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Abstract/Summary 

Contemporary endovascular stents are the product of an iterative design and 

development process that leverages evolving concepts in vascular biology and 

engineering. Indeed, in many respects the stent is the paradigmatic example of a 

medically motivated and clinically verified device. In this review, we explain how insights 

into vascular pathophysiology, materials science, and design mechanics drive stent 

design and explain modes of stent failure. 

 

Stents were themselves part of a continuum in device development that followed on the 

heels of the success of balloon angioplasty as well as its limitations, principally of 

arterial dissection and recoil. Early stent experience was fraught with in-stent 

restenosis, the inadequate flow that arose from luminally-obstructive neointimal 

hyperplasia. Controlled release of anti-proliferative agents inhibited growth of the 

neointima and delayed arterial healing, thereby offsetting restenosis but predisposing to 

late risk of in-stent thrombosis resulting from mechanical injury, alterations in local flow, 

or direct cellular toxicity (e.g. endothelial cells specifically or loss of neointima 

generally). Current knowledge of pathological processes such as neoatherosclerosis 

and recognition of patient-dependent factors are providing a more complete picture of 

the factors mediating stent failure. Further evolution of endovascular stents includes 

fully bioresorbable platforms tailored to treat plaques acutely then disappear after lesion 

pacification. Ongoing refinement of stent technology will continue to require insights 

from pathology to understand adverse events, refine clinical protocols, and drive 

innovation. 



Key Points 

 Improvement in endovascular stent performance has occurred iteratively over 

decades and highlights the ability to optimize physiologic function and minimize 

pathologic response through design.  

 Pathology associated with endovascular stents most commonly manifests 

clinically as progressive angina due to in-stent restenosis or acute myocardial 

infarction due to in-stent thrombosis. 

 In-stent restenosis is mediated by neointima hyperplasia due to a complex 

interaction of  

1. biological factors including vascular injury, malapposition with fibrin 

deposition, and non-uniform drug delivery; 

2.  mechanical factors including stent under-expansion, hemodynamic 

stress, and stent fracture;  

3. technical factors including balloon barotrauma, stent gap and overlap, and 

residual untreated plaque; and  

4. patient-specific factors such as comorbidities, drug resistance, and 

hypersensitivity. 

 Delayed arterial healing and possibly incomplete stent coverage by endothelium 

predominantly mediate in-stent thrombosis, leading to plaque fissuring and 

rupture. 

 Neoatherosclerosis develops over months to years as opposed to decades with 

native coronary atherosclerosis and contributes to late and very late in-stent 

thrombosis.  



Introduction 

Coronary artery disease (CAD) represents the leading cause of death worldwide, 

attributed to over 17.5 million deaths annually, accounting for approximately 1 of every 3 

deaths.1 In the United States, contemporary decreases in CAD-related mortality 

correlate with the three decades following the Surgeon’s General report on the ills of 

tobacco, the Framingham Heart Study’s identification of cardiac risk factors with lifestyle 

modification, and the widespread acceptance and accessibility of evidence-based use 

of percutaneous coronary intervention (PCI).2 The technologies underpinning PCI have 

evolved iteratively from balloon angioplasty to increasingly advanced metallic stent 

platforms with various drug chemistries to self-degrading non-metallic scaffolds. Large-

scale clinical trials have validated the safety and efficacy of successive generations of 

stents. Equally important preclinical3-5 and pathology studies provide complementary 

insight to reconcile adverse events, refine clinical protocols such as optimal use of anti-

thrombotic therapy, and drive innovation for development of next-generation stents. 

 

Native coronary artery disease 

The fundamental pathogenesis of native coronary atherosclerosis has been described 

for decades but only relatively recently have the specific nuances of these processes 

been characterized, particularly with respect to coronary intervention. As early as the 

1970s, the importance of arterial injury in the establishment of atherosclerosis was 

recognized in the context of vascular smooth muscle cell activation and proliferation.6,7 

