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Abstract1

The linear seismic response of a building is commonly extracted from ambient vibration mea-2

surements. Seismic deconvolution interferometry performed on ambient vibrations can be used3

to estimate the dynamic characteristics of a building, such as the shear-wave velocity and the4

damping. The continuous nature of the ambient vibrations allows us to measure these parame-5

ters repeatedly and to observe their temporal variations. We used 2 weeks of ambient vibration6

recorded by 36 accelerometers installed in the Green Building at the MIT campus to monitor the7

shear-wave speed and the apparent attenuation factor of the building. Due to the low strain of8

the ambient vibrations, we observe small speed changes followed by recoveries. We show that9

measuring the velocity variations for the deconvolution functions filtered around the fundamen-10

tal mode frequency is equivalent to measuring the wandering of the fundamental frequency in11
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the raw ambient vibration data. By comparing these results with local weather parameters, we12

show that the air humidity is the factor dominating the velocity variations in the Green Building,13

as well as the wandering of the fundamental mode. The one-day periodic variations are affected14

by both the temperature and the humidity. The apparent attenuation, measured as the expo-15

nential decay of the fundamental mode waveforms, is strongly biased by the amplitude of the16

raw vibrations and shows a more complex behavior with respect to the weather measurements.17

We have also detected normal mode non-linear interaction for the Green Building probably18

due to heterogeneity or anisotropy of its structure. We found that the temporal behavior of the19

frequency singlets may be used for monitoring.20

Keywords: Building monitoring, ambient vibrations, deconvolution interferometry, relative21

seismic velocity changes, temporal variations, weather forcing, non-linearity.22

Main text23

Introduction24

Seismic interferometry is a technique used to re-datum a source or sources recorded by two25

receivers to the location of one of the receiver and retrieve the wave propagation between the26

two receivers only (e.g., Schuster, 2009; Snieder et al., 2006; Wapenaar and Fokkema, 2006).27

Seismic interferometry has been applied in several fields of seismology to image the subsurface28

at different scales with surface waves (Lin et al., 2008; Mordret et al., 2014, 2015; Picozzi et al.,29

2009; Shapiro et al., 2005) or with body waves (Draganov et al., 2009; Wapenaar et al., 2008).30

When used with ambient vibrations (the so called seismic noise), seismic interferometry al-31

lowed seismologists to continuously monitor geological targets. Indeed, ambient vibrations can32

be recorded virtually continuously and everywhere on Earth, therefore, a repetitive utilization33

of seismic interferometry can be performed to follow the variations in time of the seismic wave34
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propagation between pairs of receivers. This monitoring method has been originally developed35

to monitor volcano pre-eruptive behavior (Anggono et al., 2012; Brenguier et al., 2008b; Mor-36

dret et al., 2010; Sens-Schönfelder and Wegler, 2006) and crustal effects of large earthquakes37

(Brenguier et al., 2008a, 2014; Froment et al., 2013; Minato et al., 2012; Wegler et al., 2009).38

In civil engineering applications, seismic interferometry was first introduced as NIOM39

method by Kawakami and Haddadi (1998); Kawakami and Oyunchimeg (2003) and later gen-40

eralized by Snieder and Şafak (2006) to compute the time-domain impulse response function41

of the Millikan Library in Pasadena, California. The technique has become very popular since42

then (e.g., Ebrahimian et al., 2014; Kohler et al., 2007; Rahmani et al., 2015; Todorovska, 2009;43

Todorovska and Trifunac, 2008a,b). The aforementioned studies use earthquake records as in-44

put excitation to determine the dynamic characteristics of the buildings. Due to the random and45

isolated occurrence of earthquakes, these signals are not well suited for continuous monitoring46

of civil structures (Nakata et al., 2013). The use of ambient vibrations, on the other hand, is47

more appropriate. Ambient vibrations can be recorded anywhere and at any time and have been48

used for building monitoring purpose through the measurement of the wandering of the modal49

frequencies (e.g., Clinton et al., 2006; Ditommaso et al., 2010; Mikael et al., 2013; Nayeri50

et al., 2008). These studies showed that this parameter is very sensitive to irreversible changes51

in the building structure, like defects and cracks caused by earthquakes. It is also sensitive to52

reversible variations like ambient temperature or humidity changes.53

Prieto et al. (2010) showed that seismic interferometry could also be applied to ambient54

vibrations to retrieve the impulse response of a building. More recently, Nakata and Snieder55

(2014) used seismic interferometry on ambient vibration data to develop a continuous mon-56

itoring technique. Their time resolution of four days and the arrival picking technique they57

used were not appropriate to draw any conclusion about the potential causes of the observed58

shear-wave velocity variations inside the building. In this paper, we extend the idea proposed59
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by Prieto et al. (2010) and Nakata et al. (2015) to show that with a finer temporal resolution60

of 6 hours and with more accurate seismic velocity variation tracking techniques, we are able61

to finely measure the relative velocity variations inside the Green Building (Massachusetts In-62

stitute of Technology campus, Cambridge, MA), as well as its apparent-attenuation variations.63

These temporal changes are then correlated with different local weather parameters like the64

temperature and humidity to infer which one affects the most the building.65

Data and Methods66

We used 15 days of data (between May 12 and May 27 , 2015) continuously recorded on 3667

accelerometer channels deployed inside the Green Building.68

The Green Building, currently the tallest building in Cambridge, was designed by I.M. Pei69

and constructed during the period of 1962–1964. It has an elevation of 83.7 m with a footprint of70

