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Abstract

The primary goal of this dissertation is to study the deformation response of a bi-
nary covalent lattice (cubic SiC with zincblende structure) to hydrostatic tension and
compression using an atomistic approach of self-consistent elastic stability analysis
combined with molecular dynamics simulations. Using a classical many-body poten-
tial function, the present study not only has demonstrated the practical feasibility of
modeling mechanical behavior of crystals under stress, but also i% has highlighted the
role of chemical ordering and the relative importance of atomic size and mixed bond
chemical preference effects in the process of pressure-induced amorphization.

The present work is based on the empirical bond-order potential function devel-
oped by J. Tersoff, originally developed for Si and later adapted for SiC. However,
whenever the lattice undergoes significant volumetric deformation, unphysical effects
arise which is caused by abrupt change in the number of interacting neighbors due to
the use of a fixed potential range cutoff. A simple modification is introduced allowing
the cutoff to vary with the density of the system, and the resulting modified potential
is found to give a generally satisfactory description of bulk and surface properties of
B-SiC, including the temperature variation of the elastic constants.

The modified Tersoff potential is used to study the response of a homogeneous
crystalline lattice to hydrostatic deformation by applying newly developed elastic
stability criteria in conjunction with direct observations of structural instability and
evolution through molecular dynamics simulations. The conditions for instability at
finite stress differ from the conventional criteria in that the former involve elastic
stiffness coefficients that depend not only on the elastic constants but also on the
applied stress.

In the case of tensile loading, the failure mode is predicted to be the vanishing
of the bulk modulus, denoting a spinodal instability. This prediction is confirmed
by simulation which gives a value of the critical stress, the ideal strength of the
solid, in agreement with the stability analysis. Furthermore, simulation reveals that
upon lattice decohesion, a brittle crack has been nucleated on the lowest surface
energy plane — the {111} shuffle plane. Even though the simulation data is limited ,



evidence indicative of shear-tension coupling effects in brittle {racture is found, and
rapid atomic relaxation process on the cracked planes is observed.

In the case of compressive loading, the failure mode of covalent solids is less ob-
vious. With the bulk modulus increasing with loading, one can only expect that
instability should occur when either the tetragonal shear modulus G’ or the pure
shear modulus G vanishes. For 8-SiC, the elastic stability analysis shows that the
shear instability vanishes under compression. The critical stress actually observed in
simulation is again in close agreement with that predicted from the elastic stiffness
coefficients. And the analysis shows that the instability is caused by large internal
strain fluctuations which lead to the vanishing of the shear instability G. The unsta-
ble structural response, revealed by simulation is a homogeneous disordering process
accompanied by volume expansion and decreasing of internal energy. The transition
is found to be reversible in a manner analogous to the ‘memory glass’ effect known
experimentally.

The fact that binary SiC would amorphize under pressure is in contrast to the
behavior of elemental Si which undergoes structural transition (diamond cubic to
B-tin) under compression. This difference points to the underlying role of chemical
ordering in structural stability of covalent solids. To elucidate the relative importance
of the two effects contributing to the chemical ordering, namely, the atomic size
disparity and chemical preference of mixed bonds, it is shown that the modified Tersoff
potential can be manipulated to suppress one eftect or the other. Specifically, size
difference appears through the many-body bond-order parameter, while the chemical
preference is expressed through the heat of formation. In this manner, the atomic
size and chemical preference effects are studied explicitly. The vanishing of shear
instability in pressurized SiC is shown to be a consequence of the appreciable size
difference between the Si and C atoms. Further simulation confirms that if the size
effect were suppressed, then 5-SiC would in fact transform from zincblende to rocksalt
structure under compression. These findings are significant for future simulation
studies in that they demonstrate new insights can be gained through well-defined
manipulations of the interatomic interactions.

Thesis Supervisor: Sidney Yip
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Silicon carbide (SiC) is a material of great technological importance(1)[2][3][4][5]. Var-
ious polytypes exist for this material[6]. The polytypism originates from different
stacking sequences of silicon-carbon double layers in the cubic (C), hexagonal (H), or
rhombohedral (R) structure. The most common polytype is 3C SiC, or 3-SiC, which
has a zincblende structure and is formed by ...ABCABC... stacking of the silicon-
carbon double layers. [-SiC is a semiconductor material with unique mechanical,
thermal and electronic properties. Due to its strongly directional and highly local-
ized covalent bonding, -SiC has great hardness and has been used as a traditional
abrasive or refractory material. 8-SiC has a high melting temperature, low thermal
expansion coefficient and high thermal conductivity. It is a wide band gap semicon-
ductor with high electron mobility and electron drift velocity(1]. Because of these
excellent properties, 3-SiC has been recognized as a particularly promising prototype
for high-temperature, high-power and high-frequency operation devices. Recently,
the interest in SiC is further extended to the field of advanced composite materials.
It has been used as a reinforcing fiber for resin- and metal-matrix composites. And
more importantly, SiC or carbon reinforced SiC matrix composite materials have at-
tracted significant attention due to their potential ability in achieving novel materials

with enhanced mechanical properties.
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SiC fiber-reinforced matrix composite materials are designed to enhance the ma-
terial toughness, i.e., the capacity to withstand local over-stress without catastrophic
failure[7]. Although both the matrix and the reinforcing fibers have high strength,
low creep rates and excellent thermal stability at high temperatures, 8-SiC is a brit-
tle material that undergoes brittle fracture by nature[8]. Accordingly, the fiber or
the matrix by themselves provide minimal resistance to crack propagation and tend
to catastrophic failure. However, once they form a composite material, the bond-
ing at the interface between the matrix and fiber can control the fracture mode of
the material. It is now widely recognized that the overall functionality of the fiber-
matrix composite is governed to a great extent by the interface properties[7][9]. If
the interface is too strong, a crack that propagates in the matrix can pass through
fibers, and the composite material will fail in a brittle manner. On the other hand,
a relatively weak interface will allow fiber debonding, sliding through the matrix and
bridging away the crack. These effects will ultimately lead to multiple cracking of
the matrix and fiber pull-out. External load will be transfered from the matrix to
fibers and the material will fail progressively instead of catastrophically[7]. Thus,
with relatively weak bonding at the interface, a much tougher composite material
can be obtained. The matrix failure strain can be significantly increased and the
ultimate failure stress of a composite material can be much higher than that of the
monolithic matrix. However, it should be noticed that if the interface is too weak,
no load will be transfered from the matrix to fibers, and thus the fibers loose their
function. Therefore, tailoring interfaces between the matrix and fibers to achieve the
optimum combination of strength and toughness is critical in designing composite
materials. To understand the structure and mechanical properties of the interface
over a wide range of temperature and stress and to relate the interfacial mechanical
properties to the fracture characteristics of the composite material become crucial for
designing composite materials.

Understanding the mechanical behavior of SiC fiber-matrix composites requires
investigations of the mechanical behavior of both the pure monolithic matrix mate-

rial and the interface. It is undoubtedly necessary that one must first understand
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the fundamental mechanical properties of the matrix or fiber monolithic materials.
Thus, fundamental concepts such as the intrinsic ideal strength and intrinsic fracture
toughness of SiC crystals must be investigated before hand under different external
conditions. A number of fundamental questions need to be answered for 8-SiC crys-
tals, such as what are the maximum loadings a monolithic matrix can hold? Under
what conditions cracks begin to nucleate inside the SiC matrix? And under what
conditions, existing cracks will propagate? Understanding these fundamental ques-
tions will provide a foundation for studies of mechanical properties and behavior of
SiC composite materials.

Previously, there has been no study of the ideal strength or mechanical stability of
single crystal §-SiC. In general, the ideal strength of defect-free crystalline materials
has been under extensive study but remains a challenge. Perfect crystals can hold
elastic strains that are well beyond what can properly be treated as infinitesimal.
Their response to various loadings is not well known and complex[10]. Since the
concept of ideal strength can be considered as an instability phenomenon, effort has
been devoted to studying the instability of perfect crystals. These studies involve
deriving the so called stability criteria, which are a set of conditions expressed in terms
of materials properties, such as elastic constants or stiffness coefficients[11]. The first
systematic analysis of lattice instability is attributed to Max Born who has shown
that, by expanding the internal energy of a crystal in a power series of strain and by
requiring convexity of the energy, one can obtain stability criteria in the form of a set
of conditions imposed on the elastic constants of the crystal[12]. While Born’s criteria
are well known in the literature[13], it has not been satisfactorily resolved whether
these criteria are capable of accurately predicting the actual onset of an instability. On
the theoretical side, the difficulty lies in the different ways that the stability analyses
have been formulated and in properly evaluating the elastic constants that appear
in the criteria. On the experimental side, competing effects frequently render the
triggering instability unclear. Thus, the validity of Born’s criteria under finite load
appears to go generally unquestioned. In a series of theoretical and computational

studies, Hill[10] and Hill and Milstein[14] have investigated the different domains of
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stability which result from different choices of stain measure. Hill[10] pointed out an
inconsistency in the original Born’s derivation. Other than this work, there appears
to be no explicit discussion of whether Born’s analysis is valid at finite strain.

Recently, Wang et al.[15][16] have re-examined the Born’s criteria in several simu-
lation studies of stability and structural change of a homogeneous lattice (fcc metal)
under finite stress and temperature. They have derived generalized elastic stabil-
ity criteria as finite-strain extension of the well-known Born’s criteria, which have
been shown to be valid only at zero load. In the newly derived stability criteria,
elastic stiffness coefficients appear as the finite-strain generalizations of the elastic
constants. Furthermore, it has been found that for each specific instability criterion,
there is a corresponding mode of deformation which can be determined by solving
an eigenvalue-eigenvector problem[17]. This suggests that different instability mech-
anisms will be signaled by different modes of deformation which could be experimen-
tally detectable and observable in atomistic modeling. Recently, Rice has raised valid
questions concerning the general derivation of the stability criteria based on the stiff-
ness coefficients[18]. Nevertheless, for hydrostatic loading, Rice has independently
shown that the stability criteria derived by Wang et al. are correct.

The new criteria derived by Wang et al. have been applied in a series of follow-up
simulation studies using explicit atomistic force models. Predictions of critical strain
(or stress) and deformation mode from instability analysis have been tested inde-
pendently by molecular dynamics simulations. In simulations, the onset of structural
instability has been clearly observed and the atomic structural configurations resulted
from the instability have been determined. Remarkably, the simulation results agree
well with the prediction of the instability analysis. In terms of the phenomena that
could occur after an instability of a crystal is reached, the elastic stability analysis
can be applied to study a number of long-standing problems of structural changes,
such as melting[19], polymorphism[20] and pressure-induced amorphization[21]. For
all cases, the criterion that is first violated is regarded as the instability mechanism
that causes the onset of the structural change. Significant new understanding of these

problems has been gained by using the new stability criteria. Some of the detailed
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studies will be reviewed below.

Wang et al.[15] have studied fcc Au single crystals under hydrostatic tension, uni-
axial tension and isobaric heating by using the embedded-atom-method potential[22].
They have found that under hydrostatic tension, the spinodal instability (bulk mod-
ulus) goes to zero and the crystal lattice loses cohesion in the form of cavitation.
Under uniaxial tension, they have found that the tetragonal shear (corresponding to
Ci1 — Ci2) goes to zero and the lattice undergoes a phase transition from fcc to bec.
In the case of isobaric heating at zero pressure, the Born’s criteria based on elastic
constants are equivalent to the new criteria based on stiffness coefficients. It has been
found that the tetragonal shear instability sets the upper limit of superheating or
metastability of the crystal lattice. Quite interestingly, it is found that instabilities
occur in succession during the isobaric melting process. In all three situations, the
new stability criteria predict the onset of instability very well and have been verified
by simulation studies.

As a first attempt to elucidate the critical deformation behavior of lattice models of
a binary intermetallic systems, Cleri et al.[23] have performed a study on Niz Al under
hydrostatic and uniaxial tensile loadings by using an interatomic potential derived
by a second moment approximation to the tight-binding model of d-band transition
metals. Two lattice structures are investigated, a highly symmetric and naturally
occurring L2 structure and a less symmetric , intrinsically less ductile hypothetical
DO,, structure are studied. Failure modes observed are spinodal instability under
nydrostatic tension and tetragonal shear instability under uniaxial tension. While
simulation results confirm the new stability analysis very well, there appears to be
little correlation between instability behavior and the relative ductility of a given
lattice structure (with the exception of behavior of the final state).

It is well known that covalent materials differ from metals by the nature of highly
directional and angular dependent bonding. The open structures in covalent materials
give rise to various possibilities of structural changes at the instability. Mizushima et
al.[24] have studied the structural instability and transformation of diamond cubic Si

lattice under compression by using the Tersoff potential for Si[25]. It is found that the
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tetraigonal shear stability is violated under compression. As a 1esult of this instabil-
ity, the Si lattice undergoes a phase transition from diamond cubic to S-tin structure.
Both $-SiC and Si are tetragonally bonded covalent materials with open structure.
Additiona! complexity arises in SiC because of its binary nature, that is the chemical
ordering effect. The two major factors contributing to the chemical ordering effect
are the atomic size difference of Si and C atoms and the chemical preference of mixed
bonds between Si and C. Tersoff has found that the effect of chemical preference of
mixed bonds is much the same in crystalline and amorphous materials. However, the
atomic size difference is far less effective in inducing ordering in quenched amorphous
SiC than in crystal $-SiC[26]. The existence of the chemical ordering effects can play
an imi)ortant role in the unstable structural responses of 3-SiC, and could determine
the difference of instability mechanism and the actual structural responses of $5-SiC
and Si. Therefore, understanding the elastic instability and unstable structural re-
sponse of (-SiC in the presence of chemical ordering effects remains a challenge and
can lead to a rather general understanding of covalent materials including both binary

compound (8-SiC) and single element crystal (Si).

1.2 Problem Statement and Scope of Thesis

The problem addressed in this thesis is an atomistic study of deformation and unstable
structural responses of a bulk binary covalent crystal (SiC with zincblende structure)
under hydrostatic tension and compression through an integrated approach of molec-
ular dynamicé (MD) simulations using a modified classical, many-body empirical
potential function and self-consistent elastic stability analysis based on the concept
of elastic stiffﬁess coefficients. The phenomena being studied are tension-induced
crack nucleatioﬂ and brittle fracture and pressure-induced lattice disordering. An
emphasis of the‘.investigation is the clarification of the role of chemical ordering in
the amorphization process of 3-SiC, specifically, a probe of the relative importance of
the atomic size dfsparity and mixed bonds chemical preference. The elastic stability

analysis predicts the instability mechanism and the critical stress at which the insta-
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bility will occur. However, it does not predict what will happen to the structure of
the crystal when it reaches the instability. MD simulations on the other hand is able
to provide detailed atomic configurations and allow one to examine the structure of
the system at any time instant, such as before, during and after the instability driven
unstable structural responses. Combing the elastic stability analysis and the MD
simulations, one can predict the instability mechanism, predict the critical stress,
verify the predictions from elastic stability analysis by direct MD simulations and
direct observe the structural changes at the instabilities. Therefore, a comprehen-
sive understanding of the elastic instabilities and the unstable structural responses of
crystals can be obtained.

The most critical limitation of atomistic simulations is the accuracy of interatomic
potential functions. It is challenging to develop an accurate empirical interatomic po-
tential function for covalent materials due to the difficulties in describing the highly
directional bonds and angular dependent forces in these materials. It is even more
difficult to develop a potential function for SiC due to the additional binary nature
of this material. While a number of interatomic potential functions have been devel-
oped for SiC, their accuracy and transferrability have not been critically examined.
In this thesis, we have studied and compared available potential functions for SiC by
calculating basic physical properties of 3-SiC, such as cohesive energy, lattice con-
stant, bulk modulus and elastic constants at low temperature (0K). It is found that
the‘ potential function developed by Tersoff[27] describes the equilibrium properties
of /;li-SiC very well compared to experimental data and first principle calculations.

When further examined in conditions under stress and at finite temperatures, it
is found that the Tersoff potential only works well within a limited region near the
stress-free equilibrium condition. This certainly limits the study of the elastic insta-
bility of 8-SiC under finite stress loading. The Tersoff potential is then modified by
introducing a variable cutoff to replace the original fixed cutoff. The modified Ter-
soff potential has improved the original Tersoff potential significantly. The modified
Tersoff potential is then applied to study fundamental properties of the bulk and

surfaces of §-SiC. Extensive comparisons with experimental data, tight-binding and

23



first principle calculations are made. The comparisons show that the modified Tersoff
potential is capable of describing realistic thermal and elastic properties of 3-SiC; this
in turn ensures that we can extend our study to the elastic stability and structural
response of 3-5iC under stress using the modified Tersoff potential.

For a crystal lattice under stress, no doubt that the lattice will ultimately fail as
the deformation becomes large enough and reach a critical point. The fundamental
questions one can ask are what will cause the crystal lattice to become unstable; what
maximum loading the crystal can hold; and what happens to the structure once the
lattice becomes unstable. The first question concerns the underlying physics of the
instability. Consider the internal energy U of a crystal, stability of the crystal requires
that the internal energy be a minimum, i.e., 62U > 0. When the inflection point of
the internal energy is reached, i.e., 82U = 0, the crystal becomes unstable. Therefore,
62U = 0 defines the instability point of the crystal. If the internal energy is expanded
in terms of strains of the system, it can be shown[13] that the convexity condition
of the internal energy is equivalent to the condition that the matrix containing the
second derivatives of the internal energy with respect to strains are positive definite.
Thus, the instability condition of 82U = 0 can be described in terms of the standard
solution of an eigenvalue problem of a matrix consisting of second derivatives of the
internal energy. Following this idea, one can reach the well known Born’s instability
criteria expressed by a set of conditions in terms of elastic constants[13]. However,
these instability criteria are found to be valid only at zero loading(15](16]. Using the
principle of virtual work, one can derive the more general instability criteria replacing
elastic constants with elastic stiffness coefficients in the Born’s criteria[16]. Though
the general derivation of the new stability criteria have been recently questioned by
Rice[18], the stability criteria under hydrostatic loading have been independently
worked out by Rice and are the same as that derived by Wang et al.[15][16]. In this
thesis, we focus on hydrostatic loading situations including tension and compression.

Given the instability criteria of a crystal, one can examine how the instability
criteria vary with external loading and which instability criterion will first go to zero

at a critical stress. The criterion that first goes to zero determines the instability
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mechanism of the crystal. For a cubic crystal, there are three instability criteria,
i.e., the spinodal instability (vanishing of the bulk modulus), the shear instability
(corresponding to Cy4) and the tetragonal shear instability (corresponding to Cy; —
Ci2). The major outcome of the elastic stability analysis are the predictions of the
instability mechanism and the critical stress at which the stability is first violated.
Also, by solving the eigenvalue problem corresponding to 62U = 0, one can obtain
the accompanying eigenvectors of strains. For each instability criterion, a unique
eigenmode exists corresponding to the eigenvectors. The eigenmode describes how
the strains vary when a particular instability occurs. In other words, the elastic
stability analysis can predict the mode of deformation which describes the condition
that must be satisfied by the strain variation during the structural change triggered
by the instability.

Although the elastic stability analysis can provide insight into the instability mech-
anism and the eigenmodes of deformation, it can not describe the final state of the
structural change. Therefore, molecular dynamics simulations become necessary for
such studies. From MD simulations, we can observe the actual response of the crystal
along the entire deformation path. In particular, we can gain detailed knowledge of
structure and properties of the crystal when the instability occurs. By studying the
properties of structure factor, internal energy and system volume in simulation, we
can identify changes that might have occurred in the crystal. From the change in the
simulation cell shape, i.e., bifurcation or shear deformation, we can verify the mode
of deformation that is predicted by the elastic stability analysis. By examining the
atomic configuration and the radial distribution functions, we can determine the final
structure of the system after structural changes.

Combining the elastic stability criteria and MD simulations, we have investigated
the elastic instability and structural response of [-SiC under hydrostatic tension
and compression using the modified Tersoff potential. The work presented in this
thesis constitutes the first systematic study of the mechanical stability and structural
responses of 3-SiC under stress. Under tension, it is found that the spinodal stability

is violated (vanishing of the bulk modulus) at a critical tensile stress and the crystai

25



experiences a decohesion failure manifested by crack nucleation and brittle fracture
along the shuffle {111} plane, which has the lowest surface energy. Under compression,
it is found that the shear stability is violated at a critical compressive stress, which
triggers a solid-state amorphization in 8-SiC.

The fact that 5-SiC undergoes pressure-induced amorphization under compres-
sion stands in contrast to the behavior of elemental crystalline Si which undergoes a
polymorphic phase transformation from diamond cubic to (-tin under compression.
In the case of Si, the instability mechanism is the tetragonal shear. We believe that
the differences between SiC and Si stem from the additional chemical ordering effect
that exists in -SiC. By modifying the Tersoff potential for SiC in a way that allows
us to separately probe the effects of atomic size difference and chemical preference,
we identify that the atomic size effect is primarily responsible for the critical internal
strain relaxations which lead to the order-disorder transition of the 8-SiC lattice. By
suppressing the atomic size disparity, we show that the instability mechanism changes
from shear to tetragonal shear for SiC; and the structural transition changes from the
crystalline-amorphous transformation to a polymorphic phase transition.

Eventually this work will help to study SiC fiber reinforced composite materials
in which interfacial mechanical properties play a critical role. We present in this
thesis a preliminary study of a crystalline-amorphous SiC interface. We develop a
methodology to construct such an interface and demonstrate the feasibility of studying
the correlation between structure, interfacial bonding and mechanical properties using
atomistic simulations. This work will require significant future studies.

The thesis is organized as follows. We will start with a brief review of MD sim-
ulation techniques in Chapter 2, including a discussion of the methodologies to cal-
culate stress, strain and elastic constants. We will also discuss interatomic potential
functions in Chapter 2. Results of testing existing potential functions for SiC and
modifications of the Tersoff potential will be given. In Chapter 3, we will present
results of calculations of fundamental physical properties of both the bulk and sur-
faces of 5-SiC using the modified Tersoff potential, where extensive comparisons with

first principle, tight—binding calculations and experimental data will be made. Both
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Chapter 2 and Chapter 3 are intended to prepare for our study of the mechanical
stability and structural response of 3-SiC under stress. In Chapter 4, we will derive
the finite strain elastic stability criteria based on elastic stiffness coefficients using the
principle of virtual work method. In Chapter 5 and Chapter 6, we will present studies
of mechanical stability and structural response of 3-SiC under hydrostatic tension and
compression respectively. In Chapter 6, following the observation of pressure-induced
amorphization of 8-SiC under compression, we will focus on studying the roles played
by chemical ordering effects in the amorphization process of 5-SiC. Two simplified
models for SiC will be proposed and the effects of atomic size difference and chemical
preference will be investigated explicitly. In Chapter 7, we will show our preliminary
results of a crystalline/amorphous SiC interface. The main purpose of this chapter is
to present a methodology for interface construction and demonstrate the feasibility
of atomistic simulations to study the interplay between atomic structure, interfacial
bonding and mechanical properties. This work is limited and suggestions for future
work will be made. Finally, in the concluding chapter, we summarize our major re-

sults, their significance and implications, and discuss some directions for future work.
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Chapter 2

Atomistic Simulation Technique

and Interatomic Potential

Functions in Modeling SiC

With the rapid growth of computing power and the development o: advanced inter-
atomic potential functions, atomistic simulation has become a unique research area
combinirg the wisdom of physicists, chemists, materials scientists and engineers. It
has been widely applied in investigating microscopic structures and properties of
complex materials, in bridging gaps between theories and experiments, and in under-
standing the fundamental physical processes and mechanisms occurring at the atomic
scale. Molecular dynamics (MD) simulation allows us to study complex phenomena
of materials under precisely controlled condition. It offers a unique way to study
both static and dynamic properties simultaneously. Nevertheless, we should point
out that MD simulations also have limitations. Other than the obvious constraint
imposed by the availability of computational resources, a critical limitation of MD is
the availability and accuracy of interatomic potential functions being used to model
materials.

In this chapter, a brief summary of modern molecular dynamics simulation tech-
nique will be first given in Sec.2.1. Since studying mechanical behavior and properties

of materials under stress is one of the major goals of this thesis, in Sec. 2.2, I will dis-
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cuss methods to calculate mechanical properties of a system, including stress, strain,
elastic constants and stiffness coefficients. Special features of internal strain relax-
ation of Cy4 in non-bravais lattice systems will be addressed. Note that the strain,
stress, elastic constants and stiffness coefficients will be re-discussed again in Chapter
4 in the context of elasticity theory. The discussions in this chapter focus on how to
calculate these quantities in MD simulations, whereas the discussions in Chapter 4
will focus on their physical definitions and applicatious in deriving the new stability
criteria using finite elasticity theory. Lastly, in Sec. 2.3, I will discuss some general
aspects that are involved in developing advanced potential functions. In particular, I
will focus on potential functions for §-SiC. I will address key issues of angle-dependent
forces of covalent materials and the binary feature of SiC,i.e., how to treat interac-
tions between different types of atoms in SiC. Also, I will present results of testing

and modifying available potential functions for SiC.

2.1 Molecular Dynamics Simulation Methodology

The basic techniques of molecular dynamics simulations are now standardized and
well documented [27] [28]. In brief, MD simulation is a method for generating the
trajectories of N atoms in a system under conditions of finite temperature and ex-
ternal stress by direct numerical integration of the Newton’s equation of motion. A
typical numerical procedure used to solve the Newton’s equation is via the fifth or-
der predictor-corrector algorithm [29]. MD simulations require specific interatomic
potential functions. It can accommodate any initial atomic configurations. Its basic
output is the time-dependent positions and momenta of atoms, from which a variety of
properties can be calculated. Structural, thermodynamical, mechanical, vibrational
and transport properties are most frequently studied by MD simulations[27}[28].

In the language of statistical mechanics, the objective of a MD simulation is to
compute the phase-space trajectory. The phase-space is a 6 N-dimensional hyperspace
consisting of positions and momenta of all N atoms of a system. By sampling suf-

ficient phase-space surface, MD simulation can derive reliable macroscopic physical
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properties of a system from statistical mechanics. MD simulation can study different
ensembles by sampling on different surfaces of the phasc-space. Each ensemble has its
own conserved thermodynamic quantity such as energy, temperature and pressure.
The most commonly used ensembles are microcanonical ensemble (NVE), canoni-
cal ensemble (NVT), isoenthalpic-isotension ensemble (HTN) and isothermal-isobaric
ensemble (NPT). In the microcanonical ensemble (NVE), the total energy of the sys-
tem is conserved. By rescaling the velocities of atoms at every time step to keep
the temperature of the system constant, one obtains the canonical ensemble (NVT).
The (H7N) and (NPT) ensembles can be generated by a generalized MD simulation
method that is first proposed by Parrinello and Rahman[30] and later modified by
Ray and Rahman(31]. In the generalized MD simulation, the shape and size of the
simulation cell are no longer constant. They vary in responding to externally applied
stresses. Take @, b and ¢ as the three vectors forming the simulation cell, one can con-
struct a matrix h = {d, b, ¢}. In the modified formulation of the Parrinello-Rahman
method, in addition to the equations of motion for the NV atoms in the simulation
cell, the equation of motion for the variable matrix h is also considered. For a system

subjected to anisotropic stress, this equation of motion is[31]
Wh=0oVRT™' — AT, T =Voho 'rhoT " (2.1)

where W is the mass of the cell; o is the internal microscopic stress tensor; 7 is the
thermodynamic tension tensor and is related to the externally applied stress tensor s

by
T = Vhoh™'shT ' hoT [Vp (2.2)

where Vp and hg are the volume and cell matrix corresponding to the zero stress
state respectively. For a system subjected to an external hydrostatic pressure P, the

equation of motion becomes

Wh = (o - P)VAT™ (2.3)

30



Eq.(2.1) and (2.3) will allow h to adjust to the applied loading. At equilibrium, the
internal stress of the system will be equal to the external loading. As is shown by Ray
and Rahman [31], in the generalized MD simulations, the enthalpy H is conserved.
Thus, one can generate the (HTN) or (HPN) ensemble. Then by rescaling velocities
at each time step, one can generate the isothermal-isostress (N7T) ensemble, or the
isothermal-isobaric (NPT) ensemble. In this thesis, the (NPT) ensemble is used to
study structural response of systems under hydrostatic tension or compression; and
the (NVE) ensemble is used for calculations of mechanical properties.