The injury model shifted towards a more complex understanding underpinned by 

inflammation, and integration of recognized cardiac risk factors such as hyperlipidemia, 



hypertension, diabetes, and smoking.8,9 The pathogenesis of atherosclerosis as a 

chronic inflammatory disease marked by progressive vascular wall injury became 

further defined and synchronized with clinical events such as plaque rupture and acute 

thrombosis comprising the acute coronary syndrome.10-13 Establishment and maturation 

of atherosclerotic plaque is now well-recognized as a progression from deposition and 

subsequent oxidation of free cholesterol, intimal thickening, and xanthoma (“fatty 

streak”) development to infiltration and lipid-avid macrophages, formation of a necrotic 

core, and progression to fibroatheroma predisposed to rupture and thrombosis.14,15 

Introduction of routine percutaneous coronary intervention (PCI) transformed the 

management of coronary artery disease and provided serial clinical data which 

emphasized the non-linear nature of atherosclerotic plaque development: luminal 

stenosis alone is not a predictor of future clinical events16 and bore the concept of the 

“vulnerable plaque.”17 Clearly, not all plaques are created equal and some are more 

prone to rupture than others. Our contemporary understanding of atherosclerosis now 

classifies the vulnerable plaque as thin-cap fibroatheroma (TCFA), predisposed to acute 

plaque rupture, and incorporates other pathologic mechanisms of thrombosis such as 

healed plaque rupture, surface erosion, and calcified nodules.13 Ante-mortem 

identification of such rupture-prone plaques has yet to be realized, frustrating current 

clinical management paradigms and causing some to question the very existence of 

such lesions. 

 



Pathology of balloon angioplasty 

The introduction of PCI with balloon angioplasty marked the first widely adopted 

technique to directly alter the natural history of atherosclerosis. Angioplasty alone, 

however, proved to be a temporizing therapy owing to the traumatic and inconsistent 

nature of plaque modification.18-20 Though initially perceived and perhaps hoped to 

result in permanent deformation, the end result was far more elastic, with reversible 

displacement that more often recoiled back to its original dimension. Associated tissue 

damage was, however, real and injury to endothelium, intima, and media promoted 

rapid restenosis within weeks to months of therapy in addition to further precipitating the 

acute complications of arterial dissection and recoil.21,22 The specific effects of balloon 

angioplasty on the arterial wall have been defined serially: vascular recoil and 

contraction following balloon dilation; injury to the intima and dissection of the media; 

inflammatory activation and proliferation of vascular smooth muscle cells, resulting in 

rapid neointimal hyperplasia, extracellular matrix deposition, and negative vascular 

remodeling.23-26 To combat the loss of effect and minimize the extent of injury, PCI 

incorporated the use of permanent metal mesh implants, bare metal stents (BMS), 

following balloon angioplasty to rigidly support the arterial lumen, controlling arterial 

dissection and preventing acute arterial recoil to good effect.22,27 Stent placement, 

nevertheless, necessarily modifies the stenotic lesion and alters arterial architecture, 

inducing arterial injury not unlike balloon angioplasty. 

 

Pathology of bare metal stents 



Bare metal stent deployment typically results in neointimal hyperplasia, which is driven 

by vascular smooth muscle cell proliferation and associated with macrophage 

accumulation and neovascularization. This may be either distributed along the length of 

the stent or focally.24,28-34 During the first two weeks of BMS placement, fibrin, platelets, 

and acute inflammatory cells are localized to the stent struts, particularly those 

embedded within the necrotic plaque core or injured arterial wall media (Figure 1 & 

2).35,36 In the weeks and months that follow, neointimal hyperplasia and then 

increasingly, extracellular matrix deposition contribute to neointimal growth.37 In 

association with a metallic scaffold, the arterial architecture is altered such that 

homeostatic expansive remodeling occurs (the so-called Glagov’s phenomenon38) and 

physiologic vasodilation is impaired. Incremental plaque development thus directly 

impinges on lumen area, rapidly precipitating in-stent restenosis (ISR) at an accelerated 

rate compared to native disease. Through these mechanisms, ISR accelerates early 

and appears to peak at around six months and, in its ultimate state, may precipitate 

recrudesce of clinical symptoms requiring repeat target lesions revascularization (TLR). 

By the first year following BMS placement, however, the neointima generally stabilizes 

and luminal diameter may regress.39,40 Our laboratory reported the importance of the 

geometric configuration of stent struts in addition to surface material in predicting the 

degree of arterial injury and inflammation (Figure 3).5 This idea not only led to 

introduction of a range of stent designs but suggested that drugs might best have their 

effects if delivered in the vicinity of the implanted devices and to this end, drug-eluting 

stents engineered with advanced materials and anti-proliferative properties were 



developed to prevent short-term vascular injury, neointimal hyperplasia, and 

thrombosis. 