16.5 m by 34 m. Mechanical rooms are located on the top two floors (i.e., 19th and 20th floors).71

Heavy meteorological and radio equipments are asymmetrically mounted on the roof (Fig. 1(b)).72

Three elevator shafts are located on the eastern side of the building (Fig. 1(c)) and two stairwells73

are placed symmetrically at the NE and NW corners of the building. The building is constructed74

of cast-in-place reinforced concrete. The eastern and western facades are composed of 25 cm75

thick shear walls running the height of the building. The thickness of floor slabs is typically76

10 cm. The basement floor has a depth of 3.8 m below the grade. Taciroglu et al. (2016)77

showed that the building’s dynamic behavior can be modeled by a simple shear beam. More78

detailed descriptions of the building characteristics can be found Çelebi et al. (2014); Taciroglu79

et al. (2016) and Sun et al. (2017), in which the sensor information and deployment are also80

given. The sensor array was designed for monitoring the NS and EW translational vibration,81

the torsion, and the base rocking motion. The sensor locations and orientations are shown in82

Fig 1a. Note that the sensors are installed below the floor slabs. Fig 1c illustrates the sensor83
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locations at a typical floor. Because of these locations, the acceleration in each direction (u0 for84

EW direction, v0 for NS direction and θ0 for torsional direction) needs to be decoupled and is85

computed using the following equations:86

u1 = u0 − θ0y1 (1)

v1 = v0 + θ0x1 (2)

v2 = v0 + θ0x2 , (3)

where u1 is the measured acceleration along the EW direction, v1 and v2 are the measured ac-87

celerations along the NS direction close to the eastern and western shear walls respectively, x1,88

x2 and y1 are the sensor coordinates in the x−O− y coordinate system with O = (0, 0) shown89

in Fig 1c (see Table I in Sun et al. (2017) for the numerical values of the station coordinates).90

Therefore, the decoupled accelerations are:91

θ0 =
v1 − v2
x1 − x2

(4)

u0 = u1 + θ0y1 (5)

v0 =
x2v1 − x1v2
x2 − x1

. (6)

Figure 2 shows the spectrogram of the decoupled NS acceleration recorded on the roof of92

the Green building. The fundamental mode is observed as a constant spectral peak at 0.75 Hz,93

the first overtone at ∼2.55 Hz, the second overtone at 5 Hz (Çelebi et al., 2014) and the third94

overtone around 6.6 Hz. Obvious is the daily pattern of the man-made ambient noise with higher95

amplitudes during working hours and smaller amplitudes during the nights. The two weekends96
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are also well observed (May 16-17 and May 23-25, with Memorial Day) with smaller noise97

amplitudes.98

Pre-processing and Impulse response functions from deconvolution interferometry99

Before combining the data from the different sensors and applying deconvolution interferom-100

etry, the records from individual channels are pre-processed to mitigate potential biases intro-101

duced by the non-stationarity of the recorded ambient vibrations. The raw data are high-pass fil-102

tered at 0.05 Hz, then, the amplitudes larger than 3 standard deviations of the 2 week-long record103

are replaced by the 3 standard deviation threshold value. Then, the two-week long records are104

chopped into 20 min long segments with 50% overlap and deconvolution interferometry is ap-105

plied to each detrended segment such as:106

DUn(z, z0, t) = F−1

(
Un(z, ω)U∗

n(z0, ω)

|Un(z0, ω)|2 + α〈|Un(z0, ω)|2〉

)
, (7)

where DUn(z, z0, t) is the deconvolution function for vibration type U (U being the Fourier107

transform of either θ0, u0 or v0) between floors at elevations z0 and z, in which n is the index108

of the 20 min segment (n = 1 .. 2159 in this study) and t the lag time. In the right-hand side of109

equation 7, F−1 is the inverse Fourier transform, ω is the angular frequency, ∗ is the complex110

conjugate, 〈|Un|2〉 the average power spectrum of Un, and α = 0.5% is a regularization param-111

eter stabilizing the deconvolution (Nakata and Snieder, 2014). An estimation of the building112

response function DU(z, z0, t) is given by the average of the deconvolution functions over the113

two weeks:114

DU(z, z0, t) =
1

N

N∑
n=1

DUn(z, z0, t) . (8)

We tested different pre-processing parameters, with an amplitude threshold of 1.5 standard115
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deviations instead of 3, a high-pass filtering at 0.1 Hz instead of 0.05 Hz and α = 10% in equa-116

tion 7. We observed that the different pre-processing approach affected only marginally our117

results, both for the velocity variation measurements and for the damping variation measure-118

ments. Figure 3 shows the central part of the estimated Impulse Response Functions (IRFs) for119

the north-south translational modes (Fig. 3a-d), the east-west translational modes (Fig. 3b-e) and120

the torsional modes (Fig. 3c-f), both in the time domain and in the frequency domain, for each121

floor, with a source at the ground level. We can clearly observe a wave pulse traveling up and122

down in the building, with varying speeds, depending on the type of vibration (the dashed-lines123

are for reference only, assuming a constant speed of ∼365 m/s, ∼320 m/s and ∼600 m/s for124

the NS translational modes, EW translational modes and torsional modes, respectively). These125

pulses result from the superposition of all normal modes of the building and their frequency126

spectra are discrete. At longer times only the resonance of the fundamental modes is visible127

because the fundamental mode attenuates more slowly (Snieder and Şafak, 2006, Fig. 4). We128

observe a clear symmetry between the negative and positive time-lags of the IRFs, both in phase129

and amplitude. While the phase symmetry is expected from the seismic interferometry theory,130

it should not be the case for the amplitudes because the attenuation always follows causality.131

