZ ⊂ R
n and a functionf : Z→ R, a

convex functionf cv
Z : Z→ R is called a convex relaxation off on Z if f cv

Z (z) ≤ f (z), ∀z ∈ Z. Similarly, a
concave functionf cc

Z : Z→ R is called a concave relaxation off onZ if f cc
Z (z)≥ f (z), ∀z∈ Z.

Definition 9 (Convex and Concave Envelopes)Given a convex setZ⊂R
n and a functionf : Z→R, a convex

function f cv,env
Z : Z→ R is called the convex envelope off on Z if f cv,env

Z is a convex relaxation off on Z and
for every convex relaxationf cv

Z : Z→ R, we havef cv,env
Z (z) ≥ f cv

Z (z), ∀z ∈ Z. Similarly, a concave function
f cc,env
Z : Z→ R is called the concave envelope off on Z if f cc,env

Z is a concave relaxation off on Z and for
every concave relaxationf cc

Z : Z→ R, we havef cc,env
Z (z)≤ f cc

Z (z), ∀z∈ Z.

The following result establishes sufficient conditions forlower semicontinuity of the convex envelope. Note
that a weaker version of this result is presented in [26, Corollary 17.2.1], and stronger versions of this result are
stated without proof in [9, Page 349] (where the assumption that the functionf is bounded above is relaxed)
and in [34, Page 253] (where the assumptions that the functionf is bounded above and the setW is bounded
are relaxed).

Lemma 4 Let W⊂R
nw be a nonempty compact convex set and f: W→R be a lower semicontinuous function

on W bounded above by M. Let fcv,env
W denote the convex envelope of f on W. Then fcv,env

W is lower semicontin-
uous on W.

Proof The function f is lower semicontinuous on the compact setW iff its epigraph{(x, r) : x ∈W, r ≥ f (x)}
is closed. Consequently, the setS:= {(x, r) : x ∈W, r ≥ f (x), r ≤M} is compact. Theorem 17.2 in [26] implies
that conv(S) is a compact convex set. Therefore, the set conv(S)∪{(x, r) : x ∈W, r ≥ f (x)} is closed, which
implies that

{

(x, r) : x ∈W, r ≥ f cv,env
W (x)

}

is closed, which in turn implies thatf cv,env
W is lower semicontinuous

onW. ⊓⊔
Remark 2Although convex and concave relaxations of classes of functions can be constructed on general con-
vex sets, the typical application requires construction ofrelaxations on bounded intervals. Therefore, we will
implicitly assume that the setsX andY are intervals and that relaxations are constructed on intervals in sub-
sequent sections. The assumption thatX andY are intervals is not restrictive since general convex constraints
definingX andY that are available in factorable form can be equivalently reformulated to appear as part of the
constraintsg andh. The proposed definitions of convergence order in the next section will be based on schemes
of relaxations constructed on intervals. Note that similarnotions of convergence order can be developed for
schemes of relaxations constructed, for instance, on simplices.
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3 Definitions of Convergence Order

This section reviews the definitions of convergence orders of schemes of relaxations [5, 6] and defines the
convergence order of a (reduced-space) lower bounding scheme. It is also shown that the convergence order of
a convergent scheme of relaxations at a point is governed by the tiny intervals around that point. We begin with
the following definition, adapted from [5, Definition 6], that defines schemes of relaxations in a reduced-space.

Definition 10 (Schemes of Convex and Concave Relaxations)Let V ⊂ R
nv andW ⊂ R

nw be nonempty
convex sets, and letf : V×W→ R. Suppose, for everyZ ∈ IW, we can construct functionsf cv

V×Z : V×Z→ R

and f cc
V×Z :V×Z→R that are convex and concave relaxations, respectively, off onV×Z. The sets of functions

( f cv
V×Z)Z∈IW and( f cc

V×Z)Z∈IW define schemes of convex and concave relaxations off in W, respectively, and
the set of pairs of functions( f cv

V×Z, f cc
V×Z)Z∈IW defines a scheme of relaxations off in W. The schemes of

relaxations are said to be continuous whenf cv
V×Z and f cc

V×Z are continuous onV×Z for eachZ ∈ IW.

Bompadre and coworkers [5, 6] define Hausdorff convergence of inclusion functions. Notethat an inclusion
function can be associated with schemes of relaxations in a natural way (see [5, Definition 7]).

Definition 11 (Hausdorff Convergence Order of an Inclusion Function) Let V ∈ IR
nv andW ⊂ R

nw be
nonempty sets,h : V×W→ R be a continuous function, andH be an inclusion function ofh on I(V×W).

The inclusion functionH is said to have Hausdorff convergence of orderβ > 0 at a pointw∈W if for each
boundedQ⊂W with w ∈Q, there existsτ ≥ 0 such that

dH(h(V×Z),H(V×Z))≤ τw(Z)β
, ∀Z ∈ IQ with w ∈ Z.

Moreover,H is said to have Hausdorff convergence of orderβ > 0 onW if it has Hausdorff convergence of
order (at least)β at eachw ∈W, with the constantτ independent ofw.

In the context of (constrained) global optimization, the following definition of convergence of schemes of
convex and concave relaxations is more pertinent.

Definition 12 (Convergence Order of Schemes of Convex and Concave Relaxations)Let V ⊂ R
nv, W ⊂

R
nw be nonempty convex sets, andf : V×W→ R be a continuous function. Let( f cv

V×Z)Z∈IW and( f cc
V×Z)Z∈IW

respectively denote schemes of convex and concave relaxations of f in W.
The scheme of convex relaxations( f cv

V×Z)Z∈IW is said to have convergence of orderβ > 0 atw ∈W if for
each boundedQ⊂W with w ∈Q, there existsτcv≥ 0 such that

inf
(v,z)∈V×Z

f (v,z)− inf
(v,z)∈V×Z

f cv
V×Z(v,z)≤ τcvw(Z)β

, ∀Z ∈ IQ with w ∈ Z.

Similarly, the scheme of concave relaxations( f cc
V×Z)Z∈IW is said to have convergence of orderβ > 0 atw ∈W

if for each boundedQ⊂W with w ∈Q, there existsτcc≥ 0 such that

sup
(v,z)∈V×Z

f cc
V×Z(v,z)− sup

(v,z)∈V×Z
f (v,z)≤ τccw(Z)β

, ∀Z ∈ IQ with w ∈ Z.

The scheme of relaxations( f cv
V×Z, f cc

V×Z)Z∈IW is said to have (Hausdorff) convergence of orderβ > 0 atw ∈W
if the corresponding schemes of convex and concave relaxations have convergence of orders (at least)β at
w. The schemes( f cv

V×Z)Z∈IW and( f cc
V×Z)Z∈IW are said to have convergence of orderβ > 0 onW if they have

convergence of order (at least)β at eachw ∈W, with constantsτcv andτcc independent ofw.

Definition 13 (Pointwise Convergence Order of Schemes of Convex and Concave Relaxations)Let V ⊂
R

nv, W ⊂ R
nw be nonempty convex sets, andf : V×W→ R be a continuous function. Let( f cv

V×Z)Z∈IW and
( f cc

V×Z)Z∈IW respectively denote schemes of convex and concave relaxations of f in W. The scheme of convex
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relaxations( f cv
V×Z)Z∈IW is said to have pointwise convergence of orderγ > 0 at w ∈W if for each bounded

Q⊂W with w ∈Q, there existsτcv≥ 0 such that

sup
(v,z)∈V×Z

| f (v,z)− f cv
V×Z(v,z)| ≤ τcvw(Z)γ

, ∀Z ∈ IQ with w ∈ Z.

Similarly, the scheme of concave relaxations( f cc
V×Z)Z∈IW is said to have pointwise convergence of orderγ > 0

at w ∈W if for each boundedQ⊂W with w ∈Q, there existsτcc≥ 0 such that

sup
(v,z)∈V×Z

| f cc
V×Z(v,z)− f (v,z)| ≤ τccw(Z)γ

, ∀Z ∈ IQ with w ∈ Z.

The scheme of relaxations( f cv
V×Z, f cc

V×Z)Z∈IW is said to have pointwise convergence of orderγ > 0 atw ∈W if
the corresponding schemes of convex and concave relaxations have pointwise convergence of orders (at least)
γ at w. Furthermore, the schemes of relaxations are said to have pointwise convergence of orderγ > 0 onW if
they have pointwise convergence of order at leastγ at eachw ∈W, with constantsτcv andτcc independent of
w.

Note that we simply say that a scheme of relaxations,( f cv
V×Z, f cc

V×Z)Z∈IW, of a function f : V×W→ R in
W has (pointwise) convergence order ofγ > 0 if it has (pointwise) convergence of orderγ onW.

Remark 3Definitions11, 12, and13are based on a modification (see [16, Definition 9.2.35]) of the definitions
of convergence order proposed in [5, 6], which incorporates the setQ. Note that the use of the setQ is necessary
when the schemes of relaxations are constructed on unbounded sets, but may be omitted (set toW) when the
schemes of relaxations are constructed over bounded sets (which is the typical application). Henceforth, the
use ofQ shall be omitted for brevity since we are only interested in compact setsV andW (see Assumption1).

Remark 4The pointwise convergence order of a convergent scheme of convex and concave relaxations on
W is governed by the strength of the relaxations over small intervals inW. This observation is made pre-
cise in Lemma5. Also note that the pointwise convergence order of schemes of either convex, or concave
relaxations (as per Definition13) can be arbitrarily high for nonlinear functions in contrast to the pointwise
convergence order of schemes of convexandconcave relaxations (see Theorem 2 in [5]). For instance, consider
the functionf : [0,1]× [0,1] =: V×W→R with f (v,w) = v2−√w and a corresponding scheme of convex re-
laxations( f cv

V×Z)Z∈IW defined byf cv
V×Z(v,z) = v2−√w on [wL

,wU]⊂ [0,1]. The scheme of convex relaxations
( f cv

V×Z)Z∈IW has arbitrarily high pointwise convergence order onW.

Remark 5Unlike the pointwise convergence order of a scheme of relaxations, the convergence order of a
scheme of convex and concave relaxations can be arbitrarilyhigh for any function. For instance, consider the
scheme of constant relaxations of the functionf : [0,1]× [0,1] =: V×W→R with f (v,w) = w−√v defined by
f cv
V×Z(v,z)= wL−1, f cc

V×Z(v,z) = wU on [wL
,wU]⊂ [0,1]. The scheme of constant relaxations( f cv

V×Z, f cc
V×Z)Z∈IW

has arbitrarily high convergence order onW, but is not pointwise convergent of any order onW.

Lemma 5 Let V ⊂ R
nv,W ⊂ R

nw be nonempty compact convex sets and f: V ×W → R. Let ( f cv
V×Z)Z∈IW

denote a scheme of convex relaxations of f in W with pointwiseconvergence orderγcv > 0 and corresponding
prefactorτcv ≥ 0 (on W). If there exist constantsγ ≥ γcv, τ ≥ 0, andδ > 0 such that for every Z∈ IW with
w(Z)≤ δ ,

sup
(v,z)∈V×Z

| f (v,z)− f cv
V×Z(v,z)| ≤ τw(Z)γ

,

then( f cv
V×Z)Z∈IW converges pointwise with orderγ to f on W.

Proof Since( f cv
V×Z)Z∈IW converges pointwise with orderγcv to f onW which is compact, there existsM ≥ 0

such that
sup

(v,z)∈V×Z
| f (v,z)− f cv

V×Z(v,z)| ≤ τcvw(Z)γcv ≤M, ∀Z ∈ IW.
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The desired result then follows from the fact that for everyZ ∈ IW,

sup
(v,z)∈V×Z

| f (v,z)− f cv
V×Z(v,z)| ≤

(

τ +
M
δ γ

)

w(Z)γ
.

⊓⊔

Results similar to Lemma5 are applicable to other notions of convergence order presented in this work.
Note that if the constantδ in Lemma5 is relatively small, then the bound on the prefactor obtained can be
relatively large making the result weak on intervals withw(Z)≫ δ .

The next result shows that for schemes of relaxations, the notion of pointwise convergence is stronger than
the notion of convergence in Definition12 (also see [5, Theorem 1]).

Lemma 6 Let V⊂R
nv, W⊂R

nw be nonempty compact convex sets, and( f cv
V×Z)Z∈IW and( f cc

V×Z)Z∈IW respec-
tively denote schemes of convex and concave relaxations of abounded function f: V×W→ R in W. If either
scheme has pointwise convergence of orderγ > 0, it has convergence of orderβ ≥ γ .

Proof By noting from Definition13 that

sup
(v,z)∈V×Z

| f (v,z)− f cv
V×Z(v,z)| ≤ τcvw(W)γ

, ∀Z ∈ IW,

sup
(v,z)∈V×Z

| f cc
V×Z(v,z)− f (v,z)| ≤ τccw(W)γ

, ∀Z ∈ IW,

the result follows from Lemma3 via

inf
(v,z)∈V×Z

f (v,z)− inf
(v,z)∈V×Z

f cv
V×Z(v,z)≤ sup

(v,z)∈V×Z
| f (v,z)− f cv

V×Z(v,z)|, ∀Z ∈ IW,

and
sup

(v,z)∈V×Z
f cc
V×Z(v,z)− sup

(v,z)∈V×Z
f (v,z)≤ sup

(v,z)∈V×Z
| f cc

V×Z(v,z)− f (v,z)|, ∀Z ∈ IW.

⊓⊔

The following lemma establishes mild sufficient conditionsunder which the scheme of envelopes of a
function is first-order pointwise convergent.

Lemma 7 Let W⊂ R
nw be a nonempty compact convex set and f: W→ R be Lipschitz continuous on W. Let

( f cv,env
Z , f cc,env

Z )Z∈IW denote the scheme of envelopes of f in W. Then the scheme( f cv,env
Z , f cc,env

Z )Z∈IW is at least
first-order pointwise convergent on W.

Proof We wish to show that there existsτ ≥ 0 such that for everyZ ∈ IW,

sup
z∈Z
| f (z)− f cv,env

Z (z)| ≤ τw(Z),

sup
z∈Z
| f (z)− f cc,env

Z (z)| ≤ τw(Z).

Consider the scheme of relaxations( f cv
Z , f cc

Z )Z∈IW defined by

f cv
Z (z) = min

w∈Z
f (w), f cc

Z (z) = max
w∈Z

f (w), ∀Z ∈ IW.

From the fact thatf cv
Z and f cc

Z are convex and concave relaxations off in Z and the assumption thatf is
Lipschitz continuous, we have that( f cv

Z , f cc
Z )Z∈IW is at least first-order pointwise convergent onW. The desired

result then follows from the definition of( f cv,env
Z , f cc,env

Z )Z∈IW. ⊓⊔
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The definitions provided thus far facilitate a theoretical analysis of the (reduced-space) convergence order
of a scheme of relaxations to a corresponding scalar function, or, in the context of global optimization, provide
a way to analyze theoretically the (reduced-space) convergence order of a (lower) bounding scheme for an
unconstrained problem. The subsequent definitions seek to extend naturally the analysis of convergence order
to constrained problems.

Definition 14 (Convergence Order of a Lower Bounding Scheme)Consider Problem (P) (satisfying As-
sumption1). For anyZ ∈ IY, let F (Z) = {(x,y) ∈ X×Z : g(x,y)≤ 0,h(x,y) = 0} denote the feasible set of
Problem (P) with y restricted toZ.

Consider a scheme of lower bounding problems(L (Z))Z∈IY for Problem (P). We associate with the scheme
(L (Z))Z∈IY a scheme of pairs(O(Z),IC(Z))Z∈IY, where(O(Z))Z∈IY is a scheme of lower bounds on the

scheme of problems

(

min
(x,y)∈F (Z)

f (x,y)

)

Z∈IY

and(IC(Z))Z∈IY is a scheme of subsets ofR
mI +mE that indicate

the feasibility of the lower bounding scheme(L (Z))Z∈IY. The schemes(O(Z))Z∈IY and (IC(Z))Z∈IY (are
required to) satisfy

O(Z)≤ min
(x,z)∈F (Z)

f (x,z), ∀Z ∈ IY,

d(IC(Z),RmI
− ×{0}) ≤ d

(

[

g
h

]

(X×Z),RmI
− ×{0}

)

, ∀Z ∈ IY,

O(Z) = +∞ ⇐⇒ d(IC(Z),RmI
− ×{0}) > 0, ∀Z ∈ IY,

where

[

g
h

]

(X×Z) denotes the image ofX×Z under the vector-valued function

[

g
h

]

. The scheme of lower

bounding problems(L (Z))Z∈IY is said to have convergence of orderβ > 0 at

1. a feasible pointy ∈Y if there existsτ ≥ 0 such that for everyZ ∈ IY with y ∈ Z,

min
(x,z)∈F (Z)

f (x,z) −O(Z)≤ τw(Z)β
.

2. an infeasible pointy ∈Y if there existsτ̄ ≥ 0 such that for everyZ ∈ IY with y ∈ Z,

d

(

[

g
h

]

(X×Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
.

The scheme of lower bounding problems is said to have convergence of orderβ > 0 onY if it has convergence
of order (at least)β at eachy ∈Y, with constantsτ andτ̄ independent ofy.

Remark 6Definition 14 is motivated by the requirements of a lower bounding scheme to fathom feasible and
infeasible regions in a branch-and-bound procedure [13]. The first condition requires that the sequence of lower
bounds converges rapidly to the corresponding sequence of minimum objective values on nested sequences of
intervals converging to a feasible point of Problem (P). On nested sequences of intervals converging to an infea-
sible point of Problem (P), the second condition requires that the sequence of lower bounding problems rapidly
detect the (eventual) infeasibility of the corresponding sequences of intervals for Problem (P). In simple terms,
the first condition can be used to require that feasible points with ‘good objective values’ are fathomed rather
easily, while the second condition can be used to require that infeasible points that are ‘close to the feasible
region’, as determined by the distance functiond, are fathomed with relatively less effort [15]. Note that Def-
inition 14 reduces to the definition of convergence order for unconstrained minimization in [39, Definition 1]
whennx, mI , andmE are all set to zero.
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Definition 14 can be readily applied to analyze the convergence order of a convex relaxation-based lower
bounding scheme as follows.

Suppose, for eachZ ∈ IY, we associate a convex setX(Z) such thatX ⊃ X(Z)⊃FX(Z), whereFX(Z) :=
{x ∈ X : ∃y ∈ Z s.t.g(x,y)≤ 0,h(x,y) = 0} denotes the projection ofF (Z) on X. The setX(Z) could, for
instance, correspond to an interval subset ofX that is obtained using bounds tightening techniques [2] when
y is restricted toZ (the motivation for considering the setX(Z) in the definition of convergence order below
will become clear in Section5). Note that the restrictionX(Z) ⊃ FX(Z) can be relaxed when optimality-
based bounds tightening techniques are employed. Also notethat unless otherwise specified, we simply use
X(Z) = X, ∀Z ∈ IY.

By an abuse of Definition10, let ( f cv
X(Z)×Z)Z∈IY and (gcv

X(Z)×Z)Z∈IY denote continuous schemes of con-

vex relaxations off andg, respectively, inY, and let(hcv
X(Z)×Z,hcc

X(Z)×Z)Z∈IY denote a continuous scheme of
relaxations ofh in Y. For anyZ ∈ IY, let

F
cv(Z) =

{

(x,y) ∈ X(Z)×Z : gcv
X(Z)×Z(x,y)≤ 0,hcv

X(Z)×Z(x,y)≤ 0,hcc
X(Z)×Z(x,y)≥ 0

}

denote the feasible set of the scheme of convex relaxations.The lower bounding scheme(L (Z))Z∈IY with

(O(Z))Z∈IY :=

(

min
(x,z)∈F cv(Z)

f cv
X(Z)×Z(x,z)

)

Z∈IY

,

(IC(Z))Z∈IY :=
({

(v,w) ∈ R
mI ×R

mE : v = gcv
X(Z)×Z(x,z),hcv

X(Z)×Z(x,z)≤ w≤ hcc
X(Z)×Z(x,z)

for some(x,z) ∈ X(Z)×Z
})

Z∈IY
(1)

is said to have convergence of orderβ > 0 at

1. a feasible pointy ∈Y if there existsτ ≥ 0 such that for everyZ ∈ IY with y ∈ Z,

min
(x,z)∈F (Z)

f (x,z)− min
(x,z)∈F cv(Z)

f cv
X(Z)×Z(x,z)≤ τw(Z)β

.

2. an infeasible pointy ∈Y if there existsτ̄ ≥ 0 such that for everyZ ∈ IY with y ∈ Z,

d

(

[

g
h

]

(X(Z)×Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
,

whereIC(Z) is defined by Equation (1).

Definition 14 can also be used to analyze the convergence orders of alternative lower bounding schemes
such as those based on Lagrangian duality (see Section4.2).

4 Full-Space Branch-and-Bound Algorithms

In this section, we present some results on the convergence order of lower bounding schemes for Problem (P)
when both theX andY sets may be partitioned during the course of the branch-and-bound algorithm (we
consider schemes of relaxations inX×Y instead of schemes of relaxations inY as was considered in Section3).
This section is divided into two parts. First, we look at the convergence order of lower bounding schemes
which utilize convex and concave relaxations (see, for instance, [1, 17, 20, 36, 37] for techniques to construct
relaxations) of the objective and the constraints for the lower bounding scheme. Next, the convergence order
of duality-based lower bounding schemes (see, for instance, [9]) is investigated.
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4.1 Convex relaxation-based branch-and-bound

This section derives bounds on the convergence order of convex relaxation-based lower bounding schemes
by making assumptions on the convergence orders of the schemes of relaxations used by the lower bounding
schemes. The reader is directed to [5], [6], [24], and [17] for details on how to construct schemes of (convex)
relaxations that have the requisite convergence orders.

The following result establishes a lower bound on the convergence order of the lower bounding scheme at
infeasible points based on the convergence orders of schemes of convex relaxations of the inequality constraints
and schemes of relaxations of the equality constraints. Note that this is the primary result that is used to derive
a lower bound on the convergence order of such relaxation-based lower bounding schemes at infeasible points.