 

Pathology of drug-eluting stents: in-stent restenosis 

Drug-eluting stents (DES) are defined by an elutable drug delivered to the arterial wall 

via controlled release from a polymer matrix that uniformly coats the metallic stent. First-

generational DES employed either the cytostatic agent sirolimus to suppress smooth 

muscle cell activation by arresting the G1 phase of the cell cycle or the cytotoxic agent 

paclitaxel to interfere with microtubular depolymerization.41 Introduction of DES 

significantly reduced ISR and TLR in several pivotal randomized clinical trials.42-45 It was 

still the case that lesion complexity drove ISR.46,47 Likely mechanisms to explain ISR 

with DES were organized into four primary domains: 1) biological factors including 

vascular injury,33 malapposition,48 non-uniform drug delivery;49-51 2) mechanical factors 

including stent under-expansion,52,53 hemodynamic stress, and stent fracture;54,55 3) 

technical factors including barotrauma,43 stent gap and overlap,56 and residual 

untreated plaque;57 and 4) patient-specific factors such as comorbidities,58 drug 

resistance,59,60 and hypersensitivity61,62 (Figure 4). Detailed pathological study of stents 

revealed direct injury to the media or lipid-rich necrotic core of plaques by penetrating 

stent struts, thus predisposing to ISR.33,63 Unique pathological responses are observed 

between stent composition, consistent with expected differences in drug biology.64 For 

example, response to sirolimus-eluting stents is often characterized by malapposition 

due to robust inflammation and intimal infiltration of eosinophils, lymphocytes, and giant 

cells whereas response to paclitaxel-eluting stents included malapposition induced by 



excessive para-strut fibrin deposition.65 These processes ultimately invoke the common 

pathological response of neointimal hyperplasia and inflammation, leading to 

extracellular matrix deposition and negative vascular remodeling.  

 

Neoatherosclerosis  

Contemporary long-term pathological studies have identified a novel mechanism of in-

stent atherosclerosis, which is independent of native atherosclerosis and develops 

rapidly within the neointima. This is so-called neoatherosclerosis, an important mediator 

of ISR with DES.66-68 Neoatherosclerosis is characterized by accelerated plaque 

progression in which there is accumulation of peri-strut macrophages and lipid-rich foam 

cells which organize as fibroatheroma on the luminal surface and deeper within the 

neointima.67 Neoatherosclerosis predisposes to plaque fissure and rupture that may 

present symptomatically as acute, often catastrophic, thrombosis or may be clinically 

silent, forming substrate for ISR and chronic thrombotic occlusion.68 Compared to BMS, 

DES are associated with neointima with more abundant proteoglycan in the extracellular 

matrix which is highly avid to lipoproteins.69,70 Local disruption of laminar blood flow by 

stent struts induces alterations in shear stress that stimulates endothelium to express 

the intercellular adhesion molecules ICAM-1 and VCAM-1, allowing transmigration of 

circulating monocytes into the neointima where they activate into macrophages, load 

with lipid, and form foam cells.71-73 The disrupted fluid dynamics also promote platelet 

and fibrin deposition,67 and predispose to thrombus formation. Over time, a necrotic 

core of free cholesterol devoid of extracellular matrix and sometimes exhibiting 

calcification forms within the neoatherosclerotic plaque from direct apoptosis of foam 



cells and smooth muscle cells.74-76 Unlike native atherosclerosis, pathologic neointimal 

thickening does not occur within the stented neoatherosclerotic plaques, and lesions 

progress rapidly with superficial necrotic cores that are inherently less stable and 

progress more rapidly into late fibroatheromas.68 Moreover, unlike intimal xanthomas or 

“fatty steaks” in native atherosclerosis which may remain stable or regress,77,78 

neoatherosclerosis lesions invariably progress to necrotic cores though apoptosis.13 

Intramural hemorrhage from fissuring of the luminal surface or leaking of the adventitial 

vaso vasorum further destabilizes the neoatherosclerotic plaque.79 The fibrous cap 

eventually thins, forming “vulnerable plaque” or thin-cap fibroatheroma (TCFA) at high-

risk for plaque rupture67 and a histologic predictor of future coronary event.13  

 