The amplitudes should therefore increase with increasing negative time-lags (Snieder, 2007).132

The presence of ambient vibration sources inside the building may play the role of volumetric133

sources and balance the amplitudes at negative time-lags (Snieder, 2007).134

Another way to measure the speed of the traveling waves inside the building is by looking at135

the deconvolution functions between the roof and the other floors, with the source on the roof. In136

this configuration, Rahmani and Todorovska (2013); Snieder and Şafak (2006) showed that the137

deconvolution functions are the superposition of an acausal up-going wave with a causal down-138

going wave. The speed of these waves is the shear wave speed of the building (Fig. 5). We note a139

discrepancy between the velocity of the NS modes measured with the source on the ground floor140
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and the source on the roof. This could be due to dispersion or reflections caused by the internal141

structure of the building (Rahmani and Todorovska, 2013; Snieder and Şafak, 2006). In this142

framework, the IRF is not a superposition of modes but a broadband pulse having a continuous143

frequency spectrum. According to the shear-beam model of (Rahmani and Todorovska, 2013;144

Snieder and Şafak, 2006) the up- and down-going pulses vanish at ground level and are not145

sensitive to the soil-structure interaction. Moreover, the wavelength of the waves (on the order146

of 100 m) is much larger than the typical floor height so the scattering inside the building147

should be minimal. However, at low frequency, we observe potential internal reflections in the148

EW direction (Fig. 5b)). At higher frequency, a clear coda is following the main pulse and may149

be the consequence of multiple reflections at the base and inside the building (Fig. 5d) Rahmani150

and Todorovska, 2013).151

Velocity-variation measurements152

For monitoring applications the absolute value of the velocity does not need to be evaluated:153

only the relative velocity variations are needed. It is then possible to use techniques which are154

much more accurate that picking the absolute travel-times of seismic pulses propagating inside155

the building. The basic principle to measure relative seismic velocity variations (dv/v) is to156

compare a current waveform with a reference one by measuring their relative phase-shifts along157

the lag-time. Here, the current waveforms are the individual DUn waveforms averaged in a 6158

hours moving window (average of the nth deconvolution function with the 35 previous ones) and159

the reference one is DU . We used two common techniques to measure dv/v within the Green160

building: the Moving Window Cross-Spectral (MWCS) technique (Clarke et al., 2011), which161

is performed in the frequency domain and the stretching technique (Hadziioannou et al., 2009;162

Sens-Schönfelder and Wegler, 2006), which is performed in the time domain. The comparison163

of the results from both independent methods allows us to assess the accuracy and consistency164
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of our measurements (Mordret et al., 2016).165

The IRFs deconvolved by the ground floor present two distinct types of vibration: the prop-166

agating part at short lag times (-3 s . t . 3 s), where the fundamental mode and the overtones167

are superposed, and the resonant part at large lag times (-25 s . t . -6 s and 6 s . t . 25168

s), where the fundamental mode dominates. We chose to analyze separately these two kinds of169

vibration. The MWCS technique is performed within the previously described time windows170

using small sliding windows with a length 6 times the central period of interest. The small171

windows move by 0.1 s. For each small window, the cross-spectrum between the current and172

the reference waveform is computed. From this cross-spectrum, the coherence and the phase173

between the two signal as a function of the frequency is extracted. A weighted linear regression174

(weighted by the coherency) is performed on the phase in the frequency band of interest to ex-175

tract the phase delay between the reference and current correlation, as well as an error estimate176

of the slope. Thus, for each small sliding window we obtain 3 values: a time delay (tdelay, in177

s), an error for the time delay (errtdelay, in s) and the average coherency between the two sig-178

nals (coh). Then, these measurements are used in a second step to evaluate the relative velocity179

variation dv/v = −dt/t between the reference and the current waveform. A weighted linear180

regression on the time delays with respect to the central time of the windows is used to calcu-181

late the final dv/v value and its uncertainty for a specific frequency band. Only the time delays182

with errors errtdelay < 0.03 s and coherency coh > 0.8 are used in the final linear regression183

to estimate dv/v. The uncertainty on the linear regression is taken as the uncertainties of the184

relative velocity variations.185

The stretching technique (ST) is based on the assumption that if a small velocity change186

occurs homogeneously in the medium, then the current waveform will simply be a stretched187

or compressed version of the reference waveform. The stretching coefficient is therefore the188

relative velocity variation dv/v. Prior to the stretching measurement, the reference and current189
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waveforms are filtered in the frequency band of interest. The measurement is performed using190

a grid search on the stretching coefficients. We sampled 300 stretching coefficients linearly191

spaced between -5% and 5%. For each coefficient, the time axis of the current waveform is192

stretched and then the current waveform is interpolated onto this new time axis. The correlation193

coefficient between the window of the stretched current waveform and the reference waveform194

is then computed and stored. The best dv/v measurement is chosen as the stretching coefficient195

that maximizes the correlation coefficient between the current stretched and reference wave-196

forms. To refine the estimation of dv/v we use the maximum correlation coefficient and its197

nearest left and right neighbors. We perform a quadratic interpolation of these three points and198

take the stretching coefficient corresponding to the maximum of the interpolated curve. The199

error estimate is obtained from the expression derived by Weaver et al. (2011). The error is200

related to the maximum correlation coefficient, the size and the position of the window in the201

coda, the frequency bandwidth and the inverse of the central frequency of the signal. We notice202

that in our context, the errors measured by the MWCS technique are most of the time larger than203

the errors from the stretching technique. In the following, we only present the uncertainties are204

resulting from the MWCS technique to keep conservative values.205

Damping measurements206

The damping ratio of each mode can be computed by measuring the slope µi of the envelope207

of the IRFs band-pass filtered within the half-power bandwidth (Prieto et al., 2010; Snieder and208

