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Quenched randomness can have a dramatic effect on the dynamics of isolated 1D quantum many-body systems,
even for systems that thermalize. This is because transport, entanglement, and operator spreading can be hindered
by “Griffiths” rare regions, which locally resemble the many-body-localized phase and thus act as weak links.
We propose coarse-grained models for entanglement growth and for the spreading of quantum operators in the
presence of such weak links. We also examine entanglement growth across a single weak link numerically. We
show that these weak links have a stronger effect on entanglement growth than previously assumed: entanglement
growth is subballistic whenever such weak links have a power-law probability distribution at low couplings, i.e.,
throughout the entire thermal Griffiths phase. We argue that the probability distribution of the entanglement
entropy across a cut can be understood from a simple picture in terms of a classical surface growth model. We
also discuss spreading of operators and conserved quantities. Surprisingly, the four length scales associated with (i)
production of entanglement, (ii) spreading of conserved quantities, (iii) spreading of operators, and (iv) the width
of the “front” of a spreading operator, are characterized by dynamical exponents that in general are all distinct.
Our numerical analysis of entanglement growth between weakly coupled systems may be of independent interest.

DOI: 10.1103/PhysRevB.98.035118

I. INTRODUCTION

A Dbasic question about a many-body quantum system,
closely related to its ability to thermalize, is how effec-
tively quantum information spreads through it. The dynamical
generation of quantum entanglement, following a quantum
quench from a weakly entangled state, provides one window
on information spreading [1-6]. Unitary dynamics typically
generates correlations between increasingly distant degrees of
freedom as time goes on. The resulting irreversible growth in
the entanglement entropy of a subsystem reveals differences
between integrable, nonintegrable, disordered, and many-body
localized (MBL) [3,4,7] systems.

Complementary insight into information spreading comes
from considering light-cone-like effects limiting the propa-
gation of signals and disturbances through the system [8].
This leads to the question of how an initially local quantum
operator spreads and becomes nonlocal under Heisenberg time
evolution. Again there are important differences between clean
and disordered systems.

In translationally invariant one-dimensional (1D) systems,
entanglement growth and operator spreading are both typically
associated with nonzero speeds [1,2,5,6,9]. By contrast, in
the MBL phase, both entanglement growth [2—4,10,11] and
operator spreading [12-18] are associated with length scales
that grow only logarithmically in time.

This paper studies a third situation: 1D systems that are
disordered, but are in the thermalizing phase. In 1D, quenched
randomness can strongly affect transport and information
spreading even in the thermal phase. This is because there
can exist rare regions where disorder happens to be stronger
than average, and which locally resemble the MBL phase.
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These “Griffiths” regions act as bottlenecks or weak links,
hindering the propagation both of conserved quantities and
of quantum information. The effects on transport are fairly
well understood: strong enough disorder leads to subdiffusive
transport [19-21], as observed numerically [21-25]. (Certain
rare-region effects have also been addressed experimentally
[26].) Subballistic entanglement and signal propagation has
been observed numerically in the Griffiths phase [23,27].
Here we provide long-wavelength pictures which expose
the universal physics underlying entanglement growth and
operator spreading in the Griffiths phase, and yield the uni-
versal scaling exponents and scaling forms governing these
processes. In contrast to both clean systems and the MBL
phase, we find that the length scales governing entanglement
growth and operator growth (as measured by the so-called
out-of-time-order correlator) scale with different powers of the
time. In a certain sense, entanglement growth is parametrically
slower than operator spreading in the Griffiths phase. We find
that in a portion of the thermal Griffiths “phase” where the
transport is diffusive and the operator spreading is ballistic,
so in these two respects the rare regions do not change
the disorder-free behavior, the entanglement growth remains
subballistic due to the rare region effects. The transition
from diffusive to subdiffusive transport is clearly exhibited
in Ref. [25], although to show that required probing quite
long length scales using matrix product methods. Our results
say that the entanglement growth remains subballistic at this
transition. Numerically probing this long-time entanglement
behavior is a challenge that might be well beyond presently
known methods and capabilities. The physics of this regime is
weak links. Most models that have been numerically studied
have uniform couplings and randomness only on the local fields
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or potentials. To make this weak-link behavior more accessible
in numerics, it may be worthwhile exploring models where the
couplings are random, perhaps even with a power-law bare
distribution of weak links.

We provide a long-distance picture for entanglement en-
tropy growth in terms of an effective classical surface growth
problem. The height of the growing “surface,” S(x), is the
amount of entanglement across a cut in the 1D system at
position x; the growth of the surface is deterministic, but
it is affected by quenched randomness in the local growth
rates. This picture is motivated by an analogy to a simpler
quantum dynamics based on a random quantum circuit [6].
The basic assumptions are also substantiated independently,
including with a semimicroscopic analysis of entangling across
a Griffiths region.

The surface growth picture leads to the unexpected conclu-
sion that entanglement growth is subballistic throughout the
entire thermal Griffiths phase, i.e., whenever Griffiths regions
locally resembling the MBL phase are possible. (This appears
to require the absence of exact non-Abelian symmetries, as
these appear to prohibit MBL [28-30].) We give expressions
for the dynamical exponent governing the growth of the von
Neumann entropy and for the probability distribution of this
quantity at late times.

Turning to operator growth, we propose a very simple
“hydrodynamic” picture for the out-of-time-order correlator
in the Griffiths phase, making use of the random circuit results
in Ref. [31] (see also Ref. [32]). We obtain a picture involving
two separate diverging length scales at long times. In fact,
we argue that in the Griffiths phase there are in general
at least four separate dynamical exponents z, characterizing
four length scales that can grow with time with different
exponents: these are associated with entanglement growth (z5),
with the spreading of an operator (z¢), with the width of the
“front” of the OTOC (zy), and with spreading of conserved
quantities (z¢). (See the table in Sec. V.) In particular, ballistic
spreading of operators does not imply ballistic spreading of
entanglement, contrary to previous suggestions.

Studying the thermal Griffiths phase leads naturally to
questions about how two weakly coupled systems exchange
quantum information. These questions are of general interest,
outside the context of disordered systems. How do two weakly
coupled quantum systems become entangled over time? How
do operators localized in one of the systems spread across
the weak link? We provide numerical and analytical results
for generation of entanglement across the weak link, showing
that the entanglement entropy is governed by a very simple
scaling function and that the “weak link” can be characterized
by a well-defined entanglement growth rate. (We investigate
numerically how this growth rate depends on the strength of the
weak coupling and on the index n of the Renyi entropy S,.)
We propose a simple scaling form for the out-of-time-order
correlator of an operator which spreads across a weak link
between two semi-infinite 1D chains.

II. ENTANGLEMENT GROWTH

In this section, we study entanglement growth starting from
a weakly entangled state: this could be the ground state of the
pre-quench Hamiltonian in a quantum quench. The specific 1D

system does not matter at this stage, but an archetypal example
is the Heisenberg spin chain with random couplings and fields,

H=Y U8 S+ Y hiSi. (M

(We could also consider a Floquet spin chain with effective
discrete time dynamics.) Such chains will thermalize if the
randomness is not too strong. However, thermalization may
be slow as a result of weak links. These may be simply weak
couplings where a single bond J; is very weak. More robustly,
the weak links may be due to extended Griffiths regions where
the disorder happens to be more severe, so that MBL physics
arises locally [21].

Moving to a coarse-grained description, let us label weak
links by an index i, with a given weak link located at a
position x;. A key assumption is that each weak link has a
well-defined local entanglement rate T';, which is the rate at
which entanglement is generated across the weak link in the
absence of other weak links. We will give arguments supporting
this assumption in Secs. VI and VII. The local entanglement
rates are assumed to be independent random variables with a
power-law distribution at small I":

P()~ ATY,

The weak links are the tail of this distribution to small I". The
exponent a depends on the strength of disorder and decreases as
the many-body localization transition is approached, possibly
approaching —1 at the transition. The power-law form arises
because the probability of a Griffiths region of length ¢,
and the entangling rate associated with such a region, both
decrease exponentially with € (Sec. VI). Or the power law
might arise directly from the “bare” probability distribution
of the couplings J;. As usual, we will neglect the weak link’s
nonzero spatial extent £: for Griffiths regions this grows only
logarithmically as I' — 0, so is negligible compared to the
lengthscales discussed below which grow as powers of T.