The precise mechanism of neoatherosclerosis remains unclear, but dysfunctional 

endothelial barrier function due to incompetent or incomplete endothelial coverage of 

the stent is thought to play a key role.79,80 This is supported by clinical evidence that 

neoatherosclerosis develops more rapidly with DES than BMS.65 Mechanical injury by 

stent struts denudes the arterial wall of endothelium. The anti-proliferative effects of 

DES prevents maturation of the regenerating endothelium, further impairing endothelial 

integrity. This may explain the more pronounced and rapid development of 

neoatherosclerosis in DES than in BMS.65,81 Specifically, poorly functional endothelium 

is characterized by reduced intercellular junctions, antithrombin expression, and nitric 

oxide production, which are observed more commonly in DES compared to BMS.71,80 

The anti-proliferative effects of drug and delayed endothelial healing is further 

compounded when stent struts violate the necrotic core where drug clearance and 



repair mechanisms are reduced in the avascular space.67 Classically, circulating 

monocytes infiltrate the intima through the damaged endothelium and differentiate into 

macrophages, which load with lipid and undergo apoptosis, leaving xanthomas.67,80 

More recently, direct transdifferation of smooth muscle cells into macrophages has been 

described, using elegant in vitro lineage tracing experiments of native atherosclerosis.82 

Whether a similar process of phenotype transition occurs in neoatherosclerosis is 

unknown. Neoatherosclerosis may result in ISR or more often serves as substrate for 

plaque instability and eventual rupture and thrombosis. 

 

Pathology of drug-eluting stents: late in-stent thrombosis 

A complementary pathological process to ISR is in-stent thrombosis (IST)83,84 (Figure 

4). Whereas ISR is a progressive process often leading to stable angina and rarely (~ 

10%), myocardial infarction (MI), IST is a catastrophic cause of acute MI and sudden 

death84 and may present as late stent failure.58,85-87 The biological, mechanical, 

technical, and patient-specific factors described for ISR also contribute to a lesser 

extent to IST.65,79,88,89 Notably, neoatherosclerosis has more recently been studied as a 

significant substrate for LST/VLST in both BMS and DES. Late stent failure has been 

ascribed to neoatherosclerosis in numerous pathology and intra-coronary imaging 

studies.66,90,91 While DES successfully forestalls early development of ISR through 

inhibition of intimal hyperplasia, delayed healing of the stented region also predisposes 

to the complication of late IST.79,85,88,92-95 Although initial studies reported comparable 

rates of IST with DES compared with BMS within the first six to twelve months of 

stenting,96-98 late thrombosis became recognized with longer follow-up.99 The benefit of 



decreased ISR with DES was thus partially counter-balanced by increased risk of IST. 

Long-term rates of MI and death beyond one year after stenting were not significantly 

different between first-generation DES and BMS.99 In addition to acute and subacute 

IST within one month of stenting, late stent thrombosis (LST) occurring 30 days to one 

year and very late stent thrombosis (LVST) occurring after one year are well-recognized 

complications of first-generation DES.92 The primary substrate for LST/VLST in DES is 

delayed arterial healing and possibly inadequate stent coverage and incorporation into 

the vessel wall.80,88,93,100 The ratio of uncovered to total stent area as determined by 

histology is a significant predictor of LST.93 Thrombosis by plaque rupture may be 

mediated by lesions in the vicinity of thrombus initiation, likely either within the stented 

region or in the immediate vicinity. Intra-coronary imaging studies suggest that plaque 

rupture occurs more frequently at the non-stented region immediately adjacent to the 

stent edge, causing thrombosis of the stented region.101,102 Autopsy studies, however, 

show neoatherosclerosis originating within and restricted to stented regions, suggesting 

flow disturbances at the native-stent transition may play a role in stented plaque rupture 

and thrombosis.67  

 

Second-generation DES 

Second-generation DES technology provided improvements in drug, polymer, and metal 

properties together with lower profile geometries that address many of the biological, 

mechanical, and technical factors that underlie first-generation DES failure. 