Due to the constraints of computer speed and memory, MD simulations are limited
to certain size and time duration. The typical size of a MD simulation consists of
102 — 10* atoms; and the longest time duration is about 100-1000 pica-seconds (ps).
However, with the development of massive parallel computers, simulations involving
as many as 10° atoms have now become reality [32] [33].

In order to use limited number of atoms to study bulk materials containing at
least 102 atoms, proper boundary conditions must be applied so that the small
system being simulated can represent a macroscopic system. In this thesis, periodic
boundary conditions along three Cartesian directions (z, y and z) are applied to the
simulation cell to study bulk systems. The periodic conditions can yield satisfactory
results in most cases. For free surfaces and interfaces, the periodic boundary condition
is only applied to the two directions parallel to the surfaces and is removed along the
direction normal to the surfaces. By so doing, one can study semi-infinite system
with finite thickness.

Finally, using an appropriate time step and sufficient number of time steps are
necessary to observe real physical phenomena and obtain reliable physical properties.
In this thesis, for the Tersoff potential, the time step is taken as 1.45 x 10~4ps. Typical
runs for MD simulations in studying the response of a system under stress last about
7 — 10ps. The runs for properties calculations (e.g., elastic constants) last about

10 — 80ps.
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2.2 Calculation of Mechanical Properties

One of the fundamental mechanical and thermodynamic properties of a general sys-
tem is its elastic constants. Given an interatomic potential function, calculating
elastic constants is the most important step to understand its mechanical behavior.
In fact, bulk modulus usually is used to fit parameters in potential functions. Since
bulk modulus only provides a description of the volumetric response to hydrostatic
pressure applied to the material, elastic constants are fourth rank tensor describing
the variation of stress with strain. A newly formulated elastic stability criteria[15][16]
have shown that the elastic constants alone are not enough, it is the combination of
the elastic constants and the applied stress, i.e., the elastic stiffness coefficients, that
ultimately determine the mechanical strength of a system. It is therefore important
to accurately and efficiently calculate the elastic constants and stiffness coefficients,
especially under conditions of finite strain at finite temperature, where usually little
experimental data exist. Generally, two methods are available to compute elastic
constants in simulations. One is the stress-strain method; and the other is the re-
cently formulated fluctuation formula[34]. The stress-strain method is valid only for
calculations at 0K. At finite temperatures, it has been found by Sprik et al.[35]
and by Rahman|34] that this method is not satisfactory because of its slow conver-
gence. Both the stress-strain method and the fluctuation formula involve calculations
of stress and strain. In recent years, stress and elastic constants have been calculated
for simple metals using Lennard-Jones[36][17] and EAM potentials[17][37] and for Si
by Stillinger-Weber potential[34]. In all these cases, fluctuation formulae have been
applied and they have led to good results. However, no study has been done for the
Tersoff potential because of the complex many-body nature of this potential. It is
a nontrivial task to derive the fluctuation formulae for the Tersoff potential because
the derivation requires second derivatives of a many-body angular function. In this
section, the focus is on how to use the general formulae to derive stress and elastic

constants for many-body empirical potentials, in particular, the Tersoff potential.
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2.2.1 Stress and Strain

For the purpose of finite strain study, we use the definition of Lagrangian strain
1 -
€= 5(ho” "WThhe™ = 1) (2.4)

where h and hg are as described in Sec. 2.1, and I is an identity matrix. In simulations,
we use Eq.(2.4) to impose a strain on the system. Since this imposed strain is only a
function of the simulation cell matrix, it should be taken as a global or macroscopic
strain of the system. For a uniform Bravais lattice, local atomic strain is equal to this
global strain everywhere. However, for non-Bravais lattices, such as diamond cubic
and zincblende structures, more than one atom exist in each primitive cell. Under an
imposed macroscopic shear strain, internal strain relaxation will occur between the
atoms inside each primitive cell[38] [39]. This internal strain relaxation will contribute
significantly to the elastic constants calculations as will be discussed more throughout
this thesis.

Stress is defined as the derivative of the free energy with respect to the strain

oF
aéag

V’Tap = - (2.5)

where V is the volume and F is the free energy of the system. This is a straightforward
generalization of the familiar thermodynamic relation dF = —PdV. More discussions
of the precise definitions of the 7 and e will be given in Chapter 4. Under the condition
of infinitesimal strain, the microscopic stress tensor o,5 can be derived from Eq.(2.5)
to be[40]

Voup = 3 piatialmi = 5 lriage + 5 ) (26)

where U is the total potential energy of the system; p;, and p;s are the momentum
component of atom i. (Note that the microscopic stress tensor calculated this way is
the Cauchy stress tensor in the language of continuum elasticity, i.e., the true force

per unit area at current state, as described in Chapter 2.) Readers are referred to the
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work of Lutsko [40] for detailed derivation. Since Eq.(2.6) holds for any potential that
is expressed as a function of atomic distances, we use it as a starting point to derive
the stress for many-body empirical potentials. When applied to two-body potentials,
Eq.(2.6) is reduced to the conventional Virial expression for atomic stresses. There-
fore, Eq.(2.6) can be considered as a generalized Virial expression for many-body
potentials. When Eq.(2.6) is applied to a system with periodic boundary conditions,
it must be reduced to the expressions involving only differences in atomic coordi-
nates. When expressed in differences of atomic coordinates, Eq.(2.6) will incorporate

the periodic boundary conditions and external forces they imply [40]. Since

= Z = e (2.7)
3. o (i) 6T‘J 67',0, 3(3#4) Orij 1y
where r;; is the distance between atom 7 and j, and 7yjo = Tia — Tjo- W€ have
oU oUu TiaTijp |, TifTija
Tin * — + Tig * — = + 28
Dl gt ) = 2 é‘;',) o (T T (28)
_ Z oUu . TiaTif — TiaTjB + TiaTip — TipTja
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Since ¢ and j are dummy indices, we find
OU TiaTig _ U  rjaTip
Z z ory; t: Z Z ori; Jr--J (29)
i G T T i) 9T T
Replacing the above equation into the right hand side of Eq.(2.8), we obtain
ou oU _TijaTijp
Y (tia 5 +Tig - Ty ¥ L (2.10)
T oy = R N T

Hence, the microscopic stress tensor for many-body potential functions with periodic

boundary conditions is

ou Tijal
Voo =Y DiaDip/mi — —Z > . L (2.11)
i 2% i O T
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Note that the same expression of microscopic atomic stress was obtained by Ray
[34] using an independent approach. Eq.(2.11) can be used to derive the microscopic
stress tensor for any distance based potentials, including the three-body Stillinger
Weber[41] and Pearson potentials[42] and the many-body Tersoff potential[26]. The
detailed derivation and formulation for Tersoff potential based on Eq.(2.11) are given
in Appendix A. Pressure of the system can then be calculated using the relationship

P = Y04z + Oy + 022).

2.2.2 Elastic Constants and Stiffness Coefficients

As mentioned earlier, elastic constants are among the most basic mechanical prop-
erties of materials. Conventional elastic stability criteria are expressed in terms of
elastic constants[13]. Recently, new criteria were proposed based on elastic stiffness

coefficients{15]. The stiffness coefficients are related to elastic constants by[11][16]
1
Bijri = Ciju + '2'[Uit5jk + 016k + Oikdjt + Ojkbu — 20i;0k] (2.12)

where i, j, k, | represent z, y, or z, Bjju is the stiffness coefficient, Cj;x is the elastic
constant, and J;; is the Kronecker delta function. Hence, once the elastic constants
are calculated, the stiffness coefficients can be obtained using Eq.(2.12).

We have employed two methods to calculate elastic constants, i.e., the direct
stress-strain method and the fluctuation formulae. For cubic crystals, at infinitesimal

strain, using the Voigt notation

zz =1 yy—=2 223 (2.13)
yz—4 zz—5 zy—6

2y —+4 2z -5 yr—6
the stress-strain relation can be written as
011 = Cri€en + Chaez + Craeas (2.14)
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092 = Ch2€11 + Cri€az + Cha€ss
o33 = Ciz€11 + Clo€az + Cazess

012 = Cye€r; 013 = Cua€13; 023 = Cay€ns

where ¢;; is a small strain defined by Eq.(2.4). Eq.(2.14) is the relation to be used
in the direct stress-strain method. The procedure of this method involves imposing
small strains to the system; calculating stresses corresponding to these strains; and
then obtaining the coefficients from stress-strain curves using Eq.(2.14). At 0K,
these calculations are trivial except for calculation of Cyy. As mentioned earlier,
imposing strain ¢;; is through the h matrix and ¢;; is a homogeneous strain. For a
crystal (e.g. SiC) with two atoms in each primitive cell, internal strain relaxation
will occur between the two sets of sublattices (Si sublattice and C sublattice). By
symmetry, this internal strain relaxation affects Cyy and does not affect C;; and
C12[38] [39]. Therefore, proper calculation of Cy44 using the stress-strain relation
requires treatment of the internal strain relaxation. Several methods can be used
to meet this requirement. We found that the simplest method is to perform static
relaxation. First, we impose €3 to the system, and calculate stress o,3 under strain
€23 without further relaxation of atomic positions. Coefficient thus obtained is C7,.
As we check the forces on each atom, we find non-zero forces along the body-diagonal
directions. This suggests that the internal strain relaxation will take place along the
body-diagonal direction, leading atoms to zero force positions. We then relax and
move atoms along the body-diagonal direction to decrease their forces. Once the zero
force positions are reached, we calculate the stress 0,3 again. o93 thus obtained has
taken into account of the internal strain relaxation and can be used to calculate the
correct Cyy. By repeating the static relaxation procedure for each imposed strain,
we are able to correctly calculate the stress-strain curves for Cy4. Figure 2-7 shows
the results of a calculation of elastic constants for 3-SiC at equilibrium condition at
0K. Results of both C, and Cyy are shown. The unrelaxed Cj, obtained from the
dashed line is 3.11Mbar, and the relaxed Cy4 is 2.55Mbar. We find that internal

strain relaxation decreases Cy4 significantly.

36



The stress-strain method described above is straightforward and efficient in calcu-
lating elastic constants at zero temperature. However, when applied to finite temper-
atures, the stress-strain method is not efficient and requires extremely long runs in
simulation to obtain satisfactory results(35](34]. To improve the efficiency of elastic
constants calculations in molecular dynamics simulations, Ray and Rahman(31] [34]
have developed fluctuation formula, which we will use in this thesis to calculate elastic
constants of 4-SiC at finite temperatures. For a microcanonical ensemble (ERN), the

fluctuation formula gives(34]

VohaiphojhoirhonsCoars = —48(MijMin)/kpT (2.15)
+2NkpT(G;'G3 + Gy G
+ Z < k(a,b,c,d)sqpiSabjScdkScan >
a<be<d

where i, j, k,n,p, ¢, 7,and s represent z,y, or z; Sa is the scaled coordinate difference
between particle a and b with respect to h, i.e., Topi = hijSasi; ho is the h matrix
at zero stress; G is the metric tensor G = hTh; M;; is related to the microscopic
stress tensor by M;; = —Vh~'ohT™'/2; and k(a,b,c,d) is related to the potential
energy by k(a,b,c,d) = (8°U/0rw0rca — (OU /07 ab)0ac0sd/Tab) [TasTea- Fluctuation of
any two quantities A and B is defiuved as §(AB) =< AB > — < A >< B >, where
the bracket <> represents the ensemble average. The canonical ensemble (ThN)
fluctuation formula for elastic constants has the same form as Eq.(2.15) except that
the averages are identified as canonical ensemble averages and the elastic constants are
identified as the isothermal elastic constants[43]. In this thesis, we use the canonical
ensemble (ThN) to calculate the elastic constants. Furthermore, if we use a cubic
simulation cell for a system with cubic symmetry, the h matrix is diagonalized, i.e.,
hi; = &;;l, where [ is the simulation cell length of each side. It is easy to show that
for the cubic simulation cell, the fluctuation formula for elastic constants becomes

bo % 2NkgT

Cijkn 7 [—m - 6(0ijokn) + v (0indjk + 0ikdjn)
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Three terms are involved in this equation. The first term is called the stress fluctuation
term, the second is called the kinetic term which is a trivial term, and the third is
the Born term. The explicit stress terms in the equation arise from the action of the
derivative of the Hamiltonian over strain, the Born term arises from the action of
the second derivatives of the internal energy. Details of the derivation of Eq.(2.15)
are referred to a review paper by Ray [34]. As pointed out by Ray[34], the stress
fluctuation term is important for calculating Cy4 because it takes into account the
effects of internal strain relaxation. In the Voigt notation, the three elastic constants

for cubic crystals, Cy;,C12 and Cyy are derived

Cn = Bl o) + LA < SOR ] (2)
Cp = ZTO- [—73_;‘3%—’  0(0zz0yy)+ < fl/-Cle >]
Cu = lTo . _kBLT  8(04204) + 2N§BT VC‘“ >]

where the Born terms CB, CE and C§ are
A=y %Earabaw o (218
Y S e T re
e

a<bc<d

Eq.(2.17) applies for both two-body and many-body potentials. Detailed derivation
of the elastic constants for the Tersoff potential is given in Appendix A. To our
knowledge, this is the first time that the fluctuation formula for the Tersoff potential
has been derived.

As a first test, we use both stress-strain method and the fluctuation formula to

calculate elastic constants of 3-SiC at 0K. For the fluctuation formulae, only the
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Born terms are used at 0K. Table 2.1 shows the results from Born term calculation
and from direct stress-strain curves. It also shows the results calculated by Tersoff[26].
The results from stress-strain curves agree well with Tersoff’s calculation. Cy; and C)2
from the Born term calculations are exactly the same as that from the stress-strain
curves. This consistency confirms that our derivations of the stress expression and
the Born term are correct. However, the Born term calculation of Cy4 only produces
the unrelaxed elastic constant CJ,. This means that the internal strain relaxation is
not considered. As pointed out by Ray([34], it is the fluctuation term calculated in
MD simulations that accounts for the internal strain relaxation. In Chapter 3, we will
show clearly that the effect of internal strain relaxation is represented by the stress

fluctuation term of Clyq.

2.3 Potential Functions for SiC

2.3.1 Introduction

A real-space description of the total potential energy of a condensed matter system
as a function of atomic positions is useful in materials physics for several reasons.
First, they provide the simplest understanding of the origin of structural features in
crystalline solids, defects in crystals and disordered systems. Secondly, in addition
to such improved interpretability, interatomic potentials provide computational speed
essential for computer simulations of complex materials science problems, such as frac-
ture dynamics and dislocation motion. In the last twenty years, tremendous efforts
have been made in order to develop better interatomic potentials for real materials.
Traditionally, the interactions between atoms are described by pairwise interactions
in the so called pair potentials. Lennard-Jones type potentials are typical examples
that are useful in studying inert gases and close-packed fcc metals. But for semi-
conductors, pair potentials fail to describe the directional covalent bonds. Inciuding
at least three-body interactions is needed in order to describe the angular forces in

semiconductors. In the last decade, many researchers have devoted efforts to develop
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potential functions for Si. A recent review of potential functions for Si can be found
in a paper by Balamane et al.[44]. Review concluded that the potentials only work
well in the regions where properties are fitted and a lack of transferrability is common
for these potentials. This is one of the main reasons that stimulate the development
of tight-binding molecular dynamics simulations. Tight-binding MD simulations are
aimed to have better accuracy and transferrability and yet still allow less expensive
simulations than first principle calculations. Nevertheless, the studies of complex
physical phenomena such as melting, structural transition, fracture and dislocations
still largely rely on atomistic simulations using empirical potential functions. At least,
- empirical potentials are used as the first approach to these problems. If necessary,
tight-binding method or first principle calculations can be used as higher level follow
up to study a well focused problem which is usually first analyzed during simulations
using empirical potentials[45].

In this thesis, we will study the structural and mechanical properties of 8-SiC
using currently available empirical potential functions. Crystalline SiC is a binary
covalent material. It has several polytypisms, among which the zincblende 3-SiC
(3C polytype) is the most frequently studied phase in experiments and calculations.
It is stable up to 2500°C. B-SiC has the same local geometric bonding as in single
element diamond cubic Si or dimaond C. The bonding characteristic of §-SiC is
mainly covalent with about 12% ionicity[6]. Compared to Si or C, complication arises
in SiC since two different types of atoms (Si and C) are involved. Currently, three
empirical potential functions exist for SiC. One is developed by Pearson et al.[42],
another is developed by Tersoff [26], and the third is developed by Baskes[46]. Also,
tight-binding approximations [47][48}[49] have been formulated and applied to study
structural properties of 3-SiC. In our present work, we have studied the Pearson
and the Tersoff potentials. 0K, static calculations are performed for cohesive energy,
lattice constant, bulk modulus and elastic constants. The results from our calculation,
tight-binding approximation[49] and experimental data are presented in Table 2.1.
The comparison shows that the Tersoff potential yields much better results than the

Pearson potential. Therefore, we will only briefly summarize the Pearson potential
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below and will focus on the Tersoff potential in the rest of the thesis.

2.3.2 Pearson Potential

In the Pearson potential, the total potential energy of the system is written as

U=Y:Ui =L VO(rij) + % Tizier VO (rij, ik k)
VO (ry) = = [n (%)m -m (;{%)n]

8;; 8; 0;
VO ) = 7 [zt (219

where m = 12, n = 6; ¢, Ry, and Z are three parameters fitted from bond lengths
and cohesive energies of bulk diamond Si, molecular Si; and other Si and C clusters.
No properties of bulk diamond C has beer incorporated during the fitting, and no
cutoff value was given in the original paper [42]. We have determined the cutoff
by reproducing the cohesive energies and lattice parameters of bulk Si and g-SiC
as given in the paper. We find that the cutoff is three times the nearest neighbor
distance in B3-SiC. Under this cutoff, the potential involves as many as 7th shell
interactions. Recently, Balamane et al.[44] also found the same long range cutoff for
Si. With such a long cutoff, in 3-SiC, each atom interacts with as many as 86 atoms
at equilibrium conditions at 0K. Therefore, the Pearson potential is very expensive
for MD simulations. In Table 2.1, we find that the elastic constants calculated by
the Pearson potential are almost three times larger than experimental values. In
Figure 2-2, we show the comparison between cohesive energy curves obtained from
the Pearson potential, the modified Tersoff potential (to be discussed in the coming
section) and ab initio calculation [50]. One can clearly see the discrepancy between
the Pearson potential and the other two methods. Thus, our results indicate that
the Pearson potential does not properly describe the bulk properties of 3-SiC. Since
it is also extremely inefficient in simulations because of its long cutoff, we will not
pursue further studies using this potential. And we turn to use the Tersoff potential

described below.
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2.3.% Tersoff Potential

Formulation and Parameterization

Tersoff has developed empirical potential functions for covalently bonded solids such
as silicon [51] [52] [24], carbon[53], germanium [54] and SiC[26][55]. In this potential,
the electronic structural effects (e.g., sp® bonding) which give rise to tetrahedral
coordination are described by a many-body bond ordering expression [56]. In the

Tersoff potential for 5-SiC, the total potential energy of the system is written as:

U=%Ui=3%iV (2.20)
Vij = fel(ris) fr(rij) + fe(ri)bi; fa(riz) (2.21)
fr(rij) = Ayj exp(—Xiji) (2.22)
fa(ri;) = —Bij exp(—pijrij) (2.23)
bij = xi(1 + 25 ) 71/ (2.24)
zij = BiCij = Lr(ig) fo(Tie) B:9(Bije) (2.25)
9(0ik) =1+ sz/dzz - 12/[5[12 + (hi — cos '9ijk)2] (2.26)
i Tij < Ry;
felr) = { &+ bcos [Mguid] Ry <y < Sy (2.27)
0 Tij > Sij

Aij = (M- X)/2,  pi = (pi + p5)/2
Aij =/ Aidj, Bij = /BB,
Rj=\/RR;, Sy=+/5:5; (2.28)

wb: .; 4, j and k are indices of atoms in the system. f4, fr, f. and b;; are functions of
distances or angles between atoms, others are fitted parameters. The function f, rep-
resents a repulsive pair potential, which includes the orthogonalization energy when
atomic wave functions overlap, and f,4 represents an attractive pair potential associ-
ated with bonding, f. is a cutoff function, and b;; represents a measure of the bond

order (i.e., binding strength). Parameters with single subscript are for Si or C, and
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they are fitted from bulk properties of diamond cubic Si and diamond C respectively
[52] [24] [3]. Parameters for SiC were obtained by arithmetic or geometric average
depending on whether or not the parameters appear in the exponent. An additional
parameter x;; was introduced for -SiC. It was obtained by fitting the heat of forma-
tion of SiC[26]. The potential parameters for Si, C anc SiC are listed in Table 2.2. It
is worth mentioning that in the Tersoff potential model for 8-SiC, the only property
that is directly fitted is the heat of formation. In this potential, if ¢ and j are the
same type of atoms, the potential function automatically reduces to that for Si or C.
This means that, in SiC, atoms of the same type, e.g., Si-Si or C-C interact as if they
were in a single element diamond cubic Si or diamond C lattice. At 0K equilibrium
condition, the cutoff only allows first nearest neighbor interactions between Si and C
atoms. The results from the Tersoff potential shown in Table 2.1 are calculated with
interactions between Si and C atoms only. At this stage, no interactions between

Si-Si and C-C are considered yet.

Bond-order Parameter

A novel feature of the Tersoff potential is the bond-order parameter b;;. Bond-order,

meaning binding strength, describes the strength of attractive interactions between
atoms. The larger the bond-order, the stronger the binding and the lower is the
interaction energy. The essence of the Tersoff potential is that binding between two
atoms relies on the local arrangement of surrounding atoms, and competition from
surrounding atoms can change the binding strength. In order to understand the
bond-order parameter and its function, we can consider atom i as a central atom
and calculate its cohesive energy. Atom 7 will interact with a few neighbor atoms
(4 in B-SiC). When we consider its interaction with a particular neighbor atom j,
the other neighbor atoms (labeled as k’s) are considered as environmental atoms. A
schematic view is shown in Figure 2-1 to illustrate this picture. We term the binding
between i and j the primary bond, and bindings between ¢ and k’s the secondary
bonds. The most important feature in this atomic interaction picture is that the

more environmental atoms and the closer they are to the central atom, the weaker
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the primary bond is. Moreover, for sp® bonded structures, the angle between the
primary bond and a secondary bond 8;;; changes the bond-order parameter in such
a way that the interaction favors a tetragonal binding geometry. Therefore, three
factors determine the binding strength of a primary bond. They are (1)number of
environmental (k) atoms, (2)distances between atom ¢ and k (ri), and (3) angles
(6:x) between bond ij and ik’s. In the Tersoff potential, influences of these three
factors on the bond order parameter b;; (binding strength of bond ij) are expressed

through the so called effective coordination number ((;;),

Gij = Ek: fe(rix)9 (¢ (2:29)

Here the sum is over the coordination number; the cut-off function f. depends on
distance 7;, and the angular dependence is treated by function g(6;jx). As shown in
Figure 2-3(a), once the effective coordination number is determined, the bond-order
parameter can be calculated from the monotonically decreasing function of (;; [56).
Since there is no rigorous justification for the effective coordination number and
the angular function to have the forms proposed by Tersoff, it is useful to examine
their behavior and understand how the bond-order concept operates. The angular
functions g(@) for central atom C and Si are plotted in Figure 2-3(b). The functions
reach their minima at 6, = 124.79° and 6,; = 126.74° respectively. These angles are
not equal to the tetrahedral angle of 107.9° that appears in a covalent structure. In
order to see how b;; and the potential energy vary with angle, we rewrite the effective

(many-body) energy V;; as

Vy =V 4 o)
VD = fo(rij)[fr(ris) + falris))
VA™ = —fo(rij)[1 — bij)fa(ris)

where V,»g-z) is the simple distance dependent two-body term, and V,-g-m) is the many-

body attractive energy that depends on the local atomic arrangement. For simplicity,
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we take a triplet of atoms 7, j and k, fix distances r;; and 7y at the equilibrium
distance of 3-SiC and vary 6;;; to see the behavior of b;; and V,-g-'"). The results are
shown in Figure 2-3(c) and (d). As one can see that when the angular function g
reaches its minimum, b;; reaches its maximum, and the many-body energy reaches
its minimum. Also, the many-body energy is always positive and it favors high angle
three-atom clusters rather than low angle ones. It is clear that 6, and 0,, are the angles
that determine the lowest energy configurations of three-atom clusters. In covalent
materials, the local atomic configurations are tetrahedrons, where the angle between
any two bonds is 107.9°. The fact that the tetrahedral angle is not directly fitted by
the angular functions in the Tersoff potential stands in contrast to the three-body
Stillinger-Weber potential for Si[41], where the tetrahedral angle appears explicitly
in the three-body energy of the potential. As we will show throughout this thesis,
although the angular functions have not been directly fitted by the tetrahedral angle,
the Tersoff’s potential is capable of stabilizing the tetrahedral structure of 8-SiC very
well.

Further more, we can study the dependence of b;; on the real coordination number,
i.e. the trve number of interacting atoms instead of the effective coordination number
Gij. We have studied situations when atoms are fully coordinated inside bulk §-SiC
and when atoms are exposed at low index surfaces. Fig. 2-4 shows how V;; and atomic
potential energy of U; vary as a function of real coordination numbers in 3-SiC. These
results show that the cohesive energy of an atom increases as it looses bonds at the
surface, and the binding energy of primary bond decreases as the coordination number
decreases. Thus, the idea of the bond order parameter is indeed realized through the

formulation of the Tersoff potential.

Nearest Neighbor Interaction and Cutoff

The Tersoff potential is a short-ranged potential. Under the condition of normal
pressure and zero temperature, it involves only first neighbor Si-C interactions. One
drawback caused by this cutoff is that the Tersoff potential can not distinguish the
two common polytypisms of SiC (e.g., -SiC and a-SiC) energetically. These two
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structures have the same local bonding but differ in their long range stacking se-
quences. Another drawback, which is more relevant to our study of 3-SiC, is that
the interactions between Si-Si and C-C atoms in SiC are not included during the
development of the potential because the distances between them are beyond the
cutoff. For a fixed cutoff, interacticns between Si-Si and C-C can occur under high
stress or finite temperature condition. The question is whether the Tersoff potential
can handle these situations properly. In the following, we will show that there are
problems related to this way of specifying the cutoff.

We first calculate cohesive energy, pressure and bulk modulus as a function of
deformation at 0K. The results are shown in Fig.2-5(a) to (c). The cohesive energy
curve in Figure 2-5(a) shows two obvious unphysical kinks. The left kink appears at
a compression state where (r/r9). = 0.984, and the right kink appears at a tension
state where (r/ry); = 1.18. We find that the left kink corresponds to the state when
neighboring Si atoms begin to interact. The distance between Si-Si in 3-SiC is 3.054,
and the upper bound cutoff between Si-Si is S = 3.00A. Under compression, the
distance between Si-Si becomes equal to S at r/r, = 3.00/3.05 = 0.984, which is
exactly where the left kink appears. For similar reason, under tension, the distance
(r/r0): where the Si-C bond length is equal to R, the cutoff distance in the function f,
occurs at the right kind position. These two kinks do not have the same significance
for 8-SiC . Since elastic stability analysis in Chapter 5 will show that the largest
tension strain S8-SiC can hold is r/ry = 1.158, the right kink actually will not occur
at any tension point below this critical strain. This means that the right kink will not
be encountered in modeling 3-SiC, such as modeling brittle fracture under tension
(see Chapter 5). However, this artifact will occur in disordered systems such as liquid
and amorphous SiC because in these disordered structures, no lattice constrain on
atomic positions and atoms have possibility sitting at any distances. The left kink,
on the other hand, occurs at a small strain which can be easily reached by moderate
compression. The reason is that the distance between Si-Si in 3-SiC (3.05,51) is within
only 1.6% of the upper bound cutoff for Si-Si interaction (S = 3.004). Even at the

equilibrium condition at room temperature, second neighbor Si-Si interaction already
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occur from time to time due to thermal fluctuations. Thus, the artifact associated
with the left kink can show up at finite temperatures. The strange behavior of elastic
constants at finite temperatures shown in Figure 2-5(d) gives such an example. It is
not surprising since any artifact in potential energy will be carried over into results for
the forces, pressure and elastic constants, etc. In Figure 2-5(b) and Figure 2-5(c), we
show the results of pressure and elastic constants under deformation at 0K. Artificial
behavior can be clearly seen in these data.