Consider a chain with open boundary conditions that is in
a pure quantum many-body state, and let S(x,7) be the von
Neumann entanglement entropy across a cut through the bond
at position x at time ¢. Formally,

S(x,1) = —=Tr pa, (1) 1og pa, (1), 3

where the subsystem A, contains the degrees of freedom to
the left of x (Fig. 1). We could also consider a mixed state of
the full system, in which case this is the von Neumann entropy
of the subsystem to the left of the cut.

We will model the dynamics of S(x,7) as deterministic
surface growth. In the next section, we will motivate this
using a toy model for entanglement growth in the presence
of weak links, but first we describe the consequences for the
coarse-grained dynamics.

—1<a<oo. 2)

FIG. 1. Schematic: entanglement across a cut through bond at
position x.
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The surface growth picture takes into account two crucial
physical constraints. First, the growth rate at a weak link
i, which is at position x;, is constrained by the local rate
I';. Second, the spatial slope of the entropy profile S(x,?) is
constrained by the density of active degrees of freedom in the
spin chain:

8S(x;,1)/01 < Ty, 18S(x,1)/3x] < seq- “)

Here, s¢q is the entropy density of the thermal state to which the
system is locally equilibrating. The second inequality follows
from subadditivity of the von Neumann entropy, together with
the assumption that local reduced density matrices (for O(1)
adjacent spins) thermalize at late times (no local high-entropy
“hot spots”). In a lattice spin model at infinite temperature, seq
is the logarithm of the local Hilbert space dimension per unit
length; this version of the inequality follows rigorously from
subadditivity. In the following, we will rescale x so that the
inequality becomes

10SCx,1)/0x] < 1. 5)

If the system has any conserved densities, such as energy,
that have a spatial distribution that is away from thermal equi-
librium, then these equations for entanglement production are
coupled to the transport equations for the conserved densities,
and I'; and seq in general depend on the local densities. For
simplicity, we will assume that any such conserved densities
are close to equilibrium and it is only the entanglement
that is far from equilibrium. (This is natural for a quench
from an initial state with a spatial distribution of conserved
quantities that is statistically homogeneous: at times much
larger than microscopic timescales, but much smaller than L,
the conserved density will locally be close to equilibrium, but
the entanglement across a given cut can still be far from its equi-
librium value.) More generally, since there are regimes where
the transport is slower than the entanglement dynamics, in
some circumstances the late time entanglement dynamics can
be slowed due to being constrained by the more slowly relaxing
conserved density (if this is sufficiently spatially nonuniform).

As a result of these inequalities, each weak link i imposes
the constraint S(x,#) < S(x;,0) + I';t + |x — x;|. We propose
that at late times the entropy is essentially as large as it can be
given these constraints:

S(x,t) = min {S(x;,0) + T'it + [x — x;}. 6)

The entanglement across a bond at x is therefore determined by
a single locally “dominant” weak link. The spatial boundaries
are taken into account by treating them as weak links with I" =
0. For a pure state, the final profile at asymptotically late times,
once the system has fully thermalized, is the pyramid S(x,t) =
min{x,L — x}. These formulas, of course, neglect subleading
corrections (see Sec. I A); for example, we know that the
entanglement near the center of the chain will depart from
the maximal value by an O(1) correction even as ¢t — oo [33].

Figure 2 shows growth according to the rule in Eq. (6). In
the next section, we will see how it emerges at large lengths
and timescales from a semimicroscopic toy model.

A simple optimization argument tells us how S(x,7) scales
with time if we start from a pure product state with S(x,0) = 0.
Let D be the typical distance to the dominant weak link at time
t. The weakest link within this distance scale will have a rate

SN entanglement
1 4 production

W entanglement

weak links cut position

FIG. 2. Surface growth picture for entanglement S(x) across a
cut at x in a finite chain, following Eq. (6). The lines show successive
equally spaced times. Weak links with larger rates I" are successively
“dominated” by weaker links with smaller I". [This sample was
generated with a = 0, see Eq. (2).]

of order Tin, ~ D~1/@+D 5o the two terms in ;7 + |x — x;]
will scale as D~'/@+D¢ and D, respectively. Minimizing with
respect to D gives

a+?2
S(x,t) ~ 113, 75 = T (7

The dynamical exponent zg sets the typical lengthscale for
entanglement at time ¢: for example, the typical time for the
entanglement profile to saturate in a finite system of size L
will be of order LS. It also governs the typical distance to the
locally dominant weak link,

D ~ ¢/, ®)

This is the lengthscale for the dynamical coarsening of the
entanglement pattern visible in Fig. 2.

A key feature of Eq. (7) is that the entropy grows “subballis-
tically” even for arbitrarily weak disorder, i.e., zg exceeds one
for any finite a. This is despite the fact that operator growth is
ballistic for large enough a, as we will explain in Sec. III.
Equation (7) differs from earlier results which effectively
assumed the timescale for entanglement saturation of a large
chain was equal to a timescale associated with the weakest link
in the chain [19,20]. These previous works took a viewpoint
of the “spreading” of entanglement, while we now argue that
this process is more accurately viewed as the constrained
local production of entanglement. The situation with numerical
studies of entanglement production (and its relation to operator
spreading) in this Griffiths regime is still unclear: Ref. [27]
reports exponents quite different from what we find here,
but then their exponents also appear to be inconsistent with
Ref. [34], which studies the entanglement of the unitary time
evolution operator rather than of initial product states. It seems
likely that the finite size effects are still very strong for the sizes
that have been studied numerically.

Since S in Eq. (7) is the minimum of a set of uncorrelated
random variables, itis straightforward to find its full probability
distribution in the limit of an infinite chain initiated in a
pure product state. If the density of weak links is p and the
distribution of local rates is (2) at small I", the cumulative
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rate
I'(x)/2

X

FIG. 3. Random circuit model: each bond x receives Haar-
random unitaries at its own rate ['(x)/2.

probability distribution at long time is

a+2
P(entropy > S) = exp (—CW> O]

with (restoring the equilibrium entropy density sy,)
2Ap
c=————.
sm(a + 1)(a +2)

The surface growth picture is restricted to the entanglement
across a single cut; to generalize to regions with multiple
endpoints, or to periodic boundary conditions, we may use
the “directed polymer” description in Sec. II B.

(10)

A. Random circuit model

Quantum circuit dynamics, with randomly chosen two-site
unitaries, capture many universal features of entanglement
growth in translationally invariant systems [6]. This setup is
easily adapted to give a toy model for entanglement growth
in the presence of weak links. This leads to a concrete
surface growth problem defined on the lattice, from which the
coarse-grained rule (6) can be seen to emerge in the scaling
limit. This is not a derivation of the surface growth picture
for isolated 1D systems with time-independent Hamiltonian
or Floquet dynamics, whose microscopic dynamics are very
different from the toy model; however, it motivates the surface
growth picture, some of whose predictions can subsequently
be checked by other means.

Consider a chain of spins, each with a large local Hilbert
space dimension, g >> 1. The chain is initially in an unentan-
gled product state. Random two-site unitaries are then applied
to adjacent spins in a Poissonian fashion, at rates %F(x) that
depend on the bond x (Fig. 3). These rates are distributed at
small T as in Eq. (2).

At large g, the dynamics of the entanglement S(x,?) across
bond x maps exactly to a classical surface growth model
[6]. We absorb a factor of logq into the definition of S
(by defining the von Neumann entropy using a logarithm
base g). The entanglement S(x,7) then obeys a very simple
dynamical growth rule: each time a unitary is applied to
bond x, S(x,?) increases to the maximal value allowed by the
general constraint that S(x,7) can exceed S(x &£ 1,¢) for the
neighboring bonds by at most 1. With this growth rule,
the differences between adjacent heights are always £1 at late
times [6].

The resulting dynamics is microscopically stochastic. How-
ever, we may neglect the noise-induced fluctuations, since they
are negligible in the long-wavelength limit.