Şafak, 2006; Sun et al., 2017). The damping ratio ξr is given by209

ξr =
1

N0ωr

N0∑
i=1

|µi| , (9)
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where N0 is the number of observations (typically the number of instrumented floors) and ωr210

is the rth resonant frequency. Nakata and Snieder (2014) showed that with ambient vibration211

deconvolution interferometry, when noise sources are inside the building, the damping ratio212

measured by the amplitude decay of the deconvolution function is a combination of the intrinsic213

damping of the building and the radiation loss in the solid Earth at the base of the building. Here,214

we measure the damping separately on the acausal and causal sides of the IRFs and our final215

estimation of the damping is the average of both sides.216

Results217

Figure 6 shows the 2159 IRFs (smoothed by a 6 hours moving window) for the NS translational218

mode, measured on the roof with a source at the ground level. We can directly observe a tem-219

poral variation of the overall amplitudes of the IRFs as well as time shifts of the phases within220

the later parts of the waveforms. The phase shifts will be analysed through the velocity varia-221

tion measurements whereas the amplitude variations will be interpreted as damping variations222

and/or ambient noise sources variations.223

Velocity variations224

We measured the velocity variations in different lag-time windows along the waveforms and225

several frequency bands to assess the contribution of the propagation part from the resonant part226

and the contribution of the fundamental mode alone from the superposition of the overtones. In227

the following, we mainly analyze the NS translational modes, which have the higher signal-to-228

noise ratio and focus on records deconvolved either from the ground floor or from the roof. The229

two methods (MWCS and ST) are also compared in the aforementioned contexts.230

Figure 7a) shows an example of dv/v measured in the central part of the IRFs (-3 s< t < 3 s)231

at each instrumented floor, for records deconvolved by the ground floor. The velocity variations232

11



are similar at each floor. This is certainly because the Green building has not suffered strong233

damages, but one might expect this to change if damages are present. If this is the case, records234

at each floor can be used to invert for the variations of the floor stiffnesses (Sun et al., 2017) and235

therefore, a high density seismic network is absolutely necessary to localize a damage. On the236

other hand, in a low seismic risk area where buildings are less likely to be strongly damaged,237

the similarity between the dv/v at all floors shows that the number of sensors in a seismic238

array (to monitor the long term ageing of the structure for example) can be drastically reduced.239

Figure 8a) and b) show a comparison of the dv/v measurements performed with the MWCS and240

ST methods for the central part (-3 s < t < 3 s) and the later parts (15 s < |t| < 24.5 s) of the241

IRFs, respectively. The two methods behave similarly in both cases, however, the dv/v signals242

differ depending on the analyzed time lags. The central part presents larger dv/v variations (±243

1%) with a noticeable daily periodicity and uncertainties on the order of 0.5%. The later part of244

the waveforms exhibits smaller dv/v fluctuations (± 0.5%) and the daily periodicity is weaker;245

the uncertainties fluctuate around 0.25% in average. Certain periods present a strong scattering246

of the dv/v measurements in the late part measurements which correspond to departures of the247

ST measurements from the MWCS measurement in the central part. These periods correspond248

to times when the apparent damping is the strongest (Fig. 9) and, therefore, where the signal249

to noise ratio is the poorest in the coda. From these observations we can see that the ST is250

more sensitive to local ambient vibrations amplitudes variations than the MWCS technique. We251

also observe a longer term ∼8 days period on both measurements. The dv/v measurements252

performed on IRFs obtained by deconvolving by the roof (see Figure 5) instead of the ground253

floor exhibit similar features (Figure 10). For these IRFs, we take the central part as (-1 s < t <254

1 s) and the coda parts as (0.5 s < |t| < 3 s). The IRFs computed with the virtual source on255

the roof are less sensitive to the ground coupling (Petrovic and Parolai, 2016; Rahmani and256

Todorovska, 2013; Snieder et al., 2006; Taciroglu et al., 2016) therefore, the strong similarity257
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between velocity variation measurements carried from the roof virtual source IRFs and ground258

floor virtual source IRFs (Figure 10) shows that the observed variations are, at a first order, due259

to changes within the building. Moreover, according to the model of Rahmani and Todorovska260

(2013); Snieder et al. (2006), the broadband pulses generated by the roof deconvolution should261

vanish due to a null reflection coefficient at the ground level. We observe in the case of the262

Green Building that although small, the reflection coefficient is non-zero (and may be negative)263

and a clear coda exists after the main pulse. The nature of the waves in this coda is not clear in264

the context of ambient vibration interferometry with internal sources of vibration. In the case265

of earthquake interferometry however, Rahmani and Todorovska (2013) showed that the coda266

is made by the superposition of internal reflections and reflections at the base of the building267

(Figure. 5d)). The coda carries the same velocity variation information as the direct waves268

(Figure 10).269

Apparent damping variations270

Figure 9a) shows the time-series of the damping variations measured at each instrumented floor.271

