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Abstract

When deformed beyond their elastic limits, crystalline solids flow plastically via particle 

rearrangements localized around structural defects. Disordered solids also flow, but without 

obvious structural defects. We link structure to plasticity in disordered solids via a microscopic 

structural quantity, “softness,” designed by machine learning to be maximally predictive of 

rearrangements. Experimental results and computations enabled us to measure the spatial 

correlations and strain response of softness, as well as two measures of plasticity: the size of 

rearrangements and the yield strain. All four quantities maintained remarkable commonality in 

their values for disordered packings of objects ranging from atoms to grains, spanning seven 

orders of magnitude in diameter and 13 orders of magnitude in elastic modulus. These 

commonalities link the spatial correlations and strain response of softness to rearrangement size 

and yield strain, respectively.

Disordered materials such as metallic glasses have desirable properties such as high strength 

and stiffness, ultrasmooth surfaces, corrosion resistance, and ultralow mechanical dissipation 

(1–5). Their widespread use is limited because they tend to fail in a catastrophic, brittle 

fashion (6–9). Brittle failure likewise hinders applications of amorphous carbon (10), 

functional nanoparticle films (11, 12), and colloidal packings (13). These complex failure 

modes also limit our understanding of granular systems and symptoms of failure modes such 

as avalanches and earthquakes (2, 14–16).

In many cases, the failure process starts with plastic deformation characterized by 

rearrangements of constituent atoms or particles. Rearrangements can occur at any strain, 

even when the material response appears nominally elastic, but they do not begin to play a 

prominent role in relaxing stress until the strain reaches the macroscopically evident yield 

strain. In crystalline solids, rearrangements at defects such as dislocations typically allow for 

plastic flow even at strains well above the yield strain, leading to a ductile response. In 

disordered solids, by contrast, initially localized and homogeneously distributed 

rearrangements often proliferate rapidly above the yield strain, coalescing to form shear 

bands (6, 17). This process is considered the culprit behind unpredictable and often 

catastrophic failure.

Here, we focus on the structural underpinnings of the size of rearrangements at low strains, 

where rearrangements are localized and homogeneously distributed, and the magnitude of 

the yield strain. In crystals, most rearrangements occur at dislocations, rendering the task of 

linking these measures to structure relatively straightforward. For disordered solids, 

structural fingerprints of rearrangements are subtle. We exploit a recently introduced, 

machine-learned microscopic structural quantity, “softness,” which has been shown to be 

strongly predictive of rearrangements in disordered solids (18) and has expanded our 

conceptual understanding of glassy liquids (19, 20) and aging glasses (21). We link the 
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spatial correlations of softness to the size of rearrangements, and we link the strain response 

of softness to the yield strain.

We conducted experiments and simulations on a range of materials including amorphous 

carbon, silica, metallic glasses, small-molecule and oligomeric glasses, nanoparticle 

packings, colloidal systems, aqueous foams, and granular packings (22) (see figs. S2 to S4, 

S6, S7, and S10 to S12). In many of these systems, the interparticle interactions are purely 

repulsive, whereas in others there is metallic, covalent, or van der Waals bonding. Some of 

the systems are two-dimensional (2D), but most are 3D. Moreover, the rearrangements have 

differing origins. In packings of atoms, molecules, and smaller colloids, thermal fluctuations 

can induce rearrangements even in the absence of any mechanical load. Under applied load, 

both the incurred stress and the temperature can contribute to rearrangements. In aqueous 

foams, which are disordered packings of air bubbles, some of the rearrangements are 

induced by load while others are caused by the coarsening process, in which large bubbles 

grow at the expense of smaller ones. In larger colloids and granular packings, all of the 

rearrangements are induced by the applied load. We consider a variety of loading geometries 

including indentation, uniaxial loading of pillars under extension or tension, and simple 

shear.

Common rearrangement size in disordered solids

We begin by characterizing the size of rearrangements, which are the precursors to global 

plasticity. Rearrangements (or the initial rearrangements in an avalanche) have been 

recognized as being localized in systems such as Lennard-Jones glasses (23), bubble rafts 

(24), foams (25), and colloidal glasses (26). Frameworks such as shear transformation zone 

theory start with the assumption that rearrangements are localized (23, 27). Nonetheless, a 

consistent quantitative measure of their size has been lacking. For systems in which we can 

obtain the particle positions in real space as a function of time, namely colloidal and 

granular packings or computational models, it is essential to distinguish rearrangements 

from other types of displacements without specifying the nature of the rearrangement. To do 

so, we follow the literature and evaluate the quantity Dmin
2  between times t and t + Δt (23). 