First, take I' to be constant (no weak links), and consider
the growth of a region whose coarse-grained slope 9.5/9x is

x x

FIG. 4. (Left) Maximum possible slope for the entanglement
profile in the quantum circuit model, 95/9x = 1. (Right) A staircase
with a defect. After coarse-graining, a finite density p of defects results
inaslope S/9x =1 —2p.

constant. If the surface is flat, 3S/9x = 0, the growth rate is
I'/4 [35]. The important regime for us will instead be where
the slope [0S/dx| is close to the maximal value of unity.
Microscopically, this means that the surface is close to the
perfect staircase configuration shown in Fig. 4 (left). Note that
the growth rate vanishes in this configuration. However, when
|0S/0x]| is slightly smaller than unity, there is a small density
p of “defects” in the staircase, involving a local minimum of
the height, see Fig. 4 (right). These defects allow growth. Each
time a unitary hits a defect, the local height increases by two
units. The coarse-grained growth rate is thus S /9t >~ pI". The
coarse-grained slope is given by [0S/dx| =1 — 2p, so

9s I | — 1
=2 (1-]5]) (an

Note that, microscopically, each time a unitary hits a defect,
the defect moves up the staircase by one step, so defects run up
the staircase at an average speed I'/2. The growth rate 95 /0t
can be also thought of as (twice) the “current” of these defects.

Next, consider entanglement growth in a system with a
single weak link at the origin, with rate I'y < I". At a typical
time ¢, the local configuration resembles Fig. 5 (left). Micro-
scopically, the weak bond is almost always a local minimum
of the height profile. Unitaries are applied there at a rate Iy /2,
causing growth at rate I';. Each such event launches one defect
up each staircase on the two sides of the weak link. The growth
rate of the adjacent regions is therefore set by the growth rate
at the weak link, S5 /9t = I'|. The coarse-grained slope of the
adjacent regions is fixed using (11): |05/dx| =1 —2T";/T.
For small I'}, the deviation of the slope from unity is small.
Neglecting this deviation,

BN
0x

S(x,t) ~ min{T'y¢ + |x|, ['t /4}, (12)

FIG. 5. Growth at a weak link location (random circuit model).
Unitaries are applied at the weak link at a small rate I';. Each such
event increases the height at the origin by two units. Two “defects”
then travel up the sides of the double staircase at an average speed
ry/2.
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S(x)

/4

1Y)

X X

FIG. 6. (Left) Entanglement growth around a weak link charac-
terized by a small rate I';. (Right) Entanglement growth around a pair
of weak links, showing how the weaker link dominates at late times.
The figure shows eight equally spaced times.

when the initial state is a pure product state. This profile is
shown in Fig. 6 (left). The weak link influences a region of
size ~I"t /4 on either side.

It is straightforward to generalize to multiple weak links.
Consider two with rates 'y and I', that are separated by a
distance / [Fig. 6 (right)]. We take I'y < I', < T". The regions
of influence of the two weak links meet at a time ~2[/T,
giving a profile with a central peak. The region of influence of
the weaker link then gradually expands at the expense of the
stronger link. Attimet ~ [/(I", — I'}), the central peak hits the
link with the rate I'; and disappears. Subsequently, the link with
the larger rate has no effect on the coarse-grained configuration,
being “dominated” by the weaker link. (The link with rate
I', does not affect the slope, or equivalently the density of
defects, in this regime, except precisely at its location: the
flow of defects is limited only by the slower rate I';.) Again,
we may write

SCe,t) ~ min{Tyt + |x — x1], Taf + |x — xo|, Tt/4}. (13)

The same logic extends to arbitrary numbers of weak links.
The I't /4 term can be dropped since at large times every point
x is within the domain of influence of some weak link. This
gives Eq. (6).

We may also quantify the subleading corrections to Eq. (6):
the average gradient |3S/dx| of the straight sections! is
reduced from the maximal value of unity by an amount of
order D~!/@+D when a > 0 and of order D' when a < 0.
Since D ~ t/3s >> 1, these corrections are indeed small.

B. “Minimal cut” interpretation

There is a general relationship between surface growth in
1+1D and the statistical mechanics of a directed polymer in
a two-dimensional environment [36]. The results discussed
above may also be understood in this language, and this allows
them to be generalized to more complex geometries.

'For large ¢, the profile consists of staircases of typical length
D ~ t'/%5 with almost-maximal coarse-grained |35 /dx|. The minima
between such staircases are weak links with typical strength I"p, ~
D~1@+D [see above Eq. (7)]. The gradient at position i is less than
the maximum by O(I'nin/ I';). Summing this, the total height of the
staircase is reduced from that of a perfect staircase by AS of order
[min Zi’;l l"l-_1 (note I'; > 'y + x /), which gives the scaling in the
text.

—

FIG. 7. Minimal cut configurations determining S(x,f) in an
infinite system with a single weak link of strength I';. The grey
patch represents the unitary circuit and the thick line represents the

(coarse-grained) minimal cut: (left) for x < % E::;‘;lﬁ:; and (right)
It (1-4T/T)
for x > T 0"

In the context of entanglement, the directed polymer may
be viewed as a coarse-grained “minimal cut” through a unitary
circuit representing the dynamical evolution [6]. We briefly
summarize the main features of this coarse grained picture as
it applies to the random circuit model. In the present case, with
weak links, we obtain a directed polymer subject to pinning by
vertical defect lines [37].

The entanglement S(x,f) is given by the “energy” of a
minimal energy cut which splits the space-time slice into two
disconnected pieces—see Fig. 7. (In this section we treat the
time ¢ as a spatial dimension.) One endpoint of this cut must be
at position x on the top boundary, and the cut must disconnect
the parts of the top boundary to the left and right of x. In an
infinite system, this means that the other endpoint of the cut
must be at the bottom boundary. In the absence of weak links,
the minimal energy such cut is vertical, and the energy per unit
heightis I' /4 (in the notation of Ref. [6] this is the entanglement
rate vg). In a finite system, the cut can terminate on the left-
or right-hand spatial boundary.

To begin with it is sufficient to consider only horizontal
and vertical cuts. The energy of a horizontal cut is equal to
its extent in the x direction. If we consider S(x,?) in a clean
semi-infinite system with a boundary at position 0, the minimal
cut is vertical and of energy 't /4 for early times, while at late
times the horizontal cut with energy x is favorable; this gives
S(x,t) = min{I't/4,x}.

A single weak link corresponds to a vertical defect line
where the energy density per unit height is reduced and equal to
I';. For large ¢, it is worthwhile for the polymer to travel a large
horizontal distance to take advantage of this favorable energy
density. It must of course “pay” in energy for the nonvertical
section required to reach the defect. For a crude picture, we
can consider only horizontal and vertical segments; it is easy
to see that in an infinite system we then recover Eq. (12).

In more detail, the energy of a segment of horizontal extent
x remains equal to x even if the segment is at a finite angle
to the horizontal, so long as this angle is small enough? (this
is true for slopes > 2/T"). This means that the true minimal

2This can be seen from the microscopic picture of the polymer as a
“minimal cut” through the large-g unitary circuit. The energy of the
polymer is equal to the number of bonds it cuts. A horizontal cut of
length x cuts x bonds. This horizontal cut can be deformed to one
with a finite coarse-grained slope, with the same energy, so long as
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1/z
t ° t1/ZW
-
C -

> X

FIG. 8. Definition of dynamical exponents zo and zy governing
the size of a spreading operator and the size of the front [as measured
using the OTO correlator C(x,t), Sec. III]. The front is only well-
defined in the weak-disorder regime (a > 1), where zp =1 and
zw < 1.

cut configuration for small x is as shown in Fig. 7. This
corresponds to taking subleading corrections in the slope of
S(x) into account, and gives S(x,t) = I'it + (1 —2I';/ T)|x|
in agreement with the previous section.

This picture may be extended to multiple weak links. The
typical transverse excursion for a given cut is of order D ~
t1/2s so much smaller than ¢ [Eq. (8)]. It may also be extended
to a region with multiple endpoints. Consider the entanglement
of afinite region of length x in an infinite system. At early times,
the minimal cut configuration involves two disconnected cuts,
giving an entanglement of order ¢'/%s, which is the sum of two
independent random variables distributed as in Eq. (9). Once
this becomes equal to x, a configuration with a single horizontal
cut becomes favorable.