Lemma 8 Let (gcv
j,Z)Z∈I(X×Y), j = 1, · · · , mI , denote continuous schemes of convex relaxations of g1, · · · ,gmI ,

respectively, in X×Y with pointwise convergence ordersγcv
g,1 > 0, · · · ,γcv

g,mI
> 0 and corresponding constants

τcv
g,1, · · · ,τcv

g,mI
, and(hcv

k,Z,hcc
k,Z)Z∈I(X×Y), k= 1, · · · ,mE, denote continuous schemes of relaxations of h1, · · · ,hmE ,

respectively, in X×Y with pointwise convergence ordersγh,1 > 0, · · · ,γh,mE > 0 and corresponding constants
τh,1, · · · ,τh,mE . Then, there exists̄τ ≥ 0 such that for every Z∈ I(X×Y)

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
,

whereIC(Z) is defined as

IC(Z) := {(v,w) ∈ R
mI ×R

mE : v = gcv
Z (x,y),hcv

Z (x,y)≤w≤ hcc
Z (x,y) for some(x,y) ∈ Z} ,

andβ is defined as

β := min

{

min
j∈{1,··· ,mI }

γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

.

Proof SupposeZ ∈ I(X×Y). Then for eachj ∈ {1, · · · ,mI}, k∈ {1, · · · ,mE}, we have from Definition13 that

max
(x,y)∈Z

|g j(x,y)−gcv
j,Z(x,y)| ≤ τcv

g, jw(Z)γcv
g, j ,

max
(x,y)∈Z

|hk(x,y)−hcv
k,Z(x,y)| ≤ τh,kw(Z)γh,k,

max
(x,y)∈Z

|hk(x,y)−hcc
k,Z(x,y)| ≤ τh,kw(Z)γh,k,

since(gcv
j,Z)Z∈I(X×Y) and (hcv

k,Z,hcc
k,Z)Z∈I(X×Y) converge pointwise tog j and hk, respectively, onX×Y with

ordersγcv
g, j and γh,k. Let (xcv

Z ,ycv
Z ) ∈ Z and (vcv

Z ,wcv
Z ) ∈ IC(Z) such thatvcv

Z = gcv
Z (xcv

Z ,ycv
Z ),hcv

Z (xcv
Z ,ycv

Z ) ≤
wcv

Z ≤ hcc
Z (xcv

Z ,ycv
Z ), andd({(vcv

Z ,wcv
Z )} ,RmI

− ×{0}) = d
(

IC(Z),RmI
− ×{0}

)

. The existence of(xcv
Z ,ycv

Z ) and
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(vcv
Z ,wcv

Z ) follows from the continuity ofgcv
Z , hcv

Z , andhcc
Z and the compactness ofZ. We have

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤d

({[

g
h

]

(xcv
Z ,ycv

Z )

}

,R
mI
− ×{0}

)

−d
(

{(vcv
Z ,wcv

Z )} ,RmI
− ×{0}

)

≤d

({[

g
h

]

(xcv
Z ,ycv

Z )− (vcv
Z ,wcv

Z )

}

,R
mI
− ×{0}

)

≤‖g(xcv
Z ,ycv

Z )−vcv
Z ‖+‖h(xcv

Z ,ycv
Z )−wcv

Z ‖
≤‖g(xcv

Z ,ycv
Z )−gcv

Z (xcv
Z ,ycv

Z )‖+max{‖h(xcv
Z ,ycv

Z )−hcv
Z (xcv

Z ,ycv
Z )‖,‖h(xcv

Z ,ycv
Z )−hcc

Z (xcv
Z ,ycv

Z )‖}

≤ max
(x,y)∈Z

‖g(x,y)−gcv
Z (x,y)‖+max

{

max
(x,y)∈Z

‖h(x,y)−hcv
Z (x,y)‖, max

(x,y)∈Z
‖h(x,y)−hcc

Z (x,y)‖
}

≤
mI

∑
j=1

max
(x,y)∈Z

|g j(x,y)−gcv
j,Z(x,y)|+max

{

mE

∑
k=1

max
(x,y)∈Z

|hk(x,y)−hcv
k,Z(x,y)|,

mE

∑
k=1

max
(x,y)∈Z

|hk(x,y)−hcc
k,Z(x,y)|

}

≤
mI

∑
j=1

τcv
g, jw(Z)γcv

g, j +
mE

∑
k=1

τh,kw(Z)γh,k

≤
(

mI

∑
j=1

τcv
g, jw(X×Y)γcv

g, j−β +
mE

∑
k=1

τh,kw(X×Y)γh,k−β

)

w(Z)β
,

where Corollary1 is used to derive Step 2, Step 3 follows from the triangle inequality, and Lemma2 is used to
derive Step 6. The desired result follows by choosingτ̄ as

τ̄ =

(

mI

∑
j=1

τcv
g, jw(X×Y)γcv

g, j−β +
mE

∑
k=1

τh,kw(X×Y)γh,k−β

)

.

⊓⊔

Note that the conclusions of Lemma8 hold even when the schemes of convex relaxations(gcv
j,Z)Z∈I(X×Y),

∀ j ∈ {1, · · · ,mI}, and(hcv
k,Z)Z∈I(X×Y), ∀k∈ {1, · · · ,mE}, are merely lower semicontinuous, and the schemes of

concave relaxations(hcc
k,Z)Z∈I(X×Y), ∀k∈ {1, · · · ,mE}, are merely upper semicontinuous.

Remark 7The analysis in Lemma8 can be refined under the following assumptions. Let(gcv
j,Z)Z∈I(X×Y),

j = 1, · · · , mI , denote schemes of convex relaxations ofg1, · · · ,gmI , respectively, inX×Y with convergence
ordersβ cv

g,1 > 0, · · · ,β cv
g,mI

> 0 and corresponding constantsτcv
g,1, · · · ,τcv

g,mI
, and let(hcv

k,Z,hcc
k,Z)Z∈I(X×Y), k =

1, · · · ,mE, denote schemes of relaxations ofh1, · · · ,hmE , respectively, inX×Y with convergence ordersβh,1 >

0, · · · ,βh,mE > 0 and corresponding constantsτh,1, · · · ,τh,mE . Suppose for each intervalZ ∈ I(X×Y), there
exists(xZ,yZ) ∈ Z such that

d
(

{(xZ,yZ)} ,RmI
− ×{0}

)

= d

(

[

g
h

]

(Z),RmI
− ×{0}

)

,

(xZ,yZ) ∈ argmin
(x,y)∈Z

g j(x,y), ∀ j ∈ {1, · · · ,mI},

either(xZ,yZ) ∈ argmin
(x,y)∈Z

hk(x,y), or (xZ,yZ) ∈ argmax
(x,y)∈Z

hk(x,y), ∀k∈ {1, · · · ,mE}.

Then, there exists̄τ ≥ 0 such that for everyZ ∈ I(X×Y)

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
,
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whereβ is defined as

β := min

{

min
j∈{1,··· ,mI }

β cv
g, j , min

k∈{1,··· ,mE}
βh,k

}

.

Note that the above assumptions are trivially satisfied whenProblem (P) only has one constraint (cf. Exam-
ple 1).

The following example demonstrates the importance of a sufficiently high convergence order at nearly-
feasible points (also see [15, Example 4]).

Example 1Let X = [0,0],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = y andg(x,y) =−y. For any[0,0]×
[yL

,yU] =: Z ∈ I(X×Y), let f cv
Z (x,y) = y, gcv

Z (x,y) = −yU− (yU− yL)α for some constantα > 0. Note that
( f cv

Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order and arbitrarily high convergence order onX×Y,
whereas(gcv

Z )Z∈I(X×Y) has min{α ,1}-order pointwise convergence andα-order convergence onX×Y.
Pick δ ∈ (0,1) and letε ∈ (0,δ ). Let yL = −δ − ε , yU = −δ + ε . The width ofZ is w(Z) = 2ε . We have

g(Z) = [δ − ε ,δ + ε ], which yieldsd(g(Z),RmI
− ) = δ − ε (this confirms thatg is infeasible at each(x,y) ∈ Z).

Furthermore,gcv
Z (Z) = [δ − ε− (2ε)α

,δ − ε− (2ε)α ], which yieldsd(gcv
Z (Z),RmI

− ) = max{0,δ − ε− (2ε)α}.
Therefore, forε sufficiently small, the lower bounding problem detects the infeasibility of Z and we have
d(g(Z),RmI

− )−d(gcv
Z (Z),RmI

− ) = (2ε)α , which implies that convergence of the lower bounding scheme at the
infeasible point(0,−δ ) is at most of orderα .

For α = 1, the maximum value ofε for which the intervalZ can be fathomed by infeasibility by the lower
bounding scheme isε = δ

3 , whereas forα = 0.5, the maximum value ofε for which the intervalZ can be

fathomed by infeasibility by the lower bounding scheme isε =
(

−
√

2+
√

2
√

1+2δ
2

)2
, which isO(δ 2) for δ ≪ 1.

Therefore, a lower bounding scheme with a low convergence order at infeasible points may result in a
large number of partitions on nearly-feasible points before they are fathomed, thereby resulting in the cluster
problem.

The next result shows that under mild assumptions on the objective, the constraints, and the schemes of
relaxations, first-order convergence to a global minimum isguaranteed.

Theorem 1 Consider Problem(P). Suppose f , gj , j = 1, · · · ,mI , and hk, k = 1, · · · ,mE, are Lipschitz contin-
uous on X×Y with Lipschitz constants Mf , Mg,1, · · · ,Mg,mI , Mh,1, · · · ,Mh,mE , respectively. Let( f cv

Z )Z∈I(X×Y),
(gcv

j,Z)Z∈I(X×Y), j = 1, · · · ,mI , denote continuous schemes of convex relaxations of f , g1, · · · ,gmI , respectively,
in X×Y with pointwise convergence ordersγcv

f ≥ 1, γcv
g,1 ≥ 1, · · · ,γcv

g,mI
≥ 1 and corresponding constantsτcv

f ,
τcv

g,1, · · · ,τcv
g,mI

. Let(hcv
k,Z,hcc

k,Z)Z∈I(X×Y), k= 1, · · · ,mE, denote continuous schemes of relaxations of h1, · · · ,hmE ,
respectively, in X×Y with pointwise convergence ordersγh,1 ≥ 1, · · · ,γh,mE ≥ 1 and corresponding constants
τh,1, · · · ,τh,mE . The scheme of lower bounding problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) :=
({

(v,w) ∈ R
mI ×R

mE : v = gcv
Z (x,y),hcv

Z (x,y)≤ w≤ hcc
Z (x,y)

for some(x,y) ∈ Z
})

Z∈I(X×Y)

is at least first-order convergent on X×Y.

Proof Lemma8 establishes first-order convergence at infeasible points(x,y) ∈ X×Y with the prefactorτ̄
independent of(x,y); therefore, it suffices to prove first-order convergence at feasible points(x,y) ∈ X×Y
with a prefactor independent of(x,y).

In order to do so, supposeF (X×Y) 6= /0 and considerZ ∈ I(X×Y) such thatZ∩F (X×Y) 6= /0. Let

F
cv(Z) := {(x,y) ∈ Z : gcv

Z (x,y)≤ 0,hcv
Z (x,y)≤ 0,hcc

Z (x,y)≥ 0}
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denote the feasible set of the convex relaxation-based lower bounding scheme. Then

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)

=

(

min
(x,y)∈F (Z)

f (x,y)− min
(x,y)∈F cv(Z)

f (x,y)

)

+

(

min
(x,y)∈F cv(Z)

f (x,y)− min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

≤
(

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f (x,y)

)

+ max
(x,y)∈F cv(Z)

| f (x,y)− f cv
Z (x,y)| , (2)

where the above inequality follows from Lemma3. The second term in Equation (2) can be bounded from
above as

max
(x,y)∈F cv(Z)

| f (x,y)− f cv
Z (x,y)| ≤ τcv

f w(Z)γcv
f ,

since( f cv
Z )Z∈I(X×Y) converges pointwise tof on X×Y with orderγcv

f ≥ 1.
Let (x∗Z,y∗Z) ∈ argmin

(x,y)∈F (Z)

f (x,y) and(xcv
Z ,ycv

Z ) ∈ argmin
(x,y)∈F cv(Z)

f (x,y). The first term in Equation (2) can be

bounded from above as

(

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f (x,y)

)

= f (x∗Z,y∗Z)− f (xcv
Z ,ycv

Z )

≤M f
√

nx +ny w(Z),

where the last step follows from the Lipschitz continuity off on X×Y and Lemma2.
Plugging in the above bounds in Equation (2), we get

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)≤

(

M f
√

nx +ny + τcv
f w(X×Y)γcv

f −1
)

w(Z),

which establishes first-order convergence of(L (Z))Z∈I(X×Y) at feasible points(x,y)∈X×Y with the prefactor
independent of(x,y). ⊓⊔

The following examples show that the convergence order of the lower bounding scheme may be as low as
one under the assumptions of Theorem1.

Example 2Let X = [−1,1],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = 2x+ 2y and g(x,y) = −x− y.
For any [xL ,xU]× [yL,yU] =: Z ∈ I(X×Y), let f cv

Z (x,y) = 2x+ 2y and gcv
Z (x,y) = −xU − yU. The scheme

( f cv
Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX×Y and the scheme(gcv

Z )Z∈I(X×Y) has
first-order pointwise convergence onX×Y. Note that(gcv

Z )Z∈I(X×Y) has arbitrarily high convergence order on
X×Y.

Let xL = yL =−ε , xU = yU = ε with 0 < ε ≤ 1. The width ofZ is w(Z) = 2ε . The optimal objective value
of Problem (P) onZ is 0, while the optimal objective of the lower bounding problem onZ is−4ε . Convergence
at the point(0,0) is, therefore, at most first-order.

Example 3LetX = [−1,1],Y = [−1,1], mI = 1, andmE = 0 with f (x,y)= 2x+2y andg(x,y) =−x−y. For any
[xL

,xU]× [yL
,yU] =: Z ∈ I(X×Y), let f cv

Z (x,y) = 2xL +2yL andgcv
Z (x,y) =−x−y. The scheme( f cv

Z )Z∈I(X×Y)

has first-order pointwise convergence onX×Y and the scheme(gcv
Z )Z∈I(X×Y) has arbitrarily high pointwise

convergence order onX×Y. Note that( f cv
Z )Z∈I(X×Y) has arbitrarily high convergence order onX×Y.

Let xL = yL =−ε , xU = yU = ε with 0 < ε ≤ 1. The width ofZ is w(Z) = 2ε . The optimal objective value
of Problem (P) onZ is 0, while the optimal objective of the lower bounding problem onZ is−4ε . Convergence
at the point(0,0) is, therefore, at most first-order.
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Example 4Let X = [0,0],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = y andg(x,y) = min{−0.5y,−y}. For
any [0,0]× [yL ,yU] =: Z ∈ I(X×Y) with yL < 0 < yU, let

f cv
Z (x,y) = y, gcv

Z (x,y) =−yU−0.5yL

yU−yL y+
0.5yLyU

yU−yL .

Note thatgcv
Z corresponds to the convex envelope ofg on Z. The scheme( f cv

Z )Z∈I(X×Y) has arbitrarily high
pointwise convergence order onX×Y and the scheme(gcv

Z )Z∈I(X×Y) has first-order pointwise convergence on
X×Y. Note that(gcv

Z )Z∈I(X×Y) has arbitrarily high convergence order onX×Y.

Let yL = −ε , yU = ε with 0 < ε ≤ 1. The width ofZ is w(Z) = 2ε . The optimal objective value of Prob-
lem (P) on Z is 0, while the optimal objective of the lower bounding problem onZ is− ε

3 . Convergence at the
point (0,0) is, therefore, at most first-order.

Example 5Let X = [0,0],Y = [−1,1], mI = 0, andmE = 1 with f (x,y) = y andh(x,y) = min{−0.5y,−y}. For
any [0,0]× [yL

,yU] =: Z ∈ I(X×Y) with yL
< 0 < yU, let

f cv
Z (x,y) = y, hcv

Z (x,y) =−yU−0.5yL

yU−yL y+
0.5yLyU

yU−yL , hcc
Z (x,y) = min{−0.5y,−y}.

Note thathcv
Z andhcc

Z correspond to the convex and concave envelopes ofh on Z, respectively. The scheme
( f cv

Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX×Y and the scheme(hcv
Z ,hcc

Z )Z∈I(X×Y) has
first-order pointwise convergence onX×Y. Note that(hcv

Z ,hcc
Z )Z∈I(X×Y) has arbitrarily high convergence order

on X×Y.
Let yL = −ε , yU = ε with 0 < ε ≤ 1. The width ofZ is w(Z) = 2ε . The optimal objective value of Prob-

lem (P) on Z is 0, while the optimal objective of the lower bounding problem onZ is− ε
3 . Convergence at the

point (0,0) is, therefore, at most first-order.

Despite the fact that the schemes of relaxations used in Examples 4 and5 correspond to the envelopes
of the functions involved (unlike those used in Examples2 and3), we only have first-order convergence at
the global minimizer(0,0). However, the reader can verify that first-order convergentlower bounding schemes
may be sufficient to mitigate the cluster problem in Examples4 and5, whereas at least second-order convergent
lower bounding schemes are required to mitigate the clusterproblem in Examples2 and3 [15]. Furthermore,
Examples2 to 5 illustrate that high convergence orders of schemes of relaxations of the objective and con-
straints do not guarantee a high convergence order of the lower bounding scheme (cf. Remark7) at constrained
minima (which may be required to mitigate clustering). Thisis because a high convergence order of a scheme
of relaxations of the objective function may only place a restriction on the gap between the minimum value of
the relaxation and the minimum value of the objective function without taking the feasible region into account;
this restriction may not be sufficient in a constrained setting because the gap between the minimum value of the
relaxed problem and the minimum value of the original problem may be relatively large when their respective
feasible regions are taken into consideration (see Example3 for an extreme case). Similarly, a high convergence
order of a scheme of relaxations of the constraints may not exclude infeasible regions of the search space in
which the objective function value is less than the optimal (constrained) objective value (Example2 provides
an extreme case), potentially leading to relatively large underestimation gaps.

The following result proves second-order convergence at certain points inX×Y.

Theorem 2 Consider Problem(P). Suppose f is Lipschitz continuous on X×Y with Lipschitz constant Mf .
Let ( f cv

Z )Z∈I(X×Y) denote a continuous scheme of convex relaxations of f with pointwise convergence order
γcv

f ≥ 2 and corresponding constantτcv
f .

Suppose there exists a feasible point(xf ,yf) ∈ F (X×Y), continuous schemes of convex relaxations
(gcv

j,Z)Z∈I(X×Y), j = 1, · · · ,mI , of g1, · · · ,gmI , respectively, in X×Y, continuous schemes of relaxations
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(hcv
k,Z,hcc

k,Z)Z∈I(X×Y), k = 1, · · · ,mE, of h1, · · · ,hmE , respectively, in X×Y, and a constantδ > 0 such that for

each Z∈ I(X×Y) with (xf
,yf) ∈ Z and w(Z)≤ δ , we have

d

(

F (Z), argmin
(x,y)∈F cv(Z)

f (x,y)

)

≤ τ̂w(Z)γ (3)

for constantsγ ≥ 2 and τ̂ ≥ 0. Then, the scheme of lower bounding problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) :=
({

(v,w) ∈ R
mI ×R

mE : v = gcv
Z (x,y),hcv

Z (x,y)≤ w≤ hcc
Z (x,y)

for some(x,y) ∈ Z
})

Z∈I(X×Y)

is at leastmin{γcv
f ,γ}-order convergent at(xf ,yf).

Proof SupposeZ ∈ I(X×Y) such that(xf
,yf) ∈ Z andw(Z)≤ δ . From the proof of Theorem1, we have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)

≤
(

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f (x,y)

)

+

(

min
(x,y)∈F cv(Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

≤
(

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f (x,y)

)

+ τcv
f w(Z)γcv

f . (4)

Consider(x∗Z,y∗Z) ∈ argmin
(x,y)∈F (Z)

f (x,y). Choose(x̂Z, ŷZ) ∈ F (Z) and (xcv
Z ,ycv

Z ) ∈ argmin
(x,y)∈F cv(Z)

f (x,y) such that

d({(x̂Z, ŷZ)},{(xcv
Z ,ycv

Z )}) ≤ τ̂w(Z)γ (note that(x̂Z, ŷZ) and(xcv
Z ,ycv

Z ) exist by assumption). The first term in
Equation (4) can be bounded from above as

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f (x,y) = f (x∗Z,y∗Z)− f (xcv
Z ,ycv

Z )

≤ f (x̂Z, ŷZ)− f (xcv
Z ,ycv

Z )

≤M f d({(x̂Z, ŷZ)},{(xcv
Z ,ycv

Z )})
≤M f τ̂w(Z)γ

,

where Step 3 above follows from the Lipschitz continuity off . Therefore, from Equation (4),

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)

≤
(

M f τ̂w(X×Y)γ−min{γcv
f ,γ}+ τcv

f w(X×Y)γcv
f −min{γcv

f ,γ}
)

w(Z)min{γcv
f ,γ}

.

The desired result follows by analogy to Lemma5 by noting that the lower bounding scheme(L (Z))Z∈I(X×Y)

has convergence of order at least one at(xf
,yf) from Theorem1. ⊓⊔

The key assumption of Theorem2, Equation (3), is rather unwieldy since verifying it involves the solution
of the optimization problem min

(x,y)∈F cv(Z)
f (x,y) for eachZ ∈ I(X×Y) with (xf ,yf) ∈ Z andw(Z) ≤ δ . The

following more restrictive (but potentially more easily verifiable) condition implies Equation (3):

∃δ > 0, τ̂ ≥ 0,γ ≥ 2 : dH(F (Z),F cv(Z))≤ τ̂w(Z)γ
, ∀Z ∈ I(X×Y) with (xf

,yf) ∈ Z andw(Z)≤ δ .