In order to show what happens when second neighbor interaction between Si-Si
sets in, we plot (;;, b;; and V;; as a function of r/ry in Fig.2-6. We find that, at
r/re = 0.984, the effective coordination number (;;_. jumps abruptly due to sudden
inclusion of the Si-Si interaction. This gives an abrupt decrease in the order parameter
b.i—. and causes an abrupt increase in the effective pair energy of V;;_.. Consequently,
potential energy abruptly increases as shown in Fig.2-5(a). This indicates that the
artifact related to the left kink is due to the abrupt change of bond order parameter
when the coordination number of Si changes from 4 to 16. Physically one expects
smooth changes of the bond-order parameter and other physical properties when
second neighbor interactions set in. The reason is that as long as no structural
change occurs, the dominant bonding in $-SiC should still be determined by the first
neighbor interactions. Therefore, whether or not the Si-Si interactions are included

should not affect the calculated results of physical properties significantly.

Modification of Tersoff Potential

So far, we have seen that the physical properties calculated using the Tersoff potential
are in good agreement with experimental data at equilibrium condition at 0K (cf.
Table 2.1). We have also shown that the Tersoff potential has problem due to the
short-range nature of its cutoff. In simulations, cutoff is introduced so that calcula-
tions can be efficient. A good choice of the cutoff can capture the dominant physics
of the interactions. For sp® bonded structures, electrons are highly localized in the
hybridized bonds between first nearest neighbors. From this point of view, it is more

reasonable to use short-range cutoff for covalent materials than for metals. Therefore,
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we would like to keep the short range nature of the cutoff in the Tersoff potential while
eliminating the problem discussed in last paragraph. We have used a simple method
to modify the Tersoff potential. The main idea is that we replace the original fixed
cutoff by a _variable cutoff which scales with (volume)'/®. By so doing, we ensure the
cutoff to always lie between the first and second shells, even when systems undergoes
large deformations or large thermal fluctuations at high temperature. Thus, direct
interatomic interaction is limited to the first shell as long as the system remains in
the zincblende structure.

With this modification, one is free to choose the cutoff distances as long as they lie
between the first shell and the second shell. We choose them to be about in the middle.
However, to choose the cutoff values for Si-Si and C-C, we have to use information
that involves second neighbor interactions. We have used the melting temperature
as our choice of properties to fit the cutoffs. Table 2.5 shows the results of melting
temperatures with different cutoff sets. The reference melting temperature is about
4500K from a Car-Parrinello study [57]. As can be seen, the melting temperature
from the cutoff Set 3 in Table 2.5 is 5000K, sufficiently close to the Car-Parrinello
result for our purposes. Thus, we choose cutoff Set 3 for all subsequent calculations
in this thesis. In Table 2.3, we have given the new set of cutoff values at zero pressure
at 0K . These and the scaling rule of cutoffs varying with (volume)'/® constitute what
we will call henceforth the modified Tersoff potential.

A first test of this modified Tersoff potential is to calculate the cohesive energy
and pressure again under deformation. The resuits are shown in Figure 2-8 for co-
hesive energy and in Figure 2-9 for pressure. Also shown in the figures are results
obtained from ab initio calculation [50], the universal binding curve [58] and the orig-
inal Tersoff potential. The comparison shows that the modified Tersoff potential is
a significant improvement over the original model. In Chapter 3, we will present
several other properties calculated using the modified Tersoff potential. Compari-
son with experimental data and first principle calculations will be made whenever

applicable.
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Table 2.1: Comparison of 3-SiC properties by the Tersoff potential (TP), Pearson
potential (PP), tight-binding method (TBA) and from experiment (Exp’t).

TP PP TBA Exp’t

Lattice Parameter ( A) 4.32  4.19 4.36 4.36
Cohesive Energy (ev) —6.18 —7.71 —6.34

Bulk Modulus (Mbar) 225  9.90 2.29 2.25
Cu (Mbar) 436  10.95 3.72 3.90

C\2 (Mbar) 1.20 9.37 1.57 1.42

Cas (Mbar) 2.55  6.06 2.56(unrelaxed) 2.56

Table 2.2: Parameters for C, Si and SiC in the Tersoff potential.

C Si SiC
A (ev)  1.3936 x 10° 1.8308 x 10°  1.5973 x 103
B (ev) 3.467 x 102 4.7118 x 10> 4.04176 x 102

A(A™Y) 3.4879 2.4799 2.9839

p (A 2.2119 1.7322 1.97205
Jij 1.5724~7 1.1000 x 1076
n 7.2751 x 107! 7.8734 x 107!
¢ 3.8049 x 10* 1.0039 x 10°
d 4.384 1.6217 x 10!
h —5.7058 x 107! —5.9825 x 107!

"R 1.8 2.7 2.21

S 2.1 3.0 2.51

Table 2.3: Cutoff values at equilibrium condition at 0K.

Rc—c(A) Sc-c(;l) Rsi—ai (A) Ssi-ai (A) Rc—ai(lzl) Sc-—si(A)
Modified 1.93 2.13 2.60 2.80 2.36 2.56
Original 2.70 3.00 _]:80 2.10 2.20 2.51
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Table 2.4: Comparison of elastic constants obtained by the fluctuation formulae and
direct stress-strain relation

Born Term (Mbar) Stress-Strain (Mbar) Tersoff’s results (Mbar)

Cn 4.358 4.36 4.2
Ci2 1.198 1.20 1.2
Cua 3.111 2.55 2.6

Table 2.5: Melting temperatures of 5-SiC determined from different cutoff values of
the modified Tersoff potential. Reference value from a Car-Parrirello caiculation is
also given.

Cut-offs (A) Set 1 Set 2 Set 3  Car-Parrinello
Re(C—C) 285+0.15 2.35+0.15 2.03+0.1
Rew(Si— Si) 2.85+0.15 2.35+0.15 2.70+0.1
Ro(Si—C) 295+0.15 235+0.15 2.46+0.1
Tin(K) 2000 6600 5000 4500

50



JUAEIISUB.LIR JIUIO)e [BI0] 3AIDRISIUL JO UoNeuasaxdal oewayds

3 WOID [IUIWUOLIAUI g ¥ uiojp [DjUIUIUOLIAUS

¥1 puoq £10pu0ras 1 puoq Lippuodas

¥

1 woyp oayuad @8

fi puoq Kiounsd |

ag ¥1 puoq £1opuoras

'y

[l woy 10qy3iau g
3y wow uswuoftus

Figure 2-1: Schematic representation of interactive local atomic arrangement.
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Figure 2-2: Comparison of cohesive energy curves obtained from the Pearson potential
(stars), ab initio calculation (solid line) and the modified Tersoff potential (circles).
79 is the zero pressure lattice parameter and r is the deformed lattice parameter.

52



Figure 2-3: Important functions in the Tersoff potential. (a) bond-order b;; vs. the
effective coordination number (;;; (b) angular function g(8); (c) bond order b;; vs. 6,

(d) many-body energy Vig-m) vs. 6. Solid lines are for Si as central atom, and dashed
lines are for C as central atom.
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Figure 2-4: Variations of effective coordination number (;;, bond order parameter
bi;, effective energy V;; and cohesive energy per atom U; with coordination number.
Different coordination numbers correspond to atoms inside the bulk, exposed at (111)
glide surface, (100) surface and (111) shuffle surface of §-SiC. Circles are data when
a C atom is the central atom; stars are data when a Si atom is the central atom.
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Figure 2-5: 0K calculation of (a) cohesive energy; (b) pressure; (c) bulk modulus
under deformation. r is the current lattice constant and ry is the zero pressure lattice
constant. (d) show the elastic constants at finite temperatures. All data are calculated
using the original Tersoff potential.
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Figure 2-6: Variations of the effective coordination number ;;, bond order parameter

bi;, effective eljergy Vij and cohesive energy per atom U; at various deformation states
of 3-SiC at 0K.
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Figure 2-7: Stress-strain curves for elastic constants calculations. Circles are data for
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Figure 2-8: Comparison of cohesive Energy (eV/atom) of 5-SiC under deformation at
0K. Cross: from universal binding curves; circle: from ab initio calculation; dashed
line: from the original Tersoff potential; star: from the modified Tersoff potential.
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Figure 2-9: Pressure (Mbar) of 3-SiC under deformation at 0K. Cross: universal
binding curve; circle: ab initio calculation; dashed line: the original Tersoff potential;
star: the modified Tersoff potential.
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Chapter 3

Bulk and Surface Properties of

B-SiC

3.1 Structural, Mechanical and Thermal Proper-

ties of Bulk 3-SiC

In this section, we present results of our studies of a number of important physical
properties of 3-SiC, such as cohesive energy (phase stability), equation of state, ther-
mal expansion coefficient, elastic constants and phonon dispersion curve. All of the
calculations are done using the modified Tersoff potential. The goals of this study are
twofold. The first goal is to validate the modified Tersoff potential by comparing the

calculated properties at equilibrium with available experimental data, tight-binding

and first principle calculations. The second goal is to prepare for our later studies of
the structural response of §-SiC under applied stress at finite temperature. It is there-
fore crucial to first ensure that the modified Tersoff potential can properly describe the
behavior of the lattice constant, equation of state and .iastic constants of 3-SiC under
stress and at finite temperatures. Moreover, the melting and quenching of 8-SiC will
prepare the amorphous SiC structure needed for the crystalline/amorphous interface
study described in Chapter 7. For these purposes, we will make as many comparisons

as possible with experimental data, first principle and tight-binding calculations.
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All of the bulk calculations are carried out with a system consisting of 216 atoms
and with periodic boundary conditions. The 216 atoms is composed by 3 unit cells
along each direction. For studies of bulk single crystals with no defects, a few hun-
dred atoms is typical to predict good properties[27]. As will be confirmed through
this thesis, the results obtained can be compared to experimental data with suffi-
cient accuracy and no inconsistency is found with this system size. The fifth order
predictor-corrector method is used for finite step difference integrations. The time
step is 1.45 x 10~*ps. Typically, every 50-100 steps correspond to one vibrational
period of the crystal.

3.1.1 Prediction of High Pressure Phase of §-SiC Based on

Energetics

One of the important challenges of materials modeling is the ability to correctly pre-
dict phase stability of the ground state and to investigate the stable phases under high
stress. This challenge holds for both electronic structure calculations and calculations
using empirical potentials. In this section, we study the energetics of several relevant
structures of crystalline SiC under static compression. Besides the zincblende struc-
ture of 8-SiC, we also consider the -tin and rocksalt type structures of SiC because
they are believed to be relevant structures of crystalline SiC under high pressure ac-
cording to previous first principle calculations [59] [60]. Among these three structures,
zincblende and rocksalt SiC are both formed by two sets of fcc lattices of Si and C
by shifting relative to each other along a body-diagonal direction of a unit cell[61].
The shifting distances are 1/4 and 1/2 of the body-diagonal length for zincblende and
rocksalt structures respectively. The f-tin SiC structure is formed by compressing
the zincblende SiC along [001] direction[61]. Figure 3-1 shows the potential energy
curves of the rocksalt and S-tin structures compared with 3-SiC under deformation.
For the S-tin structure, we have calculated the potential energy with different c/a
ratios ranging from 0.52 to 1.4. A minimum energy is found at a volume ratio v/v,

for each c/a ratio. The lowest minimum energy is found to be —4.623ev with the
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c/a ratio being 0.62. At 0K, the free energy is given by F' = E + PV, where E is
the potential energy and P is the pressure corresponding to volume V. Based on
thermodynamic arguments, phase transition will occur if the free energies of the two
structures become equal, and the transition pressure P, can be determined from the
common tangent of the cohesive energy curves (E(V)) of the two structures. For
B-tin, we find that its free energy is always higher than that of §-SiC in the entire
region that we have studied. This means that no transition from zincblende to S-tin
structure is expected under compression. On the other hand, for the rocksalt struc-
ture, we do find a transition at P, = 6.49Mbar. Table 3.1 summarizes the transition
parameters that hav> been obtained by several independent studies, including the
present calculation and two of tl.. Srst principle calculations. In the latter, different
final states have been predicted. Aourag et al.[59] have predicted that the phase tran-
sition should be from zincblende to 8-tin SiC, while Chang et al.[60] have predicted
the transition from zincblende to rocksalt SiC with a transition pressure of 0.66Mbar.
Our study predicts a transition from zincblende to rocksalt with a transition pressure
of 6.49Mbar.

Conventional electronic structure and total energy calculations can correctly pre-
dict both the ground state and low energy state of a system under stress under
most circumstances[62). In the case for 8-SiC, the discrepancy between the results of
Aourag et al. and Chang et al. is not understood. Moreover, even if the first principle
total energy calculations could predict a correct stable phase, they are still limited
in that they can provide energetics results but cannot actually observe the phase
transition or provide information about the driving force of the transition. Although
the Car-Parrinello method[63], based on first principle calculations, is now capable of
performing MD simulation, simulating structural phase transitions is still practically
restricted to calculations using empirical potentials. Also, energetics only studies a
structural transition from the thermodynamics point of view, i.e., it is based on free
energy calculations. Thus, the studies of energetics presented in this section are far
from complete in probing high pressure phase transition of 4-SiC. This is one of the

reasons that we will devote considerable efforts in this thesis to study the structural
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response of 3-SiC under stress.

3.1.2 Phonon Dispersion Curves

The study in this section is to calculate the phonon dispersion curves of 3-SiC using
the modified Tersoff potential. We are interested in the vibrational properties of (-
SiC at zero pressure as well as under high pressure. Analytical expressions for force
constants have been worked out which involve the second derivatives of the potential
function and symmetry arguments to simplify the force constants calculations. Us-
ing the calculated force constants, we follow the method of Smith[64] to obtain the
phonon dispersion curves as shown in Figure 3-2 together with some experimental
data [65]. We find that the acoustic modes qualitatively agree with experimental
results, but with actual values overestimated. The optical modes, however, show ob-
vious discrepancy. At the high symmetry I' point, experimen*al results show a split
transverse and longitudinal optical modes; while our calculations show that they are
degenerate. The splitting of the optical modes is caused by the electric field induced
by charge effect in SiC[66]. Since the charge effect is not taken into account by the
Tersoff potential, the inability to describe the splitting is a drawback of the Tersoff
potential.

In order to relate the the phoron behavior to the elastic stability (to be discussed
in Chapter4 in detail), we have studied the behavior of the phonon dispersion curves
under compression. It is known that the frequencies of all normal modes must be real
in order for a lattice to be stable against small deformations. Once the frequencies of
normal modes become imaginary, the lattice becomes unstable[13]. We have calcu-
lated the phonon dispersion curves under various pressures at 0K. It is found that the
optical modes and the longitudinal acoustic mode become harder under compression,
while the transverse acoustic modes become softer. As the system is compressed to
r/ro = 0.76, the transverse acoustic mode starts to approach zero along the |1:0]
direction from the zone boundary where the wave vectors k are close to the I" point.
This result is shown in Figure 3-3(a). As the system is compressed further, we find

that the transverse acoustic modes go to zero over a larger k region. Finally, as
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r/ro = 0.734 is reached, the whole branch of the transverse acoustic modes become
zero, as shown in Figure 3-3(b). As we will show later in Chapter 4, r/ro = 0.734
is exactly the point where instability is predicted to occur under compression by the
elastic stability criteria. This suggests that the elastic instability is due to the soften-
ing of the transverse acoustic modes. This softening behavior of transverse acoustic

modes in SiC under compression has been observed in experiment[67].

3.1.3 Equation of State

The equation of state of 3-SiC has been studied at room temperature under both
tension and compression. For clarity, we will leave the discussion of the equation of
state in the tension region to Chapter 5. In this section, we focus on the equation of
state under compression and compare the result with experimental data. The result of
the pressure-volume (P-V) curve under compression calculated at room temperature
is shown in Figure 3-4. The symbols are data from the modified Tersoff potential
and experimental measurements [68] [69]. It is found that the results obtained from
the modified Tersoff potential agree well with experimental data in the entire region
being studied. The lires in the figure are fitted from the data using either the Birch-
Murnaghan equation of state[70]

P = $ko[(ro/r)" — (ro/r)°]1 — 3(4 — ko){(ro/7)* - 1}] (3.1)
or the simpler Murnaghan equation of state [11]
P = ko/kj[(ro/r)*o — 1.0] (3.2)

In both cases, r is the current lattice parameter, ro = 4.3264 is the lattice constant at
zero pressure, ky is the isothermal compressibility at zero pressure, and kj, = (0k/0P),
is the first coefficient in the pressure expansion of the compressibility. Note k¢ and
ky are parameters that can be obtained from the fitting. Generally, the Murnaghan

equation of state is valid only in the low pressure region, and the Birch-Murnaghan
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equation of state provides a better description for both low and high pressure regions.
We have fitted our simulation data to the Birch-Murnaghan equation of state and
obtain a very good agreement. This means that the modified Tersoff potential is
able to describe realistically the behavior of volumetric deformation of 3-SiC under
compression. In Table 3.2, ky and kj obtained from the fitting of simulation data are
compared with those obtained from fitting of the two sets of experimental data. As
we can see, kg is in good agreement with the two experimental data, while kf is in
good agreement with the value used by Strossner [69] and is slightly larger than that
obtained by Yoshida [68).

To summarize, the equation of state calculated from the modified Tersoff potential
agrees very well with experimental results. This suggests that the homogeneous
response of 3-SiC to hydrostatic compression can be well predicted by the modified

Tersoff potential.

3.1.4 Thermal Expansion

So far, we have focused on studying $-SiC at low temperatures, i.e., at 0K and 300K.
We now present the result of lattice constant of 5-SiC as a function of temperature at
zero pressare. Parrinello-Rahman MD simulation is performed at each temperature
to determine the zero pressure lattice constant. The results are summarized in Figure
3-5. Experimental data[71] are also shown for comparison. We find that the difference
between our simulation data and experimental data is less than 1%. Data from both
simulation and experiment are fitted to polynomial functions of T. The fit from

experimental data yields [71]
a(nm) = 0.43577 + 1.3887 x 10757 + 7.8494 x 1071072 — 2.4434 x 1071373(3.3)
And the fit from simulation data is

a(nm) = 0.43253 + 2.4719 x 10757 + 1.5980 x 10~1°T2 + 1.0706 x 10~473(3.4)
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By definition, the linear thermal expansion coefficient is & = 1/a(8a/8T). From
Eq.(3.3) and Eq.(3.4), we find that the thermal expansion coefficients determined
by simulation is @ = 2.5 x 1076/°K; and that determined by experiment is a =
1.4 x 107%/°K. Therefore, the modified Tersoff potential produces sufficiently good

results of the lattice constant as a function of temperature.

3.1.5 Thermal Softening of Elastic Constants

The behavior of elastic constants as a function of temperature will be described in this
section. The study in this section is important since it concerns the essence of me-
chanical deformation of a crystal, which is the elastic constants behavior under stress
and at finite temperatures. While bulk modulus and equation of state describe the
volumetric response of a crystal lattice to hydrostatic loadings, the general response
of the crystal lattice to arbitrary loadings is described by the elastic constants. It is
possible that two different systems can have the same bulk modulus and equation of
state but very different behavior of elastic constants, and thus the ultimate response
of the two systems to stress can be drastically different. A detailed example will be
given in Chapter 6 to demonstrate this point. Since no experimental data of elastic
constants under stress is available, we here focus on the elastic constants behavior at
finite temperatures.

Using the fluctuation formulae derived for the modified Tersoff potential in Chap-
ter 2, we have performed MD simulations to calculate elastic constants at finite tem-
peratures. Typically, we use 50,000 (about 7ps) steps to calculate the Born terms,
and 150,000 — 200, 000 (about 22ps to 30ps) steps to calculate the stress-fluctuation
terms. The calculated results of elastic constants and experimental data[72] are shown
in Figure 3-6. The experimentzl data at 300K [73] are shown as crosses. (Note that
the experimental data of single crystal -SiC at 300K has been controversial as dis-
cussed by Lambrecht et al.[73]. We have found that values given by Lambrecht et al.
are most reasonable.) There is no experimental data on the temperature dependence
of elastic constants of single crystal 3-SiC at higher temperatures. In literature, only

an estimation was made by combining room temperature data of single crystals and
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the temperature dependence of th\e elastic moduli of polycrystals[72]. As shown in
the figure, significant improvement of the elastic constants at elevated temperatures is
achieved by the modified Tersoff potential compared to the original Tersoff potential
(data shown in Figure 2-5(d)). For the temperature range being studied, all elastic
constants show the expected thermal softening behavior[74] and they can be well
fitted to linear functions of temperature. This is the universal behavior of thermal
softening of elastic constants, which has also been observed in simulation of metals
[17]. The slopes of the elastic constants vs. temperature curves are summarized in
Table 3.3. All data obtained from our simulation are of the same order of magnitude
as experimental results.

In Figure 3-7, we show contributions to the total elastic constants from individual
terms, i.e., the Born and the stress fluctuation term. Clearly, the stress fluctuation
term in Cy4 is a much more dominant factor than in Cy; and C},. This proves that the
internal strain relaxation has indeed been properly treated by the stress fluctuation
term through MD simulations. Thus, we have learned in this section that the modified
Tersoff potential predicts the correct behavior of elastic constants of 3-SiC at finite
temperatures, which suggests that the modified Tersoff potential is able to describe

the general mechanical response of 3-SiC correctly.

3.1.6 Mechanical Melting and Amorphous SiC

Melting of a crystal is a fundamental process during which the solid changes to a liquid
at a critical temperature T,,. This process can be classified into categories according
to the underlying mechanisms [75]. The first is called thermodynamic melting, and
the second is called mechanical melting. Thermodynamic melting is evidenced by the
heterogeneous nucleation and growth of the liquid phase at extended lattice defects,
such as point defect and free surfaces. Mechanical melting is now known as governed
by the elastic stability criteria [15]. In MD simulations, melting of a pure single
crystal with periodic boundary conditions is a mechanical melting process.

We have studied the mechanical melting of 5-SiC using MD simulations. We vary

the system temperature incrementally by rescaling the velocities of atoms. At each
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temperature, we allow the system to fully relax umntil it reaches an equilibrium state.
When the temperature reaches a critical value, we find that the system melts into a
liquid. The melting temperature of $-SiC is fitted to be around 5000°K using the
modified Tersoff potential (see Chapter 2). After obtaining a fully melted equilibrium
liquid at 8000°K, we quench down the system to room temperature and obtain an
amorphous SiC. The simulations of melting and quenching are both done at approx-
imately zero pressure. The data of energy and volume as a function of temperature
during the melting-quenching process is shown in Figure 3-8. As we can see in this
figure, during the melting transition, both energy and volume jump, which indicates
that the mechanical melting is a first order phase transition.

In order to examine the structure of the amorphous SiC obtained by the melt-
ing and quenching process in our simulation, we take the amorphous SiC structure
obtained by Finocchi et al.[57] for comparison. Finocchi et al. have performed state-
of-the-art Car-Parrinello MD simulations to obtain an amorphous structure of SiC by
quenching. We plot the radial distribution functions (g(r)) of Si-Si, Si-C and C-C in
Figure 3-9. The radial distribution function g(r) is defined as [27]

1 N N
pg(r) = 7 < ;Zé[r -1y > (3.5)

J#i
where p = N/V is the number density, r;; is the distance between atoms; and the
angular brackets represent a time average. It measures how atoms organize themselves
around one another. Specifically, it is proportional to the probability of finding two
atoms separated by distance r & Ar. Figure 3-9(a) are the results of our simulation
and (b) are the results of Finocchi et al. In Table 3.4, we also summarize dominant
peak (the first peak) positions and coordination numbers of atoms obtained by both

simulations.

As we can see from Table 3.4, the first peak positions obtained by two simulations
are in good agreement. These positions are similar to the equilibrium distarnces that
are determined by the interactions between Si-Si, C-Si and C-C. Under the condition

of zero pressure and zero temperature, the equilibrium distances are 2.354, 1.874
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and 1.54A4 between Si-5i, C-Si and C-C respectively. The coordination number of
C-Si (meaning the number of neighboring Si(or C) atoms of each C(or Si)) from the
two simulations is exactly the same. However, the coordination number of C-C from
our simulation is much smaller. No coordination number has been given by Finocchi
et al.

Comparing the overall shapes of g(r)’s in Figure 3-9, we find that a significant
gap exists in the g(r) of Si-Si between the first peak and the second peak in (a).
Also, wé observe an additional small but sharp peak in each of the three g(r)’s in
(a). Each of the three small peaks are located after the first peak and before other
peaks in the respective g(r)’s. The positions of these peaks are found to be at 2.934,
2.24A and 2.69A for Si-Si, C-Si and C-C respectively. We find that these positions
are exactly equal to the upper bound cutoff distances (see Chapter 2 for details about
cutoff) between Si-Si, C-Si and C-C. Hence, these three peaks are not determined by
the intrinsic interactions between atoms, but are introduced by the cutoff and should
be considered as artifacts. Among the three artificial peaks, the peak in the g(r)
of Si-Si is the most pronounced. This is the reason that a gap exists in the g(r) of
Si-Si. That is, instead of moving closer to each other, some Si atoms are stopped
and accumulated at the artificial peak position. Similarly, some C atoms are also
stopped at the artificial peak position instead of moving closer to each other. This is
the cause of the lower coordination number of C-C. Note that although an artificial
peak also exists in the g(r) of C-Si, we still obtain the correct coordination number
of C-Si comparing to Finocchi’s result. The explanation is that tie first peak in
the g(r) of C-Si already exists in the crystal lattice before melting; whereas the first
peaks in the g(r) of C-C and Si-Si in amorphous SiC are not present in the crystal
lattice. As the crystal lattice collapses during melting, atoms can move far away from
their crystalline sites. This large motion allows Si and C atoms to move close enough
to interact with the same type of atoms and stabilize at the equilibrium distance
determined by the interactions. Thus, the first peaks in the g(r) of Si-Si and C-C
are formed due te the same type of atoms moving close to each other crossing the

artificial peak positions from far away. However, the artificial peaks have stopped
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certain atoms (roughly about 30% as estimated from the ccordination number of C-
C) from coming closer and contributing to the first peaks. On the other hand, for
C-Si, since atoms are at the first peak already before melting, the artificial peak in
the g(r) of C-Si will not affect the first peak significantly.

Besides comparing our results with that of Finocchi, we have also compared the
calculated mass density of amorphous SiC with the experimental data. The calcu-
lated density of the amorphous structure we have obtained is 2.88g/cm?; while the
experimental result is 2.55g/cm?® [76], a difference of 13%.

In summary, for the structure of amorphous SiC, we have obtained reasonable
first peak positions in g(r)’s and correct coordination nember of C-Si. The mass
density of amorphous SiC calculated by us is in close agreement with experimental
data. The amorphous structure obtained in this section will be used to construct a

crystalline/amorphous interface in Chapter 7.

3.2 Surface Energies of 5-SiC

Part of our efforts to investigate the transferrability of the Tersoff potential is to study
the surfaces of $5-SiC. We have calculated surface energies and studied structural
surface relaxation at low temperatures for (100), (110) and (111) surfaces. Surface
reconstruction study is done for (100) surface only owing to its simplicity and the
availability of experimental and tight-binding results for comparison. For (100) and
(111) surfaces, both the C-terminated and Si-terminated surfaces are investigated in
the surface relaxation studies.

To set up the initial geometry for surface studies, the minimum repeatable stacking
layers of a unit cell along each index direction is used as a layer unit. Along (100)
and (110) directions, layers are uniformly spaced; along (111) direction, layers are
alternatively spaced at two distances. Given that the bond length between Si-C is [,
t;he interlayer spacing along the (100) direction is {/v/3; the interlayer spacing along
the (110) direction is (v/2/v/3)l. Along (111), the longer interlayer spacing is [ and
the shorter epacing is [/3. The plane that cuts through the shorter spacing is called
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a glide plane; and the plane that cuts through the longer spacing is called a shuffle
plane. The number of layers in each layer unit is 4, 2 and 6 for the (100), (110) and
(111) surfaces respectively. A schematic view of the structure of each layer unit is
shown in Figure 3-10. We use 2, 2 and 3 layer units for the studies of (100), (111)
and (110) surface respectively. Within each layer, approximately 10-20 atoms are
used. Periodic boundary conditions are applied only along the two directions (y and
z) that are parallel to the surfaces. Along the direction (z) perpendicular to the
surface, atoms in the bottom layer unit is fixed to represent a bulk material attached
to a free surface generated at the top. These structures are thick enough since all
the surface relaxation and reconstruction only involve atoms at the top two layers,
as will be confirmed by the results. MD simulations at 7' = 10°K are performed to
study surface relaxation and reconstruction.