III. OPERATOR SPREADING

Heisenberg time evolution will transform a local operator,
for example, the Pauli matrix X located at the origin in a spin
chain, into a complex object Xo(t) = U (t)! XoU (¢), which acts
nontrivially on many sites. The spatial extent of this growing
operator may be quantified using the commutator with a local
operator at site x [8]. In particular, one can define the recently
much-studied object [9,12-18,27,38-54]

C(x.1) = =1 Tr pg[Xo(1), X 1%, (14)

where pg is the density matrix e ##/Z at the appropriate
temperature. Expanding the squared commutator gives the
“out-of-time-order” (OTO) correlator

Clx.t) =1 —Tr ppXo(t) X Xo(1) X, (15)

C(x,t) is of order one in a spatial region whose size grows with
t, and C(x,t) vanishes far outside this region. In translationally
invariant systems the size of the operator, as measured by C,
grows ballistically with a speed vp known as the butterfly
speed.

Here we address the size and “shape” of spreading operators
in the thermal Griffiths phase (see Fig. 8). For simplicity, we
consider the case 8 = 0, but we do not expect this to change the
basic results. We determine dynamical exponents zp and zy,
which give respectively the typical size t'/2¢ of the operator
at time ¢ and the typical size ¢'/?¥ of its “front”—the region
in which C is of order one, but smaller than the saturation

the slope is >2/T" (this is the typical vertical distance that the cut can
travel before being blocked by a unitary).

value. The shape of the operator turns out to be qualitatively
different for weak and strong disorder. For weak disorder
Zw > Zo; in this regime, the front is much smaller than the
“plateau” region in which C has saturated to its maximum
value. Conversely, for strong disorder, zw = z¢, so that C does
not have a well-defined plateau when lengths are scaled by the
spreading length.

Our starting point is a picture for operator spreading in
1D systems developed on the basis of calculations in random
circuits in Ref. [31] (see also parallel work [32]). It is shown
there that for x > 0 and for long times, we may write (we
switch to a continuum notation)

C(x,t) = /mdx’p(x',t), (16)

where p(x,t) is a conserved density

/mp(x,t)= 1, a7
0

and where—in a random circuit without weak links—p(x,7)
behaves essentially like the probability density of a random
walker with a bias in favor of rightward steps. The average
speed vp of the walker sets the butterfly velocity. For x < vpt,
the bulk of the density is within the range of integration in (16),
yielding C(x,t) ~ 1; for x > vpt, the density is mostly outside
the range of integration, giving C(x,t) > 0. The transition
region broadens diffusively, with width ~4/¢. This picture in
terms of the density p generalizes very naturally to the situation
with weak links, where vp is no longer necessarily nonzero.

Let us briefly summarize the meaning of the density p [31].
First, write the spreading operator at time ¢ in the basis of
products of Pauli matrices,

Xo®) =) ast)S. (18)
S

Here, S is a string (product) of Pauli matrices at different sites.
These strings satisfy

Tr pocSS’ = 855, (19)

and since Tr pooXo(f)> =1 we have Y sas(t)* = 1. The
density p(x,t) is the “fraction” of strings that end at position
x (astring S ends at x if x is the rightmost site at which it acts
nontrivially):

p(x,t) = Z as. (20)
S

(ends at x)

The density p(x,t) is evidently conserved and is normalized to
one, Y p(x,t) = 1, despite the fact that the number of distinct
strings contributing to this density grows exponentially with
time.

Consider C(x,t) for x > 0. Inserting the expression (18)
shows that C(x,?) is

ceen =23 "al, 1)
S

where the primed sum includes only those strings whose
commutator with X, is nontrivial. Strings whose right endpoint
is at a position to the left of x cannot contribute to this sum,
but an O(1) fraction of those whose right endpoint is to the
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2 -A>

X,

i
FIG. 9. Operator spreading caused by passage through a weak
link (schematic). (Top) The spreading of the “wave packet” p(x,?)

[Eq. (16)]. (Bottom) The corresponding spreading of the front of the
commutator C(x,t) [Eq. (14)].

\j
x

> X

right of x do contribute. Specifically, we expect? this fraction
to be 1/2, giving (16). In a random circuit without weak links,
p(x,t) may be argued to satisfy a noisy diffusion equation with
bias [31].

This motivates the following picture for a system whose dy-
namics is deterministic but spatially random. We first consider
the spreading of an operator through a single weak link, and
then generalize to a Griffiths chain with many weak links.

A. Operator spreading across one weak link

Consider two regions in which operators spread at speed
vp, separated by a weak link characterized by a very small rate
I'. For simplicity, we think of the weak link as a weak bond at
position x = 0, and consider its effect on the rightward front
of an operator which is initially localized in the leftward part
of the system.

First, the density p(x,t) advances to the weak link, which we
take to be located at position x = 0, reaching the weak link at
time 7,.. We neglect the diffusive spreading in p prior to passing
through the weak link. It is easy to restore this effect in what
follows by a more detailed treatment of biased diffusion on a
chain with weak links, but it is not important for the scaling
exponents below. The density then leaks through at a rate I,
SO

p(07,1) = e T, (22)

where 0~ is the lattice site to the left of the weak link. The
density on the other side of the weak link is

(0T, 1) = Le_r(’_t*). (23)
Up
(Walkers hop across at rate I', and are whisked away at speed
vg.) Since we neglect spreading of p within the homogeneous
region, the density to the right of the weak link is related to
the above by p(x,1) = p(x — vpt): for0 < x < vp(t — t,) we
have

r r
px,t) = —exp{—[x—vg(t—t*)]}. 24)
Up UB

3A given string can either have X,Y,Z or 1 at site x (two of which
commute with X), and we expect all options to be equally likely [31]
deep in the interior of the operator.

At times >1/T" (but small compared to v%/I'?D, when
diffusive spreading becomes comparable), the packet p(x) is
of width ~vg /T and of height I' /vp [see Fig. 9 (top)].

B. Operator spreading across many weak links

To understand spreading across multiple weak links, it is
useful to think of each one as performing a linear transforma-
tion on the “wave packet” p(x,t). We go into a frame moving at
speed vp. The foregoing tells us that if the initial wave packet
is

po(x) = 8(x — xo), (25)
then the new wave packet is (we define y = I'/vp)
p1(x) =y (x < xp). (26)

In other words, by linearity,

pi(x) = V/O dye " po(x + ). 27

This transformation may be iterated.* It preserves the nor-
malization of p and it acts in a simple way on the mean and
variance. If the kth weak link encountered has strength y;,

R S

(Wi = 2 + v (28)

C. Operator spreading in the Griffiths phase

Next, let us consider the leading edge of the commutator as it
passes through a sequence of weak links I'y, with a probability
distribution P(I") ~ I'“. (In this section, we use a unit of length
such that the density of weak links is unity.) There are three
separate questions: (i) how far has the leading edge traveled at
time 7 (ii) What is the typical width of the leading edge after
a time ¢, within a given sample, i.e., for a given realization
of the quenched disorder? (iii) How much variation in the
position of the leading edge is there between different disorder
realizations?

After traveling a distance x, the wave packet has passed
through O(x) weak links. From the formula for the mean, the
position of the wave packet is

xvpt— Yy (29)
k=1

where we have made the approximation that all parts of the
wave packet have passed through the same number of weak
links. (This simplification does not change the scaling of x, but
must be considered more carefully for the fluctuations below.)
The scaling of the sum in (29) depends on the value of a. In the
regime a > 0, the sum is proportional to the number of terms,

“For example, for one choice of initial condition, iterating with
. _ k
the same value of y gives pp = Zf)

Gaussian for large k.

e¥* (x < 0), which becomes
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whereas for a < 0 it is dominated by the smallest y, which is
of order x~!/@+D_This gives
a>0:

x~t, zo=1, (30

a<0: x~t zo=1/(a+1), (3D

where we have introduced the dynamical exponent z govern-
ing the size of a spreading operator.