The following example shows that the convergence order may be as low as two under the assumptions of
Theorem2.
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Example 6Let X = [−1,1],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = −xy andg(x,y) = x+y−1. For
any [xL ,xU]× [yL,yU] =: Z ∈ I(X×Y), let

f cv
Z (x,y) = max{−xUy+(−x)yL − (−xU)yL

,−xLy+(−x)yU− (−xL)yU}, gcv
Z (x,y) = x+y−1.

The scheme( f cv
Z )Z∈I(X×Y), which corresponds to the scheme of convex envelopes off on X×Y, has (at

least) second-order pointwise convergence onX×Y (see [5, Theorem 10]) and the scheme(gcv
Z )Z∈I(X×Y) has

arbitrarily high pointwise convergence order onX×Y. Note that( f cv
Z )Z∈I(X×Y) has arbitrarily high convergence

order onX×Y.
Let xL = yL = 0.5−ε , xU = yU = 0.5+ε with 0< ε ≤ 0.5. The width ofZ is w(Z) = 2ε . The optimal objec-

tive value of Problem (P) on Z is−0.25, while f cv
Z (0.5,0.5) =−0.25− ε2 andgcv

Z (0.5,0.5) = 0. Convergence
at the point(0.5,0.5) is, therefore, at most second-order.

Note that the use of feasibility-based bounds tightening techniques is ineffective in boosting the conver-
gence order for the above example. This is in contrast to the similar Example16 where the use of constraint
propagation techniques improves the convergence order of reduced-space branch-and-bound algorithms (see
Examples17 and18 in Section5.2).

Remark 8Theorem2 requires, at a minimum, second-order pointwise convergence of the scheme of convex
relaxations( f cv

Z )Z∈I(X×Y), which cannot be achieved in general by relaxations constructed purely using interval
arithmetic [23]. Consequently, lower bounding schemes constructed usinginterval arithmetic can, in general,
only be expected to possess first-order convergence (see Theorem1). When the functionsf , g, andh are twice
continuously differentiable, references [27] and [35] imply that polyhedral outer-approximation schemes of
second-order pointwise convergent schemes of relaxations, that are employed by most state-of-the-art soft-
ware for nonconvex problems (P) [2, 21, 36], also produce second-order pointwise convergent schemesof
relaxations.

The following corollary of Theorem2 shows that second-order convergence is guaranteed at points (x,y)∈
X×Y such thatg(x,y) < 0, assuming Problem (P) contains no equality constraints (note the weaker assumption
on the pointwise convergence order of the scheme( f cv

Z )Z∈I(X×Y), and the slight abuse of notation in the de-
scription ofIC(Z) where we simply discard the components corresponding toh sincemE = 0). A consequence
of the corollary is that second-order convergence to unconstrained minima is guaranteed.

Corollary 2 Consider Problem(P) with mE = 0. Suppose f is Lipschitz continuous on X×Y. Let( f cv
Z )Z∈I(X×Y)

denote a continuous scheme of convex relaxations of f in X×Y with pointwise convergence orderγcv
f ≥ 1, and

convergence orderβ cv
f ≥ 2 with corresponding constantτcv

f . Furthermore, let(gcv
j,Z)Z∈I(X×Y), j = 1, · · · ,mI , de-

note continuous schemes of convex relaxations of g1, · · · ,gmI , respectively, in X×Y with pointwise convergence
ordersγcv

g,1 > 0, · · · ,γcv
g,mI

> 0 and corresponding constantsτcv
g,1, · · · ,τcv

g,mI
.

Suppose(xS
,yS) ∈ X×Y is such thatg(xS

,yS) < 0 (i.e. (xS
,yS) is a Slater point). Then, the scheme of

lower bounding problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) := (gcv
Z (Z))Z∈I(X×Y)

is at leastβ cv
f -order convergent at(xS

,yS).

Proof Since we are interested in the convergence order at the feasible point(xS
,yS), it suffices to show that the

assumptions of Theorem2 hold.
Let g j(xS

,yS) = −ε j < 0, j = 1, · · · ,mI . Sinceg j is continuous for eachj ∈ {1, · · · ,mI} by virtue of
Assumption1, there existsδ j > 0, ∀ j ∈ {1, · · · ,mI}, such that‖(x,y)− (xS

,yS)‖∞ < δ j implies |g j(x,y)−
g j(xS

,yS)|< ε j
2 (see Lemma2).
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Defineδ := min
j∈{1,··· ,mI }

δ j , and note thatδ > 0. ConsiderZ ∈ I(X×Y) such that(xS
,yS) ∈ Z andw(Z)≤ δ .

For each(x,y)∈Z, j ∈{1, · · · ,mI}we have|g j(x,y)−g j(xS
,yS)|< ε j

2 . Consequently, for eachj ∈{1, · · · ,mI},
g j(x,y) <− ε j

2 , ∀(x,y)∈ Z. Sincegcv
Z (x,y)≤ g(x,y) <− ε j

2 , ∀(x,y)∈ Z, we havegcv
Z (x,y) <− ε j

2 , ∀(x,y) ∈ Z,
i.e. every point inZ is feasible for Problem (P) and the lower bounding problemL (Z).

Therefore,δ := min
j∈{1,··· ,mI }

δ j , any(x̂Z, ŷZ) ∈ argmin
(x,y)∈F cv(Z)

f (x,y), γ = β cv
f +1, andτ̂ = 0 satisfies the (neces-

sary) assumptions of Theorem2 which yield an upper bound on the first term in Equation (4). The second term
in Equation (4) can be bounded from above as

min
(x,y)∈F cv(Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y) = min

(x,y)∈Z
f (x,y) − min

(x,y)∈Z
f cv
Z (x,y)

≤ τcv
f w(Z)β cv

f

since f cv
Z converges with orderβ cv

f to f on X×Y, andF cv(Z) = Z. Substituting the above bounds in Equa-
tion (4), we obtain

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)≤ τcv

f w(Z)β cv
f .

The desired result follows by analogy to Lemma5 by noting that the lower bounding scheme(L (Z))Z∈I(X×Y)

is at least first-order convergent at(xS,yS) from Theorem1. ⊓⊔

Note that the bound on the prefactor obtained from Corollary2 for convergence at points where a constraint
is ‘nearly active’ can be relatively large (also see the comment after Lemma5).

Remark 9Corollary2 does not apply to Problem (P) with active constraints; however, Theorem2 can be used
to demonstrate second-order convergence when Problem (P) contains active convex constraints (note that this
includes affine equality constraints) if the schemes of relaxations of the active constraints are the (convex)
functions themselves and the scheme of convex relaxations of the objective function is second-order pointwise
convergent. Examples8 and 9 illustrate cases where the above modification of Corollary2 does not apply
when the schemes of relaxations of active convex constraints are not the constraints themselves (note that if the
schemes of relaxations of active convex constraints used are the constraints themselves, then the convergence
orders of the lower bounding schemes in these examples wouldbe arbitrarily high at their minimizers), thereby
highlighting the importance of convexity detection in boosting the convergence order.

The following example shows that the convergence order of the lower bounding scheme is dictated by the
convergence order,β cv

f , of the scheme( f cv
Z )Z∈I(X×Y) when the assumptions of Corollary2 are satisfied.

Example 7Let X = [0,0],Y = [0,1], mI = 1, andmE = 0 with f (x,y) = y4− y2 and g(x,y) = 1− 2y. For
any [0,0]× [yL

,yU] =: Z ∈ I(X×Y), let f cv
Z (x,y) = y4− (yL + yU)y+ yLyU, gcv

Z (x,y) = 1− 2y. The scheme
( f cv

Z )Z∈I(X×Y) has second-order pointwise convergence and second-order convergence onX×Y, while the
scheme(gcv

Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX×Y.
Let yL = 1√

2
−ε , yU = 1√

2
+ε with 0< ε ≤ 0.25. The width ofZ is w(Z) = 2ε . The optimal objective value

of Problem (P) on Z is−0.25, while the optimal objective of the lower bounding problem onZ is−0.25− ε2.

Convergence at the point
(

0,
1√
2

)

is, therefore, at most second-order.

Example 8Let X = [−3,3],Y = [−3,3], mI = 1, andmE = 0 with f (x,y) = x+ y andg(x,y) = x2 + y2−8.
For any[xL ,xU]× [yL ,yU] =: Z ∈ I(X×Y), let f cv

Z (x,y) = x+y, gcv
Z (x,y) = x2 +y2−8− (w(Z))2. The scheme

( f cv
Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX×Y, while the scheme(gcv

Z )Z∈I(X×Y) has
second-order pointwise convergence onX×Y.

Let xL = yL = −2− ε , xU = yU = −2+ ε with 0 < ε ≤ 1. The width ofZ is w(Z) = 2ε . The optimal
objective value of Problem (P) on Z is −4, while the optimal objective of the lower bounding problemon
Z is −

√
16+8ε2 = −4− ε2 + O(ε4) for ε ≪ 1. Convergence at the point(−2,−2) is, therefore, at most

second-order.
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Example 9Let X = [0,1],Y = [0,1], mI = 1, andmE = 0 with f (x,y) =−x−y andg(x,y) = x2+2xy+y2−1.
For any[xL ,xU]× [yL ,yU] =: Z ∈ I(X×Y), let

f cv
Z (x,y) =−x−y, gcv

Z (x,y) = x2 +2max
{

xLy+yLx−xLyL
,xUy+yUx−xUyU}+y2−1.

The scheme( f cv
Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX ×Y, while the scheme

(gcv
Z )Z∈I(X×Y) has second-order pointwise convergence onX×Y.

Let xL = yL = 0.5− ε , xU = yU = 0.5+ ε with 0 < ε ≤ 0.5. The width ofZ is w(Z) = 2ε . The optimal
objective value of Problem (P) onZ is−1, while the point

(

0.5−0.25ε2
,0.5+0.5ε2

)

is feasible for the lower
bounding problem onZ with objective value−1−0.25ε2. Convergence at the point(0.5,0.5) is, therefore, at
most second-order.

The next result provides a slight generalization of Corollary 2 by showing that under the assumptions of
Corollary2, the lower bounding scheme(L (Z))Z∈I(X×Y) in fact exhibits (at least) second-order convergence
on a neighborhood of(xS,yS) (this result is motivated by the assumptions on the convergence order of the
lower bounding scheme in the analysis of the cluster problemin [15]).

Corollary 3 Consider Problem(P) with mE = 0. Suppose f is Lipschitz continuous on X×Y. Let( f cv
Z )Z∈I(X×Y)

denote a continuous scheme of convex relaxations of f in X×Y with pointwise convergence orderγcv
f ≥ 1, and

convergence orderβ cv
f ≥ 1 with corresponding constantτcv

f . Furthermore, let(gcv
j,Z)Z∈I(X×Y), j = 1, · · · ,mI , de-

note continuous schemes of convex relaxations of g1, · · · ,gmI , respectively, in X×Y with pointwise convergence
ordersγcv

g,1 > 0, · · · ,γcv
g,mI

> 0 and corresponding constantsτcv
g,1, · · · ,τcv

g,mI
.

Suppose(xS
,yS) ∈X×Y such thatg(xS

,yS) < 0 (i.e.(xS
,yS) is a Slater point). Then,∃δ > 0 such that the

scheme of lower bounding problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) := (gcv
Z (Z))Z∈I(X×Y)

is at leastβ cv
f -order convergent on

{

(x,y) : ‖(x,y)− (xS,yS)‖∞ < δ
}

.

Proof Let g j(xS
,yS) = −ε j < 0, j = 1, · · · ,mI . Sinceg j is continuous for eachj ∈ {1, · · · ,mI}, there exists

δ j > 0,∀ j ∈ {1, · · · ,mI}, such that‖(x,y)−(xS,yS)‖∞ < δ j implies|g j(x,y)−g j(xS,yS)|< ε j (see Lemma2).

Defineδ̄ := min
j∈{1,··· ,mI }

δ j , note thatδ̄ > 0, and letδ := δ̄
2 .

ConsiderZ ∈ I(X×Y) with Z∩
{

(x,y) : ‖(x,y)− (xS
,yS)‖∞ < δ

}

6= /0 andw(Z)≤ δ . Similar to the proof
of Corollary2, it can be shown that

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)≤ τcv

f w(Z)β cv
f .

The desired result follows by analogy to Lemma5 by noting that the lower bounding scheme(L (Z))Z∈I(X×Y)

has at least first-order convergence on
{

(x,y) : ‖(x,y)− (xS,yS)‖∞ < δ
}

from Theorem1. ⊓⊔

While it may appear that the neighborhood of a Slater point onwhich second-order convergence of the
lower bounding scheme is guaranteed by Corollary3 can be unnecessarily small, Example10 shows that a
stronger result cannot be deduced without additional assumptions.

A natural question is whether second-order convergence is guaranteed onX×Y when second-order point-
wise convergent schemes of (convex) relaxations off , g1, · · · ,gmI , h1, · · · ,hmE are used by the lower bounding
scheme. The following example shows that even when schemes of (convex) envelopes are used to underes-
timate smooth functionsf , g, andh, at most first-order convergence can be guaranteed at certain points in
X×Y.
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Example 10Let X = [0,0],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = −y and g(x,y) = y3. For any
[0,0]× [−ε ,ε ] =: Z ∈ I(X×Y) with ε > 0, let

f cv
Z (x,y) =−y, gcv

Z (x,y) =

{

−0.25ε3 +0.75ε2y, if y < 0.5ε
y3, if y≥ 0.5ε

.

Note that the scheme( f cv
Z )Z∈I(X×Y) has arbitrarily high pointwise convergence order onX×Y and the scheme

(gcv
Z )Z∈I(X×Y), which is the scheme of convex envelopes ofg on X×Y [19], has (at least) second-order point-

wise convergence onX×Y. Also note that(gcv
Z )Z∈I(X×Y) has arbitrarily high convergence order onX×Y.

The width ofZ is w(Z) = 2ε . The optimal objective value of Problem (P) on Z is 0, while the optimal
objective of the lower bounding problem onZ is − ε

3. Convergence at the point(0,0) is, therefore, at most
first-order.

Despite the fact that we only have first-order convergence atthe global minimizer in Example10, the reader
can verify that the natural interval extension-based lowerbounding scheme along with the interval bisection
branching rule and lowest lower bound node selection rule issufficient to mitigate the cluster problem for this
case [15].

The following result establishes second-order convergence of a convex relaxation-based lower bounding
scheme at a feasible point(xf

,yf) ∈X×Y when second-order pointwise convergent schemes of relaxations are
used and the dual lower bounding scheme (see Section4.2) is second-order convergent at(xf ,yf). This result
will be used to prove second-order convergence of such convex relaxation-based lower bounding schemes at
KKT points in Corollary4.

Theorem 3 Consider Problem(P), and let(xf
,yf) ∈ X×Y be a feasible point. Suppose the dual lower bound-

ing scheme has convergence of orderβd > 0 at (xf
,yf) with a corresponding scheme of bounded dual vari-

ables
((

µµµ(xf ,yf )
Z ,λλλ (xf ,yf )

Z

))

Z∈I(X×Y)
(not necessarily optimal, but which yieldβd-order convergence at(xf

,yf))

with
(

µµµ(xf ,yf )
Z ,λλλ (xf ,yf )

Z

)

∈ R
mI
+ ×R

mE ,
∥

∥

∥
µµµ(xf ,yf )

Z

∥

∥

∥

∞
≤ µ̄ and

∥

∥

∥
λλλ (xf ,yf )

Z

∥

∥

∥

∞
≤ λ̄ , ∀Z ∈ I(X×Y), for some con-

stantsµ̄, λ̄ ≥ 0 (see Section4.2). Let( f cv
Z )Z∈I(X×Y), (gcv

j,Z)Z∈I(X×Y), j = 1, · · · ,mI , denote continuous schemes
of convex relaxations of f , g1, · · · ,gmI , respectively, in X×Y with pointwise convergence ordersγcv

f ≥ 1,
γcv
g,1 ≥ 1, · · · ,γcv

g,mI
≥ 1 and corresponding constantsτcv

f , τcv
g,1, · · · ,τcv

g,mI
. Let(hcv

k,Z,hcc
k,Z)Z∈I(X×Y), k = 1, · · · ,mE,

denote continuous schemes of relaxations of h1, · · · ,hmE , respectively, in X×Y with pointwise convergence
ordersγh,1≥ 1, · · · ,γh,mE ≥ 1 and corresponding constantsτh,1, · · · ,τh,mE . Then, the scheme of lower bounding
problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

min
(x,y)∈F cv(Z)

f cv
Z (x,y)

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) :=
({

(v,w) ∈ R
mI ×R

mE : v = gcv
Z (x,y),hcv

Z (x,y)≤ w≤ hcc
Z (x,y)

for some(x,y) ∈ Z
})

Z∈I(X×Y)

is at leastmin

{

min

{

γcv
f , min

j∈{1,··· ,mI }
γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

,βd

}

-order convergent at(xf
,yf).

Proof Let β := min

{

min

{

γcv
f , min

j∈{1,··· ,mI }
γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

,βd

}

, and letµµµZ := µµµ(xf ,yf )
Z , λλλ Z := λλλ (xf ,yf )

Z , ∀Z∈
I(X×Y), denote the scheme of dual variables corresponding to the dual lower bounding scheme (we omit
the dependence of the dual variables on(xf ,yf) for ease of exposition). Since we are concerned about the
convergence order at the feasible point(xf

,yf), it suffices to show the existence ofτ ≥ 0 such that for every
Z ∈ I(X×Y) with (xf ,yf) ∈ Z,

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y)≤ τw(Z)β

.
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ConsiderZ ∈ I(X×Y) with (xf
,yf) ∈ Z. By virtue of the assumption that the dual lower bounding scheme,

with the dual variables fixed to((µµµZ,λλλ Z))Z∈I(X×Y), has convergence of orderβd at (xf ,yf), we have

min
(x,y)∈F (Z)

f (x,y)− min
(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Zh(x,y)
]

≤ τdw(Z)βd . (5)

Chooseλλλ Z,+,λλλ Z,− ∈ R
mE
+ such thatλλλ Z = λλλ Z,+−λλλ Z,−, ‖λλλ Z,+‖∞ ≤ λ̄ , and‖λλλ Z,−‖∞ ≤ λ̄ .

Let γ̄ := min

{

γcv
f , min

j∈{1,··· ,mI }
γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

. We have

min
(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Zh(x,y)
]

− min
F cv(Z)

f cv
Z (x,y)

≤ min
(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Zh(x,y)
]

−

sup
µµµ≥0,λλλ 1≥0,λλλ 2≤0

min
(x,y)∈Z

[

f cv
Z (x,y)+ µµµTgcv

Z (x,y)+λλλ T
1hcv

Z (x,y)+λλλ T
2hcc

Z (x,y)
]

≤ min
(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Z,+h(x,y)−λλλ T
Z,−h(x,y)

]

−

min
(x,y)∈Z

[

f cv
Z (x,y)+ µµµT

Zgcv
Z (x,y)+λλλ T

Z,+hcv
Z (x,y)−λλλ T

Z,−hcc
Z (x,y)

]

≤ max
(x,y)∈Z

[

( f (x,y)− f cv
Z (x,y))+ µµµT

Z (g(x,y)−gcv
Z (x,y))+

λλλ T
Z,+ (h(x,y)−hcv

Z (x,y))+λλλ T
Z,− (hcc

Z (x,y)−h(x,y))
]

≤ max
(x,y)∈Z

( f (x,y)− f cv
Z (x,y))+ max

(x,y)∈Z
µµµT

Z (g(x,y)−gcv
Z (x,y))+

max
(x,y)∈Z

λλλ T
Z,+ (h(x,y)−hcv

Z (x,y))+ max
(x,y)∈Z

λλλ T
Z,− (hcc

Z (x,y)−h(x,y))

≤τcv
f w(Z)γcv

f +
mI

∑
j=1

µ̄τcv
g, jw(Z)γcv

g, j +2
mE

∑
k=1

λ̄ τh,kw(Z)γh,k

≤
(

τcv
f w(X×Y)γcv

f −γ̄ +
mI

∑
j=1

µ̄τcv
g, jw(X×Y)γcv

g, j−γ̄ +2
mE

∑
k=1

λ̄ τh,kw(X×Y)γh,k−γ̄

)

w(Z)γ̄
, (6)

where Step 1 follows from weak duality and Step 3 follows fromLemma3.
Therefore, from Equations (5) and (6), we have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
Z (x,y) = min

(x,y)∈F (Z)
f (x,y) − min

(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Zh(x,y)
]

+

min
(x,y)∈Z

[

f (x,y)+ µµµT
Zg(x,y)+λλλ T

Zh(x,y)
]

− min
(x,y)∈F cv(Z)

f cv
Z (x,y)

≤τw(Z)β
,

where the prefactorτ is defined as

τ :=

(

τcv
f w(X×Y)γcv

f −β +
mI

∑
j=1

µ̄τcv
g, jw(X×Y)γcv

g, j−β +2
mE

∑
k=1

λ̄ τh,kw(X×Y)γh,k−β + τdw(X×Y)βd−β

)

.

⊓⊔
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4.2 Duality-based branch-and-bound

In this section, we investigate the convergence order of a Lagrangian dual-based lower bounding scheme.
Before we define the convergence order of the scheme, the Lagrangian dual problem is introduced and some of
its properties are outlined.

The dual problem of Problem (P) that is obtained by dualizing all of the constraintsg(x,y) ≤ 0 and
h(x,y) = 0 is given by

sup
µµµ ,λλλ

q(µµµ,λλλ ) (D)

s.t.µµµ ∈ R
mI
+ ,λλλ ∈ R

mE ,

whereq : R
mI
+ ×R

mE → R, defined by

q(µµµ,λλλ ) := min
(x,y)∈X×Y

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y), ∀(µµµ,λλλ ) ∈ R
mI
+ ×R

mE ,

is the Lagrangian dual function. Let min(P) and sup(D) respectively denote the optimal objective values of
Problem (P) and Problem (D). From weak duality, we know that min(P)≥ sup(D), which validates the use of
Problem (D) as a lower bounding problem.