Again, the curves are extremely similar at each floor, presenting a local minimum almost every272

day during morning hours and a maximum during the afternoon. This correlates strongly with273

the amplitudes of the raw ambient vibrations (Figure 9b)) and might indicate that the measured274

attenuation is biased and may only be apparent. Given equation 7, it is expected that some275

amplitude information of the raw records is kept in the deconvolution functions. The non-276

propagating ambient vibrations from sources inside the building are not corrected for by the277

deconvolution of the ground floor records. However, the apparent damping presents a clear278

non-linear relationship (Guéguen et al., 2016) with respect to the ambient vibration amplitude279

(Figure 9c)): above a certain level of vibration,the apparent damping seems to stabilize around280

5.5 %.281
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As shown by Nakata and Snieder (2014), in theory the amplitude decay of the waveforms282

depends on both intrinsic attenuation of the building and ground coupling and cannot be easily283

separated. The observed apparent damping variations are therefore difficult to relate to a simple284

cause and difficult to interpret. In our case, when the amplitudes of the ambient vibrations are285

too small, the amplitude of the deconvolution functions are strongly biased by the amplitudes286

of the deconvolved waveforms and the damping measurements are unreliable. Above a certain287

level, however, when the SNR is high enough, the damping measurements seems to converge288

toward a constant value. We hypothesize that at low amplitude, the non-propagating noise289

dominates the raw signal and the amplitude information of the IRFs is not reliable whereas290

when the amplitudes are larger, the propagating vibrations are larger than the noise and the IRFs291

amplitude information is more reliable. Because of this apparent non-linearity, the correlation292

with weather parameters is difficult to estimate. The temperature, recorded on top of the Green293

Building shows a slight link with the apparent damping (the two curve are anti-correlated at ∼294

55 %, Figure 11a-b). We also observe a∼ 6 hours delay between the air humidity variations and295

the damping variations but these estimations should be taken cautiously. There is no significant296

correlation with the temperature (Figure 11c-d).297

Discussion298

Link with the modal frequency wandering299

Tracking the wandering of the fundamental mode frequency is a well-known technique to mon-300

itor the temporal variations of the stiffness of a building (e.g. Clinton et al., 2006; Mikael et al.,301

2013; Nayeri et al., 2008). Here, we show that monitoring the velocity variations of the up-going302

IRFs filtered around the fundamental mode frequency is equivalent to measure the wandering of303

the fundamental mode frequency. For a simple 1D oscillator, the relative variation of frequency304
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f , ∆f/f is given by Haney et al. (2015):305

∆f

f
=

∆v

v
− ∆l

l
(10)

where v is the shear-wave velocity of the building and l its length. If we assume that the length306

of the building does not change, we find that the relative frequency variations are equal to307

the relative velocity variations. In the ideal shear-beam case, the equality between velocity and308

frequency variations is also true for their absolute variations (Çelebi et al., 2016). This is clearly309

illustrated by Figure 12 where we see that the relative velocity variations, independently on310

the measurement technique, follow closely the wandering of the NS fundamental translational311

mode frequency. This interferometry-based technique is not limited to the fundamental modes312

but can be applied to overtones as long as their frequency can be easily isolated in the IRFs. In313

our example, we chose the simplest method to measure the frequency wandering, i.e. tracking314

the maximum of the fundamental resonance peak in the spectrogram shown in Fig. 2, between315

0.5 and 1 Hz (Clinton et al., 2006). This technique is limited by the size of the signal sample316

used to compute the amplitude spectrum which gives a finite frequency resolution. Other more317

robust techniques, providing higher frequency resolution exist, such as the Random Decrement318

Technique (e.g., Mikael et al., 2013), but it was not necessary to use them here to illustrate our319

example. In any case, dv/v measurements from interferometry are as robust as modal frequency320

wandering observations and can provide independent information about the continuous dynamic321

behavior of a building.322

Influence of local weather parameters323

The main goal of structural health monitoring is to detect (and locate) any structural damage324

affecting a building through measurement of its dynamic behavior (Sohn, 2007). The main325
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assumption behind this concept is that any damage will modify the stiffness and/or energy dis-326

sipation of the building. Therefore, monitoring parameters sensitive to stiffness or attenuation,327

such as shear wave velocity and damping of the normal modes of a building should allow us328

to detect such damage. By comparing the dynamic response of the building between an ‘intact329

state’ and a ‘damaged state’, we should be able to assess the extent of the damage and take330

action in a safety perspective. However, defining what an ‘intact state’ is quite difficult because331

any structure responds to environmental forcing by reversibly changing its dynamic parameters.332

In order to detect damages as early as possible, we must be able to detect small damages and333

therefore we must correct our dynamic parameters measurements for these changes which are334

not associated with damages.335

Here we show that the interferometric approach can be used to monitor continuously (and336

potentially in real-time) the ‘intact state’ dynamics of a building and the effects environmental337

parameters, such as temperature and air humidity, can have on its shear-wave speed propaga-338

tion. Figure 13 shows the comparison and correlation between relative velocity measurements339

and air temperature and humidity time series. We display dv/v measured on the central part340

of the down-going IRFs and up-going IRFs for the temperature and humidity, respectively, but341

measurements on the later parts of the IRFs show similar results. We show only the positive342

time-lag of the cross-correlation between the dv/v and weather data because we are only inter-343

ested in the causal actions of the weather onto the building. We observe a stronger correlation344

between dv/v and humidity than between dv/v and temperature. The humidity correlation is345

dominated by the longer period trend whereas the temperature exhibits a stronger daily period346

correlation. It seems that the temperature is negatively correlated with the velocity variations347

but we cannot rule out a positive correlation with a 12 hours delay. On the other hand, the348

positive correlation between the dv/v and the humidity is more robust and it seems that there349

is a 1 day delay between them. Time series longer than two weeks could help to determine the350
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correlations between the parameters with more accuracy. It is also possible that the relationship351

between the weather forcing and the velocity variations depends on the actual forcing period352