Nevertheless, second-generation DES remain vulnerable to long-term stent failure. The 

second-generation cobalt-chromium everolimus-eluting stent (CoCr-EES) has been 



consistently superior to first-generation DES with reduction in ISR and TRL, myocardial 

infarction, and cardiac death in high-quality randomized control trials.94,103-107 Second-

generation DES technology has ameliorated the risk of ISR with improved arterial 

healing and reduced the risk of IST,108-110 yet stent failure remains a known complication 

and cumulative incidence of ISR and TLR increases with all generations of DES 

platforms over time.86,111-113 It is suggested that in total, all of the design improvements 

that accompany CoCr-EES enhance healing or reduce initial injury with greater 

endothelial regeneration114 and less inflammation and fibrin deposition compared to 

sirolimus- and paclitaxel-eluting first-generation DES.115 Evidence for 

neoatherosclerosis was noted for CoCr-EES at 270 days, much later than first-

generation siroliumus- and paclitaxel-DES in which neoatherosclerosis was observed at 

120 and 70 days, respectively.115 The more gradual development of neoatherosclerosis 

in second- versus first-generation DES may promote more stable lesion development, 

as high-risk features like TCFA and plaque rupture were not observed with second-

generation DES.116 While second-generation DES appears to promote greater 

endothelial healing and relatively more stable neoatherosclerosis, the overall incidence 

of neoatherosclerosis, however, is similar across DES generations,110,115,117 and 

thrombosis risk remains a concern clinically.111 Second-generation DES is increasingly 

acknowledged to have a catch-up phenomenon of neointimal growth that correlates with 

delayed arterial healing.111,118 

  

Further improvements in PCI technology and techniques have enabled treatment of 

more complex disease such as bifurcation lesions posing higher risk for complications. 



The pathology associated with DES in bifurcation lesions is accentuated at the 

bifurcation carina, which is a high shear stress area where arterial healing is impaired 

compared to the lateral wall. This results in greater fibrin deposition, necrotic core 

accumulation, and plaque thickness at the carina compared to the lower shear stress 

lateral walls.119 Efforts to improve stent material and architecture as well as polymer 

coating have been eclipsed by technology to mitigate or eliminate these components 

from next generation devices. 

 

Next-generation stents and scaffolds 

Persistence of polymer coating in first-generation DES after drug delivery is problematic 

as a stimulus of peri-strut inflammation, delayed arterial healing, ISR, and IST. This has 

led to efforts to minimize polymer or develop polymer-free scaffolds.80,120-122 The next 

iteration of the DES involves further refinement of drug and polymer matrix, including 

stents with asymmetric coatings, biodegradable polymer materials or controlled drug 

delivery not requiring polymer coating. These DES with novel polymer materials or drug 

delivery strategies are thought be transformed into BMS after the acute and short-term 

benefit of drug elution is complete. The underlying hypothesis in support of the totally 

erodible materials is that long-term presence of a rigid metallic stent in the arterial 

environment inhibits physiologic vascular tone and vasomotion123 and is a nidus for late 

complications like fracture, neoatherosclerosis, and LST/LVST. To this end, 

bioresorbable scaffolds (BRS) that degrade after lesion pacification have been in 

development since the early conceptualization of endovascular stents with the 

pioneering Igaki-Tamai BRS and succeeded by several BRS currently in clinical trial. 



Notably, the Absorb everolimus-eluting bioresorbable vascular scaffold (BVS) (Abbott 

Vascular; Abbott Park, Illinois) and DESolve novolimus-eluting bioresorbable coronary 

scaffold (Elixir Medical Corporation; Sunnyvale, California) have received Conformité 

Européenne (CE) mark approval in 2011 and 2013, respectively, and await FDA 

approval.124 Early experience with the Absorb BVS has been promising,
125,126 but must 

be tempered by reports of increased rates of acute thrombosis.
127,128 While BRS 

appears to address the longer-term complications of delayed arterial healing and 

neoatherosclerosis by complete degradation, they may be subject to the complications 

encountered with early stent designs. Specifically, large and bulky strut architecture and 

propensity for under expansion creates local disruption of laminar flow and increased 

hemodynamic stress.
5,63,129 The inflammatory response to the Absorb BVS appears to 

peak at one month and largely abates by three months with positive expansile 

remodeling after 12 months in non-atherosclerotic swine but may persist for longer in 

the human.
130,131 Small cohorts of patients have demonstrated similar increases in 

lumen diameter in imaging studies.
132 The anticipated benefits of BRS technology, 

notably restoration of vascular tone and vasomotion and reduced risk of LST and LVST, 

require further clinical study. Human pathology and imaging studies will again provide 

important insights into the pathophysiology and performance of BRS technology. 