This quantity captures the mean square deviation of a particle’s position from the best-fit 

affine deformation of its neighborhood,

Dmin
2 = 1

Mk
∑

i

Mk
rik t + Δt − Jk t rik t 2 (1)

and therefore measures the nonaffine motion of particle k at time t (23). Here, rik(t) is the 

displacement vector between particles i and k at time t, Jk(t) is the “best-fit” local 

deformation gradient tensor about particle k that minimizes Dmin
2 k; t , and the summation 

runs over the Mk particles within a radius Rc
D of particle k.
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To measure the spatial extent of rearrangements, we consider the normalized correlation 

function

δDmin
2 0 δDmin

2 r ≡
Dmin

2 0 Dmin
2 r − Dmin

2 2

Dmin
2 2 − Dmin

2 2 (2)

Note that the result depends on the time interval Δt used to define Dmin
2 . Many of the systems 

we study exhibit avalanches near yielding, where an initial localized rearrangement can 

trigger others, leading to a cascade. To focus on the initial rearrangement, we calculate Dmin
2

at the value of Δt corresponding to the minimum of the correlation length ξr (22) (see fig. 

S1). It also depends on the size of the neighborhood Rc
D; we find that ξr is insensitive to Rc

D

as long as it lies somewhere between the first and second peaks of the pair correlation 

function, g(r) (22) (see fig. S1). Figure 1A demonstrates the exponential decay of 

δDmin
2 0 δDmin

2 r  with r in units of the particle diameter d two different systems selected 

from our broader study: a 3D melt of short polymer chains, in which the diameter d 
corresponds to the size of a monomer, and a 2D bidisperse granular pillar, where d 
represents the diameter of the larger particles. Indeed, for all of the experimental and 

computational systems studied, we find that the correlations are reasonably well described 

by an exponential decay with a correlation length ξr (see figs. S2B, S3B, S5B, S8B, and 

S9B). We therefore characterize the size of rearrangements by ξr. Note that this length scale 

is distinct from that associated with dynamical heterogeneities near the glass transition (28). 

The first quantity is obtained from Dmin
2  calculated over a microscopic time scale; the second 

quantity is measured over a longer time period and is considerably larger because an initial 

rearrangement of size ξr can spread in avalanche fashion (29).

In crystalline systems, rearrangements are concentrated at crystalline defects and therefore 

reflect spatial correlations associated with the dimensionality and spatial extent of the 

specific defects. Planar defects such as grain boundaries delineate crystal-crystal interfaces, 

whereas linear defects such as dislocations can take on complex and spatially extended 

configurations with a multitude of characters (edge, screw, or mixed). These details can vary 

enormously from one crystalline system to another and will inevitably affect ξr. 

Furthermore, not all crystalline defects can produce plastic strain (e.g., immobile grain 

boundaries). We therefore do not expect any commonality in the value of ξr for crystalline 

systems.

Our analysis of disordered solids draws a striking contrast. Overall we have studied 12 

different systems. For six of these systems, which span almost the entire range covered by 

the 12 systems in terms of Young’s modulus, particle size, and particle interactions, we have 

obtained the particle position versus time data needed for the analysis of rearrangement size. 

Specifically, three of these systems are computational disordered solids, all in 3D [the van 

Beest, Kramer, and van Santen (BKS) silica model (30), the Kob-Andersen model of a 

Lennard-Jones glass (31), and oligomer glass pillars (32)] and three are experimental 
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disordered solids [3D colloidal pillars, 2D granular pillars, and 2D poly(N-isopropyl 

acrylamide) (PNIPAM) colloid glasses]. Figure 2A compiles our results for ξr versus 

particle diameter. The results fall very close to the line of best fit, ξr/d = 1.1 ± 0.2, where d is 

the effective particle diameter (22). In the inset of Fig. 2A, we show the ratio ξr/d for the 

same systems on a log-linear scale; this more unforgiving way of plotting our results shows 

the adherence to a common value of ξr/d.