The following result shows that the lower bounds obtained bysolving the Lagrangian dual Problem (D) are
stronger than those obtained by solving any convex relaxation-based lower bounding problem.

Lemma 9 Consider Problem(P), and suppose Z∈ I(X×Y). Let fcv
Z andgcv

Z denote convex relaxations of f
and g, respectively, on Z, and lethcv

Z and hcc
Z denote convex and concave relaxations, respectively, ofh on

Z. Furthermore, assume that strong duality holds for the convex relaxation-based lower bounding problem
min

F cv(Z)
f cv
Z (x,y). Then the lower bound obtained by solving the Lagrangian dual problem is at least as strong as

that obtained by solving the above convex relaxation-basedlower bounding problem, i.e.,

sup
µµµ≥0,λλλ

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y)
]

− min
F cv(Z)

f cv
Z (x,y)≥ 0.

Proof Since strong duality holds for the convex relaxation-basedlower bounding problem, the difference be-
tween the lower bounds can be rewritten as

sup
µµµ≥0,λλλ

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y)
]

−

sup
µµµ≥0,λλλ 1≥0,λλλ 2≤0

min
(x,y)∈Z

[

f cv
Z (x,y)+ µµµTgcv

Z (x,y)+λλλ T
1hcv

Z (x,y)+λλλ T
2hcc

Z (x,y)
]

= sup
µµµ≥0,λλλ 1≥0,λλλ 2≤0

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)+λλλ T
1h(x,y)+λλλ T

2h(x,y)
]

−

sup
µµµ≥0,λλλ 1≥0,λλλ 2≤0

min
(x,y)∈Z

[

f cv
Z (x,y)+ µµµTgcv

Z (x,y)+λλλ T
1hcv

Z (x,y)+λλλ T
2hcc

Z (x,y)
]

≥ 0,

where the last step follows from the fact that∀(x,y) ∈ Z,µµµ ≥ 0,λλλ 1 ≥ 0,λλλ 2 ≤ 0,

f (x,y)+ µµµTg(x,y)+λλλ T
1h(x,y)+λλλ T

2h(x,y)≥ f cv
Z (x,y)+ µµµTgcv

Z (x,y)+λλλ T
1hcv

Z (x,y)+λλλ T
2hcc

Z (x,y).

⊓⊔

The following result due to Dür [8] establishes the condition under which the dual lower bounding problem
detects infeasibility.
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Lemma 10 Consider Problem(P) (satisfying Assumption1). We have

sup(D) = +∞ ⇐⇒ conv

(

[

g
h

]

(X×Y)

)

∩
(

R
mI
− ×{0}

)

= /0.

Proof The result follows, in part, by replacingh(x,y) = 0 with h(x,y)≤ 0 and−h(x,y)≤ 0and using Theorem
2 in [8]. ⊓⊔

Definition 14 can be applied to analyze the convergence order of the above duality-based lower bounding
scheme as follows.

The scheme of dual lower bounding problems(L (Z))Z∈I(X×Y) with

(O(Z))Z∈I(X×Y) :=

(

sup
µµµ≥0,λλλ

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y)
]

)

Z∈I(X×Y)

,

(IC(Z))Z∈I(X×Y) :=

(

conv

(

[

g
h

]

(Z)

))

Z∈I(X×Y)

is thus said to have convergence of orderβ > 0 at

1. a feasible point(x,y) ∈ X×Y if there existsτ ≥ 0 such that for everyZ ∈ I(X×Y) with (x,y) ∈ Z,

min
(v,w)∈F (Z)

f (v,w)− sup
µµµ≥0,λλλ

min
(v,w)∈Z

[

f (v,w)+ µµµTg(v,w)+λλλ Th(v,w)
]

≤ τw(Z)β
.

2. an infeasible point(x,y) ∈ X×Y if there existsτ̄ ≥ 0 such that for everyZ ∈ I(X×Y) with (x,y) ∈ Z,

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

−d

(

conv

(

[

g
h

]

(Z)

)

,R
mI
− ×{0}

)

≤ τ̄w(Z)β
.

We associate with the dual lower bounding scheme,(L (Z))Z∈I(X×Y), at a feasible point(x,y), a scheme

of dual variables((µµµ(x,y)
Z ,λλλ (x,y)

Z ))Z∈I(X×Y) corresponding to the solution of the scheme of dual lower bounding
problems(O(Z))Z∈I(X×Y) with (x,y) ∈ Z (note that sup(D) may not be attained, in which case we assume that
dual variables that yield a dual function value arbitrarilyclose to the supremum are available). Using Lemma10,
we next show that if the convex relaxation-based lower bounding problem corresponding to Problem (P) that
is obtained by replacing the functions in Problem (P) with their envelopes is infeasible, then sup(D) = +∞.

Lemma 11 Let (gcv
j,Z)Z∈I(X×Y), j = 1, · · · ,mI , denote (any) schemes of convex relaxations of g1, · · · ,gmI in

X×Y and(hcv
k,Z,hcc

k,Z)Z∈I(X×Y), k = 1, · · · ,mE, denote (any) schemes of relaxations of h1, · · · ,hmE in X×Y.
Then for each Z∈ I(X×Y), we have

d

(

[

g
h

]

(Z),RmI
− ×{0}

)

≥ d

(

conv

(

[

g
h

]

(Z)

)

,R
mI
− ×{0}

)

≥ d
(

IC(Z),RmI
− ×{0}

)

,

whereIC(Z) is defined as

IC(Z) := {(v,w) ∈ R
mI ×R

mE : v = gcv
Z (x,y),hcv

Z (x,y)≤w≤ hcc
Z (x,y) for some(x,y) ∈ Z} .

Proof The first inequality trivially holds. To prove the second inequality, we first notice that

d
(

IC(Z),RmI
− ×{0}

)

= d
(

ĪC(Z),RmI
− ×{0}

)

,

whereĪC(Z) is defined as

ĪC(Z) := {(v,w) ∈ R
mI ×R

mE : v≥ gcv
Z (x,y),hcv

Z (x,y)≤ w≤ hcc
Z (x,y) for some(x,y) ∈ Z} .

Note thatĪC(Z) is a convex set since it can be represented as the direct sum oftwo convex sets.

Since conv

(

[

g
h

]

(Z)

)

is the smallest convex set that encloses

[

g
h

]

(Z), the desired result follows. ⊓⊔
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Theorem 4 Consider Problem(P). Suppose strong duality holds for the scheme of convex relaxation-based
lower bounding problems for Problem(P) obtained by using the schemes of (convex) envelopes of f ,g, and
h. If the assumptions of Theorem1 hold for the functions f ,g, h, and the schemes of (convex) envelopes of
f , g, andh, the dual lower bounding scheme is (at least) first-order convergent on X×Y. Furthermore, if the
assumptions of Theorem2 hold for the schemes of (convex) envelopes of f ,g, andh and (xf

,yf) ∈ X×Y, the
dual lower bounding scheme is (at least) second-order convergent at(xf ,yf).

Proof From Lemma11, we have that the convergence order of the dual lower bounding scheme at an infeasible
point (x,y) ∈ X×Y is at least as high as the convergence order at(x,y) of the convex relaxation-based lower
bounding scheme obtained by using the schemes of (convex) envelopes off , g, andh. Lemma9 implies that the
lower bounds obtained using the dual lower bounding scheme are at least as tight as the lower bounds obtained
using the schemes of (convex) envelopes off , g, andh. The desired result follows from Definition14. ⊓⊔

Note that the conclusions of Theorem4 hold even if the schemes of relaxations off , g, andh do not
correspond to their envelopes, so long as the (remaining) assumptions of Theorem4 are satisfied.

Remark 10The assumption of strong duality is in fact not required to show first-order convergence of the dual
lower bounding scheme when all functions in Problem (P) are Lipschitz continuous. For this case, the proof
of first-order convergence at infeasible points follows from Lemmata7, 8, and11, and the proof of first-order
convergence at feasible points follows from Proposition 1 in [8].

Theorem4 makes no assumptions on the boundedness of schemes of dual variables. This is reflected in
the application of the dual lower bounding scheme to Example10 where the optimal scheme of dual variables
can be unbounded (note, however, that first-order convergence of the dual lower bounding scheme at the global
minimizer of Example10 can be achieved using bounded schemes of dual variables whenthe dual problem is
not solved to optimality). Furthermore, Example6 shows that the convergence order of the dual lower bounding
scheme can be as low as two at(xf

,yf) when the assumptions of Theorem2 are satisfied for the schemes of
(convex) envelopes off , g, andh (see Lemma14). The following result shows that in the absence of equality
constraints, the dual lower bounding scheme has arbitrarily high convergence order at unconstrained points.

Proposition 1 Consider Problem(P) with mE = 0. Suppose f and gj , ∀ j ∈ {1, · · · ,mI}, are Lipschitz contin-
uous on X×Y . Furthermore, suppose(xS

,yS) ∈ X×Y such thatg(xS
,yS) < 0 (i.e. (xS

,yS) is a Slater point).
The dual lower bounding scheme has arbitrarily high convergence order at(xS,yS).

Proof The proof is relegated to AppendixA.1 since it is similar to the proof of Corollary2. ⊓⊔

Remark 11Proposition1 as stated does not apply to Problem (P) with active constraints; however, it can be
modified to demonstrate second-order convergence when Problem (P) contains active convex constraints (note
that this includes affine equality constraints) iff is twice continuously differentiable, and strong duality holds
for the scheme of relaxations of Problem (P) in which only the active (convex) constraints are includedand f is
replaced by its scheme of convex envelopes (see Remark9). Proposition1 can also be extended to demonstrate
arbitrarily high convergence order of the dual lower bounding scheme on a neighborhood of(xS,yS) in a
manner similar to Corollary3.

The next result shows that the dual lower bounding scheme is second-order convergent at KKT points when
the functionsf , g, andh in Problem (P) are twice continuously differentiable.

Theorem 5 Consider Problem(P). Supposeint(X×Y) is nonempty, and f ,g, andh are twice continuously
differentiable onint(X×Y). Furthermore, suppose there exists(x∗,y∗) ∈ int(X×Y), µµµ∗ ∈R

mI
+ , andλλλ ∗ ∈R

mE

such that(x∗,y∗,µµµ∗,λλλ ∗) is a KKT point for Problem(P). The dual lower bounding scheme is at least second-
order convergent at(x∗,y∗).
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Proof Let L(x,y,µµµ,λλλ ) := f (x,y)+µµµTg(x,y)+λλλ Th(x,y) denote the Lagrangian of Problem (P). Since we are
concerned about the convergence order at the feasible point(x∗,y∗), it suffices to show the existence ofτ ≥ 0
such that for everyZ ∈ I(X×Y) with (x∗,y∗) ∈ Z,

min
(x,y)∈F (Z)

f (x,y)− sup
µµµ≥0,λλλ

min
(x,y)∈Z

L(x,y,µµµ,λλλ )≤ τw(Z)2
.

We have

sup
µµµ≥0,λλλ

min
(x,y)∈Z

L(x,y,µµµ,λλλ )≥ min
(x,y)∈Z

L(x,y,µµµ∗,λλλ ∗)

= min
(x,y)∈Z

[

L(x∗,y∗,µµµ∗,λλλ ∗)+∇xL(x∗,y∗,µµµ∗,λλλ ∗)T
(x−x∗)

+∇yL(x∗,y∗,µµµ∗,λλλ ∗)T
(y−y∗)−O(w(Z)2)

]

= min
(x,y)∈Z

[

f (x∗,y∗)−O(w(Z)2)
]

≥ f (x∗,y∗)−O(w(Z)2).

Note that Step 3 above usesL(x∗,y∗,µµµ∗,λλλ ∗) = f (x∗,y∗), ∇xL(x∗,y∗,µµµ∗,λλλ ∗) = 0, and∇yL(x∗,y∗,µµµ∗,λλλ ∗) = 0
by virtue of the assumption that(x∗,y∗,µµµ∗,λλλ ∗) is a KKT point for Problem (P). Therefore,

min
(x,y)∈F (Z)

f (x,y)− sup
µµµ≥0,λλλ

min
(x,y)∈Z

L(x,y,µµµ,λλλ )≤O(w(Z)2),

which establishes the existence ofτ for all Z ∈ I(X×Y) with (x∗,y∗) ∈ Z by analogy to Lemma5 since the
dual lower bounding scheme is at least first-order convergent at (x∗,y∗). ⊓⊔

A corollary of Theorems3 and5 is that second-order convergence at KKT points is guaranteed for convex
relaxation-based lower bounding schemes in which second-order pointwise convergent schemes of relaxations
are used.

Corollary 4 Consider Problem(P). Supposeint(X×Y) is nonempty and f ,g, and h are twice continu-
ously differentiable onint(X×Y). Furthermore, suppose there exists(x∗,y∗) ∈ int(X×Y), µµµ∗ ∈ R

mI
+ , and

λλλ ∗ ∈ R
mE such that(x∗,y∗,µµµ∗,λλλ ∗) is a KKT point for Problem(P). Let ( f cv

Z )Z∈I(X×Y), (gcv
j,Z)Z∈I(X×Y), j =

1, · · · ,mI , denote continuous schemes of convex relaxations of f , g1, · · · ,gmI , respectively, in X×Y with point-
wise convergence ordersγcv

f ≥ 2, γcv
g,1 ≥ 2, · · · ,γcv

g,mI
≥ 2 and corresponding constantsτcv

f , τcv
g,1, · · · ,τcv

g,mI
. Let

(hcv
k,Z,hcc

k,Z)Z∈I(X×Y), k = 1, · · · ,mE, denote continuous schemes of relaxations of h1, · · · ,hmE , respectively, in
X×Y with pointwise convergence ordersγh,1 ≥ 2, · · · ,γh,mE ≥ 2 and corresponding constantsτh,1, · · · ,τh,mE .
Then, the resulting scheme of convex relaxation-based lower bounding problems for Problem(P) is at least
second-order convergent at(x∗,y∗).

Proof The result holds as a consequence of Theorems3 and5, by usingµµµZ = µµµ∗, λλλ Z = λλλ ∗, µ̄ = ‖µµµ∗‖∞,
λ̄ = ‖λλλ ∗‖∞ in Theorem3. ⊓⊔

The following example shows that the convergence order may be as low as two under the assumptions of
Theorem5.

Example 11Let X = [−2,2],Y = [0,3], mI = 1, andmE = 1 with f (x,y) = x+y, g(x,y) = −y2 +y+2, and
h(x,y) = x. Consider intervals[0,0]× [2− ε ,2+ ε ] =: Z ∈ I(X×Y) with 0 < ε ≤ 1. Note thatw(Z) = 2ε , and
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that
(

0,2,
1
3,−1

)

is a KKT point for Problem (P). The optimal objective value of Problem (P) on Z is 2, while
the optimal objective value of the Lagrangian dual-based lower bounding problem onZ can be derived as

O(Z) = sup
µ≥0,λ

min
(x,y)∈Z

x+y+ µ
(

−y2 +y+2
)

+λx

= sup
µ≥0

min
{

(2− ε)+ µ
(

−(2− ε)2 +(2− ε)+2
)

,(2+ ε)+ µ
(

−(2+ ε)2 +(2+ ε)+2
)}

= sup
µ≥0

min
{

(2− ε)+ µ
(

3ε− ε2)
,(2+ ε)+ µ

(

−3ε− ε2)}

= (2− ε)+
1
3

(

3ε− ε2)

= 2− ε2

3
,

where Step 2 follows from the fact that the minimum of a concave function on an interval is attained at one of
its endpoints, and the value ofµ in Step 4 is obtained by equating the two arguments of the inner min function
in Step 3. Convergence of the dual lower bounding scheme at the point(0,2) is, therefore, at most second-order.

Finally, we show that the dual lower bounding scheme is (at least) first-order convergent even when the
dual problem is not solved to optimality.

Theorem 6 Consider Problem(P). Suppose f , gj , j = 1, · · · ,mI , and hk, k = 1, · · · ,mE, are Lipschitz con-
tinuous on X×Y with Lipschitz constants Mf , Mg,1, · · · ,Mg,mI , Mh,1, · · · ,Mh,mE , respectively. Furthermore,
suppose the dual lower bounding scheme involves at most nd ≥ 1 iterations of an algorithm applied to the
dual at each node of the branch-and-bound tree. In addition,suppose the branch-and-bound algorithm uses

first-order (Hausdorff) convergent schemes of constant relaxations
(

gL
j,Z,gU

j,Z

)

Z∈I(X×Y)
, j = 1, · · · ,mI , on

X×Y to overestimate
(

g j(Z)
)

Z∈I(X×Y)
and first-order (Hausdorff) convergent schemes of constantrelaxations

(

hL
k,Z,hU

k,Z

)

Z∈I(X×Y)
, k = 1, · · · ,mE, on X×Y to overestimate

(

hk(Z)
)

Z∈I(X×Y)
(such schemes of constant re-

laxations can be obtained, for example, using interval arithmetic [23]), setsµ j = 0 at each iteration of the
algorithm applied to the dual on Z if gU

j,Z < 0 (i.e., when inequality constraint j is determined to be inactive

on Z by gUj,Z), and determines the dual lower bounding problem on Z to be infeasible either when gLj,Z > 0 for

any j∈ {1, · · · ,mI} (i.e., when inequality constraint j is determined to be unsatisfiable on Z by gLj,Z), or when

0 6∈
[

hL
k,Z,hU

k,Z

]

for any k∈ {1, · · · ,mE} (i.e., when equality constraint k is determined to be unsatisfiable on Z

by (hL
k,Z,hU

k,Z)). Assume that the absolute values of the schemes of dual variables generated by the dual lower
bounding scheme are bounded from above by M∞. Then the dual lower bounding scheme is at least first-order
convergent on X×Y .

Proof From the assumption that
(

gL
j,Z,gU

j,Z

)

Z∈I(X×Y)
, j = 1, · · · ,mI , and

(

hL
k,Z,hU

k,Z

)

Z∈I(X×Y)
, k = 1, · · · ,mE,

are first-order convergent onX×Y, the determination of infeasibility of the dual lower bounding problem on

Z if gL
j,Z > 0 for any j ∈ {1, · · · ,mI}, or if 0 6∈

[

hL
k,Z,hU

k,Z

]

for anyk ∈ {1, · · · ,mE}, Proposition 1 in [6], and

Lemma8, we conclude that the dual lower bounding scheme has at leastfirst-order convergence at infeasible
points (although the dual lower bounding scheme detects infeasibility of infeasible points inX×Y at least as
quickly as any convex relaxation-based lower bounding scheme (see Lemma11), we assume that the schemes
(

gL
j,Z,gU

j,Z

)

Z∈I(X×Y)
, j = 1, · · · ,mI , and

(

hL
k,Z,hU

k,Z

)

Z∈I(X×Y)
, k = 1, · · · ,mE, are available to detect infeasibility

since we are only allowed to use at mostnd iterations of an algorithm applied to the dual).
Next, supposeF (X×Y) 6= /0 andZ ∈ I(X×Y) with Z∩F (X×Y) 6= /0. Let JZ denote the set of in-

equality constraints that are potentially active at some point in Z as determined by
(

gL
j,Z,gU

j,Z

)

, i.e. JZ :=
{

j ∈ {1, · · · ,mI} : gU
j,Z ≥ 0

}

. Let (µ̄µµZ, λ̄λλ Z) ∈ R
mI
+ ×R

mE denote the pair of dual variables corresponding to
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the dual lower bound onZ after at mostnd iterations of an algorithm applied to the dual with̄µ j,Z = 0, ∀ j ∈
{1, · · · ,mI}\JZ, and let(x̄Z, ȳZ) ∈ argmin

(x,y)∈Z
f (x,y)+ µ̄µµT

Zg(x,y)+ λ̄λλ T
Zh(x,y). Note that the condition̄µ j,Z = 0,

∀ j ∈ {1, · · · ,mI}\JZ can be guaranteed by a suitable initialization of the dual variables and by suitably mod-
ifying the dual variables generated by the algorithm applied to the dual (this modification of the dual lower
bounding scheme is once again necessitated by the assumption that at mostnd iterations of an algorithm ap-
plied to the dual are used). For eachj ∈ JZ, we have

gU
j,Z− max

(x,y)∈Z
g j(x,y)≤ τ jw(Z)

for some constantτ j ≥ 0 by virtue of the fact that the scheme of constant concave relaxations
(

gU
j,Z

)

Z∈I(X×Y)

has first-order convergence onX×Y. SincegU
j,Z ≥ 0, ∀ j ∈ JZ, andg j is Lipschitz continuous onX×Y, this

implies

g j(x,y)≥−
(

τ j +Mg, j
√

nx +ny
)

w(Z), ∀(x,y) ∈ Z, ∀ j ∈ JZ.