The definition of surface energy is [77]

(Es — Ep)

Ye = A (3'6)

where E, and E, denote potential energy per atom in the bulk and at the surface
respectively; A is the exposed surface area per atom. For the (110) surface, since both
Si and C atoms appear at the surface layer, «, takes the average value of the surface
energy of the two types of atoms. Physically, surface energy is the energy increase
due to dangling bonds. Unrelazed surface energy is the surface energy calculated from
an ideally truncated surface without any relaxation of atomic positions. Calculating
the unrelaxed surface energy differs significantly for pair potentials and the Tersoff
potential. For a pair potential, the surface energy is completely determined by the
dangling bonds. The remaining bonds will not be affected by the dangling bonds
if no relaxation occurs. But, for the Tersoff potential, as atoms lose bonds at the
surface, the remaining bonds are automatically re-strengthened. This is because that
the strength of each bond is determined by the local atomic arrangement in the many-
body function. Thus, the bond-order parameter b;; changes because of the change of

local coordination number. Details of the bond-order parameter has been discussed
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tical layer displacement and energy gain are consistent with that of tight-binding
calculations both qualitatively and quantitatively.

Relaxation of the (110) surface is more complicated than that of (100) and (111)
surfaces because it involves atomic displacements in the lateral directions. Atoms at
the surface are initially chained together. During atomic relaxation, C and Si atoms
can move in and out of the bulk in different ways. Hence, atomic buckling of the
chain structure on the (110) surface is observed during surface relaxation. In Table
3.8, the results of relaxation and buckling of the (110) surface are summarized and are
compared with the tight-binding calculation[79] and ab initio calculation [80]. The
calculated energy gain from the Tersoff potential is in close agreement with that from
the ab initio calculation. However, the Tersoff potential predicts inward relaxation
of C atoms from the top layer to the bulk, and slight outward relaxation of Si atoms
away from the bulk. This is not consistent with predictions made by tight-binding
and ab initio calculations. Both these calculations predicted inward relaxation of C
and Si atoms towards the bulk with the displacement of Si atoms being larger than
that for C atoms. This discrepancy can again be attributed to the fact that the Tersoff
potential has not taken into account electron transfer between Si and C atoms and

the resulting charge effect[80] [79).

3.3.2 {100} Surface Reconstruction

The change in syiametry of the surface layer structure relative to the layer structure
embedded in the bulk is called surface reconstruction. Surface reconstruction of 8-SiC

(100) surfaces has been studied by STM [81] and LEED [82] measurements. Several

reconstruction patterns have been observed, such as 2 x 1 and 2 x 2 . We have
studied the (100) surface reconstruction by MD simulations. In the simulation, we
first intentionally move the atoms towards the expected recenstruction sites in order to
overcome the energy barrier for reconstruction and make the simulation more efficient
at low temperature. Then we allow atoms to relax to their equilibrium positions.
If no reconstruction is favored, we find atoms move back to their initial equilibrium

positions. Using this method, we have observed 2 x 1 and 2 x 2 dimers on both C-(100)
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and Si-(100) surfaces for the Tersoff potential. For the Pearson potential, no 2 x 1
dimers are observed on the Si-(100) surface. In Table 3.9, we suinmarize the results
from the Tersoff potential, the Pearson potential and the tight-binding calculation(79).
From the bond lengths and energy gain, we find that the 2 x1 reconstruction is favored
over the 2 x 2 reconstruction. Also, for the 2 x 1 reconstruction, we find the bond
length of C-dimer (1.484) is smaller than the bond length (1.54A) in bulk diamond
C, and the bond length of Si-dimer (2.46A) is larger than the bond length (2.354)
in bulk diamond cubic Si. These results suggest that reconstruction on the C-(100)

surface is energetically favored than that on the Si-(100) surface.

3.4 Conclusions and Discussions

A}

From the results of bulk and surface properties of 5-SiC presented in this chapter,
we conclude that, in general, the modified Tersoff potential yields reasonable thermal
and mechanical properties of 3-SiC under deformation and at finite temperatures. In
particular, the calculated equation of state and the elastic constants of 3-SiC are in
excellent agreement with experimental data. These give us confidence in using the
modified Tersoff potential to study the structural response of 3-SiC under stress in
Chapter 5 and Chapter €.

In this chapter, we have also identified some major pitfalls of the Tersoff poten-
tial. First, the Tersoff potential does not explicitly consider the charge effect. As a
result, it cannot correctly describe the (110) surface relaxation and the splitting of the
optical phonon modes. Secondly, the second nearest neighbor interactions between
Si-Si and C-C have not been systematically studied in the original Tersoff potential.
Although the modified Tersoff potential is an improvement in describing 8-SiC, the
cutoff introduces artifacts in the structure of amorphous SiC. This problem will be
relevant to our study of structural transitions of §-SiC under compression and will

be noted in Chapter 6.

74



Table 3.1: Comparisons of high-pressure phases of 3-SiC and transition parameters
predicted to different studies. The volume is normalized by the zero pressure volume
(vo) of zincblende SiC.

Pressure (Mbar) v/v (zincblende) Structure Reference
6.49 0.48 rocksalt Present study
0.66 £ 0.05 0.81 rocksalt Chang and Cohen
B-tin Aourag et al.

Table 3.2: Comparison of bulk modulus kg and its pressure derivative Ag.

ko(G Pa) kg Reference
219+ 1 4.11 £0.05 Present study
2609 29+03 Yoshida
230 +£4 4.0 (fixed) Strossner

Table 3.3: Comparison of slopes of clastic constants variations with respect to tem-
perature

dCy/dT(GPa/C) dC\2/dT(GPa/C) dCy4y/dT(GPa/C)
Present work —0.036 —0.0046 —-0.038
Li and Bradt —-0.025 —-0.011 —-0.007




Table 3.4: Comparison of peak positions and coordination numbers of amorphous SiC
obtained by the Tersoff potential and the Car-Parinello method.

Tersoff Potential  Car-Parrinello

si-si c¢-si c-c si-si c¢-si  c-c
first peak position (A) 2.47 1.83 1.49 232 189 1.50
coordination # 26 21 122 / 21 18

Table 3.5: Comparison of bond-order parameter b;; of C and Si atoms at various
local bonding geometries including inside bulk §-SiC, at (111)-shuffle, (110) (same as
(100)) and (111)-glide planes of 8-SiC.

bulk  (111) shuffle (or (110)) (100) (111) glide

Coord.# 4 3 2 1
C 0.8663 0.8917 0.9234 0.9776
Si 0.9368 0.9475 0.9599 0.9776

Table 3.6: Unrelaxed surface energies at (-SiC obtained from the modified Tersoff
potential

Planes Energy (erg/cm?)

shuffle (111) 2525
(110) 3093
(100) 4618

glide (111) 8219
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Table 3.7: Summary of energy decrease and vertical layer displacements due to surface
relaxation of 3-SiC. dF is the energy decrease per surface atom; dH,, is the averaged
atomic displacement from bulk positions in the nth-layer; dD,,, is the change in
percentage of interlayer spacing between nth and mth layers compared to their bulk
spacing. Negative (or positive) sign represents inward (or outward) movement to (or
away from) the bulk.

TP PP TB  Ab initio

C-(100)

Relaxation

dE (ev/atom) 049 025 0.34
dH, (A) -0.17 -0.15 -0.17
dDy, (%) -23.0 —-14.0 -22.0
dH, (A) 004 —0.01 0.07
Si-(100)

Relaxation

dE (ev) 0.09 0.18 0.02
dH, (A) —0.04 —-0.07 —0.04
dDiz (%) —-62 -84 —46
dH, (A) 0.03 —0.02 0.01
C-(111)

Relaxation

dE (ev) 0.83 0.62 043
dH, (A) —0.27 -0.30 -0.21
dDi; (%) -51.2 —61.2 —524
dH, (A) 0.05 0.08 0.12
Si-(111)

Relaxation

dE (ev) 011 031 0.03
dH, (A) —0.04 —0.06 —0.05
dDy, (%) -11.8 -20.5 -11.1
dH, (A) 0.03 0.06 0.02
(110)

Relaxation

dE (ev) 029 0.1 0.21
dH, (A) -0.17 -0.15 -0.17
dDy3 (%) -23.0 -14.0 -22.0
dH, (A) 0.04 —0.01 0.07
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Table 3.8: Relaxation and buckling of the (110) surface of 8-SiC. C(1) {or Si(1))
stands for C (or Si) atoms on the top layer; C(2) (or Si(2)) stands for C (or Si) atoms
on the second layer from the surface. dX is the vertical displacement of the top layer
atoms, dY and dZ are the lateral displacements of the top layer atoms.

TP PP TB Ab initio
dE ( ev/atom ) 0.29 0.41 0.21

C Si C Si C Si C Si
dX (A) -0.22 0.03 -0.27 -0.01 -0.12 -0.21 -0.05 -0.17
dY (A) —0.00 0.00 0.00 0.00 0.00  0.00
dZ (A) —0.18 0.01 0.21 0.02 0.02 -0.14
Bond Length (A)
Between:
C(1)-Si(1) 1.788 1.730 1.76
C(1)-Si(2) 1.814 1.748 1.89
Si(1)-C(2) 1.873 1.797 1.84
Bond Angle:
(degree)
Si(1)-C(1)-Si(1) 117.3 117.6 122
Si(1)-C(1)-Si(2) 116.9 118.2 106
C(1)-Si(1)-C(2) 100.2 99.4 112

Table 3.9: Surface reconstruction of the (100) surfaces of 5-SiC.

Energy Gain Bond Top Layer
(ev/atom) Length (A4) Lateral Displacement (A)
2x1 2x2 2x1 2x2 2x1 2x2
C-(100)
TP(SiC) 2.42 2.29 1.48 1.49 +0.79 +0.78
PP(SiC) 2.97 2.90 1.49 1.49 +0.74 +0.73
TB(SiC) 2.31 1.74 +0.67
Si-(100)
TP(SiC) 0.67 0.63 2.46 2.54 +0.30 +0.26
PP(SiC) No Dimer 0.41 No Dimer 2.49 No Dimer +0.24
TB(SiC) 1.03 2.16 +0.45
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Figure 3-1: Energy per atom versus volume normalized by the volume of 3-5iC under
zero pressure and at 0K. The c/a ratio for the B-tin curve is 0.62.

79



Figure 3-2: Phonon dispersion curves of §-SiC. Circles are experimental data.
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Figure 3-3: Phonon dispersion curves of 3-SiC under compression at (a) r/ro = 0.76
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deformed lattice constant.
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Chapter 4

Continuum Analysis of Elastic
Stability of Homogeneous Crystals
Under Hydrostatic Loading

4.1 Introduction

In the past, studies of structural transformation of a strained lattice due to lattice
instabilities were based on stability criteria expressed in terms of elastic constants[13].
For important long-standing physical phenomena such as melting, polymorphism and
pressure-induced amorphization, the criterion being violated was regarded as the
mechanism causing the onset of the structural transformation. The first systematic
analysis of lattice stability was attributed to M. Born who showed that by expanding
the internal energy of a crystal into a power series in strain and demanding con-
vexity of the energy, one could obtain stability criteria in terms of elastic constants
[12]. While Born’s results are well known in the literature [13], their validity un-
der conditions of finite load have not been generally questioned except in a series
of studies made by Hill {10] and Hill and Milstein [14] who showed that different
domains of stability can result from different choices of strain measure. A recent

study by Wang et al.[15][16] showed that the conventional criteria due to Born are
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valid only at zero load. They derived a new formulation of stabilit}.' criteria based
on elastic stiffness coefficients that appear as the finite-strain generalization of elas-
tic constants. In this formulation, the stress terms appear explicitly in the stability
criteria[16). The validity of the new formulation was demonstrated by a number of
molecular dynamics simulations [15] [84] [24] [23] [16]. Recently, Rice has given valid
questions of the general derivations of the new stability criteria[18]. He has inde-
pendently shown that the new stability criteria for hydrostatic loading developed by
Wang et al.[16] are correct.

The theoretical description of mechanical behavior of a crystal has been largely
based on elasticity theory. For problems related to instability of homogeneous crystals
(meaning single crystals without any kind of defects), deformation with finite strain is
involved. Therefore, finite strain elasticity is needed to study the instability problems.
In this chapter, we will first review some basic concepts of continuum elasticity theory
in Sec. 4.2 and Sec. 4.3. Our emphasis is to provide clear thermodynamic definitions
of stress, strain, elastic constants and stiffness coefficients in the context of finite
strain elasticity. These concepts will be related back to what we have discussed in
Chapter 2. By so doing, we will ensure that the mechanical properties we calculated
in Chapter 2 are consistent with the classical continuum elasticity theory. In Sec.
4.4, we derive the new formulation of elastic stability criteria for hydrostatic loading
following the work of Rice[18]. In Sec. 4.5, we derive the specific elastic stability
criteria and their deformation modes for a cubic lattice. Lastly, in Sec. 4.6, we will
summarize a number of studies where the new stability criteria have been applied

and new insight into structural transformations of crystals have been obtained.

4.2 Finite Strain and Stress

For thermodynamic calculations, a crystal is considered as a homogeneous, anisotropic
elastic medium. Consider a homogeneously deformed elastic object, having an ar-
bitrary initial configuration x corresponding to an arbitrary applied stress ¥ and

finite strain 7. The combined first and second laws of thermodynamics states that
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dU = TdS — dW as a crystal deforms from x to X, where U and S are internal encrgy
and entropy per unit volume {at x) respectively; dW is the work per unit volume. For
arbitrary stress loading, dW = 7;;dn;;, which is in strict analogy to dW = —PdV for
the pressure-volume case. Since F' = U — TS, where F is the Helmholtz free energy

per unit volume, the differential of F is
dF = —SdT - T,'jd‘l]ij (1,,] =Y, Z) (41)

It is important to point out that, for finite strain deformation, the definitions of 7;
and 7;; in this equation are not unique. It is required, however, that 7;; and 7;; must
refer to the same reference state and 7;;dn;; must give the work increment dW
per unit volume. Under the condition of constant temperature T or constant entropy
S, the work W becomes a state function of the system. And a fundamental relation

must hold between the stress and strain

Tij = (ZTVZ)T (4.2)

where W is a strain energy function. Different finite-strain definitions satisfying this
requirement have been proposed[85], and they fall into two classes: (1) definition in
terms of the initial configuration (denoted as x); and (2) definition in terms of the
deformed configuration (denoted as X). When coordinates are involved, the first class
employs material coordinates in the undeformed configuration x, and the second class
uses spatial coordinates in the deformed configuration X. The formulation in terms
of the undeformed configuration is called the Lagrangian formulation; and the for-
mulation in terms of the deformed configuration is called the Eulerian formulation.
A generally adopted strain measure is the Lagrangian (or Green’s) finite strain tensor.

This strain tensor is measured with respect to the undeformed configuration[85)

7= %(JTJ 1) (4.3)
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where J is the deformation gradient (or Jacobian) matrix, i.e., J = dX/dx; and I is
the identity matrix. Note that J is related to the simulation cell matrix h described
in Chapter 2, and dX and dx are written as h - ds and hg - ds respectively, where s
is in the reduced coordinate with respect to h. If we use hy for the simulation cell of
the undeformed configuration (zero stress state) and h for the simulation cell of the

deformed configuration, we have

dX h-ds

= —_———= - = -1 .
I= dx  hy-ds iho (4.4)
And the Lagrangian strain becomes
1 _ _ 1, =1 _
1 = 5[(hhg DT (hhg') 1] = E(hif W hhg! — 1) (4.5)

This is the exact definition we used in Chapter 2 (see Eq.(2.4)). The Lagrangian

strain can also be written as[86)
1 1
Tij = 5 (Ui + Ui+ Ukithe,j) = €5 + SUkiU, (4.6)

where u; = X; — z; is the displacement, u; ; = 9ui and €;; is the small strain defined

oz;
by
1
€ij = 5(“:‘.:‘ + u;;) (4.7)

The finiteness of strain makes it necessary to distinguish between stresses referred
to the initial and final configurations of the elastic body, as well as between the true
stress and the stresses that are associated by work dW with various finite strain
tensors(86]. We discuss the three important stress definitions and their relationship
following the work of Bazant and Cedolin[86)]. Corresponding to different finite strain
definitions, three important stresses are defined, i.e., the Cauchy (truc) stress
o, the nominal stress { or the first Piola-Kirchhoff stress) n and the second

Piola-Kirchhoff stress 7. The Cauchy stress is identical to the microscopic stress
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concept we used in Chapter 2 and the second Piola-Kirchhoff stress is identical to
the thermodynamic tension concept we used in Chapter 2. The Cauchy stress o;; is
referred to the current deformed state. a;; represents the force in the ;-direction on
a small unit cube that is cut out from the body in its final configuration {i.c., after
the incremental deformation). Stress n;; is referred to the initial configuration x. n,;
represents the forces acting in the final configuration in X;-direction on a deformed
material element that was a unit cube in the initial configuration. The second Piola-
Kirchhoff stress tensor 7 is the stress conjugate to the Lagrangian strain for the strain

energy. In terms of the Cauchy stress tensor o, the expression for 7 is [85]
r=V3i'le(IHT/v° (4.8)

where V0 and V refer to the volume at the reference state and the deformed state
respectively. The physical meaning of T is that, instead of the actual force dP on per
unit area dS in the spatial coordinate, 7 gives a force dP on per unit arca dS, in the
material coordinate, and the force dP is related to the force dP in the same way that
a material vector dx at x is related by the deformation to t’\e corresponding spatial

vector dX at X. That is,
dP =J'.dP, just as dx=J"'.dX (-1.9)
Since J = hhgy', we obtain
T = Vhoh™'ahTh] /V° (4.10)

Thus, it becomes clear that the second Piola-Kirchhoff stress tensor is indeed the
same as the thermodynamic tension described in Chapter 2 (see Eq.(2.2)). Based on
our choice of the Lagrangian strain 7, the stress that satisfies Eq.(4.2) is the second

Piola-Kirchhoff stress , i.e.,
dW = vdn = Tr(rdn) (4.11)
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4.3 Elastic Constants and Elastic Stiffness Coef-
ficients

The relation between the three stresses described in the last section is[86)

-

Tr(n-J) =Tr(r- [%JT J)) =det(J) Tr(o-J-J7Y) (4.12)

Then one obtain

n=1-J =det(J)J ' 0o (4.13)
or

nij = Tadje = det(J) Jiz' o, (4.14)

For convenience, J is chosen with respect to the initial configuration. For small
deformation from the initial pre-stressed configuration, Ji; = d;; + u, ;.

Consider a pre-stressed state under stress o;, Ji; = d;;. For a deformation with
small displacement u; from the pre-stressed state, Ji; = d;; + u;;. The relations
between the stress increments for the small displacement u; is

ng— oy = Tiy— oy + oh k (4.15)

— 0 0 . 0
= 0’,'_,' e aij + uk,kaij - a,-'kokj
The definition of the elastic constants Cijkl is

Tij — 0?]- = Uijki€kl (4.16)

where ¢ is defined in Eq.(4.7). Correspondingly, a rotation tensor wy is defined as

1
Wk = E(uk,l — ULk) (4.17)
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It is clear from Eq.(4.16) that only when the initial state is a stress-free state, one

can write the familiar relation
0ij = Cijki€rt (4.18)
The inverse of Eq.(4.18) expresses strain in terms of stress
ext = [Cijua] ' 03 (4.19)

where S = C~! is the compliance tensor.
The nuriber of independent elastic constants or compliances depends on the sym-
metry of the system. Within the principal coordinate system [87], using the Voigt

notation

zz =1 yy—2 223 (4.20)
yz—+4 25 Ty—>6

2zy—=4 25 yr—6

the elastic constant tensor of a cubic crystal is characterized by three independent

elastic constants Cj;, Cjs and Cyy, is

(Cy Ciz Ca 0 0 )

Ce2 Cuy C2 0 O

C2 C2 Cn 0 0
0 0 0 Cyq O
0 0 0 0 Cy

\ 0 0 0 0 0 Cu)

0
0
0
0
0

and the compliance tensor is
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(Su Sz Sz 0 0 \
Si2 Su S12 0 0
S12 S12 Su 0 0
0 0 0 Sy O
0 0 0 0 Sy

\0 0 0 O 0544J

0
0
0
0
0

Elastic moduli can be obtained from the inverse of the diagonal elements of the

compliance tensor [88] [89]. For a cubic crystal, the Young’s moduli are

)2
Y=Y,=V,=V, =S = (Ciy = C12)*(Cu1 +2C1p) (4.21)
Cu + Cra

The bulk modulus is

C 2C
B = [S11 + S22 + S33 + 2(S12 + S13 + Sa3)] 7! = —‘ll“j:;—w (4.22)

The shear moduli are
Gyz = Gu = Gzy = C44 (4.23)

Eq.(4.21) - Eq.(4.23) are the basic relations between the elastic constants and elastic
moduli.

Using Eq.(4.15), Eq.(4.16) and the relation
1 1
Ugy = 5(61:1 + wrt) wk = 5(61:: — W) (4.24)

we obtain

Nij — O’?j = C,-_,-;;,ekl - 0'%6/;[; + O’?k(ﬁkj - wkj) + U/?j(fik + wik) (4.25)
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Rearrange the above equation, one obtain
Oij — O'?j + a?kwkj - w,-kagj = Cjyjut€rl — U?jfkk + a?kfkj + eiko,?j (4.26)
The elastic stiffness coefficient Bj;y, is d~fined by
0ij — 0% + Opwij — wikoh; = Bijien (4.27)
Under the condition of no rigid body rotation, w;; = 0 and B;ji can be written as

Bijkl = (60,-,-/66“),,. (428)

This is the familiar definition used by Wallace[11]. The general relation between the

stiffness coefficients B and the elastic constants C is[11]

B,‘jkl(X) = Cijkz(X) + Zijkl (X) (4.29)

1
Z‘,-jk,(x) = §[ail(x)6,-k + aj,(x)éik + (;,-k(x)dﬂ + ajk(x)d,-, - 20’,‘1' (x)Jk,] (4.30)

Eq.(4.30) shows that the stiffness coefficient tensor depends explicitly on the state
of applied loading. The explicit stress-dependent terms can be shown to arise from
the requirement of rotational invariance of the strain energy[16][90]. Consequently,
except for isotropic or zero stress, it has different symmetry from the elastic constant

tensor. In view of Eq.(4.30), the symmetry
B;jkt = Bjirt = Bijik (4.31)
still holds, but not the Voigt symmetry[11][15][16], i.e.,

Biikt # Bhij (4.32)
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4.4 Lattice Stability at Finite Strain under Hy-

drostatic Loading

We now follow the work of Rice[18] to derive the stability criteria for a crystal under
finite hydrostatic loading, i.e., 7;; = —P§;;. As discussed by Bazant and Cedolin(86],
in stability problems, the energy and work variations must be calculated on the basis
of finite strain tensor components that are accurate up to terms of second-order small
in displacement gradients u; ;. Consider a crystal with a deformation of volume change
0V under constant pressure P, the variation of internal eneigy is U and the work

done is 6W. In order for the crystal to be stable against this small deformation, one

must have
0U > —P§V (4.33)
The variation of internal energy that is correct to all orders is
§U = /V (&— ¢")av° (4.34)

where V0 is the volume of the initial configuration, ¢ is the strain energy after the
deformation per unit volume in the initial configuration, and ¢ is the strain energy

before the deformation per unit volume in the initial configuration. Since d¢ = 7;;dn;;,

one can write

1
¢ - ¢0 = U?jﬂij + 57),~,-C,-,-kmkl + - (4.35)
Since
1
Mij = €ij + o Uk,ilk,j (4.36)
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to be correct to the second order of u; j, one obtain

1 1
¢—¢° = a?j i + 'éfijcijklekl = —Pn; + §€ijCijk16k1

The variation of volume is
_ _ 0
§V = /V (detlJ] ~ 1)dV
Since

14w, U1,2 U1,3
det[J ] = det Ug,1 1+ ug2 U2,3

U3,1 U3,2 1+ Uu3,3

one derive det(J) to the second order

det[J]—1 = 14u;+ug2+uszs+ upUan + ugouss + u11us3

U1,2U2,1 U1,3U3,1 U2,3U3,2
1 1
— 2
= Ui+ '2‘(%'.:') = S Uigii

1, o 1 1
= €&+ '2'(€ii) ~ 5t + o Wiiis

Thus, we have

(4.37)

(4.38)

(4.39)

U + P§V = / (=P + GG pre o (6) €56y | Witisg o 4 40)
vo 2 2 2 2
Since
Mii = €5 + Uk Uk

2
1
= €+ 5[(€ki + wii) (€ki + W)

1 1
= €+ '2'5ki5ki + Tz'wkiwki
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We obtain

1 1
oU + P§V = /Vo[ie,-jC,-jk,ekl + 5P(€ig)2 — Pe,-je,-,-]dVO (4.42)
Use Eq.(4.29) and Eq.(4.30), for hydrostatic loading o;; = —P4d;;, we obtain
P
C,'jkz = Bijlcl + ‘2‘[51’16_77: + 6j15ik + 6ilc5jl + 6jk6u — 25{,'6“] (4.43)
Put above equation into Eq.(4.42), we obtain
1 1
§€ijcijkl€kl = EfijBijklfkl (4.44)
1 P
+'2'5ij[5'(6i15jk + 010k + Oixdj1 + OOt — 20;i0k1) )€k
1
= é‘fijBijklfkl + Pe;j e — '2—(61':')2
Therefore, we obtain
1
oU + PV = /V" EfijBijklfkl (445)
The instability occurs at
(4.46)

oU + P§V =0

Since the strain ¢;; is arbitrary and B;jier are independent linear coefficients of

strain, the instability condition for hydrostatic loading becomes

Bijrier =0 (4.47)

This is an eigenvalue problem where the non-zero eigenvalues of B give the instability

criteria and the corresponding eigenvectors e describe the modes of deformation [17].
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4.5 Stability Criteria and Deformation Modes for
a Cubic Lattice

We now discuss explicitly a cubic lattice under hydrostatic stress
Oi5 = —PJ,-]- (448)

where P is negative for tension and positive for compression, and we follow the
convention that inward pressure is positive while inward stress is negative. Using

Eq.(4.30), we obtain
p .
Yijp = —2'[5a<5jk + 8j2dik + 6irdj1 + 6kba — 20;;0k] (4.49)

It is clear that Yjjr = ;. Therefore, both Xy and Bjji have the Voigt symmetry
in this case. Using Eq.(4.29) and (4.30), we obtain the stiffness coefficients B in the
Voigt notation

Bll = 322 = B33 = Cll - P (450)
By = By = Bj3=Cio+ P
By = Bss = Bgg = Cyy — P

We now can solve the eigenvalue problem in Eq.(4.47) to obtain the stability criteria
for a cubic crystal under hydrostatic stress loading. In order for Eq.(4.47) to have

nontrivial solutions, the necessary and sufficient condition is that the determinant of
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the coefficient matrix is identically zero, i.e., det(B) = 0:

By, Bys By, 0 0 0
By, B, B 0 0 0
By Bip Bu 0 0 0 | 0
0 0 0 By O 0
0 0 0 0 By O
0 0 0 0 0 By
The solutions are
Bu + 2312 =0 (451)
By1 — B2 =0
By =0

These three equations are the stability criteria at finite strain for cubic crystals under
hydrostatic stress. They are in exact analogy with that derived by Born[13]. The
important difference is that the elastic constants C in Born’s criteria have been re-
placed by the stiffness coefficients B. Using Eq.(4.50), we can also express the new

instability criteria in terms of C

Cll + 2012 + P=0 (452)
011—012—2P=0
044 -P=0

The physical significance of the above criteria is that, the response of the crystal
lattice will not only depend on elastic constants C, but also depend on the applied
stress P.