Now let us estimate the spreading of the wave packet p(x,?)
within a given sample. The variance formula (28) gives

width? ~ "y (32)
k=1

This formula will give the correct scaling in the regime where
all parts of the wave packet have passed through O(x) links.
This is the case for a > 0, where (32) gives a width much
smaller than x. Interestingly, there are two distinct behaviors
within the a > Oregime: fora > 1 the sum is of order x, while
for 0 < a < 1, it is dominated by the minimal element:

a>1: x~t, width~ /2 (33)

O<a<1l: x~t, width~ /@D, (34)

When a < 0, naive application of the variance formula gives
width >> x, showing that the approximation that all parts of
the wave packet have traveled through O (x) weak links breaks
down. In this regime, we expect simply that width ~ x, i.e.,

a<0: x~t“"" width ~ r4F!. (35)

To see this, note that at time ¢ some of the wave packet will have
passed through the weakest nearby link, which is at distance
x ~ t*t! and has rate y ~ 1/¢, but some of the wave packet
will still be held up by the second weakest nearby link, which
is an O(1) fraction of the distance away.

Putting these results together,

a>1: x~t, width~ ¢/2 (36)
O<a<l1l: x~t, width~ /@D, (37)
a<0: x~t** width ~ r“F. (38)

These formulas define a dynamical exponent zy governing the
width of the front of a spreading operator.

So far, we have considered the width within a given sample.
Sample-to-sample variations in the front position are even
more simply understood using (29). We find that in all regimes
they scale with the same power of ¢ as the width of the front
within a given realization.

The exponents above are written in terms of the parameter a
governing the distribution of weak link timescales. In using the
same value of a for operator spreading and for entanglement
spreading, we are making the natural (but unproven) assump-
tion that the timescales for entanglement growth and operator
spreading are of the same order for a severe weak link.

There is a relationship between the growth of the second
Renyi entropy and the spreading of the operators appearing
in an expansion of the reduced density matrix, which has
been used to give heuristic pictures for entanglement growth
[55,56]. Nevertheless, the growth “speed” associated with

entanglement is in general smaller than that for the spreading
of operators, even in clean systems [6,56]. The Griffiths phase
is an extreme example, where the two length scales grow with
different powers of time.

To summarize, operators have a well-defined front and a
nonzero butterfly velocity only when a > 0. In all regimes the
width of the front increases with time, and there is a change
in the exponent governing this width at a = 1. The various
dynamical exponents are summarized below in Table 1.

D. Operator entanglement

We may also consider the entanglement of a spreading
operator, viewing the operator as a state in a “doubled” system
[57]. The growth of this operator entanglement within the
region in between the two “fronts” of the spreading operator
is governed by essentially the same physics as that governing
the growth of the entanglement of states. Thus we expect the
operator entanglement to grow with dynamic exponent zg.
Since zg > zo for all allowed finite a within —1 < a < oo, the
entanglement S, across the midpoint of a spreading operator is
less than “volume law” as long as it is spreading, where we call
the distance ¢ between the two fronts the operator’s “volume™:
Sop ™~ £70/%s Interestingly, this exponent is nonmonotonic. It is
minimal at @ = 0 (assuming that timescales are characterized
by a single exponent a), and the volume-law exponent of unity
is recovered in both limits, a — oo and a — —1. Once the
operator reaches the ends of the chain it can then become
volume-law entangled.

IV. CONSERVED QUANTITIES

Here we revisit the dynamics of conserved quantities in
the Griffiths phase, considered previously in Refs. [19-21], in
order to compare with the spreading of operators and entan-
glement. We recover the dynamical exponent found previously
for conserved quantities:

(39)

ac—|—2
ac+1 ’

Zc = min {2,

Here, ac is the exponent governing the distribution of rates
for “hopping” of a given conserved quantity C across a
weak link [cf. Eq. (2)]. The simplest assumption would be
that there is a single weak link exponent a = a¢ for both
entanglement and transport, i.e., that (asymptotically) a given
weak link is characterized by a single long timescale. This
must be investigated further. It is natural to expect at least that
a > ac: the hopping of (say) a conserved charge across the
weak link will generically induce O(1) entanglement, so the
rate for entanglement production should not be parametrically
smaller than that for conserved quantities. However, we may
have ac < a, and we may have distinct acs, and therefore
distinct z¢s, for distinct conserved charges C . Indeed, recent

SIf there are several exponents ac, the corresponding conserved
charges C may be nontrivial linear combinations of those correspond-
ing to the physical conservation laws, unless this is prevented by
other symmetries. (These may be symmetries that hold exactly, or
symmetries that hold statistically, i.e., on average.) That is, distinct
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numerical work using long chains argues for a regime in the
disordered XXZ model where energy transport is diffusive but
charge transport is subdiffusive [58]. As we discuss at the end
of this section, it is also possible to artificially design a chain
with a U(1) charge for which acparge is clearly smaller than
both a and @energy, although this example involves a power law
distribution of microscopic weak links so may not be relevant
to typical models in the Griffiths phase. In the following, we
will neglect these subtleties and denote the relevant weak link
exponent by a without a subscript.

Since the system locally looks thermal at late times, we
may treat the dynamics of conserved quantities as a classical
random walk—say on a 1D lattice, in continuous time—which
is “bottlenecked” by weak links. We treat the weak links as
bonds where the hopping rate is small. This setup preserves
detailed balance.

For weak disorder, the dynamics is diffusive. To see when
diffusive scaling breaks down, consider two adjacent weak
links with I' < T'y. Their interior defines a box of typical size

A~ Tyt (40)

Now, compare the time for a diffusing particle to cross this box,
tagr ~ A2, with the time for which the particle is detained by
a single weak link of strength I'y. Once the walker reaches the
weak link it must revisit it O(1/T'y) times before it succeeds
in hopping across. By standard diffusive scaling, the time re-
quired for this number of revisits is fyrayerse ~ 1/ T3 ~ A%/@+D,
When a > 0, we have fiaverse K taiff, and we expect diffusive
scaling to be stable. On the other hand, when a < 0 the two
weak links trap the walker inside the box for much longer than
taife- In this regime fiaverse Will be of the same order as the time
required to explore the box “ergodically.” The rate to cross one
of the weak links is then the product of the fraction of the time
spent adjacent to the weak link, namely 1/A, with the O(T"y)
rate at the weak link. The typical time required to escape the
box is therefore

f~ A/ F() ~ A(a+2)/(a+1). (41)

This gives the dynamical exponent quoted above. This expo-
nent agrees with the random walk model of Ref. [20], but the
behavior of trajectories is different.

The transition between diffusive and subdiffusive spin
transport has been observed numerically in a disordered
Heisenberg chain [25]; see also Refs. [21-24]. The transition
between diffusive and subdiffusive energy transport has been
observed in Refs. [58,59].

conserved quantities (for example, energy E and charge n) may “mix”
(this mixing is forbidden in the presence of the symmetry n — —n).
This may be relevant to the regime of positive magnetization in
Ref. [58].

®In the regime a < 0, a walker takes a time of order L/, to
traverse a sample of size L, where I";;, is the typical rate of the weakest
link in the sample. In the above model this timescale is associated with
trajectories that traverse the weak link O(1) times (this is consistent
with the detailed balance requirement that in a closed chain all sites
are visited equally in the limit of long times), whereas in the model of
Ref. [20] it is associated with trajectories that traverse the weak link
O(L) times.

TABLE 1. Dynamical exponents governing lengthscales for en-
tanglement growth (zg); spreading of conserved quantities (z¢);
spreading of quantum operators under Heisenberg time evolution
(zp); width of the “front” of a spreading operator (zy). Here, we
assume a single exponent a governs the distribution of timescales
[see Eq. (2)] for the various processes at a weak link, see text.

—1<a<0 O<a<l1 l<a
Zs (@+2)/(a+1)
Zc (a+2)/(a+1)
Z0 1/(a+1) 1
Zw 1/(a+1) a+1 2

If a quantum quench starts from a sufficiently inhomoge-
neous initial state, the relaxation of conserved quantities will
affect the growth of entanglement. An extreme exampleisa 1D
spin chain, with conserved §,, which starts in a domain wall
state with fully polarized up spins on the left and fully polarized
down spins on the right. Since a polarized region has trivial
dynamics, entanglement can only be generated in the growing
central region where the polarization has been destroyed. For
an initial state with only short-range correlated randomness in
conserved quantities (i.e., a statistically homogeneous state),
the local expectation value of the conserved quantity will
relax to equilibrium with fluctuations of order #~!/%%¢, These
fluctuations will lead to fluctuations in the local entangling
rates I' for the weak links, but these will be negligible at late
times.