(the daily forcing having a different linear relationship from the weekly forcing). It might also353

be a non-linear relationship, which would explain the small correlation coefficient between the354

temperature and the dv/v measurements.355

As stated by Mikael et al. (2013), the temperature effect on high-rise building does not356

have a clear trend and may depend on the building itself. Some studies observe a positive357

correlation between stiffness and temperature (e.g. Clinton et al., 2006; Mikael et al., 2013;358

Yuen and Kuok, 2010) whereas others observe a negative correlation (Mikael et al., 2013; Xia359

et al., 2012) or even a mixed behavior (Mikael et al., 2013). In the case of the Green Building,360

the anti-correlation in phase is clear but the correlation in amplitude seems less robust. It can361

be noted, as observed by Simon and Strong (1968) that the direct solar heating on the southern362

face of the building has a strong influence compared to air temperature variations. We are363

lacking data of the amount of sunshine during the studied period to be able to corroborate these364

observations.365

The humidity influence on modal frequencies has been less studied and most observations366

focused on the effects of heavy rainfalls. Clinton et al. (2006) report an increase of the fun-367

damental mode frequency of the soil-structure system of the Millikan library after heavy rain-368

falls. This has been confirmed with modeling experiments by Todorovska and Al Rjoub (2006,369

2009). However, they do not provide a comparison with the actual local air humidity. Results370

from Mikael et al. (2013), looking at rainfalls, are inconclusive by lack of strong events. The371

variations observed at the Green Building are unlikely caused by heavy rainfalls: only a small372

shower (∼ 10 mm) occurred on May 19 around 12PM and was not followed by clear effects.373

Herak and Herak (2010) observed a high positive correlation between air humidity and fre-374

quency changes over a 19 months period, however, it is not clear if the correlation still holds375
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on the daily or weekly period. In most cases, the humidity effect on vibrational behavior of376

a building is interpreted to be caused by changes in the soil-structure coupling more than by377

changes in the structure itself. The fact that we observe a strong correlation between the dv/v378

measured on the down-going IRFs, which are supposedly not sensitive to the ground coupling,379

and the humidity might indicate that the wetting of the concrete plays a significant role in the380

observed stiffness changes. Because of its age, the structural concrete of the Green Building381

(directly exposed to the weather conditions) most likely exhibits an increased porosity which382

in turn enhances its gas and water permeability by several order of magnitude compared to un-383

cracked concrete (e.g., Wang et al., 1997). The diffusion rate of moisture in cracked concrete384

can reach several centimeters per hour (Kanematsu et al., 2009; Wang et al., 1997), enough to385

penetrate the entire thickness of the shear walls of the Green Building. The moisturizing of the386

grain contacts induces a weakening of the concrete (e.g., Murphy et al., 1984; Pimienta et al.,387

2014) that leads to a reduction of the shear-wave speed.388

Can non-linear mode interaction be used as a new monitoring tool?389

A close inspection of the spectrogram presented in Figure 2 shows that the resonance peak390

around 6.6 Hz is actually made of, at least, three peaks. They are clearly observed on the391

blow-up in Figure 14a). Modal analysis applied on the up-going IRFs (Sun et al., 2017) shows392

that these frequencies correspond to the 4th NS translational mode: considering either the three393

frequencies altogether or separately, we observe the same mode shapes (Fig. 14b). This result394

is in contradiction with the work of Trocha (2013), reported by Taciroglu et al. (2016), who395

found the 3rd NS translational mode at 8.25 Hz. This phenomenon is not visible on the EW396

spectrograms, ruling out an imperfection in our horizontal components decoupling procedure.397

Regardless the exact nature of this mode, we observe a clear wandering of these frequencies.398

This wandering has a similar temporal fluctuation profile than the wandering of the fundamental399
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mode and the first overtone. It also exhibits the same relative variations with respect to the mean400

frequency (Fig. 15). The three frequency peaks present a parallel temporal behavior which could401

suggest a bilinear behavior of the 4th NS translational mode. A Single-Degree-Of-Freedom402

bilinear system is characterized by two frequencies f1 and f3 which correspond to two different403

states of the system (with two different stiffnesses, for example). These frequencies interact to404

give rise to a third frequency f2 called bilinear frequency (Chu and Shen, 1992):405

f2 =
2f1f3
f1 + f3

. (11)

Such behavior can be caused by the coupling of one translational mode with a torsional mode406

of nearby frequency (Boroschek and Mahin, 1991). In the case of the Green building, how-407

ever, modeling suggests that there is no torsional mode around 6.5 Hz. Bilinearity can also be408

observed in beams with breathing cracks where the two states of the system correspond to the409

open crack and the closed crack (e.g. Bovsunovsky and Surace, 2015; Chondros et al., 2001;410

Chu and Shen, 1992; Yan et al., 2013, and references therein). This model could suggest the411

presence of ageing or fatigue cracks in the building. The fact that the splitting only affects the412