 

Summary/Conclusions 

The generalized pathology associated with endovascular stents is characterized by 

acute arterial injury, neointimal hyperplasia and inflammation, extracellular matrix 

deposition, and negative vascular remodeling. Numerous biological, mechanical, and 



technical factors contribute to ISR and IST, and evolution of PCI technologies has led to 

an amazing array of studies defining this vascular pathobiology in a synergistic manner 

and addressed these pathologies, seeking to balance the acute, chronic, and long-term 

requirements for lesion pacification and vascular healing. Commercially available DES 

are effective but limited by late and very late complications of IST, mediated principally 

by incomplete endothelial healing as a consequence of the anti-proliferative effects that 

oppose early ISR. Neoatherosclerosis is another mechanism increasingly recognized as 

a cause of LST and LVST. Next-generation DES and BRS platforms address the 

pathology observed with prior stent designs and will likely be complemented by 

adjunctive devices like drug-eluting balloons and specialized bifurcation designs. 

Careful attention to the pathophysiological response to these new technologies, with 

rigorous preclinical, autopsy, and in vivo imaging studies, will inform continued 

advancements. Successful endovascular stent design will ultimately match the specific 

attributes of the stent with the expected pathology underlying the exact clinical setting, 

including integration of lesion- and patient-specific determinants of stent failure. 
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Figure 

 

Figure 1. A & B, Acute and subacute thrombosis is observed following endovascular 

bare metal stent (BMS) placement. C, Three days following endovascular BMS 

placement (Verhoeff's elastic tissue stain), adherent mononuclear cells line the internal 

elastic lamina (arrow). D, Two weeks following BMS placement (Modified Russell-Movat 

Pentachrome stain), robust neointimal hyperplasia is observed separating the lumen 

from the internal elastic lamina (arrows). Stent struts (black rectangles, white area is 

post-processing effect). Modified from Rogers et al.133 

 

Figure 2. Activity of the four primary components of arterial injury following stent 

placement. Platelet-rich thrombosis peaks 3–4 days after stent deployment especially 

over areas of strut injury. Concomitant inflammation is initially mediated by surface-

adherent monocytes (SAM) recruited to the injury site that then migrate into the 

neointima as tissue-infiltrating monocytes (TIM) and accumulate around the stent struts 

as giant cells. Vascular smooth muscle cell proliferation peaks 7 days after stent 

deployment coincident with the transition of SAM to TIM and continues for weeks 

afterward. Extracellular matrix deposition in the adventitia, tunica media, and neointima 

accelerates at week 3 after stent deployment and underlies arterial remodeling and 

subsequent luminal narrowing. Adapted from Edelman and Rogers.36 

 

Figure 3. Stent surface and geometry significantly affect vascular injury and neointimal 

hyperplasia.5 Two bare metal stent (BMS) where fabricated using the same metal, 



process, and net surface area, on in a slotted tube (upper left panel) and the other 

corrugated ring (lower left panel) configuration and implanted in rabbit femoral arteries. 

Histologic examination was performed on methylmethacyrlate-embedded specimens 

harvested two weeks following placement. A, B uncoated surface; C, D polymer coated 

surface. Internal elastic lamina (arrow), stent struts (black rectangles), and polymer 

material (white rim circumscribing stent strut in C & D). Adapted from Edelman and 

Rogers.5  

 

Figure 4. Schematic of the mechanisms and pathology mediating clinical in-stent 

restenosis and thrombosis, which likely lies on a shared continuum that shifts from early 

events associated with bare metal stents (BMS) to late events, associated with drug 

eluting stents (DES). Biological factors include vascular injury, malapposition with fibrin 

deposition, and non-uniform drug delivery; mechanical factors include stent under-

expansion, hemodynamic stress, and stent fracture; technical factors include balloon 

barotrauma, stent gap and overlap, and residual untreated plaque; and patient-specific 

factors such as comorbidities, drug resistance, and hypersensitivity. Extracellular matrix 

= ECM.  
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