Above we mentioned that at least in some circumstances
we can have dcharge < @,0energy (Ref. [58] contains numerical
evidence for a model with Zcharge > Zenergy). Here is a proof of
principle argument for this possibility in a somewhat contrived
model. Consider a chain with a conserved U(1) charge and
with Hamiltonian H = H; + H,. The terms in H; are unable
to move charge, but they give nontrivial dynamics and energy
transport. We assume there are multiple states available at each
site, regardless of the value of the charge there; concretely, the
chain could involve, say, hard-core bosons that carry the spin,
plus an additional Ising spin at each site to allow nontrivial
dynamics regardless of the distribution of charge. H, is the
charge hopping. The hopping amplitudes are taken to be
randomly distributed with a distribution with a power-law tail
near zero, giving a power-law distribution of microscopic weak
links for charge transport. We expect then that dcpage can be
driven arbitrarily close to the minimal value —1 by varying the
microscopic hopping distribution. However, energy transport
and entanglement generation can be accomplished by the terms
in Hj, SO We eXpect denergy and a to exceed deharge in this limit.

V. DYNAMICAL EXPONENT SUMMARY

The dynamical exponents we have found are summarized
in Table I, under the assumption (see caveats in Secs. I[IIC
and I'V) that the long timescales characterizing a weak link are
distributed with the same power law.
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A b C

A b1 b2 C

} E A b1 b2 C

FIG. 10. Two types of microscopic weak link. Left: an infinite
spin chain with a weak bond connecting spins b; and b,. (Top right)
A chain in which the Z component of spin b is almost conserved.
This can be mapped to a chain with a weak bond by duplicating b
(bottom).

VI. BOUNDING ENTANGLEMENT GROWTH
ACROSS A GRIFFITHS REGION

In previous sections we assumed that a Griffiths region
could be characterized by a local entanglement growth rate,
I', which vanishes as the region becomes large. Here, we show
analytically that the rate for entanglement growth across a
Griffiths region is exponentially slow when the length ¢ of
the Griffiths region is large.

We will start by considering a trivial kind of weak link—a
weak bond in a spin chain. For this simple case, a standard
rigorous result provides a bound on the entanglement growth
rate. A Griffiths region is more complicated: although it acts
as a weak link in a coarse-grained sense, it is not equivalent
to a simple weak bond, and the degrees of freedom within the
Griffiths region are strongly coupled. Nevertheless, we show
below that the bound can be extended—nonrigorously—to
this case by making use of the “I-bit” picture for many-body
localized systems [11,60].

First consider a spin chain in which one bond has a very
small coupling. Label the degrees of freedom as in Fig. 10
(left). by and b, denote the spins to the left and right of the
weak bond respectively, and A and C contain the other spins
on the left and the right, respectively. The Hamiltonian may be
written as

H = Hyy, + Hpp, + Hp,c, 42)

reflecting the fact that the two sides are coupled only via
spins b; and b;. For example, for an infinite chain with Ising
interactions and longitudinal and transverse fields, we would
have

Hy,p, = JweakZ0Z15 43)
Hpp =Y (JZiaZi +hX; + gZ)), (44)
i<0
Hyp =Y (JZi1Zi +hX; + 8 Z)), (45)

i>1

with Jyeax < J. This is a weak link of a simple kind: the
systems Ab; and b, B are coupled only by a small term in the
Hamiltonian. In this simple situation there is a rigorous bound
on the rate at which entanglement can be generated across the

weak link [61-63]. This bound states that in a pure state
dSap,
dt

Here, ¢ is a numerical constant given in Ref. [61]; d is the
smaller of the Hilbert space dimensions of b; and b,, here
given by d = 2. Most importantly, || Hp,p,|| is the magnitude
of the largest eigenvalue of H,,j,, here equal to Jyeq.

For small Jyeax, the physical rate of entanglement growth
(i.e., in a typical state) may be much smaller than the rigorous
upper bound (46). Indeed, numerically we find that in a Floquet
Ising spin chain the von Neumann entropy growth rate is of
order

< ¢|[Hp,p, || Ind. (40)

ds

T JZ e In 1/ Jyea (47)
rather than of order Jy.c.x, see Sec. VII. But for our purposes
in this section the upper bound (46) will suffice.

Microscopically, a Griffiths region does not consist of
weakly coupled degrees of freedom, so we cannot immediately
apply (46). A better cartoon is that the Griffiths region consists
of “slow” degrees of freedom. To see this, recall that deep in
the MBL phase the Hamiltonian may be formulated in terms
of [-bits—dressed spin variables whose Z components are
strictly conserved [11,60]. This picture is also a useful starting
point for considering strongly disordered regions which locally
resemble the MBL phase. Since these regions are finite, the
dressed spin variables are not strictly conserved, but are instead
“slow.”

We can learn how to treat such slow degrees of freedom
in the context of a toy model, where the Griffiths region is
replaced by a single central spin whose Z component is almost
conserved [see Fig. 10 (right)]. We label the left and right
regions by A and C, respectively, and the central slow spin by
b. We denote the Pauli operators for the slow spin by X, Y, Z,
and take a Hamiltonian whose O (1) terms all commute with Z:

H = HAh(Z) + HbC(Z) + hweakX~ (48)

Here the notation H,,(Z) means that this term acts on the
central spin only via its Z operator; it can act arbitrarily on
the spins in A. For concreteness, we take the weak term which
breaks conservation of Z to be a transverse field.

It is easy to find an example showing that the instantaneous
rate of entanglement growth between A and the rest, d S, /dt,
can be O(1).” However, the time-averaged rate is small when
hweax 1s small. To see this we relate the physical system to a
reference system Ab;b,C in which the spin b is replaced with
two spins. There is a mapping from the Hilbert space of AbC
into that of Ab,b,C given by

1o = Mo 1Mo, o = s )b, (49)

in the Z basis. This mapping commutes with the time evolution
if we choose the following Hamiltonian for the reference
system:

Hreference = HAb; (Zl) + HbgC(ZZ) + hweakXIXZa (50)

"Take C to be empty and A to consist of a single spin, take Hyc
to be an Ising coupling, and take the initial state to have both spins
polarized in the X direction.
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where Hyp,(Z) is simply Hsp(Z) with Z replaced by Z;.
Further, if two states [/),, and |{)¢ are related by the
mapping, they yield the same density matrix on A. Therefore
we are guaranteed that

SPS (1) = S™f(r) (51)

at all times.

Since the weak field has now become a weak interaction
between Ab; and b, B, we can use Eq. (46) to bound the change
AS4p, in the entanglement between Ab; and b, B:

AS (1) < (c1n2) hyeat. (52)

Of course, Sﬁf}fl is not meaningful in the physical system.
But subadditivity of the von Neumann entropy, together with
(51), guarantees that it is close to the quantity of interest:

|S§f£] 1) — Sghys(t)| < In2. This gives the desired result

ASP™ N (1) < (¢ hyear t +2)In 2. (53)

We see that at long times the time-averaged d S, /dt is at most
of order hyeax, and that the coefficient remains of O(1) even
if the size of A or C diverges. [See Sec. VII for a numerical
analysis of this problem in a Floquet spin chain, showing that
the growth rate is even smaller than the maximum allowed by
this bound. ]

Finally, we turn to a spin chain with subsystems ABC,
where B is a Griffiths region consisting of a large number
£ of consecutive spins. We will consider a strongly disordered
Griffiths region which locally resembles the fully many body
localized phase. Write the Hamiltonian as