In the Voigt notation, Eq.(4.47) gives six homogeneous equations for a cubic crys-
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tal under hydrostatic stress

Bllfzz + Blg(Eyy + Ezz) =0 (453)
Bl2(€:c:c + fzz) + Bllfyy =0

Biz(€zz + €yy) + Bri€z; =0

B446yz =0
B44€:z:z =0
B4463y =0

Using the eigenvalues obtained in Eq.(4.51), we can solve the above equations to cb-
tain the corresponding eigenvectors ¢;;. The eigenvectors will specify the eigenmodes

for each instability criterion.

e For the first instability criterion, the eigenvalues satisfy By, + 2B, == 0, By; —
B;; # 0 and By # 0. Combining Byy # 0 and the last three equations of
Eq.(4.53), we obtain

€yz = €37 = €5y =0 (4.54)
Subtracting the second equation from the first equation in Eq.(4.53), we obtain
(B11 — Bi2)(€zz — €yy) =0 (4.55)

Since B;; — Bj, # 0, one must have
€z — €yy =0 (4.56)

Substituting Eq.(4.56) into the third equation in Eq.(4.53) and using B;; =

—2B,;,, we obtain

€22 = €22 (4.57)
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Hence, the eigenvectors of the first instability is
e=(1,1,1,0,0,0)e (4.58)

with no constraint on e.

For the second instability criterion, the eigenvalues satisfy B;; + 2B;2 # 0,

B;, — By = 0 and By, # 0. Since Byy # 0, the shear strains must be zero, i.e.,
€yz = €z = €gy =0 (4.59)

Since B;; = B, the first three equations in Eq.(4.53) are identical and they

all become

€xz + €y + €, =0 (4.60)

which means that €, €, and ¢,, can be arbitrary values as long as their sum is
zero. Physically this requires volume conservation along the deformation path.

Thus, the eigenvectors of the second instability is
€ = (€zz, €y, €22,9,0,0) (4.61)

with the constraint of volume conservation.

For the third instability criterion, the eigenvalues satisfy By; +2B;5 # 0, By, —
Blg # 0 and B44 = 0. Since Bll 75 Blg, we have

€z = Eyy = €5, (4.62)
Summing up the first three equations in Eqg.(4.53), we obtain

(Bll + 2Bl2)(fzx + €yy + sz) =0 (463)
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Since By, + 2B, # 0, we obtain

€zz + €yy + €5y =0 (4.64)

with no restriction on the values of €,,, €;, or €.

In summary, for a cubic crystal under finite hydrostatic stress, the three instability

criteria and corresponding eigenmodes of deformation are

Cn +2C1+ P =0, (1,1,1,0, 0, 0)6

(fz:r., €yy> €22y 0,0, 0)5

Cy — Cpp — 2P =0, (4.65)

61:1:+€yy +63z =O

C44 - P = 0, (0, 0, 0, eyz, 0, 0)

These results have clear interpretations. The first criterion clearly has to do with
volumetric deformation, as indicated by its eigenmode. Also, with C}; +2C)3 = 3Br,
where Br is the bulk modulus, we see that for K(P) = Cj; + 2Cy2 + P = 0 to be
satisfied, P would have to be negative. Thus, the nature of this instability is lattice
decohesion by pure dilatation since it involves the vanishing of the bulk modulus. This
is referred to as the spinodal instability. The second instability in Eq.(4.65) involves
symmetry breaking (bifurcation) with volume conservation; the vanishing modulus
here may be identified as the tetragonal shear, G’ = (C;; — C)3)/2. This is referred
to as the Born instability or tetragonal shear instability. The third instability
is simply shear along one of the symmetry directions with volume conservation, and

the modulus here is G = Cyy. This is referred to as the shear instability.

4.6 Discussion

Based on the new criteria of Eq.(4.65), or its general form of Eq.(4.47), molecular dy-
namics simulations have been used to study the deformation and structural transition
of homogeneous crystals [15] [16] [84] [24][23]. In these studies, the critical stress and

instability mechanism at which a crystal becomes unstable have been well predicted
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by the stability criteria. Since the instability criteria can not predict the structure of
the system after instability occurs, direct molecular dynamics simulations are useful
to reveal the unstable structural response of the system. Moreover, MD simulations
can provide the critical stress independently, which can be used to verify the predic-
tion made by the stability criteria. MD simulations can reveal details of the unstable
structural deformation and eigenmodes of the instability can be identified. So far,
MD studies of crystal instability include mechanical melting [15] of metals; brittle
fracture of B-SiC [84] (see Chapter 5 of this thesis); phase transition of Si under com-
pression [24] and brittle fracture of intermetallic compounds [23]. All these studies
demonstrate that the instability criteria based on the stiffness coefficients can cor-
rectly predict the critical stresses and identify instability mechanisms. Thus, the new
instability criteria have provided important insight into the structural transitions of
materials. In Chapter 6 of this thesis, we will study pressure-induced amorphization

of 3-SiC using the new stability criteria.
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Chapter 5

Lattice Instability and Brittle
Fracture of 5-SiC under

Hydrostatic Tension

5.1 Introduction

How a crystal lattice responds to hydrostatic stress is a fundamental problem in
elasticity [91][10] which can be analyzed in terms of interatomic forces derived from
specific potential function models [92][93]. While elasticity analysis can produce sta-
bility criteria expressed in terms of elastic constants, such results seldom have been
carefully tested by subjecting the predicted instability to direct verification, a process
which is feasible for atomistic simulations [30]. Recently, it has been shown that to
predict the critical strain at which a stressed lattice becomes structurally unstable,
the applied stress must appear explicitly in the instability condition[15][16]. This re-
sult stands in contrast to the well-known stability criteria where the effects of applied
stress enter only through the elastic constants [13].

The purpose of this chapter is to present a molecular dynamics analysis of the
structural stability of 8-SiC under hydrostatic tension. This study stems from our

interest in modeling the mechanical properties of SiC using empirical interatomic
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potentials which treat this solid as fully covalent. It is also motivated by the recent
results on elastic instability in crystalline solids which gave new insights into the
unstable structural responses of an fcc metal under teusion loading [15][16]. For §-
SiC, there has been no previous study of its mechanical behavior, especially under
conditions of large lattice deformation.

We have shown in Chapter 3 that the potential model proposed by Tersoff [26],
which accounts for the many-body interaction effects through a bond ordering formu-
lation, is able to describe the elastic constants and certain surface properties, provided
the potential cutoff is modified to exclude interactions with the second nearest neigh-
bors. Details of the testing and modification of the Tersoff potential are directed to
Chapter 2 and 3. In Figure 5-1 we show the pressure-lattice parameter relation in the
dilatation region described by the modified Tersoff potential. The molecular dynamics
simulation data, obtained at 300K using a simulation cell with 216 atoms and peri-
odic boundary conditions, can be fitted well to the two-parameter Birch-Murnaghan
equation of state of Eq.(3.1). The value of the low pressure expansion coefficient of
the bulk modulus kj is obtained to be 4.4 from the fitting. In contrast, the simpler
Murnaghan equation of state of Eq.(3.2) is seen to breakdown at high tension. To
present our molecular dynamics simulations in another way, we show in Figure 5-2
two sets of independent results of the pressure vs. lattice parameter curves at 300K.
One of the curves is obtained by calculating the pressure at various fixed values of the
lattice parameter in the (NVT)-ensemble; and the other is by calculating the lattice
response to various hydrostatic loadings in the (NXT')-ensemble [34], where X is the
applied loading. The close agreement between the results over the entire range of
deformation gives us confidence in our simulation procedure of applying hydrostatic
tension.

Using the modified Tersoff potential, we study here the inherent stability of the
B-SiC lattice under dilatation. Applying the elastic stability criteria [15][16] derived
in terms of elastic stiffness coefficient as discussed in Chapter 4, we derive, in Sec. 5.2,
a quantitative prediction of the critical tension at which the zincblende -SiC lattice

becomes mechanrically unstable. The direct observation of the structural instability
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under dilatation and its consequences by means of molecular dynamics simulation
will be described in Sec. 5.3 and Sec. 5.4, thus providing explicit data to confirm
the stability analysis. In Sec. 5.4, we examine the simulation results to find that
the observed spinodal instability is accompanied by local decohesion on {111} planes.
From the details of the local atomic displacements, we find that surface relaxation
occurs so quickly as to become essentially integral part of the crack nucleation process.
Finally, in Sec. 5.5 we consider possible effects of charge transfer in treating the

interatomic forces which have been neglected in this work.

5.2 Prediction of Laitice Instability by Elastic
Stability Criteria

The modified Tersoff potential has been applied to calculate the elastic constants of
B-SiC at equilibrium conditions and also at elevated temperatures. This was carried
out using fluctuation formulas which we have derived and tested against stress-strain
simulation. Details are referred to Chapter 2 and . Here we will determine the
variation of the elastic constants with applied tension and the behavior of elastic
stiffness coefficients (described in Chapter 4), the latter being the quantities needed
to predict structural instability of the lattice.

Figure 5-3 shows the variation of the elastic constants as the lattice is dilated.
It also shows experimental values of elastic constants[72]. The molecular dynamics
results are obtained by giving the 216-atom simulation cell a certain lattice parameter
and allowing the system to equilibrate in 10 to 15 x 10® time steps (each step corre-
sponds to 1.451 x 10~%ps), and accumulating trajectories for 100 to 150 x 10® steps
for property calculations. (Because of the long runs the error bars in these results as-
sociated with statistical fluctuations are no larger than the size of the symbols.) The
atomic configurations obtained at the end of a run are then used for the succeeding
one. In each case the internal stress o is calculated along with the elastic constants

Cij. One sees in Figure 5-3 the elastic softening behavior generally expected, each
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elastic constant decreasing in a monotonic, concave manner|{36}[17]. The fact that
Cy4 is significantly greater than C), indicates the relative brittleness of the system
and importance of angle-dependent forces [36).

The elastic stiffness coefficients, defined as B = 9s/9n, where s and 7 are the
applied stress and Lagrangian strain tensors respectively, can be related to the elastic
constant tensor C, B = C + A, where tensor A is a linear function of the applied
stress [11]. For hydrostatic stress imposed on a cubic lattice, the stiffness coefficients

(in Voigt notation) become simply[15}[94][92]:
By =Cy—P, Bp=Cp+P, By=Cy-P (5.1)

where P is the pressure (P < 0 for tension). Figure 5-4 shows how these quantities
vary with tensile loading. Notice that while B and C have the same symmetry under
hydrostatic stress, in general the presence of A means B will have a different symmetry
from C[15] [11]. As we will discuss next, the significance of B is that in principle it,
rather than C, determines the conditions for elastic stability.

A conventional approach to lattice stability analysis, originally developed and
applied by Born and co-workers [13], holds that a cubic crystal lattice becomes me-

chanically unstable whenever one of the following conditions is violated

(Cn + 2C|2)/3 > 0, (Cu - 012)/2 > 0, 044 >0 (5.2)

By identifying each of the left hand sides as a modulus, the isothermal bulk modulus
K, the modulus against tetragonal shear G, and the modulus against rhombohedral

shear G, respectively, one may express Eq. (5.2) as
K(P)>0, G'(P)>0, G(P)>0 (56.3)

which then has the form of the classical Lagrange-Dirichlet criterion for elastic stabil-
ity, where P is the hydrostatic pressure[91][10]. The distinction between Egs. (5.2)
and (5.3) has been discussed by Milstein and Hill who pointed out that wher P # 0,
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they predict different domains of stability, and that the basis of Eq. (5.2), the re-
quirement of convexity of the internal energy, is not coordinate invariant [92][93].

Recently the general utility of Eq. (5.2) is questioned by showing explicitly that
they do not predict correctly the lattice instability induced in an fcc metallic lattice
by hydrostatic tension [15][16]. It is also shown that by replacing the elastic constants
in Eq. (5.2) by the stiffness coefficients in Eq. (5.1), the resulting stability criteria
still have the form of Eq. (5.3), or

K=(011+2012)/3+P/3>0 (54)
Gl=(Cu— 012)/2—P>0
G=Cq4—P>O

Using the results from Figure 5-3 and Figure 5-4, the variations with tensile strain
of the three moduli in Eq. (5.2) and Eq. (5.4) are shown in Figure 5-5. At the
last two values of strain indicated, the values of the bulk modulus calculated from
the fluctuation formula are slightly negative, while the system still appears to be
stable. By interpolation, based on Eq. (5.4), the spinodal instability (vanishing of
K) is predicted to occur at critical strain 7, = r/ro — 1 = 0.153, with corresponding
critical stress of o, = 0.370Mbar. On the basis of Eq. (5.2) the critical strain and
stress would be 7. = 0.166 and o, = 0.367Mbar. Even though the critical strains
and stresses predicted by Eq. (5.2) and Eq. (5.4) are very close in this case, one
can see the accuracy of Eq. (5.4), rather than Eq. (5.2), from the pressure data
obtained by simulation. From a different standpeint, the bulk modulus is just the
pressure derivative of volume. Therefore, it should vanish when the pressures reaches
its minimum. From this data, we find that the minimum value is reached between
r/ro = 1.150 and 7/rp = 1.161, which is consistent with the critical strain value
predicted by Eq. (5.4), rather than by Eq. (5.2). The vanishing of the spinodal
instability under tension for 8-SiC has also be predicted by an elastic stability analysis
using a tight-binding method[49], where the predicted critical stress and strain are in

close agreement with our results.
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Comparing Egs. (5.2) and (5.4), we see that in formulating the stability criteria
in terms of elastic stiffness coefficients, the competition between the three modes
of instability now depends explicitly on the hydrostatic loading. This distinction is
shown to be crucial in predicting the structural stability of close packed structures,
such as an fcc metal, under pure dilatation[15][16]. One can see from Eq. (5.4) that
the general effects of hydrostatic tension are to enhance the stability against shear
while lowering effective lattice cohesion. In applying this analysis to Au, it is found
that whereas Eq. (5.2) would predict an instability with G’ vanishing, Eq. (5.4)
predicts the instability to be due to vanishing of K, the correct behavior as shown by
direct simulation[15][16]. This result is in contrast to what we find here for SiC where
both Egs.(5.2) and (5.4) give predictions very close to each other. The difference
(cf. Figure 5-3) is seen to lie in the much larger value of C;; and only moderately
higher value of C}, for SiC relative to Au, such that Cy; — Ci2 is considerably greater
for SiC. Thus, the relative stability against shear over decohesion under dilatation is

sufficiently robust that it is not altered by the tension loading.

5.3 Simulation of Unstable Structural Response

In order to directly observe the structural response to lattice dilatation, we apply
the method of Parrinello and Rahman [30] for imposing a homogeneous stress on
the system. We choose a wall mass of 5 (in units of mass of Si), maintain constant
temperature by velocity rescaling, and impose a hydrostatic loading by defining £ =<
h>"1s < h? >~1< V >, where s is the external stress tensor, h is the matrix defining
the simulation cell, V' is the cell volume, and ¥ has only three equal diagonal elements
represented by . Simulation runs are carried out covering the range of ¥ from 0 to
5.575, in incremental steps of 0.3 initially but decreasing to 0.025 when approaching
critical value. Equilibration is determined by looking at time-averaged properties to
see when the averaged values no longer change significantly over 5000 steps. Most
runs consist of 1000 to 2000 steps for equilibration (adjustment to new stress level),

and 10, 000 steps for properties calculation; as before the final atomic configurations
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of each run are used as initial configurations for the next one.

Figure 5-6 shows the overall system responses to the applied tension, expressed
in terms of ¥ as defined above. One sees that the instability manifests as an abrupt
release in internal pressure, increase in potential energy, and increase in lattice pa-
rameter. While these indicate that undoubtedly a significant structural change has
taken place, it does not appear that the lattice has lost cohesion uniformly as in a
process of homogeneous disintegration. At the step where ¥ = 5.55, the system is
stable in that all properties do not vary significantly with time after equilibration.
The time averaged values of strain and internal stress at this step are 7 = 0.1506 and
o = 0.369Mbar. At the next step, ¥ = 5.575 (the last data indicated in the figure),
the system becomes unstable and properties show no signs of convergence at the end
of the simulation period (about 10, 000 time steps). Thus the observed critical loading
¥, lies between 5.55 and 5.575. From the results of Sec. 5.2, the predicted values
of the critical internal stress and the critical strain, when transformed according to
the definition of ¥, is 5.566 from Eq. (5.4) and 5.593 from Eq. (5.2). So we see the
accuracy of Eq. (5.4) again.

In order to see in more detail the nature of the instability we show in Figure 5-7
the time-dependent variation of the shape of the simulation cell, expressed in terms of
elements of the matrix £[30], and correspondingly, the elements of the internal stress
tensor. Also given in Figure 5-7 is the variation of the energy per atom. In Figure 5-
7(a) the persistent increase of the three diagonal elements of h, each representing the
edge length of the cubic simulation cell, means the system is undergoing continuous
dilatation. One can discern two regimes, an initial period when the cell maintained
its cubic shape and a second period (after about step 3800) when the cell has become
tetragonal and volume expansion is occurring at a higher rate. In Figure 5-7(b),
the diagonal elements of the stress tensor also show this change of symmetry, and in
addition one sees a sharp decrease occurring at time step approximately 2700. Notice
that symmetry breaking apparently takes place after the abrupt change has set in.
Figure 5-7(c) and Figure 5-7(d) show the corresponding behavior of the off-diagonal

elements of the cell matrix and stress tensor, respectively. From these data one can
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conclude that the system has undergone a significant shear deformation and that the
deformation is accompanied by the presence of appreciable level of von Mises shear

stress[95]

1
= {5[(011 — 022)* + (022 — 033)2 + (011 — 033)*] + 3(0%, + 033 + 0%5)}  (5.5)

Qi

Finally, in Figure 5-7(e) we see the energy increasing (becoming less negative) initially
as the system becomes dilated, but at time step about 2700 a decrease is seen during
the early stage of the shear deformation, then followed by subsequent increase.
Although the temporal evolution behavior shown in Figure 5-7 indicates a rather
complex structural response which involves dilatation as well as shear deformation,
we still do not know precisely what is the atomic configuration of the unstable lattice.
For more information, it is necessary to scrutinize the molecular dynamics trajectories

in greater detail, as will be discussed in the next section.

5.4 Crack Nucleation and Brittle Fracture

We now show that the unstable structural responses described in Figure 5-7 corre-
spond to crack nucleation and brittle fracture. Figure 5-8 shows a sequence of the
instantaneous atomic configurations obtained at four instants during the simulation.
The simulation cell is oriented to display the stacking sequence along the body di-
agonal [111], - -+ =Si-C=Si-C=Si- - - -, where - and = denote alternating interplanar
separation distances of [/12 and [/4 (I is the length of the body diagonal of the unit
cell), respectively. The stacking of alternating {111} planes which contain only Si
or C is most clearly visible in Figure 5-8(a), at the stage of simulation (about 0.3ps
after the applied stress is increased from ¥ = 5.55 to 5.575) when lattice instability
apparently has not yet set in.

The existence of two interplanar separations means that one should distinguish
two types of {111} planes between the Si and C atoms, corresponding to the well-

known glide and shuffle planes in the diamond cubic lattice. With each Si or C atom
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having three of its four nearest neighbors (of opposite species) across the glide plane
and the fourth across the shuffle plane, it follows that in order to form a crack on the
glide plane three bonds have to be broken, whereas the breaking of only one bond is
required for the shuffle plane. For this reason, if cracks are nucleated on {111}, the
shuffle plane should be favored.

In Figure 5-8(b) the atomic configuration at 0.45ps into the simulation clearly
indicate a crack opening from the right on the shuffie plane in the lower right part
of the cell. Notice that on the two opposing surfaces of the nucleated crack, one has
only Si atoms and the other only C atoms; this is as it should be if the crack has just
been nucleated and atomic relaxation has not yet set in. In addition, there appears
somewhat less pronounced distortion in the upper left part of the cell. In interpreting
the present results on decohesion, we should keep in mind that when a Si-C bond is
broken (as in the case here) the change in energy for the Si atom is different from
that for the C for two reasons. The first is that a Si is bonded to three C while a
C is bonded to three Si; secondly these two types of bonds have different strengths.
As described in Chapter 2, in the Tersoff potential, V,._;, # V;,—.. This point will be
further illustrated in Chapter 6.

" In Figure 5-8(c), the configuration at 0.06ps later, we see both nucleated cracks
begin to propagate and some details of atomic relaxation on the crack surfaces become
visible. Specifically one can see the appearance of mixing of Si and C atoms on the
crack surfaces (a layer is visualized by imaging a line drawn through the centers of
atoms).

In Figure 5-8(d) the configuration after another 0.09ps shows quite clearly the
consequence of the structural instability induced by the tension loading. Both cracks
have propagated in a rather clean fashion through the simulation cell, with crack
surfaces which appear to be well relaxed. Although the present data are obviously too
limited to attempt definite conclusions, it is possible to discern interesting differences
in surface relaxation between those crack surfaces which originate from C and Si
layers. For example, in the lower crack, the C-surface (lower surface) relaxation

appears to be more complete compared to that on the Si-surface which still shows
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some separation among the Si and C atoms.

The foregoing results show that brittle fracture has occurred on the {111} shuffle
plane. This is not unexpected considering that the unrelaxed surface energies, given
in Table3.6, show that the shuffle {111} plane is indeed the one with lowest energy.
The only literature value of surface energy, available for {111}, is 2180erg/cm? [78].

5.5 Discussions

We have presented a molecular dynamics simulation study of mechanical stability
of 3-SiC under hydrostatic tension using a potential model which has provided an
adequate description of the properties around the equilibrium state. Although the
explicit effects of external loading on the stability criteria, which were previously
shown to be critical in predicting the stability of a ductile close-packed structure [15],
are found to be unimportant here, we have nonetheless confirmed that the observed
onset of instability and the nature of the unstable deformation for an open structure
stabilized by covalent bonding can be predicted from generalized stability criteria.
In contrast to the structural responses in an fcc lattice with metallic bonding, a
decidedly ductile system[15], we find essentially brittle behavior. As a consequence of
a spinodal instability which apparently then triggers considerable shear deformation
as shown in Figure 5-7(c) and (d), a crack is nucleated as demonstrated in Figure 5-8.
By examining the potential energy response during the period of bond rupturing and
propagation (cf. Figure 5-7(e)) we can discern energy lowering processes which we
associate with relaxation of the newly created crack surfaces and with internal (bulk)
relaxation resulting from the reduction of normal stresses. From the rapid build
up of the von Mises shear stress during this period, we surmise that shear-tension
coupling effects[96] are more important in systems with strong angular forces. Finally
we should keep in mind that once the system has become inhomogeneous, one needs
to beware of possible artifacts associated with the periodic boundary conditicn and
finite system size. Thus, more work along the lines of the present study is needed to

confirm the physical meaningfulness of our results pertaining to the system response
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after crack initiation.

A result which lies beyond the domain of stability analysis is the observation of
decohesion in the form of cracking on the {111} shuffle plane. While this is self
consistent with respect to the potential model, the expected cleavage plane for zinc
blende structure materials such as SiC is expected to be {110} [8]. This is in contrast
with the known cleavage plane {111} for diamond cubic materials such as Si and C.
The difference lies in the charge transfer effects in zinc blende crystals when bonds
are broken [97]. Charge transfer produces an electrostatic interaction which raises
the surface energy of non-neutral planes, including {111}. As a result, the neutral
plane {110} becomes the lowest energy plane. However, it is not obvious that 8-SiC
should be treated as a typical zinc blende material given that bonding in this lattice is
basically covalent in nature, with only a small ionic component (12%) [6]. We believe

this issue deserves further study.
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Figure 5-1: Pressure-lattice parameter relation for 5-SiC at 300K simulated using
the modified Tersoff potential (open circles); fitted equations of state are Birch-
Murnaghan (solid line) and Murnaghan (dashed line).
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Figure 5-2: Pressure-lattice parameter relations for 3-SiC at 300K obtained using
two different simulation methods, tensile straining (open triangles) and applied hy-
drostatic tension (open circles).
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(r/ro) calculated using the modified Tersoff potential. Open circles: Cy;, open trian-
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Figure 5-8: View of simulation cell showing instantancous atomic configurations at
several instants during simulation at supercritical tension. C and Si atoms are shown
as dark and light spheres, respectively. X, Y and Z are along [100], [010] and [001]
respectively. Two solid lines in the middle are {111} planes that are perpendicular
to the plane to the paper. (a) at 0.3ps into the simulation (time step 2000) after
applying a small step increase in tension, prior to the onsct of instability; (b) at about
0.15ps ater (Lime step 3000) when interplanar decohesion has occurred; (¢) at about
0.06ps later (time step 3400) than (b) showing two well-defined crack propagations
and indications of atomic relaxation on the crack surfaces; (d) at another 0.09ps later
(time step 4000) showing two relatively clean cracks with relaxed surfaces.
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Chapter 6

Solid-State Amorphization of
3-SiC under Hydrostatic

Compression

6.1 Introduction

Solid-state crystalline-amorphous transformation was first observed in the 70s and
early 80s. Since then, solid-state amorphization has received considerable attention[98][99]
due to the non-conventional method it offers to produce bulk amorphous materials and
the intellectually challenging questions it raises in terms of understanding the under-
lying mechanisms and characteristics of the process. It has been found that a variety
of irradiation-, chemically-, and mechanically-driven processes are able to transform a
crystalline material into an amorphous solid. Currently, pressure-induced crystalline-
amorphous phase transformation is receiving renewed attenticn because new experi-
mental evidence has been observed in a number of ionic crystals[100][101][102] as well
as in a binary covalent material [103]. New understanding of the driving force for such
phase transformations has been obtained[104] [105]. Several studies{100][102][103]
have suggested that pressure-induced amorphization is a kinetically frustrated phase

transformation; while the study by Binggeli and Chelikowsky [104] has suggested

126



that pressure-induced amorphization is triggered by the onset of the lattice shear
instability.

Since the lattice instability of a crystal can be clearly analyzed by the new for-
mulation of the elastic stability criteria[15][16]that we derived in Chapter 4, we here
present a study of the lattice instability of 3-SiC and its structural response un-
der high pressure. This study is motivated by our general interest in understanding
the mechanical behavior of SiC under varicus stress conditions, such as tension (see
Chapter 5) and compression. It is also one of the series studies of applying the new
instability criteria to investigate the structural transitions of metal, covalent materials
and intermetallic compounds[15][16](83][23][22], among which the study on diamond
cubic Si lattice has revealed that Si undergoes a phase transition from diamond cubic
to A-tin under compression[23]. While 5-SiC and Si are both tetragonally bonded co-
valent materials, an additional effect of chemical ordering exists in $-SiC due to the
fact that two types of atoms are involved in the g-SiC lattice. The chemical ordering
effect can be classified by two controlling factors, i.e., the atomic size difference and
the chemical preference of mixed bonds [25]. Due to the chemical ordering effect, it
is possible that different behavior of 8-SiC could exist under compression compared
to Si. Because of these considerations, we believe that it is important to study the
structural transition of 8-SiC under compression by combining the elastic instability
criteria with molecular dynamics simulations, and with our special focus on the roles
played by the chemical ordering effect in the transition.

Using the modified Tersoff potential (see Chapter 2 and 3), we have obtained the
elastic constants and the equation of state of 5-SiC at room temperature. These
results agree well with experimental data. We have also successfully applied this
potential in studying the structural response of §-SiC under tension (Chapter 5),
where we observe crack nucleation and brittie fracture when the spinodal instability
criterion is violated. In this chapter, we use the modified Tersoff potential to study the
instability and structural response of 5-SiC under hydrostatic compression. In Sec.
6.2, we first perform a constant temperature and constant pressure (H7T) simulation

of tlie structural response of 3-SiC under hydrostatic compression, where we observe
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pressure-induced amorphization of 3-SiC at room temperature. The amorphous SiC
thus obtained recovers its original crystal structure upon release of pressure, which
is in analogy with the ‘memory glass’ effect discovered by Kruger and Jeanloz in
their experiment[100]. We will show that the critical pressure at which amorphization
occurs in simulation can be well predicted by the elastic instability criteria that will be
derived in Sec. 6.3. It is found that the shear instability is the underlying mechanism
of amorphization. This is similar to the result of Binggeli and Chelikowsky[104]. In
Sec. 6.4, we investigate the roles of chemical ordering in amorphization of 3-SiC by
modifying the potential in such a way that we can probe the atomic size effect and
the chemical preference effect separately. We will identify that the atomic size effect
is essential for the amorphization of §-SiC. Finally, in Sec. 6.5, we summarize the

significance of this work and discuss some unsolved issues.

