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Learning Steering Bounds for Parallel Autonomous Systems

Alexander Amini1, Liam Paull2, Thomas Balch1, Sertac Karaman3, Daniela Rus1

Abstract— Deep learning has been successfully applied to
“end-to-end” learning of the autonomous driving task, where
a deep neural network learns to predict steering control
commands from camera data input. While these previous
works support reactionary control, the representation learned
is not usable for higher-level decision making required for
autonomous navigation. This paper tackles the problem of
learning a representation to predict a continuous control
probability distribution, and thus steering control options and
bounds for those options, which can be used for autonomous
navigation.. Each mode of the distribution encodes a possible
macro-action that the system could execute at that instant, and
the covariances of the modes place bounds on safe steering
control values. Our approach has the added advantage of
being trained on unlabeled data collected from inexpensive
cameras. The deep neural network based algorithm generates
a probability distribution over the space of steering angles,
from which we leverage Variational Bayesian methods to
extract a mixture model and compute the different possible
actions in the environment. A bound, which the autonomous
vehicle must respect in our parallel autonomy setting, is
then computed for each of these actions. We evaluate our
approach on a challenging dataset containing a wide variety of
driving conditions, and show that our algorithm is capable of
parameterizing Gaussian Mixture Models for possible actions,
and extract steering bounds with a mean error of only 2 degrees.
Additionally, we demonstrate our system working on a full scale
autonomous vehicle and evaluate its ability to successful handle
various different parallel autonomy situations.

I. INTRODUCTION

Recently, deep learning models have demonstrated the
ability to directly learn control outputs from raw sensor data
[1]–[4]. These types of architectures are referred to as “end-
to-end” (sensor to actuation) and have yielded surprisingly
promising results for reactionary control, such as effective
autonomous lane following [4], navigation in closed environ-
ments [2], and full-scale autonomous driving [1], [3], [5].

However, there are still several issues with these ap-
proaches for autonomous driving. Firstly, end-to-end trained
steering control systems offer only a single most likely con-
trol output as evidenced in the training data. Secondly, exist-
ing approaches do not reliably handle scenarios in which the
car is faced with ambiguous situations where there may be
multiple correct actions (intersection). Thirdly, autonomous
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Fig. 1. End-to-end deep learning of control distributions. The output
of the classification network encodes a distribution of control values, rather
than a single value in previous end-to-end approaches [1]. Consequently,
we can use the output for navigation and decision making. Furthermore,
we can use our approach as part of a “parallel autonomy” shared control
system in which sets of upper and lower bounds for steering trajectories
can be computed and used as controller takeover points.

and parallel autonomy systems require effective interplay
between reactionary controls, navigation, path planning, and
decision making capabilities. It is unclear how outputs of
recently proposed end-to-end trained steering controls could
be effectively integrated with higher level planning and
navigation systems. For example, since these regression deep
neural networks (DNNs) are trained end-to-end as black-
boxes, they lack a definitive measure of associated confidence
with the output and consequently cannot be integrated into
a shared control (parallel autonomy) framework.

Parallel autonomy is a human-robot shared control
paradigm whereby the human is in control of the vehicle,
but the autonomy system always runs in the background
and is responsible for preventing the human from causing an
accident [6]. The goal is to produce inputs that minimally
deviate from the human input while guaranteeing safety, even
in complex driving scenarios. This framework is appealing
since it can be integrated into an existing car before the full
autonomous car problem is solved and still have a positive
impact in terms of safety. However, for this to be possible, the
autonomy system must output a degree of certainty related to
its control output. This is essential for the system to “do no
harm” since in the worst case of uncertainty in the autonomy
system it can defer to the human driver.

Existing approaches to shared control of autonomous
vehicles are model-based [7]–[18] and as such tend to
have either high computational requirements rendering them
inapplicable for all but the simplest of driving scenarios [7],
[8], [16], [18], or make strong simplifying assumptions, such
as constant velocity of obstacles [10] or availability of a
perfect road model [11].

In this paper, we propose a new approach to end-to-
end learning for autonomous driving that learns steering
control distributions from raw image data, rather than single
regressed values. A key advantage of learning control dis-



Fig. 2. System framework overview. A schematic outline of the image-to-control framework proposed in this paper, composed of a deep convolutional
neural network (trained and tested with single image inputs), a Variational Bayesian mixture model, and a safety bound extraction step. The colors of the
network layers are for illustration with the neuron function indicated below the architecture.

tributions, rather than a deterministic control value, is that
we are able to account for scenarios where there are multiple
possible directions and actions, thus enabling integration into
other autonomous controllers which also consider navigation
and parallel autonomy. We start by discretizing our action
space of steering control values into small bins, allow-
ing us to handle different possible outputs and ambiguous
situations. This discrete output is then transformed into
continuous probability distributions by fitting to a Gaussian
mixture using Variational Bayesian methods. Consequently,
we are able to provide an analytical continuous expression
for the posterior probability and thus extract sets of upper
and lower bounds for steering, where each set of bounds
defines a control region surrounding a possible action. We
evaluate our approach on real driving data collected with a
full scale autonomous car. The contributions of this paper
can be summarized as follows:

1) A novel representation of steering control outputs that
provides control options necessary for navigation, path
planning, and decision making capabilities;

2) A neural network architecture and integration with Vari-
ational Bayes mixture model and steering bound extrac-
tion that provides a measure of associated confidence
with the output, and consequently can be effectively
integrated into a shared control framework to serve as
guidance to a human driver, and is trained entirely with
unlabeled data;

3) A real world demonstration of the utility of the proposed
approach in a parallel autonomy setting; and

4) Experimental validation on a real, full-scale autonomous
vehicle and a challenging dataset with different road and
weather conditions, times of day, and seasons.