H =Hjy+ Hpg+ Hc + Hyp + Hpc, 54

where H,p and Hpc each act on a single bond. Now we make
use of the I-bit picture for the MBL phase [11,60]. We expect
that a unitary transformation on B can reduce its Hamiltonian
to a form which only depends on the Z; operators for spins
i€B,
UI‘IBU]L = Hé, Hé = Zh,-Zi + ZJ,']‘ZI'Z]' + ...,
i ij
(55
where the couplings decay exponentially with distance, and
where the unitary transformation preserves the locality of oper-
ators up to exponential tails. For the purposes of entanglement
growth we can work with H' = UHU T instead of H, since U
only introduces O(1) entanglement. H' is of the form
H' = Hy+ He + Hy + U(Hpp + Hpo)U'. (56)

If Hyp = ZoZg, where «, 8 are the boundary spins in A and
B, respectively,

Hjy =UHspU' = Z, (Z (X +ul Y, +ul Z;)
ieB

+ Y Kzizi+.. ). 6D

ijeB

Now we split the Griffiths region B into the left-hand, central,
and right-hand regions, a, b, and c, of length £/3 each, and

apply the duplication trick to b to give a system
Aab;bcC. (58)

We now consider generation of entanglement across the cut
Aabi|bycC. The terms in H4 and H¢ act only within A or C,
respectively, and can be neglected. Next, we have the terms
coming from Hé. These act on all the Zs in a,b,c. We have
some freedom in how we represent these terms, since any Z in b
can be represented either by a Z in b; or by the corresponding
Z in by. Using this freedom, any term in Hj, that does not
act on both a and ¢ may be represented with a term which
does not cross the cut Aab;|b,cC. The largest remaining terms
from Hj, which act on both a and ¢, are of magnitude ~
exp (—€/3¢). These terms typically act on O(£) spins in region
bbutonly O(1) spinsina and c, so can be represented by terms
involving only O(1) spins on one side of the cut and O(¢)
on the other. Finally, we have the terms from Hsp and Hpc
which couple across the boundary of the Griffiths region. After
the unitary transformation, H4p couples the boundary spin o
in region A to all of the /-bits in the Griffiths regions, with
exponentially decaying couplings. Terms in which « is coupled
to the leftmost spins in region b are of size ~exp (—£/3¢).
A term like e=*/*¢ Z,(...)X;, where i is a site in region b,
becomes a coupling involving the corresponding sites in both
by and b,. Again, these terms involve O(¥) spins on one side
of the cut and O(1) on the other.

Altogether, the strongest Hamiltonian terms coupling across
the cut Aa, b |brcC have size ~e~¢/3¢ and involve O () spins.}
For a nonrigorous application of the bound (46), we must
estimate the norm of the entangling Hamiltonian. This may
be larger than e~*/*¢ by an exponentially large combinatorial
factor, since the number of terms is large. We take the region to
be sufficiently strongly disordered (i.e., { < &p, where ¢ is an
order one constant) that the exponential decay of the couplings
wins, giving

dSAﬂhl < ,—al
TR (59)
for some « that does not depend on £. The difference between
Saap, and the physically meaningful entropy S4 (or Sa.) is
O(¥), and is unimportant at long times.

This shows that the entanglement growth rate across a
strongly disordered Griffiths region is exponentially small in
the size of the region, regardless of the size of the complete
chain. (Assumptions made in previous work [19,20], where a
local timescale associated with the weakest link in a finite chain
was taken as the thermalization time of the chain, are equivalent
to taking the entanglement growth rate to grow with the size of
the adjacent regions. We see this is not the case.) This is enough
to show that there is a power law distribution of local rates. In
turn this suffices to prove that S grows subballistically, by the

8These terms can be split into two groups, each of which acts on
only O(1) spins from one side. Since (46) can be applied to each
group separately and the results added, the appropriate logd factor
(46) is O(1) rather than O(¢). In any case, this polynomial correction
is negligible in comparison to the error in estimating the coefficient
in the exponential.
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FIG. 11. Setup for the numerical simulation. A chain of L =
21+ 1 spin—% degrees of freedom is subjected to Floquet dynamics
with Ising couplings and transverse and longitudinal fields. The Z
component of the central spin is almost conserved due to the weak
transverse field.

logic in Sec. II. We focused on strongly disordered regions
with ¢ < ¢p, while in practice the prevalent weak links with
a given I may be less strongly disordered. However, this will
only decrease the value of the exponent a.

VII. ENTANGLING ACROSS A WEAK LINK: NUMERICS

We now present a numerical study of entanglement growth
across a microscopic weak link. The setup for the numerical
simulation is a spin-% chain of length L =2/ + 1, shown
schematically in Fig. 11. We use Floquet dynamics considered
previously in Ref. [64]: an Ising spin chain with longitudinal
and transverse fields. This system has been shown to thermalize
rapidly in the absence of a weak link. A simplifying feature
of the Floquet case is that energy is not conserved [64].
We perform exact time evolution using the online package
ITENSOR [65].

The weak link we consider is formed by the spin at the
central site, whose Z-component is almost conserved. The
commutator of this operator with the one-step time evolution
operator is of order €, where € will be taken to be small. As
discussed in Sec. VI, this is a toy model for a Griffiths region:
the central spin is an “almost” /-bit, whereas all other spins
are strongly nonconserved under the evolution. The slow spin
bottlenecks the growth of entanglement between the rapidly
thermalizing regions surrounding it. We focus on the dynamics
of the Renyi entropies (including the von Neumman entropy
Sin = S1)

Sp(t) = 10g2 Trp:l; (60)

1—n
across the bond connecting the spin at site / to the nearly
conserved spin (p4 = Trpp and the regions A and B are
defined in Fig. 11).

Here we will give results only for the model with a slow spin,
but we have also simulated a spin chain with a weak bond. As
might be expected from the mapping between a slow spin and
a weak link in Sec. VI, the results are extremely similar.

Our main goal will be to validate two key elements of the
picture for entanglement growth discussed above. Firstly, that
the entanglement growth rate in the vicinity of a weak link, x;,
can be characterized by a local rate I'; which is independent of
the size of the surrounding regions. Secondly, that in the scaling
limit the growth of entanglement entropy is captured by the
simple scaling forms discussed in Sec. II. For the present case,
the relevant scaling form, if we start from a product state, is

S(x,0) = min{l'z + [x — x|, x, (L —x), vet},  (6D)

10

Sv N
ul

0 5 10 15 20
X
FIG. 12. Syx as a function of position in systems with L = 21
and ¢ = 0.3. The different curves show times from ¢ = 0 to 500 in

increments of t = 10 (the subsystems are separately entangled prior
tot =0).

where x is the location of the weak link. If we start from a state
in which the two subsystems are separately fully entangled,

S(x,t) = min{l't 4+ |x — x1|, x, (L — x)}. (62)

In particular, either of these forms implies that for large L and
x, the entanglement S(x,#) at the location of the weak link has
the simple piecewise linear scaling form:

S(x1,t) = min{I'¢, x1}. (63)

Although simple, these scaling forms are not a priori obvious:
they are nontrivial predictions about the universal physics
stemming from the results of this paper.

We now give details of the numerical simulation. We use a
Floquet time evolution operator

U(e) = UzUx(e), (64)

which includes half a period of evolution with the Ising
interactions and longitudinal fields,

L—1 L
Uz=exp|—it|JY Z;Zim+hY Z;i||. (65
j=1 j=1

preceded by half a period of evolution with the transverse fields,

Ux(e)=exp | —itg| e X+ > X; | |- (66)
jAIF1

Note that the transverse field on the central spin is weakened
by a (variable) factor €. The other couplings are fixed at the
values J =1, h = 0.809, g = 0.9045, and 7 = 0.8, which
were shown in Ref. [64] to yield rapid thermalization.

We start from the product state |1 ... 1) in the Z basis. But
before beginning the entangling dynamics, we evolve the left
and right subsystems separately, i.e., with € = 0, for a time
Ty to ensure that they are separately strongly entangled. In the
simulations, we have used T, = 5, however, we note that our
results depend very weakly on Ty. The state at time ¢ > O is
therefore defined to be

() = U UOP|1...1). (67)

Note that the entanglement between A and B is zero when ¢t =
0. In Fig. 12, we plot a typical spatial dependence of Syn(x,?)
for a system of size L = 21 and for successive times ¢ starting
from ¢t = 0. Figure 13 shows the same for S,(x,?).
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FIG. 13. As Fig. 12, but for the second Renyi entropy S,.