6.2 Simulation of Hydrostatic Compression

Using the modified Tersoff potential and the generalized MD simulation technique de-
veloped by Parrinello-Rahman[30], we perform a constant temperature and constant
pressure simulation of 5-SiC under compression. We employ a cubic crystal of 8-SiC
with 216 atoms subjected to the periodic boundary conditions. We use an initial
time step of t = 1.451 x 10~*ps and a time step of 8¢ when the system is close to
a critical point. Using the Parrinello-Rahman simulation technique, we impose ex-
ternal hydrostatic compression incrementally to the system. At each applied loading,
we allow the system to respond to the loading and reach its new equilibrium state
after about 20,000 time steps. For each equilibrium state, we use another 20,000
time steps for the system to relax and to calculate the properties of internal pressure
(same as the applied pressure at equilibrium), potential energy, volume and structure

factor s{k). The structure factor is defined as

s(k) = % S feos(rs - F) + isins - F))? (6.1)
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where £ is chosen to be a constant wavevector 21(1,1,1). The structure factor is
a standard function to characterize the ordering of a system. For a perfect 8-SiC
crystal, s(k) is normalized to be 0.5 for k= 21(1,1,1). For a (-SiC crystal under
thermal fluctuations, s(k) is smaller but very close to 0.5. Figure 6-1 shows the overall
system responses to the applied compression as a function of the internal pressure P.
As can be seen in Figure 6-1, all properties exhibit an abrupt change at the end of each
curve. The last points in each curve correspond to a state which is obviously different
from other states along the curve. We call this state B, and the state right before
state B is called state A. State A is the last stable state of 5-SiC under compression.
As shown in Figure 6-1(a), the structure factor s(k) suddenly drops to zero at state
B. Correspondingly, we see an internal energy decrease in Figure 6-1(b) and a volume
increase in Figure 6-1(c). All these suggest a change in the 3-SiC structure at state
B. The pressure at state B is P, = 707G Pa. In order to show more detailed change
of properties of the system from state A to B, we plot the time-dependent system
responses in Figure 6-2, where the mean square displacement (MSD) in the bottom

plot is defined as

MSD(t) = < S IF(0) - O (62)

]

The M SD describes the mobility of atoms in the system and their averaged derivation
from original equilibrium positions. For a solid, either crystalline or amorphous,
MSD is a very small constant; while for a liquid the M SD increases almost linearly
with time. In Figure 6-2, we can clearly see that, during the transition from A to
B, the structure factor drops; the potential energy decreases; the volume increases;
the diagonal elements of cell matrix h increases; the off-diagonal elements grow to
non-zero values; and the mean square displacements for both Si and C atoms jump
from one constant to another. Combining these data, we conclude that a structural
transition of 3-SiC to another solid structure has taken place. During the transition,
the appearance of non-zero components of the off-diagonal elements of h indicates

shear deformation. It is of particular interest to compare the detailed data of the cell
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volume and the cell matrix off-diagonal elements in order to identify whether shear
deformation precedes over volume expansion or vice versa. We carefully examine the
volume and the off-diagonal elements of h,,, hy3 and hg3 in Figure 6-2{(c) and (e), and
we plot the corresponding data in the time step range of 12000 to 15000 in Figure
6-3. As we can clearly see in Figure 6-3, the off-diagonal elements begin to grow
to non-zero values at step 12200, while the volume expansion occurs at step 12560.
This suggests that the shear deformation occurs before the volume expansion. This
information will be used in Sec. 6.3 to verify the instability eigenmodes.

In order to examine the final structure at state B, we plot the atomic configuration
projections along z, y and z directions in Figure 6-4, and the radial distribution
functions between Si — Si, C — Si (same as Si — C) and C — C in Figure 6-5.
The atomic configurations show a completely disordered structure at state B. The
radial distribution functions show that g(r) goes to 1 as r approaches large distances,
which means that the system has lost its long range order completely. The lack of
long range order is a characteristics of an amorphous structure. Thus, these results
strongly suggest that structural transition shown in Figure 6-2 represents a crystalline-

amorphous phase transformation. In other words, pressure-induced amorphization of

(3-SiC under compression has been observed in our simulation.

To understand the amorphous structure in more detail, we have calculated the
coordination numbers of atoms by integrating the area under the first peak of the
radial distribution function of Si-C. We find that each Si (or C) atom is still four-
fold coordinated by C (or Si) atoms. However, the local tetrahedral geometry is
distorted. In Figure 6-6, we plot the distributions of number of atoms at distance r;;,
the tetrahedral angle 6;;: and the potential energy E, before and after amorphization
respectively. Before the amorphization, the system is in its crystalline structure and
all properties are sharply peaked around their equilibrium values. The distances
between nearest atoms are peaked at 1.45A4; the tetrahedral angles are peaked at the
perfect tetrahedral angle of 109.47°; the potential energy of Si atoms is —1.55(eV)
and the potential energy of C atoms is 1.6(eV’). The broadening of the distributions

in all of the distributions is due to thermal fluctuations. In contrast, in the amorphous
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SiC, although every Si (or C) atom is still 4-fold coordinated with C (or Si) atoms,
the nearest neighbor distances, the tetrahedral angles and the cohesive energies of
atoms have much broader distributions, especially for the tetrahedral angle and the
potential energies. The nearly flat distribution of the tetrahedral angles over several
tens of degrees suggests a randomly distorted structure.

To further study the pressure-induced amorphous SiC at state B, we let the system
relax for another 30, 000 steps under P,. We find that the system is very stable with
all of the properties fluctuating around their equilibrium values. We then release
the applied pressure to zero and let the system respond. Figure 6-7 shows the time-
dependent responses of the system after the pressure release, where we also plot the
data of equilibrium properties of 3-SiC under zero pressure at room temperature by
circles at time step 30000. We find that the structure factor s(k) increases from 0 to
0.2. This suggests that the SiC structure has partially recovered its origit.al 8-SiC
crystalline structure. We also observe that the volume increases and the potential
energy decreases. At the end of the figure, the volume and the potential energy of
the system are close to the values of 5-SiC. Furthermore, by examining the atomic
conﬁguration shown in Figure 6-8 and the radial distribution functions in Figure 6-9
after the release of pressure, we find that the amorphous SiC has indeed partially
recovered its original $-SiC crystal structure. The degree of the recovery can be
increased by thermal annealing. Figure 6-10 shows the g(r)’s of the system after
annealing at 1000K. The peak positions and the overall shape agree well with the
g(r) of crystalline §-SiC at the same temperature. These results indicate that the
pressure-induced amorphous SiC has a ‘memory’ effect. Unlike the amorphous SiC
formed by conventional melting and quenching method, pressure-induced amorphous
SiC ‘remembers’ its original crystal structure before amorphization. Experimentally,
similar ‘memory’ effect has been observed in AIPO, by Kruger and Jeanloz[100]. An

explanation of this ‘memory glass’ effect will be given in the next section.
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6.3 Shear Instability Driven Amorphization

So far, we have shown that 3-SiC undergoes pressure-induced amorphization under
compression. In order to elucidate the driving force of the amorphization, we have
carried out the elastic stability analysis using the new criteria derived in Chapter
4. First, we perform the stability analysis at 0K and identify that the instability
mechanism of 3-SiC under compression is the shear instability. Secondly, we calculate
the shear instability criterion at 300K to estimate the critical pressure and compare
the result with that obtained from direct simulation described in the last section.

In Chapter 3 we have shown that the elastic constants of 3-SiC do not change
significantly in the temperature range between 0K and 300K. Therefore, we believe
that the instability mechanism of a crystal will not change in this narrow temperature
range, although the critical pressure (or critical strain) at which the instability will
occur will vary with temperature; and the higher the temperature is, the lower the
transition pressure will be. Thus, we first perform a stability analysis of §-SiC at 0K
to investigate which instability criterion is violated under compression. We calculate
the elastic constants C;; and Cj, at 0K using their Born terms in the fluctuation
formulae (see Chapter 2). Then, using the relation between the stiffness coefficients

and elastic constants
Biy=Cy—P Byp=Cip+P (6.3)

we obtain B;; and Bjy. Since the Born term of Cy4 does not take into account the
contribution of the internal strain relaxation, we use the method of direct stress-strain
calculation plus static relaxation (described in Chapter 2) to obtain By4. In the Voigt

notation, the stress-strain relation for By, is
By = -—2 (6.4)

where 093 is the microscopic stress under the imposed strain ey3 after internal strain

relaxation; €3 is a small strain calculated by using each compression state as the

132



reference state. If the reference state is the zero pressure state, Eq.(6.4) yields Cy,.
If o is the zero pressure lattice constant, and r is the current lattice constant at a
compression state, we can calculate By,, B, and By, for each r/rq using Eq.(6.3
and Eq.(6.4). The results are shown in Figure 6-11. We find that both B;; and By
increase under compression, while By, increases first, then bends over and decreases.

Recall the three instability criteria for a cubic crystal derived in Chapter 4

K(P) = (B +2By,)/3 (6.5)
G'(P) = (B — B12)/2 (6.6)
G(P) = By (6.7)

we have calculated the three criteria for 3-SiC under compression at 0K and the
results are shown in Figure 6-12(a). It delineates that under compression, the spinodal
instability criterion K(P) and the tetragonal shear instability G’ increase, whereas
the shear instability G(P) increases first, then decreases to zero at 7/ry = 0.734.
This corresponds to a critical pressure of P, = 1156GPa. Therefore, G(P) is the
only instability criterion that has been violated under compression and hence the
instability mechanism of $-SiC under compression is the shear instability.

In order to determine the critical pressure at 300K when the shear instability
is violated, we first calculate the elastic constant Cyy of (-SiC at 300K using the

fluctuation formulae given in Chapter 2. Then, we use
B44 = 044 - P (68)

to obtain By4 which is the shear instability criterion G(P). To calculate the contri-

butions of individual terms to the shear instability, we write
G(P)=Cu—-P=C{+Cy+Cii—P (6.9)

where Cf, is the Born term; CJ; is the stress fluctuation term and Cf{ is the kinetic

term. The kinetic term is usually negligible since it is smaller than other terms by
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orders of magnitude. The results of the Born term, the fluctuation term and the shear
instability criterion G(P) of $-SiC under compression at 300K are plotted in Figure
6-13. We find that the Born term increases linearly as pressure increases because the
interaction between atoms become stiffer. The fluctuation term, on the other hand,
first decrease slowly with pressure to a certain point, and then decreases much faster.
The significant decrease of this term brings the total G(P) to zero under compression.
Since the stress fluctuation term takes into account the contribution to the elastic
constant due to the internal strain relaxation, if a shear strain is imposed to the
system, the higher the applied pressure, the larger is the internal strain relaxation.
With the continuous increase of pressure, the internal strain relaxation reaches a
point beyond which it causcs the system to be unstable. Thus, the internal strain
relaxation is responsible for the vanishing of the shear instability under compression.
The critical pressure where G(P) goes to zero is determined to be P, = 714G Pa from
Figure 6-13(c), which is in close agreement with the value of P, = 707G Pa obtained
from the direct simulation described in Sec. 6.2. This is convincing evidence that the
pressure-induced amorphization of -SiC observed in simulation is triggered by the
vanishing of the shear instability.

We can further confirm that the pressure-induced amorphization is triggered by
the shear instability by studying the wnode of deformation corresponding to the shear
instability. As discussed in Chapter 2, the expected eigenmodes corresponding to the
shear instability should be shear deformation with volume conservation. We show
in Figure 6-3 that this is indeed the case, i.e., shear deformation precedes volume
expansion at the beginning of the structural transition. It is important to point out
that for unstable structural transitions triggered by the elastic instability, instabilities
could occur successively[15] during the transition. In other words, once a structural
transition has taken place, other new instabilities may set in. Strictly speaking,
the new criteria should be calculated based on the new structure after the initial
structural transition. It is thus difficult to clearly identify all eigenmodes during the
whole transition process due to the fact that different eigenmodes related to different

criteria may follow each other closely. Nonetheless, the eigenmodes of the instability
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that is violated first can always be clearly identified at the very beginning of the
structural transition.

The shear instability driven amorphization process that we have observed can be
considered as a kinetically frustrated phase transformation. Recall that in Chapter
3, we have predicted a transition of 5-SiC from zincblende to rocksalt structure at a
critical pressure of P, = 649G Pa based on thermedynamic stability, i.e., free energy
calculations. However, our simulations presented above have demonstrated that 5-SiC
undergoes an order to disorder transition under compression instead of the transition
to rocksalt structure. The critical pressure for amorphization is P, = 707G Pa, which
is higher than P,. This indicates that the process of the pressure-induced amorphiza-
tion in 3-SiC observed at 300K is a frustrated phase transformation. Because of the
relatively low thermal fluctuation and the fact that no defects of any kind exist in
the simulation system, the phase transformation to rocksalt structure at the lower
pressure (P, = 649G Pa) is impeded thermodynamically. The system is forced to go
beyond this thermodynamic instability point until eventually reaches its elastic shear
instability that results in amorphization.

The above scenario can help to explain the ‘memory glass’ effect described in
Sec. 6.2 in a simple manner. The originally crystalline 8-SiC is compressed beyond
its thermodynamic stability limit at P,. At a higher pressure P, (3-SiC finally be-
comes unstable and transforms to the amorphous structure through the deformation
triggered by the shear instability. Because of small thermal fluctuation at room tem-
perature, atoms cannot move too far away from their positions in the original crystal
structure. In particular, diffusive motion is precluded. This is evidenced by the fact
that the coordination number of atoms remains 4-folded between Si-C as described
in Sec. 6.2. Therefore, atoms simply randomly displace themselves arcund their orig-
inal crystallographic sites. From the mean square displacements in Figure 6-2(f), we
find that during the amorphization process, atoms move by about 20 — 30% of an
interatomic distance on average. So when the pressure is released, it is natural for the
atoms to slip back to the lowest free energy state, i.e., the original 3-SiC crystalline

structure. This process results in the so called ‘memory glass’ effect. Therefore,
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we believe that the key factor in ‘memory glass’ effect is diffusive motion of atoms.
That is, if no significant long-range diffusive motion occurs, the coordination number
of atoms will remain unchanged, and this conservation in coordination number can
be considered as a signal for the ‘memory glass’ effect. If the coordination number
changes after the transition, it will usually be impossible for the system to exhibit
the ‘memory’ effect. This interpretation is supported by a study of pressure-induced
amorphization of a-quartz[104], where the coordination number changes from 4 to 6,
and no ‘memory’ effect of the crystalline structure has been observed.

The fact that no significant diffusive motion of atoms has occurred during the
sudden amorphization process of SiC is also consistent with the potential energy
decrease as shown in Figure 6-2, which is in contrast to the expected potential energy
increase for normal order to disorder transitions. At the highly compressed state
before the transition, the potential energies for atoms to stay at their crystalline
sites are very high. As soon as disordering takes place, atoms lower their energy
significantly by simply shifting to nearby non-crystalline lattice positions. This is
possible because the 8-SiC is an open structure with considerable free space around
each lattice position. However, if long-range diffusive motion is allowed, such as in
melting, atoms can change coordination number (usually increase) and form new
bonds with atoms that are initially far away before the transition. In the case of
the binary system of SiC, two possibilities exist if the long-range diffusive motion is
allowed. One is that significant new bonds will form between Si-Si or C-C besides
the existing Si-C bonds to give an increase of the coordination number. The other is
that new bonds between Si-Si or C-C will replace some of the previous bonds between
Si-C to still conserve the total coordination number. In the latter case, however, the
coordination number between Si-C will certainly change. In either case, the potential
energy of the system will increase because the average binding energy between Si-Si or
C-C is higher than that of Si-C by the heat of formation energy per bond. But in the
amorphization process, the coordination number between Si-C remains unchanged
and no significant bonding between Si-Si and C-C are formed. This is the reason

that we have observed the decrease of the potential energy during the amorphization
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process.

6.4 Chemical Ordering in Amorphization: Role
of Chemical Preference and Atomic Size

Our observation that $-SiC undergoes amorphization under compression stands in
clear contrast to the behavior of elemental crystal Si since the latter undergoes a
polymorphic transition from diamond cubic to 5-tin under compression[23]. In Figure
6-12(b), we show the instability criteria for Si. We find that under compression
the spinodal instability K(P) increases; while both the tetragonal shear instability
G'(P) and the shear instability G(P) increase first, then decrease and drop to zero
at certain compression states. The instability that is first violated in diamond cubic
Si under compression is the tetragonal shear instability G'(P). It reaches zero at
r/ro = 0.86, which corresponds to a critical pressure of P, = 111GPa. Thus, the

instability mechanism of Si under compression is the tetragonal shear instability, as

oppose to the shear instability of 3-SiC. Since both Si and SiC are tetragonally bonded

covalent materials, we believe that the additional effect of chemical ordering in 8-SiC
is responsible for the different instability mechanisms of the two materials under
compression. Using the modified Tersoff potential, we are able to study the chemical
ordering effect in 3-SiC explicitly.

In -SiC, chemical ordering is governed by two factors, i.e., the atomic size dif-
ference between Si and C atums and the chemical preference of mixed bonds. The
determination of the chemical preference is as follows. If the binding energy of a Si-C
bond is E(s; — c¢), the binding energy of a Si-Si bond is E(s; — s;) and the binding
energy of a C-C bond is E(c — c), then the chemical preference is defined as the
energy of a Si-C bond relative to the mean of a Si-Si and a C-C bond in the diamond

structures, i.e.,

AH = E(si — ¢) %[E(s,- — 8) + E(c—c)] (6.10)
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By definition, the chemical preference is the same as the heat of formation energy
per Si-C bond in 8-SiC. Therefore, by adjusting the heat of formation of SiC, one
can vary the chemical preference. It happens that in the Tersoff potential for SiC,
a parameter x is introduced purposely to adjust the heat of formation. The initial
value of x has been fitted by Tersoff using experimental data of the heat of formation
energy[26]. Pecall that in the Tersoff potential, the binding energy per pair of atoms

is written as
Vij = fe(r)[Asjexp(—Nijr) — Bijxbijexp(—pi;r)) (6.11)

where x is the extra parameter introduced for 5-SiC to describe the heat of formation

and chemical preference. For diamond cubic Si or diamond C, x = 1. Since
1
E(si—¢) = 5 (Voo + Ve-s) (6.12)

by varying x in Eq.(6.11), we can change E(s; — c) in Eq.(6.10) and thus adjust the
chemical preference AH. To eliminate the chemical preference in §-SiC by setting
AH = 0, we can continuously adjust the xy parameter until the condition E(s; —
c¢) = 4[E(si — s;) + E(c — c)] is satisfied. Notice that as we change x in Eq.(6.11),
the equilibrium lattice constant 7o will also be changed. Therefore, for consistency
E(s; — ¢) to be used in Eq.(6.10) should be calculated by using the new equilibrium
condition. In Table 6.1, we have listed the results of binding energies, x values and
equilibrium lattice constants corresponding to the SiC with zero heat of formation
and the SiC with the original fitted value of heat of formation by Tersoff. The x
parameter has changed from its original value of 0.9776 to 0.9689 and the equilibrium
lattice constant has changed from 4.324 to 4.34A.

The second governing factor of the chemical ordering in 8 — SiC is the atomic
size difference. The experimental values of the covalent radii of Si and C in 3-SiC
are R, = 0.77A and R,, = 1.17A respectively[6]. The difference is about 34%. In the
Tersoff potential, no direct parameter controls the sizes of atoms explicitly. However,

the atomic size effect is embedded in the bond-order parameter b;;. To demonstrate
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this point clearly, it is necessary to review the formulation of the Tersoff potential for
B-SiC. Initially, Tersoff developed two potential functions for diamond cubic Si and
diamond C respectively. By averaging the two sets of parameters and introducing the
additional parameter x, he later developed the potential function for SiC which is the
one we have been using. While the parameters of A;;, A;j, Bij and p;; in Eq.(6.11)

are averaged over those for Si and C, i.e.,

Ac—s; = V Ac—cAai—s“ Bc——s; =y Bc—ch.'-—s,-’ (613)

A _— Ac—l: + As,'—s; _ ll'c—-c + /‘8.'-—8.'
c—8i — a8 - 5

2 v He—si = 2

the bond-order parameter b;; is not averaged over b;_; and b;_;, i.e.,

Boos; # \/De—cbai—s; (6.14)

Instead, b;; remains the same functional form as that for Si or C in the diamond
structures, depending if the central atom 7 is a Si or C atom. Recall that b;; is

defined as

bij = (1 + BRi¢y)~Hm (6.15)
Gi= Y, felri)9(Oije)
ki)

9(6ijx) = 1+ ¢} /d} — ¢ /dF + (hi — cos B5)?]

the parameters of 3;, n;, ¢;, d; and h; do not take the average values of 7 and j, but
are only dependent on the type of the central atom i. Consider two geometric sets of
interactive local atomic configurations similar to that shown in Figure 2-1, with all
conditions (atomic positions and type of atoms) to be the same except that in one
set the central atom is C and in the other set the central atom is Si. Based on the

Tersoff potential, the values of b;; calculated for the two atomic configurations will
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be different, i.e.,
be-j # bs;—j (6.16)

Since the only difference in the two configurations is the different atomic sizes of the
central atoms, we conclude that the information of atomic sizes is embedded in the
bond-order parameter b;;. For the local tetrahedral configuration in a perfect 8-SiC
lattice, the values of the bond order parameters are b.—,, = 0.866 and b,,_. = 0.937.

A direct consequence of Eq.(6.16) is that, in 3-SiC,
‘/C-Si # ‘/31""0 (617)
Since the cohesive energies are
Ec = Z‘/c_j, Es'. = Z‘/,.._j (618)
J J
for C and Si atoms respectively, we have
E.# E,, (6.19)

This means that in terms of the Tersoff potential, the cohesive energy is not equally
divided between the two types of atoms. For the local tetrahedral configuration in a

perfect 3-SiC lattice, we obtain

Vioy, = =2.736(eV) V,,_c = —3.451(eV) (6.20)
E.= —5.472(eV) E,, = —6.902(eV)

from calculations made at the equilibrium condition at 0K. As shown by Eq.(6.20),
E; > E,, based on the Tersoff potential.
The fact that the cohesive energy of a C atom is higher than that of a Si atom in (-

SiC can be easily justified by simple electronic energy arguments. In the tight-binding
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formulation of the cohesive energy of a covalent solid, one can write [86][97]
— Ucoh = Epm + ‘/0(7‘) - Eba,,d(r) (6.21)

where —U,,y, is the cohesive energy per atom; E,,, is the promotion energy which
stands for the energy increase of an atom when its two 2s and two 2p electron states
form four sp® hybridized states; Ey,nqa(r) is the energy-lowering due to electron redis-
tribution which leads to bond formation; and finally, V;(r) is the repulsive interaction
between neighboring atoms due to their overlapping sp® states. Since both FEpsna(r)
and Vp(r) are functions of interatomic distances and are due to interactions between
atoms, it is natural to equally divide Epma(r) and Vp(r) between Si and C atoms.
However, the promotion energy is an intrinsic property of each atom, therefore, the
contribution to the cohesive energy from the promotion energy is different for dif-
ferent types of atoms. In other words, two atoms of the same type should have the
same cohesive energy because their promotion energies are the same. But for two
different types of atoms, they have different cohesive energies due to their different
promotion energies. Since the promotion energies for Si and C are Eji, = 3.52(eV)
and ES,, = 4.26(eV) respectively [97], from Eq.(6.21), we have —Ug,, > —UZy,, which
is in qualitative agreement with our result obtained from the Tersoff potential. Thus,
we have shown that, in the Tersoff potential, the atomic size difference is embedded
in the bond-order parameter b;;, and this difference leads to the non-equal division
of the cohesive energy between the two types of atoms (Si and C). The fact that the
cohesive energy of C is higher than that of Si as obtained from the Tersoff potential
can be properly justified by electronic energy consideration.
Atomic Size Effect on Elastic Constants

So far, we have demonstrated that both the atomic size effect and the chemical
preference of mixed bonds can be properly treated by the Tersoff potential. The
chemical preference can be directly controlled by the parameter x in Eq.(6.11); while
the atomic size difference is embedded in the bond-order parameter b;;. In order to

understand the different behavior of Si and SiC under compression, we investigate the
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roles played by the atomic size and chemical preference in the process of amorphization
of B-SiC. We believe that the major difference between the two materials is these two
chemical ordering effects. We modify the Tersoff potential such that we can probe
the atomic size and the chemical preference separately. We first keep the atomic size
difference and vary the chemical preference. In order to compare the results with
Si, we set the chemical preference AH to zero in SiC by choosing x = 0.9689 as
given in Table 6.1. We call this modified Tersoff potential CP-SiC. This potential
function keeps the atomic sizes the same as given by the original Tersoff potential,
but suppresses the chemical preference to zero. On the other hand, we can allow the
two types of atoms to have the same atomic size by setting the functional form of
b.—; to be the same as by,_;. This will change the heat of formation energy if the
x parameter remains the same. In order to keep the same chemical preference, we
must adjust x as we modify the bond-order parameter so that the heat of formation
remains the same as the original Tersoff potential. The new x parameter is found to
be 0.9407. By so doing, we create another modified Tersoff potential for SiC called
AS-SiC, which keeps the chemical preference of the original Tersoff potential but
removes the atomic size disparity. We have used thise two modified potentials to
study the elastic constants and the instability mechanisms of SiC under compression.
The results obtained at 0K are sumrnarized in Table 6.2.

From Table 6.2, we find that the properties calculated by the CP-SiC potential are
very close to that of the original Tersoff potential. The instability mechanism under
compression remains unchanged (shear instability). This suggests that the chernical
preference does not play a dominant role in determining the instability of SiC under
compression. On the other hand, using the AS-SiC potential, we obtain very different
but interesting results. First, we find that the cohesive energy, lattice constant and
bulk modulus remain unchanged. This is to be expected since we have left unaltered
the heat of formation energy in the AS-SiC potential. Thus the cohesive energy
and the lattice constant should not change. Also, since it is defined by the second
derivative of the cohesive energy, the bulk modulus remains unchanged. Secondly, we

find that, although the bulk modulus B = €122 remains unchanged, the elastic
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constants Cj;, Cio and Cyy are affected significantly by the atomic size effect. As
a result, at zero pressure, the relative magnitude of Cyy and (Cy; — Cj2) has been
reversed compared to that calculated from the original Tersoff potential. The direct
consequence of this reversal is that under compression, the instability mechanism

changes from shear instability (Cys — P) to tetragonal shear instability (<1542 — P)

once the atomic size disparity is suppressed in the Tersoff potential. This tetragonal
shear instability is exactly the instability criterion violated in elemental Si under
compression; and it is also the cause of the structural phase transition from diamond
cubic to S-tin in Si.

Phase Transition vs. Amorphization

In order to investigate the consequence of the tetragonal shear instability in AS-
SiC, we have performed molecular dynamics simulations using this modified potential
function to elucidate the structural behavior of SiC under compression. Similar to
the procedure in Sec. 6.2, we use the Parrinello-Rahman technique to apply pres-
sure to the system incrementally. In Figure 6-14, we show the system responses to
compression at 300K. The state that corresponds to the last points in the figure is
called state B, and the state right before B is called state A. At state B, we observe
that the structure factor s(k) drops to zero, the potential energy F, decreases and
the volume also decreases. The corresponding critical pressure is P, = 197G Pa. In
Figure 6-15, we show the time-dependent variations of relevant properties from state
A to B. In this figure, the evolution of the structure factor, internal energy, volume
and diagonal and off-diagonal elements of the cell matrix A as a function of time can
be clearly seen. In order to identify the eigenmodes of this transition, in Figure 6-16,
we plot the detailed data of the volume V' and the diagonal and off-diagonal elements
of the cell matrix h within time steps between 0 to 10000. As labelled by circles
in Figure 6-16(b), a bifurcation of diagonal elements of the cell matrix h occurs at
time step 2500; while in Figure 6-16(a), the volume decreases after time step 5000;
and in Figure 6-16(c), shear deformation occurs at time step 5800. Thus, during this
transition, the bifurcation precedes the volume decrease and the shear deformation.