Let (x∗Z,y∗Z) ∈ argmin
(x,y)∈F (Z)

f (x,y). We have

min
(x,y)∈F (Z)

f (x,y)− min
(x,y)∈Z

[

f (x,y)+ µ̄µµT
Zg(x,y)+ λ̄λλ T

Zh(x,y)
]

= f (x∗Z,y∗Z)−
[

f (x̄Z, ȳZ)+ µ̄µµT
Zg(x̄Z, ȳZ)+ λ̄λλ T

Zh(x̄Z, ȳZ)
]

= ( f (x∗Z,y∗Z)− f (x̄Z, ȳZ))− ∑
j∈JZ

µ̄ j,Z g j(x̄Z, ȳZ)+ λ̄λλ T
Z (h(x∗Z,y∗Z)−h(x̄Z, ȳZ))

≤M f ‖(x∗Z,y∗Z)− (x̄Z, ȳZ)‖+ ∑
j∈JZ

µ̄ j,Z
(

τ j +Mg, j
√

nx +ny
)

w(Z)+
mE

∑
k=1

∣

∣λ̄k,Z
∣

∣Mh,k‖(x∗Z,y∗Z)− (x̄Z, ȳZ)‖

≤
(

M f
√

nx +ny + ∑
j∈JZ

M∞
(

τ j +Mg, j
√

nx +ny
)

+
mE

∑
k=1

M∞Mh,k
√

nx +ny

)

w(Z)

≤
(

M f
√

nx +ny +
mI

∑
j=1

M∞
(

τ j +Mg, j
√

nx +ny
)

+
mE

∑
k=1

M∞Mh,k
√

nx +ny

)

w(Z),

which establishes the desired result. ⊓⊔

5 Reduced-Space Branch-and-Bound Algorithms

In this section, we present some results on the convergence orders of some widely-applicable reduced-space
lower bounding schemes in the literature [9, 10] for Problem (P) when only the setY may be partitioned during
the course of the algorithm. This section is divided into twoparts. First, we consider a convex relaxation-
based reduced-space lower bounding scheme for a subclass ofProblem (P) [10] and investigate its convergence
order. Next, we look at the convergence order of a duality-based reduced-space lower bounding scheme [9,
Section 3.3] for Problem (P). Algorithm 1 outlines a generic reduced-space branch-and-bound algorithm for
Problem (P).
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Algorithm 1 A generic reduced-space branch-and-bound algorithm

Initialize :
1. Iteration counterk = 0, boundsX0 andY0 on x and y, respectively, after the optional application of

preprocessing techniques to the input data, and tolerancesε > 0,ε l > 0, andεu > 0 such thatε l +εu≤ ε .
2. Domain of the root nodeM0 := X0×Y0, and the initial partitionP0 = {M0}.
3. Current best feasible point{(xf

,yf)} = /0, upper boundUBD = +∞, lower bound for the root node
LBD0 =−∞, minimum{(x∗,y∗)}= /0, and the optimal objective function valueUBD∗ = +∞.

repeat
1. If Pk = /0, terminate. Otherwise, pickn ∈

{

n∈ N∪{0} : Mn ∈Pk
}

using some node selection
heuristic and setPk+1←Pk\{Mn}.

2. (Optional) Solve the (reduced-space) upper bounding problem onMn with a tolerance ofεu to try
and determine a feasible point. UpdateUBD, (xf ,yf) if a feasible solution better than the current best
solution is obtained.

3. (Optional) Apply finite reduced-space bounds-tightening techniques to obtain̄Xn ⊂ Xn, Ȳn ⊂ Yn.
SetXn← X̄n, Yn← Ȳn. If eitherXn or Yn is empty,goto Step 6.

4. Solve the reduced-space lower bounding problem onMn to ε l -optimality to obtain the lower bound
LBDn (if the lower bounding problem onMn is infeasible, setLBDn = +∞). If noden can be fath-
omed,goto Step 6.

5. PartitionMn into Mn1 andMn2 by branching only on theY-space. SetPk+1←Pk+1∪{Mn1}∪
{Mn2}, LBDn1 = LBDn2 = LBDn.

6. SetPk+1←Pk+1\
{

Mp ∈Pk+1 : LBDp ≥UBD− ε
}

, k← k+1.
until Pk = /0
SetUBD∗ = UBD and(x∗,y∗) = (xf

,yf) if UBD < +∞.

It should be noted that Algorithm1 merely provides the backbone of a generic reduced-space branch-and-
bound algorithm. In practice, the order in which the subproblems are solved may vary and additional subprob-
lems may be solved to speed up the convergence of the algorithm. The reader is directed to references [10]
and [9] for two widely-applicable instances of Algorithm1, and for examples of their application. In the re-
mainder of this section, we investigate the convergence orders of the reduced-space lower bounding schemes
described in [10] and [9].

5.1 Convex relaxation-based branch-and-bound for problems with special structure

Epperly and Pistikopoulos [10] proposed a reduced-space branch-and-bound algorithm forProblem (P) when
mE = 0 (note that this condition can be relaxed as detailed below), and the functionsf andg j , ∀ j ∈ {1, · · · ,mI},
in Problem (P) are each of the form

w(x,y) = wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y), (W)

whereQ is a finite set of indices, and the functionswA,wB,wC, andwD satisfy:

1. wA andwB are convex onX.
2. wC andwD are continuous onY.
3. Strongly consistent convex and concave relaxations are available forwC andwD onY.
4. wB andwC have continuous tight bounds.
5. For eachi ∈Q, at least one of the following two conditions must hold:

a. wB
i (x) = cT

i x for some constantci ∈ R
nx,

b. wC
i (y)≥ 0 for all y ∈Y.
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Epperly and Pistikopoulos [10] state that equality constraints can be equivalently reformulated using pairs
of inequalities; however, the above assumptions restrict the functional forms of the equality constraintshk,
k = 1, · · · ,mE, to

hk(x,y) = ∑
i∈Q

(

cT
i x
)

wC
i (y)+wD(y). (Weq)

Suppose for eachZ ∈ IY, we associate an intervalX(Z) such that�X ⊃ X(Z) ⊃FX(Z), where�X denotes
the interval hull ofX (note that we make the implicit assumption (see Remark2) that X is an interval in
this section). Assumption 3 can be restated as follows: there exists a continuous scheme,(wC,cv

i,Z ,wC,cc
i,Z )Z∈IY, of

relaxations ofwC
i , i ∈Q, inY with pointwise convergence orderγC

i > 0, and there exists a continuous scheme of
convex relaxations,(wD,cv

Z )Z∈IY, of wD in Y with pointwise convergence orderγD,cv > 0. Assumption 4 can be
replaced by the following: there exist schemes of constant relaxations(wB,L

i,Z ,wB,U
i,Z )Z∈I�X and(wC,L

i,Z ,wC,U
i,Z )Z∈IY,

i ∈Q, of wB
i andwC

i in X andY, respectively, with (Hausdorff) convergence ordersβ B,c
i > 0 andβC,c

i > 0. In
addition, we assume that the range order ofwC

i , ∀i ∈Q, is greater than zero onY (cf. Lemma12).
Under the above assumptions, Epperly and Pistikopoulos [10] show that underestimating each function

w(x,y) of the form (W) using the scheme(wcv
X(Z)×Z)Z∈IY of convex relaxations defined by

wcv
X(Z)×Z(x,y) = wA(x)+ ∑

i∈Q

wBC,cv
i,X(Z)×Z(x,y)+wD,cv

Z (y), (Wcv)

where, for eachi ∈Q, the scheme of convex relaxations(wBC,cv
i,X(Z)×Z)Z∈IY is obtained using McCormick’s product

rule [20] as

wBC,cv
i,X(Z)×Z(x,y) =































































max







wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z ,

wB,L
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,L
i,Z −wB,L

i,X(Z)w
C,L
i,Z

}

, if wB,L
i,X(Z) ≥ 0

max







wB,U
i,X(Z)w

C,cc
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z ,

wB,L
i,X(Z)w

C,cc
i,Z (y)+wB

i (x)wC,L
i,Z −wB,L

i,X(Z)w
C,L
i,Z

}

, if wB,U
i,X(Z) < 0

max







wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z ,

wB,L
i,X(Z)w

C,cc
i,Z (y)+wB

i (x)wC,L
i,Z −wB,L

i,X(Z)w
C,L
i,Z

}

, otherwise

,

yields a convergent reduced-space lower bounding scheme with any accumulation point of the sequence of
lower bounding solutions solving Problem (P) when the subdivision process is exhaustive onY and the selection
procedure is bound improving.

Before we investigate the convergence order of the reduced-space lower bounding scheme in [10], we look
at the propagation of the convergence orders of the relaxation schemes(wB,L

i,Z ,wB,U
i,Z )Z∈I�X, (wC,cv

i,Z ,wC,cc
i,Z )Z∈IY,

(wC,L
i,Z ,wC,U

i,Z )Z∈IY, ∀i ∈ Q, and(wD,cv
Z )Z∈IY to the convergence order of the reduced-space scheme of convex

relaxations(wcv
X(Z)×Z)Z∈IY. Note that unless otherwise specified, we simply useX(Z) = �X(= X), ∀Z ∈ IY.

The following result provides sufficient conditions for thescheme of convex relaxations defined by (Wcv) to
have pointwise convergence of a given order onY.

Lemma 12 Let X⊂ R
nx, Y⊂ R

ny be nonempty compact convex sets and f: X×Y→ R be a function of the
form (W) such that

f : X×Y ∋ (x,y) 7−→ wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y).

Assume that wA, wB
i , ∀i ∈ Q, and wD are continuous, and for each i∈ Q, wC

i has range of orderαC
i ≥ 1

on Y with corresponding constantτC,r
i . Let (wC,cv

i,Z ,wC,cc
i,Z )Z∈IY and (wD,cv

Z )Z∈IY respectively denote continuous
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schemes of relaxations of wC
i , i ∈ Q, and wD in Y with pointwise convergence ordersγC

i ≥ 1 and γD,cv ≥ 1
and corresponding constantsτC

i and τD,cv. Let (wB,L
i,Z ,wB,U

i,Z )Z∈I�X and (wC,L
i,Z ,wC,U

i,Z )Z∈IY respectively denote

schemes of constant relaxations of wB
i in �X and wC

i in Y ,∀i ∈Q, with (Hausdorff) convergence ordersβ B,c
i > 0

and βC,c
i ≥ 1 and corresponding constantsτB,c

i and τC,c
i . Then the continuous scheme of convex relaxations

( f cv
X(Z)×Z)Z∈IY of the form(Wcv) defined by

f cv
X(Z)×Z(x,y) := wA(x)+ ∑

i∈Q

wBC,cv
i,X(Z)×Z(x,y)+wD,cv

Z (y), ∀(x,y) ∈ X(Z)×Z,

has pointwise convergence of order at leastmin

{

min
i∈Q

{

min
{

αC
i ,βC,c

i ,γC
i

}}

,γD,cv

}

on Y.

Proof From Equation (Wcv), we have for each(x,y) ∈ X(Z)×Z:

f (x,y)− f cv
X(Z)×Z(x,y) =

(

wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y)

)

−
(

wA(x)+ ∑
i∈Q

wBC,cv
i,X(Z)×Z(x,y)+wD,cv

Z (y)

)

= ∑
i∈Q

(

wB
i (x)wC

i (y)−wBC,cv
i,X(Z)×Z(x,y)

)

+
(

wD(y)−wD,cv
Z (y)

)

.

Depending on whetherwB,L
i,X(Z) ≥ 0, wB,U

i,X(Z) < 0, or 0∈
(

wB,L
i,X(Z),w

B,U
i,X(Z)

]

for each i ∈ Q, we have that
(

wB
i (x)wC

i (y)−wBC,cv
i,X(Z)×Z(x,y)

)

is bounded from above either by

[

wB
i (x)wC

i (y)−
(

wB,U
i,X(Z)

wC,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)
wC,U

i,Z

)]

,

or by
[

wB
i (x)wC

i (y)−
(

wB,U
i,X(Z)w

C,cc
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

)]

for each(x,y) ∈ X(Z)×Z. Consequently, it is sufficient to show the existence of constantsτ1,τ2≥ 0 such that

max
(x,y)∈X(Z)×Z

∣

∣

∣

∣

∣

(

wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y)

)

−
(

wA(x)+ ∑
i∈Q

(

wB,U
i,X(Z)

wC,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)
wC,U

i,Z

)

+wD,cv
Z (y)

)
∣

∣

∣

∣

∣

≤ τ1w(Z)γ

and

max
(x,y)∈X(Z)×Z

∣

∣

∣

∣

∣

(

wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y)

)

−
(

wA(x)+ ∑
i∈Q

(

wB,U
i,X(Z)w

C,cc
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

)

+wD,cv
Z (y)

)∣

∣

∣

∣

∣

≤ τ2w(Z)γ
,

whereγ := min

{

min
i∈Q

{

min
{

αC
i ,βC,c

i ,γC
i

}}

,γD,cv

}

, to prove that( f cv
X(Z)×Z)Z∈IY converges pointwise tof

with orderγ onY. The ensuing arguments prove the existence ofτ1; the existence ofτ2 can be proven analo-
gously.
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We have∀(x,y) ∈ X(Z)×Z:

((

wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y)

)

−
(

wA(x)+ ∑
i∈Q

(

wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

)

+wD,cv
Z (y)

))

=

(

∑
i∈Q

wB
i (x)wC

i (y)−
(

wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

)

)

+
(

wD(y)−wD,cv
Z (y)

)

. (7)

Note that
∣

∣

∣
wC

i (y)−wC,U
i,Z

∣

∣

∣
can be bounded from above as

∣

∣

∣
wC

i (y)−wC,U
i,Z

∣

∣

∣
=

∣

∣

∣

∣

(

wC
i (y)−max

y∈Z
wC

i (y)

)

+

(

max
y∈Z

wC
i (y)−wC,U

i,Z

)∣

∣

∣

∣

≤
∣

∣

∣

∣

wC
i (y)−max

y∈Z
wC

i (y)

∣

∣

∣

∣

+

∣

∣

∣

∣

max
y∈Z

wC
i (y)−wC,U

i,Z

∣

∣

∣

∣

≤
(

τC,r
i w(Z)

αC
i −min

{

αC
i ,βC,c

i

}

+ τC,c
i w(Z)

βC,c
i −min

{

αC
i ,βC,c

i

})

w(Z)
min
{

αC
i ,βC,c

i

}

≤MC
i w(Z)βC,r

i , ∀y ∈ Z,

with MC
i := τC,r

i w(Y)αC
i −βC,r

i + τC,c
i w(Y)βC,c

i −βC,r
i andβC,r

i := min
{

αC
i ,βC,c

i

}

.

The first term in Equation (7) can be bounded as

∑
i∈Q

(

wB
i (x)wC

i (y)−
(

wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

))

= ∑
i∈Q

[(

wB
i (x)−wB,U

i,X(Z)

)(

wC
i (y)−wC,U

i,Z

)

+wB,U
i,X(Z)

(

wC
i (y)−wC,cv

i,Z (y)
)]

≤∑
i∈Q

∣

∣

∣
wB

i (x)−wB,U
i,X(Z)

∣

∣

∣

∣

∣

∣
wC

i (y)−wC,U
i,Z

∣

∣

∣
+
∣

∣

∣
wB,U

i,X(Z)

(

wC
i (y)−wC,cv

i,Z (y)
)∣

∣

∣

≤∑
i∈Q

MBC
i w(Z)γBC

i

≤MBCw(Z)γBC
, ∀(x,y) ∈ X(Z)×Z, (8)

where the constantsMBC, γBC, andMBC
i , γBC

i , ∀i ∈Q, can be computed as

MBC := ∑
i∈Q

MBC
i w(Y)γBC

i −γBC
, γBC := min

i∈Q
γBC
i , γBC

i := min
{

βC,r
i ,γC

i

}

,

MBC
i :=

[

MB,1
i MC

i w(Y)βC,r
i −γBC

i +MB,2
i τC

i w(Y)γC
i −γBC

i

]

,

MB,1
i := max

x∈X
wB

i (x)−min
x∈X

wB
i (x)+ τB,c

i w(X)β B,c
i , MB,2

i := max
x∈X

wB
i (x)+ τB,c

i w(X)β B,c
i .
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The second term in Equation (7) is simply bounded as

wD(y)−wD,cv
Z (y)≤ τD,cvw(Z)γD,cv

, ∀y ∈ Z. (9)

From Equations (8) and (9), we have

max
(x,y)∈X(Z)×Z

∣

∣

∣

∣

∣

(

wA(x)+ ∑
i∈Q

wB
i (x)wC

i (y)+wD(y)

)

−
(

wA(x)+ ∑
i∈Q

(

wB,U
i,X(Z)w

C,cv
i,Z (y)+wB

i (x)wC,U
i,Z −wB,U

i,X(Z)w
C,U
i,Z

)

+wD,cv
Z (y)

)∣

∣

∣

∣

∣

≤
(

MBCw(Y)γBC−γ + τD,cvw(Y)γD,cv−γ
)

w(Z)γ
,

which proves the existence ofτ1. ⊓⊔

The following remark is in order.

Remark 12

1. SupposewC
i is Lipschitz continuous onY for eachi ∈Q. We then haveαC

i ≥ 1,∀i ∈Q. If γC
i ≥ 1 andβC,c

i ≥
1, ∀i ∈ Q, andγD,cv ≥ 1, we have from Lemma12 that ( f cv

X(Z)×Z)Z∈IY has at least first-order convergence
onY.

2. LetX = [1,2], Y = [−1,1], and f (x,y) = xy. For any[−ε ,ε ] =: Z ∈ IY with ε > 0, consider the scheme of
convex relaxations( f cv

X(Z)×Z)Z∈IY of f in Y with

f cv
X(Z)×Z(x,y) = max{y− εx+ ε ,2y+ εx−2ε}.

The above scheme corresponds to the tightest possible scheme of convex relaxations in the reduced-space,
but has at most first-order pointwise convergence onY. This is in contrast to Theorem 10 in [5] where
the scheme of convex envelopes of any twice continuously differentiable function was shown to have
pointwise convergence order of at least two onX×Y. Note that ifQ = /0, the pointwise convergence order
of the scheme of convex relaxations( f cv

X(Z)×Z)Z∈IY is dictated by the pointwise convergence order of the

scheme(wD,cv
Z )Z∈IY, and second-order pointwise convergence of( f cv

X(Z)×Z)Z∈IY can be achieved by using

the scheme of convex envelopes ofwD if it is twice continuously differentiable. Also note that Theorem 2
in [5], which states that the pointwise convergence order of a scheme of relaxations of a nonlinear twice
continuously differentiable function can be at most two onX×Y, naturally holds overY as well.

The following result establishes a lower bound on the convergence order of the reduced-space lower bound-
ing scheme proposed in [10] at infeasible points.

Lemma 13 Consider Problem(P), and suppose functions gj , j = 1, · · · ,mI , are each of the form(W) and
functions hk, k = 1, · · · ,mE, are each of the form(Weq). Let (gcv

j,X(Z)×Z)Z∈IY, j = 1, · · · ,mI , denote continu-
ous schemes of convex relaxations of g1, · · · ,gmI , respectively, in Y with pointwise convergence ordersγcv

g,1 >

0, · · · ,γcv
g,mI

> 0 and corresponding constantsτcv
g,1, · · · ,τcv

g,mI
, and let(hcv

k,X(Z)×Z,hcc
k,X(Z)×Z)Z∈IY, k = 1, · · · ,mE,

denote continuous schemes of relaxations of h1, · · · ,hmE , respectively, in Y with pointwise convergence orders
γh,1 > 0, · · · ,γh,mE > 0 and corresponding constantsτh,1, · · · ,τh,mE . Then, there exists̄τ ≥ 0 such that for every
Z ∈ IY

d

(

[

g
h

]

(X(Z)×Z),RmI
− ×{0}

)

−d
(

IC(Z),RmI
− ×{0}

)

≤ τ̄w(Z)β
,
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whereIC(Z) is defined as

IC(Z) :=
{

(v,w) ∈ R
mI ×R

mE : v = gcv
X(Z)×Z(x,y),hcv

X(Z)×Z(x,y)≤ w≤ hcc
X(Z)×Z(x,y)

for some(x,y) ∈ X(Z)×Z
}

andβ is defined as

β := min

{

min
j∈{1,··· ,mI }

γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

.

Proof The proof is similar to that of Lemma8 and is therefore omitted. ⊓⊔

Definition 15 (Feasible Point in the Reduced-Space)Consider Problem (P). A point y ∈ Y is said to be
feasible (in the reduced-space) if there existsx ∈ X such that(x,y) is feasible for Problem (P).

The following result establishes first-order convergence of the reduced-space lower bounding scheme pro-
posed in [10] at a feasible point in the reduced-space when first-order pointwise convergent schemes of relax-
ations are used and the reduced-space dual lower bounding scheme (see Section5.2) is first-order convergent.

Theorem 7 Consider Problem(P). Suppose the functions f and gj , j = 1, · · · ,mI , are each of the form(W)
and functions hk, k= 1, · · · ,mE, are each of the form(Weq). Letyf ∈Y be a feasible point in the reduced-space
for Problem(P). Suppose the reduced-space dual lower bounding scheme (seeSection5.2) has convergence

of order βd at yf and a corresponding scheme of dual variables
((

µµµyf

Z ,λλλ yf

Z

))

Z∈IY
(not necessarily optimal,

but which yieldβd-order convergence atyf) with
(

µµµyf

Z ,λλλ yf

Z

)

∈ R
mI
+ ×R

mE ,
∥

∥

∥µµµyf

Z

∥

∥

∥

∞
≤ µ̄ and

∥

∥

∥λλλ yf

Z

∥

∥

∥

∞
≤ λ̄ ,

∀Z ∈ IY, for some constants̄µ, λ̄ ≥ 0. Let ( f cv
X(Z)×Z)Z∈IY, (gcv

j,X(Z)×Z)Z∈IY, j = 1, · · · ,mI , denote continu-
ous schemes of convex relaxations of f , g1, · · · ,gmI , respectively, in Y with pointwise convergence orders
γcv

f ≥ 1, γcv
g,1 ≥ 1, · · · ,γcv

g,mI
≥ 1 and corresponding constantsτcv

f , τcv
g,1, · · · ,τcv

g,mI
. Let(hcv

k,X(Z)×Z,hcc
k,X(Z)×Z)Z∈IY,

k = 1, · · · ,mE, denote continuous schemes of relaxations of h1, · · · ,hmE , respectively, in Y with pointwise con-
vergence ordersγh,1 ≥ 1, · · · ,γh,mE ≥ 1 and corresponding constantsτh,1, · · · ,τh,mE . Then, the scheme of lower
bounding problems(L (Z))Z∈IY with

(O(Z))Z∈IY :=

(

min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)

)

Z∈IY

,

(IC(Z))Z∈IY :=
({

(v,w) ∈ R
mI ×R

mE : v = gcv
X(Z)×Z(x,y),hcv

X(Z)×Z(x,y)≤w≤ hcc
X(Z)×Z(x,y)

for some(x,z) ∈ X(Z)×Z
})

Z∈IY

is at leastmin

{

min

{

γcv
f , min

j∈{1,··· ,mI }
γcv
g, j , min

k∈{1,··· ,mE}
γh,k

}

,βd

}

-order convergent atyf .