Let us now examine the validity of the scaling forms. In
Fig. 14, we plot the von Neumann and second Renyi entropies,
rescaled by their asymptotic late time values, against the
rescaled time variable I',,t/Smax. Here, [, is the growth rate
of S,(¢) obtained by fitting the linear growth near ¢+ = 0 for
L =21. Spax is the value of the entropy as ¢+ — oo, which
is determined numerically and which depends on n and L.
We note that in the case of the von Neumann entropy Smax
converges very quickly with increasing L to the prediction of
Ref. [33] for a random state.

VN max

Lt/S

X

FIG. 14. The von Neumann (top) and second Renyi (bottom)
entropies scaled by their maximal value at large time Sy Vs the
rescaled time I',,# /Sy, for different values of L and for € = 0.2. The
value of S, is determined numerically.

3
*
* vN * 8}
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€

FIG. 15. The initial growth rates I', as a function of € (calculated
using L = 21). The stars (blue) and circles (red) correspond to von
Neumann and second Renyi entropy, respectively.

Itis clear from Fig. 14 that the early time growth rate, I',,, is
independent of the length of the system. This is consistent with
our coarse-grained picture. By numerically fitting the data, we
find that for small € < 0.1 the growth rates are given by

A
”162, (68)

2 B
FVN = AvNe logz > l—‘n =
€

where AyN, B, and A are e-independent constants. The rates
for larger values of € =0.1,0.2,...,1 are shown in Fig. 15.
This confirms that indeed the growth rate is small in € and thata
nearly conserved quantity causes a bottleneck for entanglement
growth. Note that for small €, the growth rate is parametrically
smaller than the rigorous upper bound in Sec. VI. Interestingly,
Fig. 15 suggests that for € = 1 (the homogeneous case) the
growth rates for Syn and S, may be equal.

We also find that the transition from linear growth to
saturation becomes sharper with increasing L, consistent with
the expected scaling form Eq. (63). This is much clearer
for the second and higher Renyi entropies (Fig. 14). For the
von Neumann entropy, a more careful finite size analysis is
required, which we give below.

For translationally invariant Floquet systems with no con-
served quantities, the late time saturation of the entropy has
been found to be exponential [64]. We also obtain a good fit at
late times with

SN = Smax — A1), A@) = exp(=T'|t —#.]),  (69)

where the parameters I'” and ¢, of the fit are extracted separately
for each L and €. We find that at small € the saturation rate I"’
behaves as

"= Ae% (70)

The timescale 7, for saturation is of order L.

Assume that there is a simple crossover between linear and
exponential behavior at a time 7. Matching S and 9.5/0¢ at this
time gives the following gluing conditions:

Smax 1 1 FVN
= ——, ti=t + — log, —,
'TTw o FTUTR T

(71)
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FIG. 16. (a) The solid lines show the normalized deviation
from maximal entropy A/S.. defined in Eq. (69) vs time z.
The different colors correspond to different values of € ranging
between 0.1,0.2,...,0.7. The dashed curves are the fits to the
linear form: 1 — I't /S, (red dashed) and to the exponential form:
1 —exp[—T"(t — 1,)]/Smax (black dashed). The red dots mark the
crossover points between linear behavior, at short times, and ex-
ponential, at long times. These crossover points are used to extract
the timescale 7, is extracted. (b) Comparison between the extracted
crossover time #; (red dots) and the expected form Eq. (71) (blue solid
curve).

which means that

S(t1) = Smax — Tun/ T (72)
In Fig. 16, we test the assumption underlying the previous.
In the first panel, we present the linear (red dashed lines) and
exponential (black dashed lines) fits to A(#)/Smax. The red dots
are crossover times between these two behaviors, determined
by eye. In the second panel, we compare these crossover times
with the prediction in Eq. (71), finding good agreement.

The previous equation shows that the departure from linear
behavior occurs when the entropy is within

FVN AUN B

ASN ~ T YT log, A (73)

bits of its maximum. The AS ~ log, 1/I" behavior for the
von Neumann entropy indicates that the finite-size rounding
is more severe for weaker weak links; this conforms with
what we find numerically. For the higher Renyi entropies, this
logarithmic factor is absent, as a result of Eq. (68). Since AS is
independent of L, the above confirms the scaling form Eq. (63)
for a system of size L with a weak link whose strength is
fixed as L — oo. (The deviation from linearity for the last
AS ~log, 1/T bits of entanglement is also negligible if we
take I" to scale as a negative power of L, which is the natural
scaling in the Griffiths regime.)

Note that if the relative logarithmic factor in the growth rates
for Syx and S,-1 [Eq. (68)] also applies for coarse-grained
weak links, then the von Neumman entropy in the Griffiths
phase will exceed the higher Renyi entropies by a factor of
order log ¢ at late times (since the weak links that are relevant
at time ¢ have strength ' ~ ¢~1/@+@),

We have confirmed the two key assumptions: I', is inde-
pendent of L, and the scaling form Eq. (6) is indeed obtained
in the large L limit for a microscopic weak link. If we allow
ourselves to extrapolate the above results to Griffiths regions
(coarse-grained weak links), these conclusions support the
scaling forms derived from the surface growth picture.

VIII. SUMMARY

We have examined the dynamics of isolated one-
dimensional quantum systems that thermalize, but have a
distribution of weak links produced by quenched randomness.
This occurs in systems that sustain (but which are outside) the
many-body-localized (MBL) phase, due to Griffiths regions
that are locally in this phase. We developed coarse-grained
pictures for the production of entanglement and the spreading
of operators and of conserved densities.

We found that such systems have multiple dynamic length
scales that diverge with different powers of the time. These
length scales are for the growth of entanglement, the spreading
of conserved densities, the spreading of initially local oper-
ators, and the width of the “front” of a spreading operator.
These quantities have effective classical dynamics of distinct
types. Entanglement growth maps to classical surface growth
with inhomogeneous rates. Transport of conserved quantities is
governed by random walk dynamics with weak links. Finally,
the front of a growing operator can be related to the passage
of a biased random walk through weak links.

Contrary to systems without quenched disorder, the process
of entanglement saturation (either for states or operators) is
always parametrically slower than the spreading of operators as
measured by the norm of their commutator with a local operator
or by the out-of-time-order correlator (OTOC). Entanglement
growth is subballistic even in the weak-disorder portion of
the Griffiths phase: sub-ballistic growth is inevitable whenever
weak links of arbitrary length can be created, no matter how
small the probability is for such weak links. By contrast,
when weak links are sufficiently rare, both the OTOC and
conserved densities are relatively insensitive to them: there
is a regime where conserved quantities spread diffusively and
the operators spread ballistically, as in a clean nonintegrable
chain.

We also examined the exchange of quantum information
between two clean systems coupled by a single weak link,
giving universal scaling forms for the growth of entanglement
and the spreading of operators from one system into the other.

Various questions remain for the future. Each of the
quantities we have considered (entanglement, the OTOC,
and conserved densities) is affected by weak links with a
power law distribution of timescales (with exponent denoted
a in the text). An important task is to clarify the relations
between the exponents a for distinct quantities, as discussed in
Sec. IV. For example, the exponents a¢ pertaining to conserved
quantities may differ between different conserved quantities,
as suggested by recent numerics [58] (this issue could also be
probed with the methods of Refs. [54,66]). In a system with
conserved energy, can the exponent a for entanglement exceed
energy TOr €nergy?

It has been suggested on the basis of simulations [67] that
subballistic entanglement growth may occur in the thermal
phase of 1D chains with quasiperiodic detuning rather than
disorder. The relation of such systems to rare-region physics
remains to be understood.

The pictures described here are set up to deal with dynamics
in the thermal phase. It would be interesting to understand
the crossover effects at the MBL phase transition [19,20,68—
71] in more detail by relating the present considerations to
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real-space RG approaches. The results above are expected to
apply at sufficiently large length and timescales no matter
how close the system is to the MBL transition; however,
the scales required will diverge as the MBL transition is
approached. It may also be interesting to consider a coarse-
grained treatment of the network of locally thermal Griffiths
regions in the MBL phase. In higher dimensions, such rare
regions have been argued to destabilize the MBL phase [72,73].
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