In other words, at the very beginning of this transition, we see bifurcation of simula-
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tion cell with volume conservation, which is exactly the expected eigenmodes derived
in Chapter 2 corresponding to the tetragonal shear instability. Therefore, using the
AS-SiC potential, we have observed a structural transition that is triggered by the
tetragonal shear instability.

To examine the final structure at state B, we plot the radial distribution functions
of the structure in Figure 6-17, and compare them with that of the 3-SiC structure.
We find that the structure of state B is a well ordered crystalline structure since
well separated peaks appear in its g(r)’s. The g(r)’s for Si-Si and C-C from the new
structure are identical to that of the 3-SiC structure. However, the g(r) between Si-C
has changed. In the new structure, the first peak of g(r) of Si-C has shifted to a larger
distance compared to that in 3-SiC structure. It is well known that (-SiC is formed
by shifting the two sets of fcc lattices of Si and C by 1/4 of the body-diagonal length
of the unit cell along the body-diagonal direction. We find that the new structure is
formed by shifting the two sets of fcc lattices of Si and C by 1/2 of the body-diagonal.
This is exactly the structure of the rocksalt SiC. Therefore, the structural transition
observed by using the AS-SiC potential is a phase transformation from 3-SiC to
rocksalt SiC. This result is significant since it demonstrates that by suppressing the
atomic sizes of the two types of atoms in 3-SiC, the structural behavior of SiC under
compression changes drastically from amorphization to polymorphic phase transition.
This is due to the fact that the instability mechanism changes from shear to tetragonal
shear upon suppression of the atomic size disparity. Thus, we have identified that the
atomic size effect is the dominant factor that causes 3-SiC to undergo amorphization
under compression.

Finally, the reason that the phase transition leads to rocksalt SiC instead of §-tin
SiC can be understood from calculations of energetics performed at 0K using the
AS-SiC model. The relative energetics of 3-SiC (zincblende), 3-tin SiC and rocksalt
SiC under compression at 0K is shown in Figure 6-18, where we clearly see that
the rocksalt structure is more energetically favorable than the g-tin structure under

compression.
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6.5 Conclusion and Discussions

In the present work, we have observed pressure-induced solid-state amorphization of
B-SiC under compression at room temperature. The amorphization is triggered by
the vanishing of the shear instability. To understand the difference in the structural
behavior of Si and SiC under compression, we have investigated chemical ordering,
i.e., the atomic size difference and the chemical preference of mixed bonds in S-SiC.
We have modified the Tersoff potential and developed two simplified models (CP-
SiC and AS-SiC) to probe the chemical preference and atomic size effect separately.
We have identified that the atomic size effect is essential to the amorphization of
(5-SiC. The results presented in this chapter is significant in several ways. First, it
has been realized in experimental work of solid-state amorphization that the atomic
size ratio of the two types of atoms in a binary system is an important criterion
for solid-state amorphization [106]. However, experimentally, it has not yet been
possible to separate the atomic size effect from other effects, such as the chemical
preference effect. For the first time, combining computer simulations and elastic
stability analysis, we have clearly identified that the size difference of atoms in a
binary system is the dominant, factor that causes solid-state amorphization. Secondly,
we have found that the atomic size effect has significant influence on elastic constants
and ultimately the instability mechanism of a crystal. This suggests that the atomic
size difference can determine the general mechanical behavior of a system since the
local strain response depends on the atomic size difference. Thirdly, in Table 6.2,
we have shown an example of two systems (described by the Tersoff potential and
the AS-SiC potential) with the same cohesive energy, lattice constant and even bulk
modulus, but have very different elastic constants. This implies that, if a potential
function can only describe the bulk modulus of a system properly, it may not be
capable of predicting the mechanical behavior of a system correctly. In other words,
if the fitting of an empirical potential only employs bulk modulus without considering
elastic constants, the potential function may not be reliable for studies of materials

mechanical properties and behavior.
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Although within the frame work of the modified Tersoff potential, we have ob-
tained interesting results and significant understanding of the pressure-induced amor-
phization of 8-SiC under compression, there are still unsolved issues related to this
topic. First, as mentioned earlier in Chapter 2, two independent first principle cal-
culations have predicted different structural transitions for 3-SiC under compression.
Chang and Cohen[60] have predicted a transition from (-SiC to rocksalt structure;
while Aourag et al.[59] have predicted a transition from 3-SiC to S-tin structure.
Therefore, it requires further work for theoretical calculations to fully resolve this
issue. Secondly, an experimental study by Yoshida et al.[68] has reported observation
of phase transition from 3-SiC to rocksalt SiC in polycrystalline powdered samples.
So far, in our simulations, we have only studied single crystals of 3-SiC without any
defects; while in the experimental samples, the existence of defects such as grain
boundaries could play important roles in determining the observed structural tran-
sition. These defects may affect energy barrier and act as nucleation centers for the
transition. In general, it is still an open question regarding what roles defects play in
structural transitions, especially in the context of elastic stability analysis. This is a
subject that deserves extensive future studies.

Despite the problems described above, we can relate our study of pressure-induced
amorphization of -SiC to several recent experiments. First, solid-state amorphiza-
tion induced by electron irradiation has been observed in a single crystal §-SiC [107].
Secondly, pressure-induced amorphization has been observed in a BAs crystal[103],
which is a similar material to SiC. Both of them are covalently bonded with slight
ionicity, and both of them have zincblende structures. Interestingly, both of them
have been predicted to undergo a phase transition from zincblende to rocksalt under
compression by first principle calculations done by Chang and Cohen [60] and by
Wentzcovitch, Cohen and Lam[108] respectively. In the experimental work of BAs,
the critical pressure of amorphization is higher than the theoretically predicted transi-
tion pressure to rocksalt structure, and a kinetically frustrated phase transfermation
to amorphous structure has been observed. This is very similar to what we have

observed in 3-SiC using the modified Tersoff potential.
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Finally, we need to point out that the SiC structure obtained in our simulation
of pressure-induced amorphization is not free from artifacts. In Figure 6-5, we find
that the first peak in the g(r) of Si-Si or C-C is located very closely to the cutoff
distance between Si-Si or C-C. And as we slightly vary the cut-off between Si-Si or C-
C, the first peak position shifts with the cut-off. However, importantly, the first peak
position in the g(r) of Si-C does not change. We believe that the artifact observed
here is similar to that in the quenched amorphous SiC described in Chapter 3. This
suggests that some Si or C atoms have probably been prevented from getting closer
to each other at the first peak positions in the g(r) of Si-Si and C-C. As a result,
one cannot be sure that the conservation of the coordination number between Si-C,
the potential energy decrease, and the ‘memory glass’ effect are realiy intrinsic to the
amorphization process. We are still in the process of eliminating this difficulty with
the modified Tersoff potential. So far, we have found that it is possible to remove the
artifact in the amorphous structure by modifying the cutoff function f, in the Tersoff
potential. On the other hand, we should emphasize that the elastic stability analysis
and the conclusion that 3-SiC will amorphize under compression are not affected by

the cutoff.
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Table 6.1: Cohesive energies, heat of formatior, equilibrium lattice constant and
parameter X, where x = 0.9776 is from the original Tersoff potential for 3-SiC.

AH (eV) x  E(si—c)(eV) E(si—s:) (V) E(c—c) (eV) 1o (A)
-0.08 0.9776 -3.093 -2.315 -3.711 4.32
0.00 0.9689 -3.013 -2.315 -3.711 4.34

Table 6.2: Comparison of Tersoff SiC with two simplified models. CP-SiC stands for
SiC with chemical preference suppressed; AS-SiC standards for SiC with atomic size
difference suppressed.

Tersoff SiC AS-SiC CP-SiC
Lattice Parameter [A] 4.32 4.32 4.34
Cohesive Energy [eV] —-6.19 -6.19 —6.03
Bulk Modulus [GPa] 2.25 2.25 2.18
Cu1 [GPa) 4.36 3.31 4.19
Ci2 [GPd] 1.20 1.72 1.17
Cy4 [GPa] 2.56 1.61 2.42
(Cu - 012) [GPa.] 3.16 1.59 3.02
Instability Mechanism shear tetragonal shear shear

148



0.5¢

s(k)

Ep(ev)

(c-1)

1 S 6——56 o S——00a
(c-2)
170 ) I 1 1 1 ] 1
> 160} | \S\S\e@)@oa 1
150 1 1 ] 1 1 H (A
0 100 200 300 400 500 600 700
P (GPa)

Figure 6-1: System responses to compression. P is the internal pressure at each
equilibrium state. From top to bottom, (a) structure factor s(k), (b) potential energy
per atom E,(ev), (c-1) volume V in units of 6.538A42, and (c-2) same as (c-1) except
that data are shown in a scale that allows one to see clearly the volume increase of
the last point in the plot.
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Figure 6-2: Time-dependent system responses at the critical transition pressure. From
top to bottom, (a) structure factor s(k); (b) internal energy per atom E,(ev); (c)
volume in units of 6.538A3; (d) diagonal elements of cell matrix h; (e) off-diagonal

elements of matrix h; and (f) mean square displacements of Si (dashed line) and C
(solid line) atoms. All lengths are in unit of 1.87A.
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shear deformation of simulation cell begins. Shear deformation is identified to occur
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Figure 6-4: Projections of the atomic configuration of SiC after amorphization.
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Figure 6-5: Radial distribution functions of SiC before (dashed line) and after (solid
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matrix h. Circles indicate the equilibrium properties of 5-SiC under zero pressure at
room temperature.
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Figure 6-8: Atomic configurations of SiC after release of pressure (left panel) and of
B-SiC at 300K (right panel).
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Figure 6-9: Radial distribution functions of SiC after release of pressure (solid line)

compared with those for 8-SiC at 300K (dashed line). The distance r is rescaled with
respect to the simulation cell length.
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distance r is rescaled with respect to the simulation cell length.
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Figure 6-11: Elastic stiffness coefficients of §-SiC at 0K at various states of compres-
sion (r/rg) calculated using the modified Tersoff potential.
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Figure 6-12: Elastic stability analysis for (a) §-SiC and {b) Si at 0K. r and ry are
the current and the zero pressure lattice constant respectively. K(P) refers .0 the
spinodal instability; G(P) refers to the shear instability; and G'(P) refers to the
tetragonal shear instability. Circles label the critical states where the first stability

criterion is violated.
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Figure 6-13: Shear instability criterion G(P) of 8-SiC under pressure P(GPa). (a)
Born term; (b) fluctuation term and (c) stiffness coefficient By, or G(P).
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Figure 6-14: System responses to compression modeled by the AS-SiC potential.
From top to bottom, (a) structure factor s(k), (b) internal energy per atom E,(ev),
(c) volume V in unit of 6.538A3.
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Figure 6-15: Time-dependent system response at the critical pressure modeled by the
AS-SiC potential. From top to bottom, (a) structure factor s(k); (b) internal energy
per atom E,(ev); (c) volume in units of 6.53843; (d) diagonal elements of cell matrix
h; (d) off-diagonal elements of matrix h. Lengths are in unit of 1.87A.
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Figure 6-16: Detailed data of response of (a) the simulation cell volume V, (b) the
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Chapter 7

Structure and Bonding of
Crystalline/ Amorphous SiC

Interface

7.1 Introduction

Interfaces of solid materials have been a focal point of research in several fields, in-
cluding composite materials (metal, ceramic and intermetallic matrix composites),
tribology and high technology semiconductor devices. Materials with interfaces have
inherent inhomogeneity, i.e., the structural and mechanical properties at or near the
interfaces can differ dramatically from those of the nearby bulk materials[109]. And
the interfacial region is typically only a few atomic layers in extent. A fundamental
understanding of interfacial bonding and adhesion requires knowledge of atomic-level
structure and force. Although it has been difficult to probe internal solid interfaces ex-
perimentally, simulation methods of molecular dynamics are unique in providing such
details. It can provide fundamental understanding of interfacial structure, bonding
and adhesion. Progress has been made in developing methodologies to study inter-
faces using atomistic simulations[110][111]. So far, simulation studies have focused

on crystals with grain boundaries, such as to investigate the fundamental process
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of grain-boundary premelting[112], and to characterize the mechanical properties of
grain boundaries through calculations of iocal elastic constants[113]{114][115].

Crystalline/amorphous SiC interfaces may exist between fiber/fiber-coating or
fiber-coating/matrix in SiC fiber-matrix composite materials. To some extent, the
mechanical behavior of such interfaces controls the performance of the composite
materials[7][9]. Therefore, it is important to obtain understanding of the correla-
tion between interface structure, bonding and adhesion, and to investigate the in-
terplay between the structure and interfacial fracture behavior. While progress has
been made in studying interfaces involving grain-boundaries, little has been done
on crystalline/amorphous interfaces. Stillinger et al.[116] have constructed crys-
talline/amorphous interfaces by packing hypothetical disks and spheres. Their fo-
cus has been on the packing procedure and little is known about the structures and
properties of the interfaces.

In this chapter, we present a preliminary study on a crystalline/amorphous (c/a)
SiC interface modeled by the modified Tersoff potential. This work is aimed to develop
a general methodology for interface constructions and to demonstrate the feasibility
of atomistic simulations in the studies of crystalline/amorphous interfaces. This work
is still in its early stage and deserves future work in the future. In Sec. 7.2, we present
a methodology to construct a c/a SiC interface. In Sec. 7.3, we calculate the work
of adhesion of the interface. In Sec. 7.4, we summarize the results and discuss future

work.

7.2 Construction of an Interface Model

7.2.1 Methodology

For modeling grain boundaries, the initial atomic coordinates of the interfacial struc-
ture can be provided by experiments or based on total energy calculations by first
principle or tight-binding calculations. The study done on SiC grain boundaries by

Kohyama et al. is such an example[47]. For modeling SiC c/a interfaces, no previous
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data of experiment or total energy calculations exist. We will produce a SiC c/a in-
terface by physically compressing two halves of bulk crystal SiC and amorphous SiC.
The success of such a method will depend on whether stable bonding can be formed
between atoms of the two halves. A recent work has used similar method to study
an amorphous carbon/graphite interface[117], where the method seems practical and
has provided reasonable results of c/a interfaces.

A crystal SiC and an amorphous SiC each containing 216 atoms are used to
construct the interface. The z, y and z coordinates of the crystal are aligned along
the crystallographic [100], [010] and [001] directions respectively. The interface will
be formed parallel to yz plane. On the crystal side, 12 layers of atoms with 18 atoms
per layer parallel to the interface are used. As will be shown later, the 12 layers of
atoms are sufficient to represent a crystal with both surface region and bulk region,
and 18 atoms per layer are sufficient to capture the characteristics of atomic bonding
at the interface. The amorphous SiC is obtained by melting and rapid quenching of
a crystal SiC with 216 atoms. The results of melting and quenching have been shown
in Chapter 3. At zero pressure and room temperature, the simulation cell lengths of
the crystal and amorphous SiC are 12.984 and 13.50A respectively. In order to apply
periodic boundary conditions along y and z directions to avoid lateral translation of
the two halves in the yz plane[118], the amorphous SiC is slightly compressed along y
and z directions so that simulation lengths along these two directions are the same as
that of the crystal. Since the difference between the simulation cell lengths of the two
sides is small, no significant stress is caused by this adjustment. Along z direction, the
periodic boundary condition is removed so that we will focus on one single interface
between the two sides. Thus, before the interface is constructed, we have a crystal
block with two free surfaces exposed at its (100) planes and an amorphous block with
two free surfaces exposed at the ends parallel to yz planes.

A schematic view of the methodology to construct the c/a SiC interface is shown
in Figure 7-1. We bring the amorphous block close towards to the crystal block by
changing the separation d,,, between the two halves. d,, is the distance between

the two simulation cells containing the crystal and amorphous SiC respectively. It
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is different from the actual distance between atoms at the two sides. Atoms on the
first two layers of the far end of the crystal are frozen to represent a fixed bulk
crystal. On the other hand, the amorphous SiC is free to move along z direction to
allow deformation and volume change and to release stress accumulation during the
interface formation. The two halves are fully relaxed at 300K before we systematically
bring the amorphous block close to the crystal block by decreasing d,.,. As soon as
we observe bonding begins to form between atorns of the two halves, we decrease d,,,
slowly in a step of 0.187A, which is one tenth of the equilibrium bond length in SiC.
At each separation d,.,, we use 2500 steps to let the system fully relax, and use 5000
steps to calculate relevant properties. During this process, the temperatures of both
sides are kept at 300K except for the two frozen layers on the far end of the crystal.
Thermal fluctuations at 300K can help the system to fully relax and the temperature
distribution in the system can be used to monitor if equilibrium is reached across the
interface[119]. If stress accumulates in the system, a higher temperature distribution
will usually develop in that high stress region than in other areas of the system.

For the benefit of interface study, we divide the whole system into equally spaced
layers and calculate the structure and properties layer by layer. The crystal side is
divided into 12 layers. By the same layer spacing, the amorphous side is divided into
14 layers. Therefore, the system consists of a total of 26 layers of atoms. These layers
are labelled from far left of the crystal to the far right of the amorphous block. The
first two layers are fixed, the last layer in the crystal side is layer 12 and the first layer

in the amorphous side is layer 13.

7.2.2 Results

Figure 7-2 shows the properties of the two halves when they are separated by 54 aﬁd
no interactions of atoms between the two sides. In the crystal side, since Si and C
atoms have different cohesive energies in 3-SiC lattice, the potential energy profile
exhibit fluctuations across the alternating Si and C layers. At the two free surfaces of
the crystal, atoms have dangling bonds and thus higher potential energies. For atoms

inside a bulk 3-SiC, each atom is 4-fold coordinated. For an atom exposed at (100)
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surface, two dangling bonds exist. We find that the coordination number of layer 1 is
2, but the coordination number of layer 12 is close to 3. This difference is caused by
surface reconstruction of atoms at layer 12. Figure 7-3 shows the yz plane projection
of atomic configuration of atoms at layer 12 before and after surface relaxation at
300K, where a combination of 2 x 1 and 2 X 2 reconstruction (see Chapter 3) can be
seen. Because of surface reconstruction, each atom at layer 12 form one bond with
an atom in the same plane and increase the coordination number from 2 to 3, and
decrease the potential energy of layer 12 accordingly. The temperature distribution
of the crystal shows slightly higher values at the two surfaces. This phenomena
is expected and may eventually contribute to premelting at the surfaces when the
melting point of the system is reached[112].

» For the amorphous side, we also find that the two surface layers have higher
potential energies and lower coordination numbers compared to atoms in the inside
region. The coordination number of the two surfaces are 2.7 and 1.9 respectively.
And the averaged coordination number of atoms inside the bulk amorphous SiC is
about 4 (see Chapter 3). For the bulk region inside the amorphous SiC, the layer
profile of the number of atoms, the potential energies and the coordination numbers
all show large fluctuations from layer to layer. This means that the system size of 216
atoms is not large enough to represent a uniform amorphous SiC. A larger system
size will allow n.ore atoms at each layer and offer better statistics of averaged layer
properties. However, using the current system size of 216 atoms, the characteristics
of a bulk region with two free surfaces are still captured clearly.

Once the crystal and the amorphous SiC are fully relaxed, we bring the amorphous
block close to the crystal block to form the c/a interface. At a separation dge, = 3;1,
atoms at the surfaces of the two sides begin to interact and form bonds. As dgp is
further decreased, the number of atoms that interact with atoms at the other side N;p,;
increases; the potential energies of both the crystal and the amorphous side decrease;
and the distance between the averaged layer positions of layer 12 and layer 13, i.e.,
dcja decreases. d./, is used to describe the actual distance between the crystal and

the amorphous sides, while d,, is only the controlling separation between the two
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simulation cells. When d,., becomes smaller than 14, properties become stabilize,
i.e., do not change significantly upon further decrease of d,. This means that the
interactions of atoms at the crystal and the amorphous surfaces have reached their
equilibrium condition and we have formed a c/a interface. Under the equilibrium
condition, the time-averaged number of interacting atoms N;,, reaches 18 which is
the total number of atoms at the surface layer of the crystal side. This means that all
atoms at the foremost crystal plane have formed bonds with atoms at the amorphous
side. Also, the final distance d,/, is about 1.612A which is smaller than the equilibrium
bond lerth of B-SiC (1.87A4).

The properties calculated layer by layer of the interface system is shown in Figure
7-5. We find that the coordination number of layer 12 has increased from 2.9 to
3.8, and the coordination number of layer 13 has increased from 2.7 to 3.6. Thus,
on averaged, each atom at the crystal surface has formed one bond with an atom
at the amorphous side. The temperature distribution of the system is uniform and
no signature of inhomogeneity across the interface. This means that the system has
reached equilibrium across the interface. This equilibrium ensures a stable interface
that will not vary significantly with time. The projections of the atomic configuration
of the interface is shown in Figure 7-6. Since the spacing between two crystal layers
is only 1.084, the interface spacing de/a ( 1.61A4) is much larger. This larger spacing is
due to weaker bonding of atoms across the interface compared to the atomic bonding
across a (100) surface inside the bulk 3-SiC. Inside bulk g-SiC, each atom is 4 fold
coordinated and 2 bonds per atom are formed across a (100) surface, while only one

bond per atom is formed across the interface.

7.3 Estimation of Werk of Adhesion

One of the important properties of an interface is the interfacial strength, which is a
physical quantity difficult to characterize both experimentally and theoretically[120].
In order to establish a correlation between the interfacial strength and more accessible

physical quantities, the work of adhesion is introduced as a measure of the strength
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of the interface[121]. It is defined as the work required to reversibly separate the two

sides of the interface[122],
Wad = Yine — 11 — "2 (7.1)

where v, and 7, are the energies of the relaxed surfaces of the two sides respectively,
and 7,y represents the energy of the relaxed interface between side 1 and side 2. The
work of adhesion is important to describe the mechanical properties of the interface
and is related to the fracture toughness of the interface. If a crack propagates along the
interface in a cleavage manner, the fracture toughness K or the critical energy release
rate G, scales with the work of adhesion[123]. For this reason, the work of adhesion
is also termed the intrinsic toughness of the interface. Experimentally, the work of
adhesion is difficult to measure because it is strongly influenced by both chemical and
structural defects at interfaces[122]. Atomistic simulations are ideal to characterize
the work of adhesion because detailed interface structure can be obiained and the
correlation between structure and properties can be established. In the following, we
present the result of the calculated work of adhesion for our c/a SiC interface model.

The potential energies of the crystal and amorphous SiC before and after the
interface formation have been shown in Figure 7-2 and Figure 7-5 respectively. The
energy decrease due to the interface formation can be used to estimate the work of

adhesion, i.e.,
Waa = Ej* — E; — E (7.2)

However, it is difficult to define the potential energy of the interface E,‘;"‘ since it
requires to identify the interface region unambiguously. To do this, we compare the
potential energies and the coordination numbers before and after the interface forma-
tion and plot the results in Figure 7-7. As can be seen clearly, during the interface
formation, the coordination number and the potential energies change significantly
only for layer 12 and layer 13. The coordination numbers of layer 12 and layer 13

have changed from 2.2 to 3.8 and from 2.7 to 3.6 respectively; and their atomic po-
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tential energies have changed from —4.319 to —5.257(eV’) and —4.032 to —4.746(eV’)
respectively. Thus, in terms of the coordination numbers and the potential energy,
the interface region only consists of these two layers. However, the number of atoms
for these two layers are not the same before and after the interface formation. How-
ever, in terms of the number of atoms per layer, the interface consists of more than
just two layers of 12 and 12. As can be seen in Figure 7-7(c), the number of atoms
change for the first 6 layers in the amorphous side. Here, small change such as 1 or 2
are important because the total potential energy is calculated by the multiplication
of the atomic potential energy times the number of atoms. Therefore, to calculate the
work of adhesion accurately, we must use 7 layers for the interface potential energy,
6 layers at the amorphous side and 1 layer at the crystal side. We find that the total
number of atoms for these 7 layers are the same before and after the interface forma-
tion, and the number is 105. And the total potential energy decrease for the 7 layer
interface region is 38.9(eV). Since the area of the interface is 168.542, the work of
adhesion is calculated to be W,y = 0.231eV A? or W4 = 3.8J /m?2. No direct data of
the work of adhesion energy for the c/a SiC interface is available in the literature. An
estimation on a universal binding curve[58] has been done on a SiC coating/Pitch-55
carbon interface (C/SiC)[123], and the work of adhesion has been estimated to be

3.28J/m?. This suggests that our calculation is in the correct range.

7.4 Discussion and Future Work

In this study, we have developed a methodology to construct a c/a SiC interface.
The methodology is successful that a stable interface has been obtained at room
temperature. The interface is found to be weaker than a (100) surface in bulk 3-SiC.
The work of adhesion of the interface has been calculated and the number seems
reasonable. During the study, we have demonstrated that atomistic simulations are
capable of providing atomic-level information about structure, bonding and their
correlation, and the interface region can be identified clearly.

This study is only on its initial stage. Further work is needed to explore the
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structure of the c/a SiC interface we have constructed. For example, we can study
the local geometric arrangements of atoms bonded across the interface. We have
found that each atom at the foremost crystal side is 3-fold bonded with atoms at
the crystal side (2 with atoms at an inner layer and 1 with atom at the same layer),
and has formed one bond on average with atoms at the amorphous side. It is not
clear how the atom from the amorphous side is bonded across the interface. We can
study the bonding lengths bonding angles between different pair of atoms to identify
the geometric structure of local atomic bonding. This study will offer more detailed
structural information about the interface. Also, our current study, the system size
is not large enough. It will be desirable to study a large system size with over 100
atoms per layer, which will then allow us to perform more structural detailed analysis
of the interface and to identify possible defects such as voids or dislocations.

The c/a interface we have constructed is on (100) plane of 3-SiC. Using the same
methodology, we can construct c/a interfaces on different crystallographic planes of
B-SiC. Particularly, if the interface can be formed on a glide {111} plane of 3-SiC,
the interface will be much stronger than the one we have studied because atoms at
the glide {111} have initially 3 dangling bonds and can form significant bonding with
atoms at the amorphous side. And therefore, the work of adhesion calculated from
the glide {111} c/a interface will be larger than the (100) interface we have studied.
By doing this, one is able to relate the work of adhesion to different structures of the
interface and to establish structure-property correlation.

While the work of adhesion is regarded as the intrinsic toughness of the interface,
for interfaces with pre-existing cracks, the fracture toughness K, is an important
quantity that controls the interfacial fracture behavior. An important future work
is to study the interface crack tip response by an integrated approach combining
molecular dynamics simulations and elastic dislocation nucleation theory[124][125].
Such an approach will allow us to “Eexamine the interface crack tip response under ex-
ternal loading, to study the comgétition between atomic decohesion and dislocation
nucleation at the crack tip under ‘fdifferent stress and temperature conditions, and to

study the brittleness or ductility {)f the interface. During such studies, detailed atom-
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istic analysis of stresses and displacements near the crack tip will lead to significant

understanding of the shear-coupling nature of an interface crack.
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Figure 7-1: Schematic representation of the methodology to construct a c/a SiC
interface.
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Figure 7-3: Reconstruction of the (100) §-SiC surface.

crosses: after relaxation at 300K.
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Figure 7-6: Projectins of atomic configuration of the c/a interface. Circles: atoms at
the crystal side; circles with crosses inside: atoms at the amorphous side.
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Chapter 8

Conclusions and Discussions

8.1 Conclusions

The elastic stability and structural response of 3-SiC under external stress have been
studied using an integrated approach combining molecular dynamics simulations with
the newly formulated elastic stability analysis in the framework of the modified Tersoff
potential. The major results and achievements from this study are summarized below

followed by detailed discussions of their significance and implications.

e The many-body Tersoff potential has been modified and implemented with ca-
pability to calculate elastic constants of $-SiC under any stress and temperature
condition. Molecular dynamics simulations using the Parrinello-Rahman tech-
nique have been carried out to study structural changes in 3-SiC. Independent
elastic stability analysis based on stiffness coefficients have been performed for

B-SiC under hydrestatic tension and compression.

e Under hydrostatic tension and at room temperature, when the spinodal insta-
bility is violated, B-SiC loses its cohesion and fails by crack nucleation and
brittle fracture along the shuffle {111} plane, which is the plane with the lowest

surface energy.

e Under hydrostatic compression and at room mperature, §-SiC undergoes

pressure-induced amorphization which is driv. “he shear instability (Cyq —
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P). The critical internal strain relaxation is responsible for the vanishing of the

shear instability and leading to the disordering.

e An analysis using two simplified potential models of SiC reveals that the exis-
tence of the atomic size disparity of Si and C atoms is essential for the amor-
phization of 5-SiC. Without this disparity, polymorphic phase transformation

would occur instead in 3-SiC under compression.