Linking softness to rearrangements

Mounting evidence has shown that rearrangements across a wide array of disordered 

materials depend on local structure and energetics (33–37). It has been shown that local 

yield stress is an excellent predictor of rearrangements in athermal glasses (37). However, 

calculation of local yield stress requires knowledge of interparticle interactions; this is often 

difficult to obtain in experimental systems such as colloidal and granular packings, which 

are naturally polydisperse. Several of us (19, 21) have shown that local structure alone can 

be used to develop a predictive description of dynamics in glassy liquids (19) and aging 

glasses (21). Central to the approach is the introduction of “softness,” a particle-based 

quantity that depends only on the local structural environment of the particle. Thus, softness 

can be determined from any static picture (or snapshot) of the structure along deformation, 

time, or temperature trajectories. Softness is essentially a weighted integral over the local 

pair correlation function gi(r) (20). Using a machine-learning approach akin to linear 

regression (22), the weighting function is designed to optimize the prediction accuracy for 

rearrangements (19). In Lennard-Jones glasses (19) and oligomer glasses (38), it has been 

shown that the energy barrier that must be surmounted for the particle to rearrange decreases 

linearly with increasing softness. Thus, rearrangements are exponentially more likely to 

involve particles with high softness. Note that just as not all dislocations contribute to 

plasticity in crystals, not all high-softness particles participate in rearrangements; like 

particles surrounding dislocations, soft particles are simply more likely to rearrange than 

others.

Because high-softness particles are much more likely to rearrange, one would expect the size 

of a rearrangement to be limited by the spatial extent of high-softness regions. In analogy to 

the previous discussion of Dmin
2 , we quantify the size of structural heterogeneities by 

considering the normalized spatial correlation function,

δS 0 δS r ≡ S 0 S r − S 2

S 2 − S 2 (3)

As with Dmin
2 , we find that 〈δΔS(0)δS(r)〉 decays approximately exponentially with the 

correlation length ξs, as shown in Fig. 1B for the short-chain polymer glass and granular 

pillar. Similar plots for the other four systems studied are shown in figs. S2B, S3B, S5A, 

S8A, and S9A. Thus, ξs is a good measure of the size of high-softness regions that are more 

likely to rearrange. We find that the emergent correlations of S are nearly universal: Fig. 2B 

shows that like the rearrangement size ξr, the spatial correlation length for softness (the size 
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of soft regions), ξs, falls on a common line ξs/d = 1.1 ± 0.2 for all systems studied. Thus, ξr 

and ξs are strongly correlated. We now ask whether ξs is comparable to the size of 

rearrangements, ξr. In Fig. 2C we show the ratio of the size of rearrangements to the size of 

soft regions, ξr/ξs. Indeed, we find ξr/ξs = 0.97 ± 0.07, with a scatter in ξr/ξs that is 

significantly smaller than for ξr/d or ξs/d, even while ξr and ξs individually vary by more 

than seven orders of magnitude. Our multiscale analysis provides compelling evidence that 

the size of rearrangements, ξr, is encoded in the size of correlated soft regions in the system, 

ξs, independent of the nature and even the sign of interactions, the dimensionality of the 

system, and how the rearrangements were induced.

Common yield strain in disordered solids

We next asked whether commonality of plasticity is observed only in microscopic measures 

(i.e., rearrangement size and softness correlation length) or whether it is also present in 

macroscopic measures, such as the strain at the onset of yielding. In crystalline systems, the 

yield strain is strongly dependent on microstructural details. Only in the limit of ideal 

strength (the theoretical upper limit) is a constant yield strain expected, as a result of the 

cooperative crystal shearing mechanism needed in this extreme. In crystalline engineering 

materials, preexisting defects are plentiful and thus the yield strain depends strongly on 

processing. A common practice in selection of materials for engineering design is to 

populate a plot of yield strength versus Young’s modulus E. Slopes drawn on such an 

“Ashby chart” give one measure of the yield strain. As a basis for comparison, we examined 

values for crystalline systems categorized by material class, represented in Fig. 3 as clouds. 

The yield strength of crystalline metals varies by nearly four orders of magnitude despite a 

relatively small variation in E. Semicrystalline polymers, on the other hand, show a 

relatively small variation in yield strength yet can exhibit large differences in E. Clearly, 

there is no universality in the onset of yielding in crystalline systems, either within a 

particular material class or overall.

In contrast, it is known that certain classes of disordered materials share a common value of 

the yield strain (39–41) despite the heterogeneity of atomic or particle positions within the 

material. A constant value of the yield strain in shear of 2.7% was empirically shown for a 

set of metallic glasses on the basis of mechanical tests (39) and was further corroborated by 

atomistic simulations (40). Experiments on uniaxially loaded colloidal pillars showed a 

similar yield strain even though the elastic moduli were smaller by as much as five orders of 

magnitude (41).