Proof The proof is similar to that of Theorem3 and is therefore omitted. ⊓⊔

Definition 16 (Unconstrained Point in the Reduced-Space)Consider Problem (P) with mE = 0. A point
y ∈Y is said to be unconstrained (in the reduced-space) if there existsδ > 0 such that∀z∈Y with ‖z−y‖< δ ,
we haveg(x,z) < 0, ∀x ∈ X.

The next result establishes first-order convergence of the reduced-space lower bounding scheme proposed
in [10] at unconstrained points in the reduced-space when a first-order convergent scheme of relaxations of the
objective is used by the (convergent) lower bounding scheme.
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Proposition 2 Consider Problem(P) with mE = 0. Suppose the functions f and gj , j = 1, · · · ,mI , are each of
the form(W). Let( f cv

X(Z)×Z)Z∈IY denote a continuous scheme of convex relaxations of f in Y with convergence

order β cv
f > 0 and corresponding constantτcv

f , (gcv
j,X(Z)×Z)Z∈IY, j = 1, · · · ,mI , denote continuous schemes of

convex relaxations of g1, · · · ,gmI , respectively, in Y with pointwise convergence ordersγcv
g,1 > 0, · · · ,γcv

g,mI
> 0

and corresponding constantsτcv
g,1, · · · ,τcv

g,mI
.

SupposeyS∈Y is an unconstrained point in the reduced-space, and the scheme of lower bounding problems
(L (Z))Z∈IY with

(O(Z))Z∈IY :=

(

min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)

)

Z∈IY

,

(IC(Z))Z∈IY :=
(

gcv
X(Z)×Z(X(Z)×Z)

)

Z∈IY

has convergence of orderβ ∈ (0,β cv
f ] at yS. Then the scheme of lower bounding problems(L (Z))Z∈IY is at

leastβ cv
f -order convergent atyS.

Proof The proof is relegated to AppendixA.2 since it is similar to the proof of Corollary2. ⊓⊔

Note that Proposition2 can be generalized in a manner similar to Corollary3 to show that the above lower
bounding scheme hasβ cv

f -order convergence on a neighborhood ofyS.
The following example shows that the convergence order of the reduced-space lower bounding scheme is

dictated by the convergence order,β cv
f , of the scheme( f cv

X(Z)×Z)Z∈IY under the assumptions of Proposition2.

Example 12Let X = [−1,0.1],Y = [−1,1], mI = 1, andmE = 0 with f (x,y) = x2+y2 andg(x,y) = x+y−0.5.
For any[yL ,yU] =: Z ∈ IY, let

f cv
X(Z)×Z(x,y) =

{

x2− (yU−yL)3, if 0 ∈ [yL,yU]

x2 +min
{

(yL)2
,(yU)2

}

− (yU−yL)3
, otherwise

,

gcv
X(Z)×Z(x,y) = x+y−0.5.

The scheme( f cv
X(Z)×Z)Z∈IY has first-order pointwise convergence onY and third-order convergence onY, while

the scheme(gcv
X(Z)×Z)Z∈IY has arbitrarily high pointwise convergence order onY.

Let yL = −ε , yU = ε with 0 < ε ≤ 0.1. The width ofZ is w(Z) = 2ε . The optimal objective value of
Problem (P) on Z is 0, while the optimal objective of the lower bounding problem onZ is−8ε3. Convergence
at the pointy = 0 is, therefore, at most third-order.

It is natural to wonder at this stage whether the reduced-space lower bounding scheme in [10] has ‘similar
convergence properties’ to the full-space lower bounding scheme that was analyzed in Section4.1. Example16
presents a case where the reduced-space lower bounding scheme in [10] only has first-order convergence at a
constrained minimizer that is a KKT point (cf. Example6, Theorem2 and Corollary4). The following example
shows that the reduced-space lower bounding scheme in [10] may have a convergence order as low as one even
for unconstrained problems with smooth objective functions.

Example 13Consider the following instance of Problem (P):

min
x,y

2x2 +x2y−xy2 +(y−0.5)2

s.t.x∈ [−1,1],y∈ [0,1].

The global minimum,(x∗,y∗), of the above ‘unconstrained problem’ isx∗ = 2
√

21
3 − 3, y∗ =

√
21
3 − 1 with

optimal objective valueν∗ = 2(x∗)2 +(x∗)2y∗−x∗(y∗)2 +(y∗−0.5)2.



Convergence-Order Analysis of Branch-and-Bound Algorithms for Constrained Problems 35

Consider[y∗− ε ,y∗+ ε ] =: Z ∈ IY with ε ∈ (0,0.25]. The reduced-space lower bounding scheme in [10]
yields

O(Z) = min
x,y,w1,w2

2x2 +w1 +w2 +(y−0.5)2

s.t. w1≥ x2(y∗− ε),

w1≥ y+x2(y∗+ ε)− (y∗+ ε),

w2≥ y2−x(y∗+ ε)2− (y∗+ ε)2
,

w2≥ (y∗)2−2y∗y− ε2−x(y∗− ε)2+(y∗− ε)2
,

x∈ [−1,1],y∈ [y∗− ε ,y∗+ ε ].

Note that the point(xf
Z,yf

Z,wf
1,Z,wf

2,Z) = (x∗,y∗,(x∗)2(y∗−ε),−(y∗)2−ε2−x∗(y∗−ε)2+(y∗−ε)2) is feasible

for the lower bounding scheme with objective value 2(x∗)2+wf
1,Z +wf

2,Z +(y∗−0.5)2 = ν∗+2x∗y∗ε−(x∗)2ε−
x∗ε2−2y∗ε . Therefore, we have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)≥ (x∗)2ε +x∗ε2+2y∗ε−2x∗y∗ε

=
(

0.5(x∗)2+0.5x∗ε +y∗−x∗y∗
)

w(Z)

= 0.5(1+ εx∗)w(Z)

≥ 0.5w(Z),

which establishes that the reduced-space lower bounding scheme in [10] has at most first-order convergence at
(the reduced-space minimizer)y∗.

Remark 13Example13 provides an instance of Problem (P) for which the minimum is unconstrained but the
reduced-space lower bounding scheme in [10] is only first-order convergent at the reduced-space minimizer.
Therefore, the lower bounding scheme in [10] could face severe clustering for this example [7, 39]. Note that
this is in contrast to the full-space lower bounding schemesin Section4 which can achieve at least second-order
convergence at the above minimizer and thereby mitigate clustering.

The presence of the termsx2y and−xy2 in the objective function in Example13 plays a crucial role in
limiting the convergence order of the reduced-space lower bounding scheme in [10] (see Remark12). Ad-
ditionally, the analysis in Example13 implies that the scheme of relaxations of its objective function has at
most first-order Hausdorff convergence onY. Theorem10 in Section5.2 implies that the reduced-space lower
bounding scheme in [10] has second-order convergence at KKT points when all of the functions in Problem (P)
are twice continuously differentiable and separable inx andy.

5.2 Duality-based branch-and-bound

Dür and Horst [9, Section 3.3] outlined a reduced-space branch-and-bound algorithm in which they used La-
grangian duality to obtain lower bounds (also see [3, 8]). Dür and Horst [9] prove that when a constraint
qualification holds for the reduced-space convex relaxation-based lower bounding scheme with each function
in Problem (P) replaced by its (convex) envelope onX×Z (for eachZ ∈ IY), the subdivision process is ex-
haustive onY, and the selection procedure is bound improving, then any accumulation point of the sequence of
reduced-space dual lower bounding solutions solves Problem (P).

The reduced-space Lagrangian dual lower bounding problem is in essence the same as its full-space coun-
terpart Problem (D), with the major difference being that we only branch on theY-space in the reduced-space
dual lower bounding scheme to converge. We associate with the reduced-space dual lower bounding scheme,
(L (Z))Z∈IY, at a feasible point in the reduced-spacey, a scheme of dual variables((µµµy

Z,λλλ y
Z))Z∈IY correspond-

ing to the solution of the scheme of dual lower bounding problems(O(Z))Z∈IY with y ∈ Z. Dür and Horst [9,
Section 4] also outlined classes of problems for which the reduced-space dual lower bounding problem can be
solved to optimality. The following result, analogous to Theorem4, holds.
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Theorem 8 Consider Problem(P). Suppose strong duality holds for the reduced-space convexrelaxation-
based lower bounding scheme for Problem(P) obtained by using the schemes of (convex) envelopes of f ,g,
and h. Then, the reduced-space dual lower bounding scheme has at least as high a convergence order as
the reduced-space convex relaxation-based lower boundingscheme obtained by using schemes of (convex)
envelopes.

Proof The proof is similar to that of Theorem4 and is therefore omitted. ⊓⊔

The following result from [9] states that when the constraints in Problem (P) are affine onX×Y, the lower
bounding scheme corresponding to schemes of (convex) envelopes provides the same scheme of lower bounds
as that obtained using the dual lower bounding scheme.

Lemma 14 Consider Problem(P), and suppose the constraints in Problem(P) are affine inx and y, i.e. g :
(x,y) 7→ Agx + Bgy− cg and h : (x,y) 7→ Ahx + Bhy− ch. In addition, suppose Problem(P) is feasible and
strong duality holds for Problem(P) for y restricted to any feasible point in Y . Then the lower bound obtained
by solving the dual problem on Z∈ IY is the same as the lower bound obtained by solving the relaxation of the
original problem on Z with the objective function f replacedby its convex envelope on X×Z.

Proof See Proposition 2.1 in [9]. ⊓⊔

Lemma13(in conjunction with Lemma11) guarantees that the reduced-space dual lower bounding scheme
has at least first-order convergence at infeasible points for the subclass of Problem (P) for which the algorithm
of Epperly and Pistikopoulos is applicable when the functions wC

i , ∀i ∈ Q, andwD corresponding to each of
the constraints are Lipschitz continuous. The following result shows that first-order convergence at infeasible
points is guaranteed for a more general class of problems in the form of Problem (P) even when constraint
propagation techniques are not used.

Lemma 15 Let X⊂ R
nx, Y⊂ R

ny be nonempty compact convex sets, f: X×Y→ R be Lipschitz continuous
on X×Y with Lipschitz constant Mf . Suppose f is partially convex with respect tox, i.e. f(·,y) is convex on
X for eachy ∈Y. For any Z∈ IY, let fcv,env

X×Z : X×Z→ R denote the convex envelope of f on X×Z. Assume
that for eachx̄ ∈ X, there exists a subgradients(y; x̄) ∈ ∂x f (x,y)|x=x̄ such that each si(y; x̄), i = 1, · · · ,nx, is
Lipschitz continuous on Y with Lipschitz constant Ms. Then, the reduced-space scheme of convex envelopes
(

f cv,env
X×Z

)

Z∈IY has pointwise convergence of order at least one on Y.

Proof We wish to prove the existence of a constantτ ≥ 0 such that

max
(x,y)∈X×Z

| f (x,y)− f cv,env
X×Z (x,y)| ≤ τw(Z), ∀Z ∈ IY.

Note that the existence of the maximum in the above expression follows from the (Lipschitz) continuity off ,
Lemma4, and the compactness ofX×Y. ConsiderZ ∈ IY, and let(x∗Z,y∗Z) ∈ argmax

(x,y)∈X×Z
| f (x,y)− f cv,env

X×Z (x,y)|.

We have

max
(x,y)∈X×Z

| f (x,y)− f cv,env
X×Z (x,y)|= f (x∗Z,y∗Z)− f cv,env

X×Z (x∗Z,y∗Z)

= max
y∈Z
| f (x∗Z,y)− f cv,env

X×Z (x∗Z,y)|. (10)

Since f (·,y) is convex onX for eachy ∈Y, we have

f (x,y)≥ f (x∗Z,y)+s(y;x∗Z)T(x−x∗Z)

= f (x∗Z,y)+wZ(x,y)

≥ f cv,env
Z (x∗Z,y)+wcv

X×Z(x,y), ∀(x,y) ∈ X×Z,
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wheres(y;x∗Z) ∈ ∂x f (x,y)|x=x∗Z is a subgradient off (·,y) at x∗Z such thatsi(y;x∗Z), ∀i ∈ {1, · · · ,nx}, is Lip-
schitz continuous onZ with Lipschitz constantMs, f cv,env

Z (x∗Z, ·) denotes the convex envelope off (x∗Z, ·) on
Z, wZ(x,y) := s(y;x∗Z)T(x− x∗Z) is a function of the form (W), andwcv

X×Z is a convex relaxation ofwZ on
X×Z of the form (Wcv) with first-order (pointwise) convergent schemes of estimators ofs(y;x∗Z) used in its
construction.

Since f is Lipschitz continuous onX×Y and f cv,env
Z (x∗Z, ·) is the convex envelope off (x∗Z, ·) onZ, we have

from Lemma7 that
max
y∈Z
| f (x∗Z,y)− f cv,env

Z (x∗Z,y)| ≤M f w(Z).

Using Lemma12 with wB
i (x) = (xi − x∗i,Z), wC

i (y) = si(y;x∗Z), wB,L
i,X = min

x∈X
(xi − x∗i,Z), wB,U

i,X = max
x∈X

(xi − x∗i,Z),

wC,cv
i,Z (y) = wC,L

i,Z = min
y∈Z

si(y;x∗Z), andwC,cc
i,Z (y) = wC,U

i,Z = max
y∈Z

si(y;x∗Z), we can show the existence of a constant

τ̄ ≥ 0 such that
max

(x,y)∈X×Z

∣

∣wZ(x,y)−wcv
X×Z(x,y)

∣

∣≤ τ̄w(Z).

From the above two inequalities, we have

max
(x,y)∈X×Z

∣

∣( f (x∗Z,y)+wZ(x,y))−
(

f cv,env
Z (x∗Z,y)+wcv

X×Z(x,y)
)∣

∣≤
(

M f + τ̄
)

w(Z).

UsingwZ(x∗Z,y) = 0, we obtain

max
y∈Z

∣

∣ f (x∗Z,y)−
(

f cv,env
Z (x∗Z,y)+wcv

X×Z(x∗Z,y)
)∣

∣≤
(

M f + τ̄
)

w(Z).

Since the convex envelope off on X × Z, f cv,env
X×Z , is, by definition, tighter than the convex relaxation

f cv,env
Z (x∗Z, ·)+wcv

X×Z atx∗Z, we have from Equation (10) that

max
y∈Z
| f (x∗Z,y)− f cv,env

X×Z (x∗Z,y)| ≤
(

M f + τ̄
)

w(Z),

which proves the existence ofτ . ⊓⊔

Note that the assumptions of Lemma15 are readily satisfied iff is a Lipschitz continuous function of the
form (W) that is composed of continuous functionswA, wB

i , ∀i ∈Q, andwD and Lipschitz continuous functions
wC

i , ∀i ∈ Q. An instance for which the assumptions of Lemma15 are not satisfied isf (x,y) = |y||x+ y+ 1|
with X = [−1,1] andY = [−1,1]. The following examples provide instances for which the assumptions of
Lemma15 are satisfied, but where the functions involved are not in theform (W).

Example 14Let X = [−1,1], Y = [−1,1], and f (x,y) = exp(xy). We haveM f =
√

2exp(1), s(y;x) = yexp(xy),
andMs = 2exp(1) satisfying the assumptions of Lemma15.

Example 15Let X = [−1,1], Y = [−1,1], and f (x,y) =−|y|√x+y+3. We haveM f = 4, s(y;x) =− |y|
2
√

x+y+3 ,
andMs = 1 satisfying the assumptions of Lemma15.

The next result shows that the reduced-space dual lower bounding scheme has arbitrarily high convergence
order at unconstrained points in the reduced-space.

Proposition 3 Consider Problem(P) with mE = 0. SupposeyS ∈Y is an unconstrained point in the reduced-
space. Furthermore, suppose the reduced-space dual lower bounding scheme has convergence of orderβ > 0
at yS. Then the reduced-space dual lower bounding scheme has arbitrarily high convergence order atyS.

Proof The proof is relegated to AppendixA.3 since it is similar to the proof of Proposition1. ⊓⊔

The following result establishes first-order convergence of the reduced-space dual lower bounding scheme
even in the absence of constraint propagation.
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Theorem 9 Consider Problem(P). Suppose f , gj , j = 1, · · · ,mI , and hk, k = 1, · · · ,mE, are Lipschitz contin-
uous on X×Y with Lipschitz constants Mf ,Mg,1, · · · ,Mg,mI ,Mh,1, · · · ,Mh,mE , respectively, and assume that the
assumptions of Lemma15 hold for g andh. Assume, in addition, that Problem(P) is feasible, and that strong
duality holds for Problem(P) for y restricted to any feasible point in Y. Furthermore, supposethe set of optimal
dual variables for Problem(P) restricted to any feasibley ∈Y is bounded (with the bound independent ofy).
Then the reduced-space dual lower bounding scheme is at least first-order convergent on Y.

Proof Lemmata11, 13, and15 imply that the dual lower bounding scheme is at least first-order convergent at
any infeasible pointy ∈Y with the prefactor independent ofy (note that the conclusion of Lemma13does not
depend on the schemes of relaxations of the constraints being in the form (Wcv)).

DefineF(y,µµµ,λλλ ) := min
x∈X

f (x,y)+ µµµTg(x,y)+ λλλ Th(x,y). We first show thatF(·,µµµ,λλλ ) is Lipschitz con-

tinuous onY for any(µµµ,λλλ ) ∈ R
mI
+ ×R

mE . Consider(µµµ,λλλ ) ∈ R
mI
+ ×R

mE andy1,y2 ∈Y. We have

|F(y1,µµµ ,λλλ )−F(y2,µµµ,λλλ )|

=

∣

∣

∣

∣

(

min
x∈X

f (x,y1)+ µµµTg(x,y1)+λλλ Th(x,y1)

)

−
(

min
x∈X

f (x,y2)+ µµµTg(x,y2)+λλλ Th(x,y2)

)∣

∣

∣

∣

≤max
x∈X

∣

∣

∣
( f (x,y1)− f (x,y2))+ µµµT (g(x,y1)−g(x,y2))+λλλ T (h(x,y1)−h(x,y2))

∣

∣

∣

≤max
x∈X
| f (x,y1)− f (x,y2)|+max

x∈X

∣

∣µµµT(g(x,y1)−g(x,y2))
∣

∣+max
x∈X

∣

∣

∣
λλλ T(h(x,y1)−h(x,y2))

∣

∣

∣

≤
(

M f +
mI

∑
j=1

|µ j |Mg, j +
mE

∑
k=1

|λk|Mh,k

)

‖y1−y2‖,

where Step 2 follows from Lemma3, and Step 4 follows from the Lipschitz continuity of the functions involved.
SupposeF (Y) 6= /0 andZ ∈ IY such thatZ∩F (Y) 6= /0. Since strong duality holds for Problem (P) with y

restricted to any feasible point inY, Problem (P) can be equivalently expressed onZ as

min
(x,y)∈F (Z)

f (x,y) = min
y∈Z

sup
(µµµ,λλλ )∈R

mI
+ ×RmE

F(y,µµµ,λλλ ).

By strong duality andZ∩F (Y) 6= /0, there exists a minimizer(y∗Z,µµµ∗Z,λλλ ∗Z) of the above ‘dual form’ of Prob-
lem (P) wheny is restricted toZ. We have

∣

∣

∣

∣

∣

∣

min
(x,y)∈F (Z)

f (x,y) − sup
(µµµ ,λλλ )∈R

mI
+ ×R

mE

min
(x,y)∈X×Z

[

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y)
]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

F(y∗Z,µµµ∗Z,λλλ ∗Z)− sup
(µµµ,λλλ )∈R

mI
+ ×RmE

min
y∈Z

F(y,µµµ,λλλ )

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

F(y∗Z,µµµ∗Z,λλλ ∗Z)−min
y∈Z

F(y,µµµ∗Z,λλλ ∗Z)

∣

∣

∣

∣

=
∣

∣F(y∗Z,µµµ∗Z,λλλ ∗Z)−F(ȳZ,µµµ∗Z,λλλ ∗Z)
∣

∣

≤
(

M f +
mI

∑
j=1
|µ∗j,Z|Mg, j +

mE

∑
k=1

|λ ∗k,Z|Mh,k

)

‖y∗Z− ȳZ‖

≤
(

M f +
mI

∑
j=1

M∞Mg, j +
mE

∑
k=1

M∞Mh,k

)

√
nyw(Z),

whereȳZ ∈ argmin
y∈Z

F(y,µµµ∗Z,λλλ ∗Z), M∞ := sup
y∈Y

max
{

‖µµµ∗(y)‖∞,‖λλλ ∗(y)‖∞
}

is an upper bound on the norm of

pairs of optimal dual variables(µµµ∗(y),λλλ ∗(y)) ∈ argmax
µµµ≥0,λλλ

F(y,µµµ,λλλ ), and the penultimate step follows from the

Lipschitz continuity ofF(·,µµµ,λλλ ) onY. ⊓⊔
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The assumption that the set of optimal dual variables for Problem (P) restricted to any feasibley ∈ Y is
bounded can be replaced with the less restrictive assumption that there exists an optimal dual variable pair
(µµµ∗(y),λλλ∗(y)) ∈ argmax

µµµ≥0,λλλ
F(y,µµµ,λλλ ) for eachy ∈Y such that sup

y∈Y
max

{

‖µµµ∗(y)‖∞,‖λλλ ∗(y)‖∞
}

≤M∞.

A corollary of Theorems7 and9 is that first-order convergence is guaranteed for the convexrelaxation-
based reduced-space lower bounding scheme in [10] when first-order pointwise convergent schemes of re-
laxations onY are used in its construction. Instead of proving first-orderconvergence of the lower bounding
scheme in [10] at feasible points under the assumption that schemes of bounded optimal dual variables exist,
we show that the reduced-space lower bounding scheme in [10] enjoys first-order convergence at any feasible
point in the reduced-space under the (less restrictive) assumption that strong duality holds for Problem (P) with
y fixed to the feasible point.