4th translational mode would indicate that the cause of the bilinearity is well localized along413

the height of the building, potentially where floor drift is the largest.414

Nonetheless, Figure 15 shows that the two strongest singlets (Mode 41 = f1 and Mode 43 =415

f3) behave similarly to Mode 1 and Mode 2 but seem to lack their daily periodicity. Interest-416

ingly, the difference between f1 and f3 shows a stronger daily periodicity while still retaining417

a similar fluctuation behavior as Mode 1 and Mode 2. This can be seen in Figure 16 where418

the cross-correlation between the weather parameters and both the Mode 4 wandering and the419

f3 − f1 fluctuations show results similar to dv/v measurements. The temporal variations of the420

non-linear behavior of Mode 4 could give new valuable informations about temporal changes421
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of some asymmetries or heterogeneities of the Green Building. Given the high frequency of422

the 4th mode, this non-linear interaction would be sensitive, on first approximation, to hetero-423

geneities on the order of the wavelength (∼ 50 m in this study). If confirmed, the study of high424

frequency modes non-linear interaction would not only be useful for damage detection but also425

as a first step in damage localization due to their localized sensitivity. We believe that the first426

observations presented in this paper can stimulate future studies in this direction.427

Conclusion428

We show with this study that deconvolution interferometry performed on continuous ambient429

vibrations can be used to monitor the structural dynamics of a building during ‘normal con-430

ditions’ by computing empirical IRFs. By deconvolving the vibrations recorded inside the431

building either by the records at the ground floor or the records on the roof, we are able to repet-432

itively measure the speed of the up- or down-going shear waves traveling inside the building and433

to track their temporal variations. The study of the exponential decay of the IRFs waveforms434

give access to the temporal changes of the building (and ground coupling) apparent damping435

which is strongly biased by the amplitudes of the raw records. Our data processing and the436

velocity monitoring techniques used, fairly simple to implement, allows us to obtain a temporal437

resolution of 6 hours and an accuracy on the order of 0.1 to 0.5 %.438

We show that measuring the seismic velocity variations on IRFs filtered around a specific439

mode frequency is equivalent to measure the actual relative wandering of this modal frequency,440

a technique widely used to monitor buildings. Therefore, with the deconvolution interferometry441

technique we provide an independent and potentially complementary way to perform building442

monitoring. We compared our dv/v results with weather parameters and found a strong positive443

correlation with air humidity and a possible negative correlation with temperature. Longer time444

records would be necessary to clarify these relationships. Deconvolution interferometry can445

20



then be used as a powerful tool to study buildings dynamics under normal conditions. A better446

understanding of these natural and reversible variations would allow us to correct for them to447

be able to better detect structural damages.448

Finally, we speculate that the fourth NS translational mode of the Green Building is split due449

to non-linear interaction in its structure. The temporal variations of the singlet difference seem450

to correlate with our dv/v and frequency wandering observations as well as with the weather451

data. If this observable is confirmed, we believe that it could provide a new tool to efficiently452

monitor building and potentially help to locate damages.453

Data and Resources454

Seismograms used in this study were collected as part of an USGS experiment. Data can be455
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Aurélien Mordret, 77 Massachusetts Avenue, Department of Earth, Atmospheric and Plane-657

tary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307,658

USA. (mordret@mit.edu)659

Hao Sun, 77 Massachusetts Avenue, Department of Civil & Environmental Engineering, Mas-660

sachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307, USA. (haosun@mit.edu)661

Germán A. Prieto, Departamento de Geociencias, Universidad Nacional de Colombia - Sede662
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is not visible. The thin gray curve shows the amplitude of the NS fundamental725
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line) vs. air humidity filtered between 6 and 400 hours of period. b) The cross-735
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is shown to focus on causality between the weather forcing and the observed737
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13 Comparison and cross-correlation between weather parameters and relative ve-745

locity variations. a) Relative change in temperature vs. relative velocity vari-746

ations measured on the central part of the down-going IRFs. b) Causal part of747

the cross-correlation between the two curves presented in a). c) Relative change748
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up-going IRFs. d) Causal part of the cross-correlation between the two curves750
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14 The 4th NS translational mode (3rd overtone). a) Automatic picking of the752

three singlets of the NS 4th translational mode on top of a zoomed section of753
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ing. Both f3 − f1 and weather parameters curves (expressed in %) are filtered763
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Figure 1: Sensor layout in the Green building. a) Location and orientation of the 36 accelerom-
eters within the Green building. b) Picture of the southern side of the Green building with the
structures on the roof. c) A map view of a typical floor of the Green building with the location
of the three accelerometers in the x−O − y coordinate system. Note the elevator shafts on the
eastern side of the building.
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Figure 2: Spectrogram of the NS acceleration v0 recorded on the roof of the Green building
during the two weeks experiment. Plain vertical lines correspond to midnight, dotted vertical
lines correspond to midday.
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East-WestNorth-South Torsiona) b) c)

f)e)d)