Here, we extend the Ashby chart for disordered solids from five orders of magnitude (41) to 

more than 13 orders of magnitude in elastic modulus. To do this, we have expanded the class 

of disordered systems to include covalently bonded amorphous solids (amorphous carbon) 

and several different metallic glasses (see table S1) as well as extremely weakly attracting or 

purely repulsive systems (colloids, aqueous foams, and granular materials; see tables S2 and 

S3). We include experimental and computational results for systems subjected to various 

loading conditions (uniaxial compression/tension, indentation, and shear). Figure 3 shows 

our collated results for yield strength versus E. Strikingly, the data collapse onto a single line 

on this log-log plot with a linear relationship, corresponding to a universal yield strain of εy 
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= 2.9 ± 0.3%. Note that the data collapse is insensitive to the specific definition of the yield 

strain, as detailed for each system (22). We also include literature values for metallic glasses 

(39), glassy polymers (42), and simulations of silica (43), which also collapse on the 

universal curve. We note that although microscopic information is not available in all 

systems shown in Fig. 3, four of the systems spanning nearly the full range of E values 

appear in both Figs. 2 and 3. The implication of this result is that the macroscopic shape 

change (kinematics) needed for the onset of yield is essentially universal in disordered 

materials, irrespective of the nature of the interparticle or atomic interactions.

Linking softness to yield strain

To draw a link between the yield strain and microscopic structure as quantified by softness, 

we draw insight from results for glass-forming liquids by noting an analogy between the 

yield strain εy and the glass transition temperature Tg. They respectively mark the strain and 

temperature at which rearrangements relax the system on the time scale of measurement. In 

thermal glassy liquids, the average softness 〈S〉 is controlled by temperature T; the higher T, 

the higher 〈S〉 (19). Moreover, it has been shown that there is a relation between relaxation 

time and 〈S〉; the higher 〈S〉, the shorter the relaxation time (21). The shift in 〈S〉 with T 
thus provides a structural measure that tells us about the sensitivity of the relaxation time to 

temperature.

We suggest that the sensitivity of 〈S〉 to strain ε provides a way of understanding the 

common value of the yield strain across systems. We consider a neighborhood around 

particle k that is larger than the neighborhood required to calculate softness, and apply an 

affine uniaxial extension at fixed volume (pure shear) of magnitude ε to the neighborhood. 

We then recalculate softness for particle k. The result averaged over all particles is 〈S(ε)〉; 
we also calculate the standard deviation of the softness distribution in the absence of strain, 

σS = S2 − S 2. The quantity ΔS ε ≡ S ε − S 0 /σS measures the change of softness 

due to applied strain in units of the standard deviation of the softness distribution.

Figure 4 shows that ΔS(ε) increases with strain ε, indicating an increased likelihood of 

rearrangements with strain, as expected. A value of ΔS(ε) = 1 would correspond to a shift of 

the average softness equal to the standard deviation of the softness distribution. Note that the 

shift in average softness is an order of magnitude smaller than the standard deviation for all 

systems over the range of strains studied. The response of softness to strain is characterized 

by a smooth function that is quite similar quantitatively for all six systems up to (and even 

beyond) the onset of macroscopic yielding. The inset of Fig. 4 shows the value of ΔS(ε) at 

the common value of the yield strain εy as determined from Fig. 3, demonstrating 

commonality across length scales. This quantitative similarity of the response of softness to 

strain for all systems studied provides strong evidence that commonality of yield strain has 

an underlying structural origin.

Discussion

Figures 2, 3, and 4 provide evidence of universality of spatial correlations in the microscopic 

dynamics and structure connected to plasticity, as well as universality in the onset of 
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macroscopic yielding and in the response of microscopic structure to strain in disordered 

solids. These quantitative commonalities transcend the details of constituent size and 

interactions.

The observed universality lends quantitative credence to the use of model disordered solids 

as analogs of atomic glasses—for instance, in sheared bubble rafts (24) and colloidal solids 

(26). Commonalities in the statistics of slip intermittency just above yield among various 

disordered solids (44, 45) suggest additional universality near yield. One corollary of 

commonality of yield strain is that one cannot easily increase the strain at the onset of 

yielding of a disordered solid. A more promising route to increasing the toughness of 

disordered solids may be to manipulate the evolution of rearrangements above the yield 

strain, thereby increasing the window of plastic flow between the yield strain and failure. 

The success of the softness framework in explaining two properties of plasticity near yield 

suggests that it may also provide a fruitful approach for studying shear band formation in 

systems beyond yield.