Corollary 5 Consider Problem(P). Suppose the functions f and gj , ∀ j ∈ {1, · · · ,mI}, are Lipschitz con-
tinuous on X×Y with Lipschitz constants Mf ,Mg,1, · · · ,Mg,mI , respectively, and are each of the form(W).
Furthermore, suppose functions hk, k = 1, · · · ,mE, are Lipschitz continuous on X×Y with Lipschitz constants
Mh,1, · · · ,Mh,mE , respectively, and are each of the form(Weq). Supposeyf ∈Y is a feasible point in the reduced-
space and strong duality holds for Problem(P) wheny is fixed toyf . Let ( f cv

X(Z)×Z)Z∈IY, (gcv
j,X(Z)×Z)Z∈IY,

j = 1, · · · ,mI , denote continuous schemes of convex relaxations of f , g1, · · · ,gmI , respectively, in Y with point-
wise convergence ordersγcv

f ≥ 1, γcv
g,1 ≥ 1, · · · ,γcv

g,mI
≥ 1 and corresponding constantsτcv

f , τcv
g,1, · · · ,τcv

g,mI
. Let

(hcv
k,X(Z)×Z,hcc

k,X(Z)×Z)Z∈IY, k= 1, · · · ,mE, denote continuous schemes of relaxations of h1, · · · ,hmE , respectively,
in Y with pointwise convergence ordersγh,1 ≥ 1, · · · ,γh,mE ≥ 1 and corresponding constantsτh,1, · · · ,τh,mE .
Then, the scheme of lower bounding problems(L (Z))Z∈IY proposed in [10] is at least first-order convergent
at yf .

Proof Let
(

µµµyf
,λλλ yf

)

∈ argmax
µµµ≥0,λλλ

F(yf
,µµµ,λλλ ) be an optimal pair of dual variables fory fixed toyf in Problem (P).

SupposeZ ∈ IY with yf ∈ Z. Similar to the proof of Theorem9, we have

∣

∣

∣

∣

∣

∣

min
(x,y)∈F (Z)

f (x,y) − sup
(µµµ,λλλ )∈R

mI
+ ×R

mE

min
(x,y)∈X×Z

[

f (x,y)+ µµµTg(x,y)+λλλ Th(x,y)
]

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

F
(

yf
,µµµyf

,λλλ yf
)

− sup
(µµµ,λλλ )∈R

mI
+ ×R

mE

min
y∈Z

F(y,µµµ,λλλ )

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

F
(

yf
,µµµyf

,λλλ yf
)

−min
y∈Z

F
(

y,µµµyf
,λλλ yf

)

∣

∣

∣

∣

≤ τ fw(Z),

for some constantτ f ≥ 0. The result then holds as a consequence of Theorem7 by usingµµµyf

Z = µµµyf
, λλλ yf

Z = λλλ yf
,

µ̄ =
∥

∥

∥
µµµyf
∥

∥

∥

∞
, andλ̄ =

∥

∥

∥
λλλ yf
∥

∥

∥

∞
in Theorem7. ⊓⊔

The following example shows that the convergence order of the reduced-space dual lower bounding scheme
may be as low as one at constrained minima.

Example 16Consider the following instance of Problem (P):

min
x,y
−xy

s.t.x+y≤ 1,

x∈ [−1,1],y∈ [0,1].
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The optimal solution is(x∗,y∗) = (0.5,0.5) with optimal objective value−0.25. When the inequality constraint
is dualized, the following dual function is obtained:

q(µ) = min
x,y
−xy+ µ (x+y−1)

s.t.x∈ [−1,1],y∈ [0,1].

Consider[yL ,yU] = [0.5− ε ,0.5+ ε ] =: Z ∈ IY with ε ∈ (0,0.5]. In order to derive the dual function

q(µ) = min
x∈[−1,1]

y∈[yL ,yU]

−xy+ µ(x+y−1)

as an explicit function ofµ, we partition the domain ofµ to obtain

q(µ) =











(µ−1)yU, if µ ≤ yL

min{(µ−1)yU
,(µ +1)yL −2µ}, if yL ≤ µ ≤ yU

(µ +1)yL −2µ, if µ ≥ yU

when the bounds onx are taken to be[−1,1] irrespective of the bounds ony. The dual lower bound can therefore
be derived as:

sup
µ≥0

q(µ) =
(yL−1)yU

1+0.5(yU−yL)
.

Therefore, for[yL
,yU] = [0.5− ε ,0.5+ ε ], the dual lower bound can be derived as

sup
µ≥0

q(µ) =
(−0.5− ε)(0.5+ ε)

1+ ε
=− (0.5+ ε)2

1+ ε
.

Consequently,

min
(x,y)∈F (Z)

−xy − sup
µ≥0

q(µ) =−0.25+
(0.5+ ε)2

1+ ε
=

0.75ε + ε2

1+ ε
≥ 0.75ε ,

which implies that the dual lower bounding scheme is at most first-order convergent aty∗.

Remark 14Example16 provides an instance of Problem (P) for which both the reduced-space dual lower
bounding scheme [9] and the reduced-space lower bounding scheme in [10] (this follows from Lemma14)
are only first-order convergent at the minimizer. Furthermore, for eachy∈ [0,1], the reduced-space objective
functionv : [0,1]→ R can be derived as

v(y) = min
x
−xy

s.t.x+y≤ 1,

x∈ [−1,1],

which reduces tov(y) = y2−y. It can be seen thaty∗ = 0.5 is an unconstrained minimum of the reduced-space
objectivev(y), which implies that at least second-order convergence of the reduced-space lower bounding
scheme is typically required aty∗ to mitigate clustering [7, 39].

Therefore, neither reduced-space lower bounding scheme can be expected to avoid clustering for this ex-
ample. Note that this is in contrast to the full-space lower bounding schemes in Section4 which can achieve at
least second-order convergence at(x∗,y∗) and thereby mitigate clustering [15].

Note, however, that the use of constraint propagation techniques by reduced-space lower bounding schemes
can potentially increase their convergence order as demonstrated by Examples17 and18. This demonstrates
the importance of constraint propagation techniques in reduced-space lower bounding schemes, which has not
been emphasized in [9, 10].



Convergence-Order Analysis of Branch-and-Bound Algorithms for Constrained Problems 41

Example 17Consider the instance of Problem (P) in Example16with Z = [yL
,yU]⊂ [0,1], yL ≤ 0.5, yU ≥ 0.5.

Suppose we use constraint propagation to deriveX(Z) = [−1,1−yL ]. The dual function can be derived as

q(µ) =











µ(yU−yL)+yU(yL −1), if µ ≤ yL

min{µ(yU−yL)+yU(yL−1),(µ +1)yL −2µ}, if yL ≤ µ ≤ yU

(µ +1)yL −2µ, if µ ≥ yU

,

which yields the dual lower bound

sup
µ≥0

q(µ) =
(yL +yU−yLyU)(yL−2)

2+yU−2yL +yL
.

ConsideryL = 0.5− ε , yU = 0.5+ ε for someε ∈ (0,0.5). The dual lower bound reduces to

sup
µ≥0

q(µ) =
−ε3−4.5ε2−0.75ε−0.375

1.5+3ε
.

Consequently,

min
(x,y)∈F (Z)

−xy − sup
µ≥0

q(µ) =−0.25+
ε3+4.5ε2 +0.75ε +0.375

1.5+3ε

=−0.25+
1

1.5

(

ε3 +4.5ε2 +0.75ε +0.375
)

(1+2ε)−1

=−0.25+
1

1.5

(

ε3 +4.5ε2 +0.75ε +0.375
)(

1−2ε +4ε2 +O(ε3)
)

= 3ε2 +O(ε3)

≤ τε2
,

for some constantτ > 0 (where we may assume that the above inequality holds forε = 0.5 as well).
Consider any nondegenerate intervalZ = [yL

,yU] ⊂ [0,1] with 0.5 ∈ Z and constructZ̄ ⊃ Z such that
Z̄ = [y∗− ε ,y∗+ ε ] with ε = max{yU−y∗,y∗−yL}. We have

min
(x,y)∈F (Z)

−xy − sup
µ≥0

min
(x,y)∈X(Z)×Z

[−xy+ µg(x,y)]≤ min
(x,y)∈F (Z̄)

−xy − sup
µ≥0

min
(x,y)∈X(Z̄)×Z̄

[−xy+ µg(x,y)]

≤τε2

≤τw(Z)2
,

which implies that the reduced-space dual lower bounding scheme with constraint propagation is second-order
convergent aty∗.

Figure1 illustrates the performance of the lower bounding schemes considered in this work in a bare-bones
branch-and-bound framework for Examples16 and17. The branch-and-bound framework was implemented
in MATLAB ®, and the (convex) lower bounding problems were solved usingthe CVX [12] package. The
lowest lower bound node selection rule and the interval bisection branching rule (which bisects the domain
of the variable whose interval has the largest width) were used by the branch-and-bound algorithm. Since
Example16 is not particularly challenging, it is assumed that a local solver finds its global solution at the root
node of the branch-and-bound tree (i.e., the upper bound is set to the optimal objective value at the root node).

In addition, the bounds onx andy were modified to
[

−1,1−
√

3
100

]

and
[ √

2
100,1

]

, respectively, to prevent the

full-space lower bounding schemes from branching at the optimal solution and (fortuitously) converging early
(this modification enables a truer characterization of the convergence rates of the lower bounding schemes).

Figure1aplots the number of iterations of the branch-and-bound algorithm versus the (absolute) termina-
tion tolerance for the full-space lower bounding schemes, the reduced-space lower bounding schemes without
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(a) Comparison of the number of branch-and-bound iterations
versus the termination tolerance between the different lower
bounding schemes
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(b) Comparison of the number of branch-and-bound iterations
of the reduced-space lower bounding schemes without con-
straint propagation with the predictions from the cluster prob-
lem model for different termination tolerances

Fig. 1: (Left Plot) Plots of the number of iterations of the branch-and-bound algorithm versus the absolute
termination tolerance for the lower bounding schemes considered in this work for Example16. The solid line
indicates the number of iterations of the full-space lower bounding schemes, the dashed line indicates the num-
ber of iterations of the reduced-space lower bounding schemes without constraint propagation, and the dash-
dotted line indicates the number of iterations of the reduced-space lower bounding schemes with constraint
propagation. (Right Plot) Comparison of the number of iterations of the reduced-space branch-and-bound al-
gorithms without constraint propagation for Example16 with the corresponding cluster problem model. The
dashed line indicates the number of iterations of the reduced-space lower bounding schemes without constraint
propagation, and the dash-dotted line indicates the predicted number of iterations from the cluster problem
model.

constraint propagation (see Example16), and the reduced-space lower bounding schemes with constraint prop-
agation (see Example17). Note that both full-space (reduced-space) lower bounding schemes considered in
this work result in the same lower bound for this problem (seeLemma14). It can be seen that the full-space
lower bounding schemes and the reduced-space lower bounding schemes with constraint propagation perform
significantly better than the reduced-space lower boundingschemes without constraint propagation for small
tolerances, and that they exhibit a much more favorable scaling with a decrease in the termination tolerance as
well. Furthermore, the advantage of using constraint propagation techniques in the reduced-space lower bound-
ing schemes is evident, and its use puts the reduced-space lower bounding schemes at an advantage compared
to the full-space lower bounding schemes. Figure1b illustrates that the dependence of the number of iterations
on the termination tolerance for the reduced-space lower bounding schemes without constraint propagation is
in good agreement with their associated cluster problem models (see [15, Corollary 4] for the details of the
cluster problem model). Note that the prediction of the number of iterations from the cluster problem model
in Figure1b is obtained by fitting the prefactor in the cluster model (i.e., intercept of the line in the plot; the
slope of the line is determined by the cluster model using theestimate of the convergence order of the lower
bounding scheme obtained from this work) against the numberof iterations obtained from the computational
experiments. It is worth mentioning at this stage that only basic versions of the lower bounding schemes con-
sidered in this work have been used to generate Figure1; the performance of the lower bounding schemes may
be significantly different if they are implemented within a state-of-the-art branch-and-bound framework that
solves additional subproblems to speed up their convergence.

The following example illustrates another instance of Problem (P) for which constraint propagation plays
a crucial rule in boosting the convergence order of the convex relaxation-based reduced-space lower bounding
scheme in [10].
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Example 18Consider the following instance of Problem (P):

min
x,y

exp(x)−4x+y

s.t.x2 +xexp(3−y)≤ 10,

x∈ [0.5,2],y∈ [−1,1].

The optimal solution of the above problem, which is a constrained minimum, is(x∗,y∗) ≈ (1.029,0.838)
(

the ‘exact’ optimal solution can be determined as follows:x∗ is the (unique real) root of the function(4−

exp(x))(10x−x3)−x2−10 in [0.5,2], andy∗ := 3− ln
(

10−(x∗)2

x∗

))

with optimal objective value approximately

equal to−0.480. The reader can verify that(x∗,y∗,µ∗) is a KKT point for Problem (P), whereµ∗ := 1
x∗ exp(3−y∗) .

This implies, in particular, that the full-space lower bounding schemes in Section4 can be designed to be at
least second-order convergent at(x∗,y∗) (see Theorem5 and Corollary4). The reader can also verify that
second-order convergence of the lower bounding scheme may be sufficient to mitigate the cluster problem
around(x∗,y∗) [15].

Since all of the functions in the above instance of Problem (P) are in the form (W), both the reduced-space
lower bounding schemes considered in this section can be employed to solve it. The ensuing arguments show
that the convex relaxation-based reduced-space lower bounding scheme in [10] is only first-order convergent
at y∗ when constraint propagation techniques are not used.

Consider[yL
,yU] := [y∗−ε ,y∗+ε ] =: Z∈ IY with 0< ε ≤ 0.1. The reduced-space lower bounding scheme

in [10] yields

O(Z) = min
x,y

exp(x)−4x+y

s.t.x2 +2exp(3−y)+xexp(3−yL)−2exp(3−yL)≤ 10,

x2 +0.5exp(3−y)+xexp(3−yU)−0.5exp(3−yU)≤ 10,

x∈ [0.5,2],y∈ [yL
,yU].

Note that the point

(xf
Z,yf

Z) :=





√

(exp(3−yU))2 +40+2(exp(3−yU)−exp(3−y∗))−exp(3−yU)

2
,y∗





is feasible for the above lower bounding scheme with objective value exp(xf
Z)−4xf

Z +yf
Z. Furthermore,

xf
Z−x∗ =

(

√

(exp(3−yU))2 +40+2(exp(3−yU)−exp(3−y∗))−exp(3−yU)

2
−

√

(exp(3−y∗))2 +40−exp(3−y∗)

2

)

≥0.2ε +o(ε) ,
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where the details pertaining to the derivation of the above inequality are presented in AppendixA.4. Therefore,
we have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)≥ (exp(x∗)−4x∗+y∗)−

(

exp(xf
Z)−4xf

Z +yf
Z

)

=
(

exp(x∗)−exp(xf
Z)
)

+4
(

xf
Z−x∗

)

= (4−exp(x∗))
(

xf
Z−x∗

)

+o
(∣

∣

∣
xf

Z−x∗
∣

∣

∣

)

≥
(

xf
Z−x∗

)

+o
(∣

∣

∣
xf

Z−x∗
∣

∣

∣

)

≥0.2ε +o(ε)

≥0.05w(Z)

for ε ≪ 1, which establishes that the reduced-space lower boundingscheme in [10] has at most first-order
convergence aty∗ (note that first-order convergence of the scheme follows from Corollary5). This is rather
unfortunate becausey∗ can be seen to be an unconstrained minimizer of the reduced-space objective function
v : [−1,1]→ R, which can be derived (aroundy = y∗) to be

v(y) = exp(x∗(y))−4x∗(y)+y, ∀y∈ [0.5,1],

wherex∗ : [0.5,1] ∋ y 7−→ [0.5,2] is given by

x∗(y) :=

√

(exp(3−y))2 +40−exp(3−y)

2
,

which implies that at least second-order convergence of thereduced-space lower bounding scheme aty∗ is
typically required to mitigate clustering [7, 39].

We next show that when constraint propagation is used to infer (exact) bounds forx on Z, second-order
convergence of the reduced-space lower bounding scheme in [10] can be achieved. Note that for[yL ,yU] :=
[y∗− ε ,y∗+ ε ] =: Z ∈ IY with 0 < ε ≤ 0.1, the best possible (interval) bounds that can be obtained for x are
x∈ X(Z) := [xL

Z,xU
Z ] with

xL
Z = 0.5, xU

Z =

√

(exp(3−yU))2 +40−exp(3−yU)

2
.

The reduced-space lower bounding scheme in [10] with constraint propagation yields

O(Z) = min
x,y

exp(x)−4x+y

s.t.x2 +xU
Z exp(3−y)+xexp(3−yL)−xU

Z exp(3−yL)≤ 10,

x2 +0.5exp(3−y)+xexp(3−yU)−0.5exp(3−yU)≤ 10,

x∈ [0.5,xU
Z ],y∈ [yL

,yU].

By noticing that the first constraint in the above relaxationof Problem (P) is always active at the solution of the
relaxed problem, we can reformulate the reduced-space lower bounding problem as

O(Z) = min
y∈[yL ,yU]

exp(x̄Z(y))−4(x̄Z(y))+y,

wherex̄Z : Z ∋ y 7−→ [0.5,xU
Z ] is given by

x̄Z(y) :=

√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))−exp(3−yL)

2
.
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We have (see AppendixA.4 for details)

x̄Z(y)−x∗(y) =

(

exp(3−yL)+exp(3−y)+4xU
Z

)(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

)−

(

exp(3−yL)−exp(3−y)
)

2

=
α
(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

) ,

with 0≤ α ≤ τ̂ε +O(ε2) for someτ̂ ≥ 0. Consequently, we have∀y∈ Z that

x̄Z(y)−x∗(y)≤
(

τ̂ε +O(ε2)
)(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

)

≤ τ̄ε2 +O(ε3)

for someτ̄ ≥ 0, since exp(3−yL)−exp(3−y) is O(ε). Note that ¯xZ(y)≥ x∗(y), ∀Z. Therefore, on intervals
[y∗− ε ,y∗+ ε ] =: Z ∈ IY with 0 < ε ≤ 0.1, we have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y) = min

y∈Z
f (x∗(y),y)−min

y∈Z
f (x̄Z(y),y)

≤max
y∈Z
| f (x∗(y),y)− f (x̄Z(y),y)|

= max
y∈Z
|exp(x∗(y))−exp(x̄Z(y))+4x̄Z(y)−4x∗(y)|

= max
y∈Z
|(4−exp(x∗(y))) (x̄Z(y)−x∗(y))+o(x̄Z(y)−x∗(y))|

≤max
y∈Z
|2(x̄Z(y)−x∗(y))+o(x̄Z(y)−x∗(y))|

≤2τ̄ε2 +o
(

ε2)

≤ τ̄w(Z)2

for ε ≪ 1, which establishes second-order convergence of the scheme at y∗ when restricted to symmetric
intervals aroundy∗.

Consider any nondegenerate intervalZ = [yL
,yU] ∈ IY with y∗ ∈ Z andw(Z)≤ 0.1, and construct̄Z ⊃ Z

such thatZ̄ = [y∗− ε ,y∗+ ε ] with ε = max{yU−y∗,y∗−yL}. We have

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)≤ min

(x,y)∈F (Z̄)
f (x,y) − min

(x,y)∈F cv(Z̄)
f cv
X(Z)×Z(x,y)

≤τ̄w(Z̄)2

≤4τ̄w(Z)2
,

which implies that the convex relaxation-based reduced-space dual lower bounding scheme with constraint
propagation is second-order convergent aty∗.

Finally, we show that the reduced-space dual lower boundingscheme in [9] has at least second-order
convergence aty∗ even when constraint propagation is not used to infer boundsonx. Consider[yL ,yU] =: Z∈ IY
with w(Z)≤ 0.1. The feasible region of the original problem onZ is given by

F (Z) =
{

(x,y) ∈ [0.5,2]× [yL
,yU] : x≤ x∗(y)

}

.
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The convex hull of the feasible region onZ is given by

conv(F (Z)) =
{

(x,y) ∈ [0.5,2]× [yL
,yU] : x≤ x∗,cc

Z (y)
}

,

wherex∗,cc
Z denotes the concave envelope ofx∗ onZ. It is not hard to see thatdH (F (Z),conv(F (Z)))≤ τ̃w(Z)2

for someτ̃ ≥ 0 (this partly follows from the fact thatx∗ is twice continuously differentiable on[y∗−0.1,y∗+
0.1] and the fact that

(

x∗,cc
Z

)

Z∈IY converges pointwise tox∗ with order at least two on[y∗−0.1,y∗+0.1]). Since
the dual lower bounding scheme produces a lower bound that isat least as tight as any convex relaxation-based
scheme, we have

min
(x,y)∈F (Z)

f (x,y) − sup
µ≥0

min
(x,y)∈X(Z)×Z

[ f (x,y)+ µg(x,y)]≤ min
(x,y)∈F (Z)

f (x,y)− min
(x,y)∈conv(F (Z))

f (x,y)

= f (x∗,y∗)− f (x̃Z, ỹZ)

≤ f (x̂Z, ŷZ)− f (x̃Z, ỹZ)

≤M f ‖(x̂Z, ŷZ)− (x̃Z, ỹZ)‖
≤M f τ̂w(Z)2

,

where(x̃Z, ỹZ) ∈ argmin
(x,y)∈conv(F (Z))

f (x,y), (x̂Z, ŷZ) ∈ F (Z) is chosen such that‖(x̂Z, ŷZ)− (x̃Z, ỹZ)‖ ≤ τ̃w(Z)2,

andM f denotes the Lipschitz constant off on [0.5,2]× [−1,1]. Since the Lagrangian dual-based reduced-
space lower bounding scheme is at least first-order convergent aty∗ from Theorem9, it is at least second-order
convergent aty∗ by analogy to Lemma5.