Figure 3: Estimated Impulse Response Functions (IRFs) of the Green building, filtered between
0.5 and 7.5 Hz. a) Waveforms of the NS translational modes at each floor from a source at the
ground level. b) same as a) for the EW translational modes. c) same as a), for the torsional
modes. The gray dashed lines in frames a), b) and c) show the travel time of the shear-wave
traveling up and down inside the building at the constant speed of ∼365 m/s, ∼320 m/s and
∼600 m/s for the NS translational modes, EW translational modes and torsional modes, respec-
tively. Note that the waves reflect at the basement level with a negative reflection coefficient.
Frames d), e) and f) show the power spectra of the waveforms shown in frame a), b) and c),
respectively.
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Figure 4: Estimated NS translational IRF of the Green building between the ground level and
the roof, with the source at ground level, filtered between 0.5 and 7.5 Hz (black) and between
1.5 and 7.5 Hz (gray) to remove the fundamental mode. The inset is a zoom on the central part
of the IRF. Note that at large time lags, high frequencies are attenuated and only fundamental
mode energy remains.
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Figure 5: Estimated Impulse Response Functions (IRFs) of the Green building, filtered between
0.5 and 7.5 Hz. a) Waveforms of the NS translational modes at each floor from a source on the
roof. b) same as a) for the EW translational modes. The dark-gray dotted lines highlight a phase
which could be a reflection around the 3rd floor. c) same as a), for the torsional modes. The
light-gray dashed lines show the travel time of the shear-wave traveling up and down inside the
building at the constant speed of ∼335 m/s, ∼320 m/s and ∼600 m/s for the NS translational
modes, EW translational modes and torsional modes, respectively. d) Waveforms of the NS
translational modes at each floor from a source on the roof, filtered between 4 and 10 Hz to
highlight the coda of the waveforms. The coda is partly made of reflections at the base of the
building (the dashed lines are illustrative reflections with ∼335 m/s wave speed).
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Figure 6: Estimated IRFs of the Green building for the NS translational modes, filtered between
0.5 and 7.5 Hz. The vertical dashed lines indicate midnight and the vertical dotted lines indicates
midday.
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Figure 7: Velocity variations (dv/v) measured on the NS translational modes IRFs. a) dv/v
at each instrumented floor measured in the central part of the IRFs (-3 s < t < 3 s) with the
MWCS method, between 0.1 and 7.0 Hz. b) Same as a) but measured on the later part of the
IRFs (15 s < |t| < 24.5 s), between 0.5 and 1.0 Hz.
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Figure 8: a) Comparison of dv/v measured on the roof within the central part of the IRFs (-3
s < t < 3 s) using MWCS (black dots) and ST (gray dots), between 0.1 and 7.0 Hz. b) Same
as a) but measured on the later part of the IRFs (15 s < |t| < 24.5 s), between 0.5 and 1.0 Hz
to focus only on the fundamental mode. The gray lines show the measurements uncertainties
(here centered on the MWCS measurements).
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Figure 9: Apparent damping variations measured for the NS fundamental translational mode
with virtual source at the ground floor. a) Apparent damping variations at each instrumented
floor. b) Apparent damping variations averaged over all floors. The standard deviation is on the
order of the thickness of the line and is not visible. The thin gray curve shows the amplitude
of the NS fundamental translational mode recorded on the roof. c) Correlation between the
amplitude of the NS fundamental translational mode and the apparent damping.
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Figure 10: Velocity variations (dv/v) measured on the NS translational modes IRFs for different
windows along the waveforms (plain curves for the central parts, dashed curves for the coda
parts) and different virtual sources: either the 7th floor deconvolved by the ground floor (thin
curves) or the 7th floor deconvolved by the roof (thick curves).
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Figure 11: Comparison between the measured amplitude decay (damping) of the NS fundamen-
tal translational mode and two weather parameters. a) Damping (dashed line) vs. air humidity
filtered between 6 and 400 hours of period. b) The cross-correlation between the two curves
shown in a). Only the positive time-lag is shown to focus on causality between the weather
forcing and the observed damping. c) Damping (dashed line) vs. temperature filtered between
6 and 400 hours of period. d) The cross-correlation between the two curves shown in c).

45



12 14 16 18 20 22 24 26
−1

−0.5

0

0.5

1

%

Days of May 2015

 

 

Freq. Wand. Fundam. Mode
Vel. Var. doublet coda up
Vel. Var. stretching coda up

Figure 12: Comparison of the frequency wandering of the NS fundamental mode (∼ 0.75 Hz)
with velocity variations of the NS translational modes IRFs measured on the later part of the
up-going IRFs, filtered between 0.5 and 1.0 Hz using the MWCS and stretching methods. Both
dv/v and frequency wandering curves (expressed in %) are filtered between 6 and 400 hours of
period.
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Figure 13: Comparison and cross-correlation between weather parameters and relative velocity
variations. a) Relative change in temperature vs. relative velocity variations measured on the
central part of the down-going IRFs. b) Causal part of the cross-correlation between the two
curves presented in a). c) Relative change in humidity vs. relative velocity variations measured
on the central part of the up-going IRFs. d) Causal part of the cross-correlation between the two
curves presented in c).
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Figure 14: The 4th NS translational mode (3rd overtone). a) Automatic picking of the three sin-
glets of the NS 4th translational mode on top of a zoomed section of the spectrogram presented
in Fig. 2. b) Mode shapes computed from the up-going IRFs averaged over May 17 and filtered
around each individual singlet (light gray dashed line for f1, plain black line for f2 and gray
dotted line for f3) and for the three singlets taken altogether (dark gray long-dashed line).
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Figure 15: Relative frequency wandering of the first, second and fourth NS translational modes
and wandering of the difference between the two strongest singlets of the fourth mode.
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Figure 16: Correlation analysis of the NS 4th mode (see Figure 14 for the definition of f1 and
f3) vs. weather parameters variation measured on top of the Green building. Both f3 − f1
and weather parameters curves (expressed in %) are filtered between 6 and 400 hours of period
prior to the correlation analysis. a) Comparison between the temperature and the first singlet
f1 of the 4th NS translational mode. b) Cross-correlation between the two curves shown in
a). c) and d) Same as a) and b) for the humidity. e) Comparison between the temperature and
the difference between the first (f1) and third (f3) singlets of the 4th NS translational mode.
f) Cross-correlation between the two curves shown in e). g) and h) Same as e) and f) for the
humidity.
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