To the field of atomistic simulation, significant contributions of this thesis include
analytical derivations of the interatomic force, atomic stress and especially the elastic
constants for the complicated many-body Tersoff potential. In the past, the Tersoff
potential has been used to calculate only energy and at most atomic forces of the
systems being studied. To our knowledge, this is the first time that the fluctuation
formulae of elastic constants are properly derived for the Tersoff potential as has been
shown in this thesis. The derivation has been verified self-consistently with the direct
stress-strain method for elastic constants calculations. The fluctuation formulae offer
a powerful method to calculate elastic constants under any stress and temperature
conditions. This capability has formed a solid foundation of this thesis. The elastic
stability analysis would be impossible without this capability.

The original Tersoff potential is useful in describing the mechanical properties of
B-SiC at low temperature (0K). From this potential, the three elastic constants of
B-SiC are calculated to be C), = 4.36 Mbar, Cy5 = 1.20Mbar and Cyy = 2.55Mbar
compared to the experimental data of 3.90Mbar, 1.42Mbar and 2.56 Mbar respec-
tively at room temperature. The results are satisfactory considering the fact that
the potential function has not been fitted to elastic constants. However, temperature
dependence of the elastic constants can not be cerrectly described by the original
Tersoff potential. As a result, the elastic constants calculated at room temperature
(Cu = 5.23Mbar, Cy; = 1.63Mbar and Cyy = 3.13Mbar) are inconsistent with the
experimental data. Our modified Tersoff potential, on the other hand, not only keeps
the same elastic constants at 0K, but also correctly describes the temperature de-

pendence of the elastic constants. The room temperature elastic constants of 3-SiC
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calculated from the modified Tersoff potential are Cy; = 4.25Mbar, C,, = 1.18 Mbar
and Cy4 == 2.66 Mbar, which are in excellent agreement with that of the experimental
data. Importantly, the close agreement in Cyy demonstrates that the modified Tersoff
potential can describe very well the angular dependent forces in covalent SiC.

In studies of mechanical behavior of materials that employ empirical potential
functions, the correct elastic constants are of critical importance. It is the elastic con-
stants that eventually determine the elastic instabilities and the nature of structural
changes of the material. We have demonstrated clearly in this thesis that although
two potential models can predict the same cohesive energy, lattice constant and even
bulk modulus, they can predict very different elastic constants. As a result, the in-
stability mechanism and the final structural change predicted by thesc two models
are fundamentally different. This emphasizes the importance of our modification of
the original Tersoff potential to obtain correct £lastic constants at room temperature.

By applying the new instability criteria based on stiffness coefficients to study
the stability of 8-SiC, we have clearly seen the effects of external loading on the
stability of the system. In general, the effects of hydrostatic tension are to enhance
the stability against shear and lower the stability against effectie lattice cohesion.
While these effects are similar in both covalent and metallic materials, the actual
structural responses of the two types of materials are quite different at the instability
points where the crystals lose their cohesion. At low temperatures, Au metal loses
its cohesion by cavitation[17]; on the other hand, when decohesion occurs in 3-SiC,
cracks nucleate on well defined crystallographic planes and the system fails by cleavage
fracture. This indicates the much more brittle nature of 3-SiC compared to a simple
metal.

The underlying physics for the differences between covalent and metallic materials
originate from different atomic binding in the two systems. In metals, atoms are
closely packed with 12 nearest neighbors in simple fcc structures; while in covalent
B-SiC, atoms are only 4-fold bonded with their nearest neighbors and each bond is
highly directional. As a result, different surface planes of §-SiC have very different

surface energies. Therefore, when decohesion occurs, the crystal tends to crack along

186



the lowest surface energy plane, i.e., the shuffle {111} plane of 3-SiC. Also, in covalent
materials, the binding strength between each pair of atoms is much stronger than
that in a metal. Thus, a much larger force exerts on an atom after a covalent bond is
broken in decohesion. This large directional force causes atoms to loose decohesion in
a fast and clean manner and allows cracks penetrating through the material, which
results in cleavage fracture. The large forces can quickly bring atoms exposed at the
cracked surfaces to reach their new equilibrium positions. Thus, spontaneous surface
relaxation is observed along with the process of crack propagation.

While decohesion under tension is a general behavior of covalent materials, the
structural response of covalent materials under compression is more complicated.
Since covalent materials have open structures, under compression, different struc-
tural behavior may occur. A study of crystalline Si shows a polymorphic phase
transformation[24], while our study of 3-SiC reveals a pressure-induced amorphiza-
tion. Under compression, the effect of the hydrostatic pressure is to enhance the
lattice bulk modulus, but the effects on the two shear instabilities are rather compli-
cated. In the case of Si, the instability mechanism under compression is the tetragonal
shear which results in a phase transformation from diamond cubic to 8-tin. For §8-SiC,
the instability mechanism is pure shear instability under compression. Particularly,
the shear instability of 3-SiC is related to the internal strain relaxation that occurs
between the two types of atoms (Si and C) inside a primitive cell when a macroscopic
shear strain is applied. The effect of the hydrostatic compression to §-SiC is to in-
crease the internal strain relaxation in correspondence with the same global shear
strain. When the pressure is high enough, the internal strain relaxation reaches a
critical state that brings down the shear stability of the system to zero and triggers
the order-disorder transition in 3-SiC.

Although internal strain relaxation exists in any non-Bravais lattices including Si
and SiC, it does not play a dominant role in the instability of Si. The difference
between Si and SiC originates from additional effect of chemical ordering in 3-SiC,
i.e., the atomic size difference between Si and C atoms and the chemical preference

of mixed bonds. The atomic size difference in 3-SiC is found to be essential for the
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amorphization process under compression. Physically, the size difference of the two
atoms inside a primitive cell changes the response of local strain, and as a result,
the atomic size effect significantly changes the elastic constants of Cy;, Coy and Cy,.
With the atomic size disparity suppressed, the instability mechanism of 3-SiC under
compression would change from shear to tetragonal shear, and the structural response
of 3-SiC would change from solid-state amorphization to polymorphic phase transfor-
mation. Therefore, the atomic size difference is a crucial factor in the amorphization
of binary materials, which has already been noticed in experiments[106).

Finally, we have carried out a preliminary study of the crystalline/amorphous
interface in SiC in Chapter 7. We have shown the feasibility of using atomistic
simulations to analyze the interface structure and bonding. We have also estimated
the work of adhesion of the interface model.

We end this conclusion by pointing out the general implications of this thesis work.
We have shown the practical feasibility of modeling mechanical behavior of homoge-
neous crystals under stress. We have demonstrated that the stability criteria based
on the stiffness coefficients are correct for hydrostatic loadings, and the combined
approach of the elastic stability analysis and the MD simulations are capable to pro-
vide a comprehensive understanding of the: elastic instabilities and unstable structural
responses of crystals. Most significantly, we have illustrated that well-defined manip-
ulation of interatomic interactions can lead to new insights into complex problems

that are otherwise almost inaccessible by usual means of simulation or experiments.

8.2 Discussions and Future Work

In this thesis, we have presented results of our investigations of 3-SiC which com-
bine MD simulations and elastic stability analysis. This work constitutes the first
systematic study of the mechanical behavior of 8-SiC under stress. It has obtained
an important understanding of the fundamental problems associated with the ideal
crystal strength of 5-SiC. The results obtained in this thesis will be useful for further

investigation of the structural and mechanical behavior of the SiC system under com-
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plicated loading situations such as in a fiber reinforced matrix composite material.
Also, the results will help future studies to investigate the mechanical stability and
structural transition of 3-SiC crystals with structural defects such as point defects,
impurities and interfaces. The defected materials are of practical importance and
interest in the sense that any man-made materials have more or less defects in the
structure. |

As pointed out previously, the roles played by defects in the structural transition
of a crystal are open for st:udy, especially in the context of elastic stability analysis.
It deserves extensive future study. The difficulty of this study will be to develop an
effective method to calculate elastic constants in an inhomogeneous system. Local
region with defects can have very different elastic behavior from that of defect-free
regions. Under an exterﬁal loading, the instability criteria could be violated first
in the local region. Thu;s, it is crucial to be able to characterize the local elastic
constants. Methodologie%; of calculating local elastic constants have been proposed
and applied in crystals with grain boundaries[114][115]. If the methodologies can be
extended to crystals with defects in general, similar elastic stability analysis combined
with molecular dynamicé; simulations can be applied to study the elastic stability and
structural response of defected crystals so that the roles of defects in the structural
transitions can be explored.

In our tension study of B-SiC, the process of crack nucleation is due to lattice
decohesion as the spinodal instability is violated. While this study has focused on
the initiation of cracks in 3-SiC, another fundamental and important problem is re-
garding the inherent strength and deformability of a crystal with pre-existing crack
tips. Under an external stress, the existing cracks will propagate at a critical point.
It is essential to study the response of crack tips and to understand how the crack
tip behavior is affected by various conditions such as temperatures. An atomistic
study combining molecular dynamics simulations and elastic dislocation analysis[126]
has been performed for iron[38][127], where brittle to ductile transition is observed
at high temperature. Similar methodology can be applied to S-SiC with incorpo-

ration of the newly formulated dislocation nucleation theory based on the Peierls
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framework([128][124]. Such study will focus on the competition between decohesion
and shear break down at the crack tip and investigate the crystal fracture toughness.
One needs notice that in studying the brittle to ductile transition of materials, addi-
tional difficulty exists for simulations of covalent materials since dislocations do not
move easily in covalent materials as they do in metallic materials. Recently, Bulatov
et al. have developed a novel method to study dislocation motion in Si[46]. Similar
method could be applied to study 3-SiC in the future.

In this thesis, our crystalline-amorphous SiC interface model has set up an initial
stage to study the challenging problem of interfacial mechanical behavior, which cou!"
eventually help to understand the performance of fiber-matrix composite materials
in the future. With the constructed interface model, not only can one study the cor-
relation between the interfacial structure and bonding, one can also investigate the
correlation between the structure and fracture behavior of bimaterial interfaces[122].
The fracture behavior of an interface is characterized by the fracture toughness K,
or the critical energy release rate G.. Compared to the fracture problem within an
elastically homogeneous media, additional complexities arise for interface fracture
problem due to shearing of crack surfaces caused by rrodulus mismatch[129]. Thus,
for interface crack problem, the separate modes of tensile and shear cannot be de-
fined unambiguously. A concept termed phase angle of loading 1 is introduced to
measure the mixture of shear and tensile opening experienced by the interface crack
surface[130]. When a crack is propagating along an interface, the elastic mismatch
causes a superposition of a degree of rotation on a stress state by a pure tensile load-
ing. And the phase angle of loading will depend on the rotational displacement as
well as the elastic coefficients which can be calculated in terms of two dimension-
less Dundurs’ parameters[130]. Consequently, one must specify both G and ¥ in
describing interfacial crack tip opening. The K, G and % are important parameters
that are used to establish criteria for the maximum interfacial toughness. Combining
these criteria with the monolithic fiber toughness of §-SiC (can be obtained from the
st:udy mentioned in last paragraph), one is able to investigate the tdughness of the

fiber-matrix composite, which is a subject which deserves extensive future work.
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Appendix A

Derivation of Forces, Stresses and
Elastic Constants for Tersoff

Potential Function

Let U be the total potential energy of the system; «, 3, vy and € stand for the three
Cartesian coordinate components «,y or z; 1,j,k, | or a, b ...label specific atoms.

Tersoff’s potential can be written as:

U = SU-= %ZV,-j (A1)
i i#

Vi = felrij) fr(rig) + folrij)big falris) = VD + VY (A.2)
fr(rij) = Aijexp(=Airij) (A.3)
fa(ry) = —Bijexp(—pi;rij) (A.4)

by = xe(1+2%)"M (A.5)

zj = BiGi= Y. fe(ri)Bia(Biji) (A.6)

k(#4,5)
9(0ix) = 1+c/d? — c2/[a? + (hi — cosB;jx)?] (A.7)
1 Tij < R,'J'
fe(riz) = § 3+ 3cos [%] Rij < 1ij < Sj (A.8)
0 rij > S,'j
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For convenience, in the formulae presented above, we call 7 an central atom, j an
neighbor atom of i, and k an environmental atom of ¢j pair. Both j and k atoms
are within cut-off distance from 7 atom. Most terms are either constant or oniy
dependent on pair distance r;;. The only many-body term is b;;. Vi(-2 ) only depends
on pair distance r;; while Vés) depends on distances r;j, 7y and 7 in each ijk triplet
of atoms. All notations defined above will be used in the following derivations of

forces, stresses( or pressure ) and elastic constants.

A.1 Forces

The basic formula of force calculation for any potential energy can be written as:

~ ou ou
L= Fy=——r- A9
or; or Oria (A.9)
For Tersoff’s potential, the force on atom a can be written as:
F, = _557[2 Vaj + Z Via + Z Z Vil (A.10)
¢ j(#e) i(#a) i(#a) j(#i.a)

This calculation is nontrivial compared to other empirical potential functions. The
difficulty comes from the many-body term z;; in the potential. The calculation can be
very inefficient if not handled properly. Our approach to calculate forces is as follows.
Three levels of do loops are used. The first do loop goes through all the atoms in
the system and every atom will have a chance to become central atom ¢ sequentially.
When central atom i is specified, the second level do loop are performed twice. For
the first time, it goes through all of its neighbors and calculate the many-body term
z;j. For the second time, it goes through all of its neighbors and every neighbor will
have a chance to become neighbor atom j. When such a ij pair is specified, the third
do loop goes through all the other neighbors exclusive of j and everyone of them
will have a chance to become environmental atom k of ij pair. Force calculations
will be performed for each ijk triplet of atoms thus chosen. For each triplet, we

simultaneously calculate forces F’;c on t, F;?' on j and F_;f on k. We can think that
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F¢ is the force on i when 7 acts as a central atom, F;" is the force on j when j acts
as a neighbor atom and 15,5 is the force on k when k acts as an environmental atom.
Inside each triplet, the three atoms play different roles and each get part of its force
calculated. Eventually every atom has equal chances to play the role of central atom
or neighbor atom or environmental atom. As shown in Equation (A.10), the first term
gives the force on a when it plays the role of central atom; the second term gives the
force on a when it plays the role of netghbor atom and the third term gives the force on
a when it plays the role of environmental atom. And the sum of the three forces gives
the total force on atom a. So only after all the three do loops finished, can one get
the complete forces on each atom. Also it should be remembered that all forces are
many-body terms because of its dependence of z;; which is always calculated before
force calculations performed. Now we derive the formulae to calculate F¢, F‘;Y‘ and F¢

for each 125k triplet:

1 0V, 1 GV;J _Tija n oV; Tika]

F¢ = —Z. = . A1l
a 2 Ori 2 5! Orij Tij Oryy  Tik ( )
1 0V 10V, i oV i
Fro= . %% OV Tiia OV Tika A.12
ja 2 67‘]'0 2 61‘]',' Tji + aTjk Tk ] ( )
1 9V 1.0V 7 6V Tkj
Fe = _—-. % _ _21%9%  Tkia iy Tkie A.13
ka 2 Orka 2[3Tik Tik 6r,~k Tjk ] ( )
A.2 Stresses
Atomic stresses can be calculated by [34]:
1 . TijaTijp
I A.l4
aaﬂ V[; mlviavﬁ %é; arl] Ti] ] ( )

Where the first term is called kinetic term and the second is called Virial term o,.

Since:

U _ 10V + Wy IZ[ iy Vi | OV OVijy g 5

Fij — 2'ory Br,J 2 Gy Orij 6r,-j orij 37‘,]
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We obtain:

o . 1 (2[_1_ T:Jnruﬂ
av,, aVzk 6V:u 4 Vik | OV TijaTig
= Py 1.].

By rearranging dummy indices, we obtain:

OVij TikaTiks , OVij TikaTik A 17)
61‘,'k Tik 6r,~k Tjk

TijaTij
0 — ZatJ_J.Jﬂ_i_Z[

Vis Tij k(#i.4)

A.3 Elastic Constants

Elastic constants are calculated by fluctuation formulae [34]. From this formulae,
elastic constant consists of three terms, i.e., kinetic term Cﬁﬂw fluctuaiion term

c/

e For cubic system, it’s easily shown that for any potential

e and Born term CE...

function the formulae can be written as:

2NEkgT
Capye = [“ kBT (aaﬂa've) + TB * (baebpy + Barydpe)
Z Z [ ou Jzk(s]l] TijaTijfTklyTkle >] (A 18)
t<J k<l 87‘,]61’]:[ 67‘,, Tij TijTki o

where bracket <> represents the ensemble average; d,.’s are the Kronecker functions

and 6(AB) =< AB > — < A >< B >. For Tersoff’s potential:

ou (5 0ty TijaTijBTkiyT
Ol = sz[a R v
1<J k<t OTijOTkl T Tij TiTkl
_ Z[ *U _TijaTijpTkiyTkle ou . Tija"ijﬂrij'rrtje] >
2 ,c#, Ori;0ri TijTk Brij i
- <icBs_<icps A.19
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Where use Equation (A.15), we can easily cbtain the second term above:

1 ou TijaTijaTijyTije

O
2 i#] 61",-]- T?j
— _Z Vt] T;]a'rzjﬁrz]'y'rz]e +
&; orij T3
4] J
1 Z > {3Vi; . TikaTikpTikyTike Vi Tjka'rjkﬂrjk'yrjkc] (A.20)
3 3 '
2 i k(i) Orie Tik Orji Tik
We can obtain:
ClB - ZZ 7‘ ijaTijpT elyTkle
t;é] k£l 37‘1]67”;61 TiiTkl
— Z d? U rzjarzjﬁ'rzj'yrz]e + = 1 Z Z o*U ) TijaTiiBTim~yTlme +
57 4 = . OT3:07T1m TiiTim
1#.7 i i#]j lEm(l,m#i,j) — Y 7
_E Z [ . TijaTijpTiyTite U _"'ija"'ijﬂrjl'yrjle] (A.21)
1?&] 1(#1,5) 37‘1_.,31‘11 Ti5Til Br,-jarﬂ TiiTjl
Since
0*U _ l 0? V,J 0%V, Z 0%V, 62Vk,- + 9V + 0*Vy;
arijar,-, 2 BT,JBT,1 aTUaT,z k(#4, )37',]61”,1 37‘,‘_,'61‘,'1 67‘,‘_7'87‘“ 37‘,']'67‘,'[
. o*U _ 1 0? Vij 4+ 621/J-,~ + Z [ 0? Vik 0*Vy; + 0%V 0*Vj;
Brijarj, 2 37‘1137‘]'1 6r,-,-6rj, k(Zi,j) 67‘,']’67‘]'[ 37',']'67‘)'1 Br,-jarj, 67‘,’_7'87']'[
0*U _ _1_{62V1, 02V, Z [62V,k 0%V + 62V,k 0? ‘k,]} (A.22)
orZ; ory; 87',] ) ory ~ ork 61"
We can obtain:
ClB — _Z{a Vt] 71]07'1]ﬁ27'z_777'115
1;6] T’J
+ Y [3 Vii TikaTikpTikyTike 0%V, TikalikpTikyT ke
k(Fid) or, 2, or?, %
0%Vij  TijaTijpTikyTike T TikaTikpTijTije + 0%Vij  TijaTijpTikaTike + TikaTikpTijaTije
8r,~j6r,-k TijT,'k aTijTjk TiiTik
+ 32Vij ."'ika"'ikﬂ"'jk'yrjke+7'jka7"jkﬂ7'ik'y7'ikc + Z ( 62Vij  TikaTikpTilyTile
OriOr i, TikTjk 1tigk OTikOTil TikTil
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2 2 g e e
O°Vij  TikaTjkgTitaTite | OV  TikalikgTjtyTjte + TjtaT 5187 iky ike )y (A.23)
Orx0rjy kT Ori0rjy TikT i

+

If we use Voigt’s notation, Cy;, C2 and Cyy are:

l V ANkgT 1

Cn = 70 : —EB_T : 5(022:02:1:) + VB +< VCIBI >] (A’24)
[ | % 1

Cpn = 70' —m'Cs(Uquy)'*‘ < VCI% >] (A.25)
l | %4 2NkgT 1

Cu = 7 o 80n0y:) + ——{,—B—+ < 37Cit >] (A.26)

state or explain how one obtain C3, C and Cf from CP and C7. where

cB = = A AL AU Nt |
H 22{( ory  Ory vy rh
+ ) (CACERIC RS "‘gk + (32“’ oYy 1 ﬁ'g OV Tl
k(Zid) Ord  Ora T TR Ok Org Ti T Ori;Or TijTik

2 2 .2 2
6 ‘/3] ) .'EU.'E]k + 3 ‘/1_7 . 2$ikmjk 6 ‘/1] . "L‘ikxil

Orijrik Tyt Orilrje  TikTjk I£i,k Orilra  TiTu

2 2 2 2

Vi THTi 4+ Az 2$1k%1)]} (A.27)
67’_;];61‘,‘1 TkT ;1 Brikarﬂ TikT 51

62‘/1] 6‘/1_7 i xt]ytj

CB — .
12 g{( ory  Ory r,-,-) ¥
PV 0V 1 ahyk 0%V oV 1 ahyn | PVy  hyk
+ > [ At ) + : + :
ory  Ory Tk’ T2 or%.  Orjp i 12 Ory;Ory  TiTi
k(;éz’]) ik ik ik ik jk ik Tk T]k i70Tik  TizTik
+ %V, ' T " %V . (@hyh + TH k) + 0%V, _ ThYh
Orrik  TiTik  Oradri TikTjik (i OTikOra TRty
ij ]ky]l + iy 1ky_7l ik )]} (A28)
67‘jkarﬂ Tkt Br,-karj, TikT 51

82‘/1']' 6‘/1] 1 ngyu

on - Lyq@a % L,
g 37‘,2] ar,-,- Tij T?J
Y [(6214,- OV .-!'-)ml?k?/izk (621/,-1- OV 1 xhah PV miygtaya
ork Oy T’ T ork Oy T 12 Ory;0r; TijTi
k(#‘l]) ik ik ik tk ]k ]’C ]k ]k 1) ik 1] ik
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O?*Vij  TijyiTixYik Vi 2ZuyiTikYik PV TaYiTaYu
. + . + Z ( .

OrjTik TiiTjk OruOr jk TikTjk Wigk) OTOTa  TuTu
2 2
Vi TixYixTiyii + Vi 2$ikyik$jlyjz)]} (A.29)
3Tj;;67‘ﬂ Tjijl Brikarﬁ TikT jt

Up to now, we have worked out the formulae of forces, stresses and elastic con-

stants for Tersoff’s potential.
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Appendix B

Derivation of Detailed Terms

Used in Appendix A

B.1 Terms Used in First Derivatives

Where

oV,
3,.1,;, = fo[Aexp(=Airij) — Bbij exp(—pi;rij)]
+fe[—ANij exp(—Aijriz) + Bbijpuij exp(—pijris)]
0b;;
— feB exp(—pi;riz) - 6r;
aVij _ Bbij
ory feB exp(=piris) Orik
avij _ Bb,-,-
arjk - ch exP( /1'1_77‘:_1) arjk
o . m(r — R)
fe = 3R s_R
6bij — Bb,-,- ﬁaC;] 6b,~,- — ab,-,- .6(,']" 6bij — ab,-j .BC,']'
61‘ij az,-j 131’,']" 31',']; 6z,-j ’6r,-k’ 3Tjk 32,;;,' tarjk
Obi;  _ 1 n;\—(1-4+2n;)/2n; ni—1
az,-j - 2Xt,1(1 + Zij ) Zij
0Gs; 89  Ocosf
o, = fc(rik) : :
ory; k(§j) dcosf Ory
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0Gi; . dg  Ocosf
Orjk k(;;]) felrie) dcosh  Orjk (B.8)
0G; dg  Ocosf
arik - k(;])[fc ‘lk) acosg 07'1 fc(r‘lk)g] (Bg)
And
dg __2¢}(hi — cosb) (B.10)
dcosf  [d? + (h; — cos )22 '
Ocosf 1 cosf Ocusd 1 cosh Ocosd T (B.11)
Orij T Tij | Orak Tij rie | OTjk o ijTik '
B.2 Terms Used in Second Derivatives
32‘/,'_,' "
a2 fe[Aexp(=Aijri;) — Bbij exp(—pijrij)]
+2fe[—AXij exp(—Aijriz) + Bbijij exp(—pijrij)]
+fC[A’\ exp(—AijTis) — Bbijl—‘?; eXP( 14i;735)]
+2(fopij — fe) Bexp(— ﬂtﬂu)a — feBexp(— #tﬂ"u) or 2 (B 12)
Vi, , 0b;; 0%b;;
arijarik - (fcl‘z] f )B exP( Nurm) 61" ch exp( Nzﬂ'u) a ljar‘l.k (B 13)
%V 8%b;;
arijarjk = (fc/"tj ft)BeXp( ﬂt]"':]) chexP( thrzj)a 6 (B 14)
%V, 0%b;;
ok — feB exp(—piTij) 55 or2, (B.15)
%V, 32bzJ
—6—1‘—]2,: = —feBexp(—mirij) 55 or2, (B.16)
OV, 62b,,
6Tikarjk = —ch eXp( p"tJTU)arz ar]k (B,17)
where
0%b;; 20%bi;  0Gij v, | o Obij 0°G;
ar?j - IB‘l az : .6_7:;;) +ﬂiazu . 37‘12] (B18)
0%b;; 2(92b,, 0Gij \2 (’)bU 82C,-,-
or?, i 0z% (Br,k) Bz,J ' ('91*,?,c (B.19)
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L -%mﬂig’g et (8.20)
2}. . 2 . 2/
azjg;ik - ﬂ?%:lj gfz . gf: +ﬂ‘8z,, afijg:'ik (B.21)
21 . 2 B 2,
i = G e e ey B
2. . 2. . oy 2,
T etllh g il e el
2. . 2. .. .
el 2
2} .. 2. .. .
S g %
2}. . 2} .. .. ..
rattn = A5 e o o2
And
66221)1231 = th[zni—*-l(l’*' = m zzzjn'—2 ni; 1(1+Zn' - """ 2 ‘EB 27)
i% B u;,)ﬂ ‘k)[a(c:sge) (a;:e)?*agio 636:250] (B-28)
gié: - ,,(;j)f”(r“‘)[a(f:sge)2'(a;}(),-sko)z+afcf’se'aai;i0] (B.29)
63252: N k(gz;j){fC(rik)[a((?:SQH)? ' (666:10)2 + 8(?589 ' 626(;';:0]
vofio 0 D80y pig) (B.30)
9%y = Y ()l ?g .36039'3(:089_'_ dg  dcosh
Or3;0rix k(i) O(cosf)? Ory  Oryy ~ Ocosf OrijOry
+f, 6353 5 aac:;e } (B.31)
2/ . 2 92
agfg:ik B k(%j) fC(rik)[a(ngﬂ)"’ ' 3;:29 ' aac:ie M az)gso ' ;;gii] (B:32)
2. 2 2
azkg;jk - k(:%,){f@")[a(g)sga)z ' a;:,-ie a;:io + azie ' ai,-fgifk
f°3cogst9 a;:io} (B.33)

200



where

&y
0(cos 0)?

fll
c

0% cos @

ory;
0% cosf
a'l' ,-jar,-k
02 cos 6

37‘,‘j67‘jk

2¢? 8c2(cos 6 — h;)?
[@% + (cos@ — h;)2]2  [d2 + (cosd — hy)?]3
2 n(r — R)

- cos

25-Re““ S-R
2cosf 1 0%cosf  2cosf 1

T?j Tijrik’ 67'1~2k - Ti2k TiiTik
cosf 11
TijTik Tizj 7‘1-2,C

rjx  0%cos®  ry  O%cosf 1
7',-2]-7‘,']:’ 6r,~k6rjk - T?krij, 67’12-k N TijTik
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