Figure 2 illustrates the performance of the convex relaxation-based full-space and reduced-space lower
bounding schemes in the bare-bones branch-and-bound implementation for Example18 (note that we do not
consider the Lagrangian dual-based full-space and reduced-space lower bounding schemes for the numerical
experiments for this example because we do not have closed-form expressions for the lower bounds obtained
using those schemes). Once again, the convex lower boundingproblems were solved using the CVX [12]
package, and the lowest lower bound node selection rule and the interval bisection branching rule were used
by the branch-and-bound algorithm. Since Example18 is not particularly challenging, we assume that a local
solver finds its global solution at the root node of the branch-and-bound tree (i.e., the upper bound is set to the
optimal objective value of the problem at the root node).

Figure2a plots the number of iterations of the branch-and-bound algorithm versus the (absolute) termi-
nation tolerance for the full-space convex relaxation-based lower bounding scheme, the reduced-space con-
vex relaxation-based lower bounding scheme without constraint propagation, and the reduced-space convex
relaxation-based lower bounding scheme with constraint propagation. It can be seen that the full-space lower
bounding scheme and the reduced-space lower bounding scheme with constraint propagation perform signifi-
cantly better (for small tolerances) and exhibit a much morefavorable scaling with a decrease in the termination
tolerance compared to the reduced-space lower bounding scheme without constraint propagation. Furthermore,
there is a clear advantage in using constraint propagation techniques in the reduced-space lower bounding
scheme, and its use makes the performance of the reduced-space lower bounding scheme superior to that of
the full-space lower bounding scheme for this example. Figure 2b shows that the number of iterations versus
the termination tolerance for the reduced-space lower bounding scheme without constraint propagation closely
follows the prediction from its associated cluster problemmodel (see [15] for the details of the cluster problem
model). Note, once again, that the prediction of the number of iterations from the cluster problem model in Fig-
ure2b is obtained by fitting the prefactor in the cluster model against the number of iterations obtained from
the computational experiments. We wish to reiterate that only basic versions of the convex relaxation-based
lower bounding schemes have been used to generate Figure2; the performance of the lower bounding schemes
may be significantly different if they are implemented within a state-of-the-art branch-and-bound framework
that solves additional subproblems to speed up their convergence.
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(a) Comparison of the number of branch-and-bound iterations
versus the termination tolerance between the convex relaxation-
based lower bounding schemes
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(b) Comparison of the number of branch-and-bound iterations
of the convex relaxation-based reduced-space lower bound-
ing scheme without constraint propagation with the predictions
from the cluster problem model for different termination toler-
ances

Fig. 2: (Left Plot) Plots of the number of iterations of the branch-and-bound algorithm versus the absolute ter-
mination tolerance for the full-space and reduced-space convex relaxation-based lower bounding schemes con-
sidered in this work for Example18. The solid line indicates the number of iterations of the convex relaxation-
based full-space lower bounding scheme, the dashed line indicates the number of iterations of the convex
relaxation-based reduced-space lower bounding scheme without constraint propagation, and the dash-dotted
line indicates the number of iterations of the convex relaxation-based reduced-space lower bounding scheme
with constraint propagation. (Right Plot) Comparison of the number of iterations of the convex relaxation-
based reduced-space branch-and-bound algorithm without constraint propagation with the corresponding clus-
ter problem model. The dashed line indicates the number of iterations of the convex relaxation-based reduced-
space lower bounding scheme without constraint propagation, and the dash-dotted line indicates the predicted
number of iterations from the cluster problem model.

The following result shows that the reduced-space dual lower bounding scheme is second-order convergent at
KKT points even in the absence of constraint propagation when all of the functions in Problem (P) are twice
continuously differentiable and separable inx andy.

Theorem 10 Consider Problem(P), and suppose f , gj , j = 1, · · · ,mI , and hk, k = 1, · · · ,mE, are separable in
x andy. Supposeint(X×Y) is nonempty, and f ,g, andh are twice continuously differentiable onint(X×Y).
Furthermore, suppose there exists(x∗,y∗) ∈ int(X×Y), µµµ∗ ∈ R

mI
+ , λλλ ∗ ∈ R

mE such that(x∗,y∗,µµµ∗,λλλ ∗) is a
KKT point for Problem(P). The reduced-space dual lower bounding scheme is at least second-order convergent
at y∗.

Proof Let L(x,y,µµµ,λλλ ) := f (x,y)+µµµTg(x,y)+λλλ Th(x,y) denote the Lagrangian of Problem (P). Since we are
concerned about the convergence order at the reduced-spacefeasible pointy∗, it suffices to show the existence
of τ ≥ 0 such that for everyZ ∈ IY with y∗ ∈ Z,

min
(x,y)∈F (Z)

f (x,y)− sup
µµµ≥0,λλλ

min
(x,y)∈X×Z

L(x,y,µµµ,λλλ )≤ τw(Z)2
.
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We have

sup
µµµ≥0,λλλ

min
(x,y)∈X×Z

L(x,y,µµµ,λλλ )≥ min
(x,y)∈X×Z

L(x,y,µµµ∗,λλλ ∗)

≥ min
(x,y)∈X×Z

[

L(x∗,y,µµµ∗,λλλ ∗)+∇xL(x∗,y,µµµ∗,λλλ ∗)T
(x−x∗)

]

= min
(x,y)∈X×Z

[

L(x∗,y∗,µµµ∗,λλλ ∗)+∇xL(x∗,y∗,µµµ∗,λλλ ∗)T
(x−x∗)

+
(

∇y

(

∇xL(x∗,y∗,µµµ∗,λλλ ∗)T
(x−x∗)

))T
(y−y∗)

+∇yL(x∗,y∗,µµµ∗,λλλ ∗)T
(y−y∗)−O(w(Z)2)

]

= min
(x,y)∈X×Z

[

f (x∗,y∗)−O(w(Z)2)
]

≥ f (x∗,y∗)−O(w(Z)2).

Note that we have used the fact thatL is partly convex with respect tox in Step 2, thatL(x∗,y∗,µµµ∗,λλλ ∗) =
f (x∗,y∗), ∇xL(x∗,y∗,µµµ∗,λλλ ∗) = 0, ∇yL(x∗,y∗,µµµ∗,λλλ ∗) = 0 in Step 4 since it is assumed that(x∗,y∗,µµµ∗,λλλ ∗)
is a KKT point for Problem (P), and that∇y

(

∇xL(x∗,y∗,µµµ∗,λλλ ∗)T
(x− x∗)

)

= 0 in Step 4 by virtue of the

assumption that the Lagrangian is separable inx andy. Therefore,

min
(x,y)∈F (Z)

f (x,y)− sup
µµµ≥0,λλλ

min
(x,y)∈X×Z

L(x,y,µµµ,λλλ )≤O(w(Z)2),

which establishes the existence ofτ for all Z ∈ IY with y∗ ∈ Z by analogy to Lemma5. ⊓⊔

Note that the assumption of separability in Theorem10 can be replaced with the weaker assumption that
∇2

xyL(x∗,y∗,µµµ∗,λλλ ∗) is the zero matrix.

Remark 15Similar to Corollary5, it can be shown that the reduced-space lower bounding scheme in [10] has
second-order convergence at KKT points even in the absence of constraint propagation when all of the functions
in Problem (P) are separable inx andy and second-order pointwise convergent schemes of relaxations are used.
Furthermore, under the above assumption of separability, the reduced-space lower bounding schemes in [10]
and [9] can be shown to possess second-order convergence at infeasible points and unconstrained points in the
reduced-space under suitable assumptions on the lower bounding schemes (see Remark12). Consequently, the
convergence properties of the reduced-space lower bounding schemes considered in this section are similar
to their counterpart full-space lower bounding schemes in Section4 when all of the functions in Problem (P)
are twice continuously differentiable and separable inx andy. Example11 provides an instance wherein the
convergence order is exactly two aty∗ under the assumptions of Theorem10.

6 Conclusion

A definition of convergence order for constrained problems has been introduced. The definition reduces to
previously developed notions of convergence order for the case of unconstrained problems. An analysis of the
convergence order of some full-space and reduced-space branch-and-bound algorithms has been performed.

It has been shown that convex relaxation-based full-space lower bounding schemes enjoy first-order con-
vergence under mild assumptions and second-order convergence at KKT points when second-order pointwise
convergent schemes of relaxations of the objective and the constraints are used. Furthermore, the importance of
a sufficiently high convergence order at nearly-feasible points has been demonstrated. Lagrangian dual-based
full-space lower bounding schemes have been shown to have atleast as large a convergence order as convex
relaxation-based lower bounding schemes. In addition, it has been shown that Lagrangian dual-based lower
bounding schemes where the dual function is not exactly optimized still enjoy first-order convergence.
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The convergence order of the reduced-space convex relaxation-based lower bounding scheme of Epperly
and Pistikopoulos has been investigated, and it has been shown that the scheme enjoys first-order conver-
gence under certain assumptions. However, their scheme canhave as low as first-order convergence even at
unconstrained points which can lead to clustering. It has also been shown that the reduced-space dual lower
bounding scheme enjoys first-order convergence and that itsconvergence order may be as low as one for con-
strained problems. In that regard, the importance of constraint propagation in boosting the convergence order
of reduced-space lower bounding schemes has been demonstrated. Furthermore, it has been shown that when
all of the functions in Problem (P) are twice continuously differentiable and separable inx andy, the above
reduced-space lower bounding schemes can achieve second-order convergence at KKT points, at unconstrained
points in the reduced-space, and at infeasible points.

Future work involves determining whether full-space lowerbounding schemes can achieve second-order
convergence on a neighborhood of constrained minima that are KKT points (such a result may be required to
mitigate the cluster problem at such constrained minima - see [15, Proposition 2], for instance), analyzing the
convergence orders of some other widely-applicable reduced-space lower bounding schemes in the literature
(see, for example, [33]), and determining sufficient conditions on the constraintpropagation scheme to ensure
second-order convergence of reduced-space lower boundingschemes at constrained minima that satisfy certain
regularity conditions.

Acknowledgements The authors would like to thank Garrett Dowdy and Peter Stechlinski for helpful discussions.

A Proofs

A.1 Proof of Proposition1

Proposition 1 Consider Problem(P) with mE = 0. Suppose f and gj , ∀ j ∈ {1, · · · ,mI }, are Lipschitz continuous on X×Y. Fur-
thermore, suppose(xS,yS) ∈ X×Y such thatg(xS,yS) < 0 (i.e. (xS,yS) is a Slater point). The dual lower bounding scheme has
arbitrarily high convergence order at(xS

,yS).

Proof The arguments below are closely related to the proof of Corollary 2.
Since we wish to prove that the dual lower bounding scheme hasarbitrarily high convergence order at the feasible point(xS,yS),

it suffices to show that for eachβ > 0, there existsτ ≥ 0, δ > 0 such that for everyZ ∈ I(X×Y) with (xS,yS) ∈ Z andw(Z)≤ δ ,

min
(x,y)∈F (Z)

f (x,y)− sup
µµµ≥0

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)
]

≤ τw(Z)β
,

and the desired result follows by analogy to Lemma5 by observing that the dual lower bounding scheme is at least first-order
convergent at(xS,yS).

Let gj (xS,yS) = −ε j < 0, ∀ j ∈ {1, · · · ,mI }. Sincegj is continuous for eachj ∈ {1, · · · ,mI }, there existsδ j > 0, ∀ j ∈
{1, · · · ,mI }, such that‖(x,y)− (xS,yS)‖∞ < δ j implies |gj (x,y)−gj (xS,yS)|< ε j

2 (see Lemma2).
Defineδ := min

j∈{1,··· ,mI }
δ j , and note thatδ > 0. ConsiderZ ∈ I(X×Y) such that(xS,yS) ∈ Z andw(Z) ≤ δ . For each(x,y) ∈

Z, j ∈ {1, · · · ,mI } we have|gj (x,y)− gj (xS,yS)| < ε j
2 . Therefore, for eachj ∈ {1, · · · ,mI }, gj (x,y) < − ε j

2 < 0, ∀(x,y) ∈ Z.
Consequently,

sup
µµµ≥0

min
(x,y)∈Z

[

f (x,y)+ µµµTg(x,y)
]

≥ min
(x,y)∈Z

f (x,y)

= min
(x,y)∈F (Z)

f (x,y)

since Problem (P) is effectively unconstrained over the small intervalsZ around(xS
,yS), which impliesτ = 0 andδ = min

j∈{1,··· ,mI }
δ j

satisfy the requirements. ⊓⊔

A.2 Proof of Proposition2

Proposition 2 Consider Problem(P) with mE = 0. Suppose the functions f and gj , j = 1, · · · ,mI , are each of the form(W). Let
( f cv

X(Z)×Z)Z∈IY denote a continuous scheme of convex relaxations of f in Y with convergence orderβ cv
f > 0 and corresponding
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constantτcv
f , (gcv

j,X(Z)×Z)Z∈IY, j = 1, · · · ,mI , denote continuous schemes of convex relaxations of g1, · · · ,gmI , respectively, in Y with

pointwise convergence ordersγcv
g,1 > 0, · · · ,γcv

g,mI
> 0 and corresponding constantsτcv

g,1, · · · ,τcv
g,mI

.

SupposeyS∈Y is an unconstrained point in the reduced-space, and the scheme of lower bounding problems(L (Z))Z∈IY with

(O(Z))Z∈IY :=

(

min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y)

)

Z∈IY

,

(IC(Z))Z∈IY :=
(

gcv
X(Z)×Z(X(Z)×Z)

)

Z∈IY

has convergence of orderβ ∈ (0,β cv
f ] at yS. Then the scheme of lower bounding problems(L (Z))Z∈IY is at leastβ cv

f -order

convergent atyS.

Proof The proof is similar to the proof of Corollary2.

SinceyS is an unconstrained point in the reduced-space andgj is continuous for eachj ∈ {1, · · · ,mI } by virtue of Assumption1,
∃δ > 0 such that∀z∈Y with ‖z−yS‖∞ ≤ δ (see Lemma2), we haveg(x,z) < 0, ∀x ∈ X.

ConsiderZ ∈ IY with yS ∈ Z andw(Z)≤ δ . We haveg(X(Z)×Z)⊂ R
mI
− andgcv

X(Z)×Z(X(Z)×Z)⊂ R
mI
− . Consequently,

min
(x,y)∈F (Z)

f (x,y) − min
(x,y)∈F cv(Z)

f cv
X(Z)×Z(x,y) = min

(x,y)∈X(Z)×Z
f (x,y) − min

(x,y)∈X(Z)×Z
f cv
X(Z)×Z(x,y)

≤ τcv
f w(Z)

βcv
f .

The desired result follows by analogy to Lemma5 based on the assumption that(L (Z))Z∈IY is at leastβ -order convergent at
yS. ⊓⊔

A.3 Proof of Proposition3

Proposition 3 Consider Problem(P) with mE = 0. SupposeyS ∈Y is an unconstrained point in the reduced-space. Furthermore,
suppose the reduced-space dual lower bounding scheme has convergence of orderβ > 0 at yS. Then the reduced-space dual lower
bounding scheme has arbitrarily high convergence order atyS.

Proof The proof is closely related to the proof of Proposition1.

SinceyS is an unconstrained point in the reduced-space andgj is continuous for eachj ∈ {1, · · · ,mI } by virtue of Assumption1,
there existsδ > 0 such that∀z∈Y satisfying‖z−yS‖∞ ≤ δ (see Lemma2), we haveg(x,z) < 0, ∀x ∈ X.

ConsiderZ ∈ IY with w(Z)≤ δ . Sinceg(X(Z)×Z)⊂R
mI
− , Problem (P) can be reformulated as

min
(x,y)∈F (Z)

f (x,y) = min
(x,y)∈X(Z)×Z

f (x,y).

The dual lower bound can be bounded from below as

sup
µµµ≥0

min
(x,y)∈X(Z)×Z

[

f (x,y)+ µµµTg(x,y)
]

≥ min
(x,y)∈X(Z)×Z

f (x,y).

The desired result follows by analogy to Lemma5 and the assumption that the dual lower bounding scheme is at leastβ -order
convergent atyS. ⊓⊔
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A.4 Proof of Arguments in Example18

Proof We first show thatxf
Z−x∗ ≥ 0.2ε +o(ε).

xf
Z−x∗ =

(

√

(exp(3−yU))
2
+40+2(exp(3−yU)−exp(3−y∗))−exp(3−yU)

2
−

√

(exp(3−y∗))2 +40−exp(3−y∗)

2

)

=

(

(

exp(3−yU)
)2− (exp(3−y∗))2

)

+2
(

exp(3−yU)−exp(3−y∗)
)

2

(
√

(exp(3−yU))
2
+40+2(exp(3−yU)−exp(3−y∗))+

√

(exp(3−y∗))2 +40

) +

(

exp(3−y∗)−exp(3−yU)
)

2

=

(

exp(3−yU)+exp(3−y∗)+2
)(

exp(3−yU)−exp(3−y∗)
)

2

(
√

(exp(3−yU))2 +40+2(exp(3−yU)−exp(3−y∗))+

√

(exp(3−y∗))2 +40

) +

(

exp(3−y∗)−exp(3−yU)
)

2

≥ (exp(3−y∗)+exp(3−y∗)+2)
(

exp(3−yU)−exp(3−y∗)
)

2

(
√

(exp(3−y∗−0.1))2 +40+2(exp(3−y∗−0.1)−exp(3−y∗))+

√

(exp(3−y∗))2 +40

)+

(

exp(3−y∗)−exp(3−yU)
)

2

≥0.025
(

exp(3−y∗)−exp(3−yU)
)

=0.025exp(3−y∗)ε +o(ε)

≥0.2ε +o(ε) .

Next, we derive an expression for ¯xZ(y)−x∗(y).

x̄Z(y)−x∗(y) =

(

√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))−exp(3−yL)

2
−

√

(exp(3−y))2 +40−exp(3−y)

2

)

=

(

(

exp(3−yL)
)2− (exp(3−y))2

)

+4xU
Z

(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

)+

(

exp(3−y)−exp(3−yL)
)

2

=

(

exp(3−yL)+exp(3−y)+4xU
Z

)(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

)−

(

exp(3−yL)−exp(3−y)
)

2
. (11)

We next establish the dependence of the different terms in Equation (11) on ε . We first derive an expression for exp(3− yL) +
exp(3−y)+4xU

Z .

exp(3−yL )+exp(3−y)+4xU
Z

= exp(3−y∗+ ε)+exp(3−y)+2
√

(exp(3−y∗− ε)2 +40−2exp(3−y∗− ε)

= exp(3−y∗)+exp(3−y)+ ε exp(3−y∗)+O(ε2)+2
√

(exp(3−y∗))2 [1−2ε +O(ε2)]+40

−2exp(3−y∗)
[

1− ε +O(ε2)
]

=2
√

(exp(3−y∗))2 +40+exp(3−y)−exp(3−y∗)+3exp(3−y∗)ε− 2(exp(3−y∗))2 ε
√

(exp(3−y∗))2 +40
+O(ε2).
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Next, we derive an expression for 4xU
Z

(

exp(3−yL)−exp(3−y)
)

.

4xU
Z

(

exp(3−yL)−exp(3−y)
)

=

(

2
√

(exp(3−y∗− ε)2 +40−2exp(3−y∗− ε)

)

(exp(3−y∗+ ε)−exp(3−y))

=

(

2
√

(exp(3−y∗))2 +40−2exp(3−y∗)
)

(exp(3−y∗+ ε)−exp(3−y))+O(ε2)

=

(

2
√

(exp(3−y∗))2 +40−2exp(3−y∗)

)

(exp(3−y∗)−exp(3−y)+exp(3−y∗)ε)+O(ε2).

Finally, we consider
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40.

√

(exp(3−yL))
2
+40+4xU

Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

=

√

(exp(3−y∗+ ε))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

=

√

(exp(3−y∗))2 +40

√

1+
4xU

Z

(

exp(3−yL)−exp(3−y)
)

+2(exp(3−y∗))2 ε +O(ε2)

(exp(3−y∗))2 +40
+

√

(exp(3−y))2 +40

=

√

(exp(3−y∗))2 +40+

√

(exp(3−y))2 +40+
(exp(3−y∗))2 ε

√

(exp(3−y∗))2 +40
+

(
√

(exp(3−y∗))2 +40−exp(3−y∗)
)

(exp(3−y∗)−exp(3−y)+exp(3−y∗)ε)

√

(exp(3−y∗))2 +40
+O(ε2).

Substituting the above expressions in Equation (11), we get

x̄Z(y)−x∗(y) =
α
(

exp(3−yL)−exp(3−y)
)

2

(
√

(exp(3−yL))2 +40+4xU
Z (exp(3−yL)−exp(3−y))+

√

(exp(3−y))2 +40

) ,

with

α :=
√

(exp(3−y∗))2 +40−
√

(exp(3−y))2 +40+exp(3−y)−exp(3−y∗)−
(
√

(exp(3−y∗))2 +40−exp(3−y∗)
)

(exp(3−y∗)−exp(3−y))
√

(exp(3−y∗))2 +40
+3exp(3−y∗)ε−

3(exp(3−y∗))2 ε
√

(exp(3−y∗))2 +40
−

(
√

(exp(3−y∗))2 +40−exp(3−y∗)

)

exp(3−y∗)ε
√

(exp(3−y∗))2 +40
+O(ε2)

=





exp(3−y∗)+exp(3−y)
√

(exp(3−y∗))2 +40+

√

(exp(3−y))2 +40
−1



(exp(3−y∗)−exp(3−y))−

(
√

(exp(3−y∗))2 +40−exp(3−y∗)

)

(exp(3−y∗)−exp(3−y))
√

(exp(3−y∗))2 +40
+3exp(3−y∗)ε−

3(exp(3−y∗))2 ε
√

(exp(3−y∗))2 +40
−

(
√

(exp(3−y∗))2 +40−exp(3−y∗)

)

exp(3−y∗)ε
√

(exp(3−y∗))2 +40
+O(ε2)

≤ τ̂ε +O(ε2)

for someτ̂ ≥ 0 sincey ∈ Z = [yL
,yU] with w(Z) = O(ε) and each term in the expression forα is O(ε). Note thatα ≥ 0 (since

x̄Z(y)≥ x∗(y)). ⊓⊔
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