The universal behaviors that we observe are all the more striking because there is no sign of 

universality in the microscopic packing structure itself. For each system, the definition of 

softness is different. Universality only becomes apparent once the softness of the constituent 

particles is considered, where we see emergent commonality in the properties of softness.

In crystals, on the other hand, there is universality in the microscopic structure, in the sense 

that there is a universal definition of a dislocation independent of constituent size, 

interactions, or crystal structure. However, the spatial correlations of dislocations vary 

enormously from one crystalline system to another—a direct consequence of the extended 

nature of these linear defects. As a result, the emergent properties of crystalline defects are 

not universal. There is no commonality in the spatial correlations of dislocations, so we 

expect no commonality in the spatial size of rearrangement events. Likewise, there is no 

commonality in the yield strain among material classes (Fig. 3). Indeed, most efforts in the 

modeling of crystal plasticity focus on incorporating specific features of the material under 

study (e.g., dislocation density and character of dislocations) and the prevailing notion is that 

no unifying theory is tractable.

The essential differences between plasticity in crystals and plasticity in disordered materials 

can be summarized as follows. In crystals, there is universality in the definition of the 

microscopic structural features correlated with rearrangements, but in disordered solids there 

is not. On the other hand, in disordered solids there is emergent universality in the properties 

of those features, but in crystals there is not. The origin of this universality is not yet 

understood. Our results, however, point to the possibility of a unifying framework and a vast 

simplification of our understanding of plasticity in disordered solids, which paradoxically 

may not be possible for crystals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Spatial correlations in Dmin
2  and softness fields

(A and B) Spatial correlations in the Dmin
2  field (A) and softness field (B) for two very 

different systems: a 3D short-chained polymer pillar studied by molecular dynamics 

simulation (circles) and a 2D bi-dispersed granular pillar studied experimentally (triangles). 

Here, d is the diameter of a single monomer for the polymer pillar and of a large particle for 

the granular pillar, and r is the radial distance. The dashed lines are fits to exp(–r/ξr) in (A) 

and to exp(–r/ξs) in (B), defining the size of rearrangements, ξr, and of soft regions, ξs. 

Similar exponential decays hold for all other systems studied (22).
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Fig. 2. Microscopic analysis of dynamics and structure

Emergent properties of the Dmin
2  and softness fields for six different materials are shown, as 

indicated within (C). (A and B) The correlation lengths of Dmin
2  (A) and softness (B), ξr and 

ξs respectively, are plotted against particle diameter d for each material on a log-log scale. 

The dashed lines in (A) and (B) represent the proportionality relations ξr/d = 1.1 ± 0.2 and 

ξs/d = 1.1 ± 0.2, respectively. The insets show ξr/d and ξs/d, respectively, versus d on a log-

linear scale. (C) The ratio ξr/ξs is plotted against d for each material on a log-linear scale. 
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The average of this ratio is ξr/ξs = 0.97 ± 0.07 (dashed line). (D) Snapshots of the Dmin
2  and 

softness fields for the oligomer pillar simulation and the granular pillar experiment.
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Fig. 3. Macroscopic mechanical response
An Ashby chart shows yield stress σy versus Young’s modulus E for a variety of 

experimental and simulated disordered systems. We also include literature values for 

metallic glass experiments (39), glassy polymer experiments (42), and BKS silica 

simulations (43). The data collapse onto a single curve, implying a universal yield strain of 

εy = 2.9 ± 0.3% (dashed line). In contrast, crystalline metals (red cloud) show a large 

variation in strength with little change in E, and semicrystalline polymers (blue cloud) show 

a wide variation in E with little change in strength. Previously reported crystalline material 

clouds were generated using Materials Property CES Selector software by Granta Design.
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Fig. 4. Response of softness to affine strain
The response of the mean softness to an affine uniaxial extension, ε, for six different 

materials is quantified using ΔS(ε) = [〈S(ε)〉 − 〈S(0)〉]/σS, where 〈S(ε)〉 the mean softness at 

a strain of ε and σS is the standard deviation of softness at a strain of ε = 0. These data were 

obtained by applying a uniaxial extension of magnitude ε to the neighborhood about each 

particle larger than the one used to calculate softness in each material. The softness field for 

the strained material was calculated using the original hyperplane and then averaged. The 

dashed line denotes the universal value of yield strain for disordered materials, εy. The inset 

shows values of ΔS(εy) versus particle diameter d for all six systems. These values are all 

similar, suggesting that the universality of the yield strain of disordered materials reflects a 

common response of softness to strain.
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