The remainder of the paper is structured as follows: we
summarize the related work in Sec. II, we formulate the
problem and describe our proposed method in Sec. III, and
provide an outline of our experimental setup and results in
Sec. IV.

II. RELATED WORKS

Typical approaches to autonomous driving decompose the
problem into standard components such as mapping and
localization [19], [20], perception and scene understand-
ing [21]–[23], planning [24], [25], and control [11], [26],
with an individual algorithm applied to each submodule.

The concept of collapsing the entire problem into a single
learning system (end-to-end) originated with the autonomous

land vehicle in a neural network (ALVINN) system [27],
which used pixel image inputs to train a multilayer percep-
tron network to output the direction the vehicle should travel.
Recent advancements in computing and deep learning have
brought about a resurgence in the end-to-end methods for
autonomous vehicle control [1], [5], showing their enormous
potential by driving a real-world vehicle through highways
and city streets. The system in [3] uses crowd-sourced
data to train a fully-convolutional network and applies the
output to a long short-term memory recurrent neural network
for generating a driving policy. Many studies have trained
networks for subsets of the full autonomous driving task,
such as [4], where the authors are able to estimate the
vehicle’s position within a lane without explicitly detecting
the lane.

Recent work has also demonstrated end-to-end navigation
for other application domains other than autonomous driving,
such as the problem of navigating through similar-type maze
environments with a prior map and a severely restricted
field of view [2]. Additionally, imitation based approaches
[28]–[30] attempt to imitate experts, but in the context of
training driver models, suffer from cascading errors and
frequent oscillation between actions [31]. Additionally, other
NN based approaches for end-to-end driving either output a
single control value [1] or are very limited in terms of the
range of control outputs that are possible (e.g. only allow
front, back, left, right) [2]. In both cases, it is not possible
to integrate these outputs into either higher level navigation
and decision making systems or a shared control paradigm
which requires a stochastic interpretation of the output.

Interpreting the confidence of the output of machine
learning algorithms has also been explored in great detail.
Optimization of DNNs has been formulated as a maximum
likelihood problem using a softmax activation layer on the
output to estimate probabilities of discrete classes [32] as
well as discrete probability distributions [2]. Introspective
capacity interprets the distance in feature space between
a train and test distribution as an algorithm’s uncertainty
and has been used to evaluate model performance for a
variety of commonly used classification and detection tasks
[33]. Bayesian deep learning provides yet another way to
estimate confidence through Monte Carlo dropout sampling
of weights in recurrent [34] and convolutional neural net-
works [35], and has been applied for semantic driving scene
segmentation [36]. However, all of these approaches are



limited by their discreteness and are unable to handle their
distributions analytically in the continuous domain. Addi-
tionally, due to the loss function used, they often yield noisy
output distributions making it difficult to extract reliable
bounds and thresholds. While it is possible to avoid this prob-
lem by training a model that directly outputs parameterized
continuous mixture models [37], these approaches require
ground truth knowledge of all mixture components for every
data sample and do not allow the number of output mixtures
to dynamically change over time. Requiring the ground truth
distributions at every instant would require significantly more
data labeling to manually identify the underlying mean and
variance for every macro action in the scene. Our approach
overcomes these shortcomings by learning a discrete prob-
abilistic output which is then transformed into continuous
probability distributions for control.

III. LEARNING STEERING DISTRIBUTIONS

In this section we present a framework for computing
steering distributions and control bounds using only a single
image frame as input. This framework is composed of
a deep neural network to compute a discrete probability
distribution over the space of steering angles and Variational
Bayesian methods to extract a continuous mixture model and
compute the different possible actions in the environment. A
bound, which the autonomous vehicle must respect in our
parallel autonomy setting, is then computed for each of these
actions. Figure 2 illustrates the pipeline from training (blue
arrows) to testing and inference (red arrows). In the following
subsections we will detail each of the individual components
of the pipeline.

A. Learning a Steering Probability Distribution
We use a time invariant approach to predict a control signal

distribution for the vehicle. Only a current frame, without
any history, is fed into a deep convolutional neural network
(CNN), with the steering command used to backpropagate
errors back through the network. The network computes
the probability distribution of possible controls, binned into
small, discrete groups.

We define m discrete bins for steering sampled from
a tunable logit function projected onto the x-axis on the
interval [−1, 1]. Having the ability to tune our discretization
affords more flexibility on how angles are binned over the
space of all turning angles. Since the vast majority of driving
data has steering angles within a small interval around the
equilibrium of steering, having a discretization where bin
angles are concentrated near the center of steering enables
more precise classification when going straight or making
small turns, while receiving more spread on larger turning
angles.

We define the m bin edges of steering as:

βj =
(π

2

) vj(1− γ)

γ − 2γ|v|+ 1

where v is an evenly spaced vector, of length m, from −1
to 1, and γ ∈ (−1, 1) is a single tunable parameter which
affects the skewness of the discretization. For example,
setting γ = 0 yields βj = π

2 vj , which is a linear function
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Fig. 3. Convolutional Neural Network architecture. Schematic repre-
sentation of our CNN model with the size of each layer and type of each
layer indicated within the respective rectangle. Kernel (K) and stride (S)
sizes are also indicated between convolutional layers.

of bins (evenly spaced bins). On the other hand, raising
the magnitude of γ increases the skew of the discretization
towards either the equilibrium or the extremes. Specifically,
γ > 0 results in a discretization concentrated on small angles,
whereas γ < 0 concentrates discretization on large turning
angles. Unless stated otherwise, for the remainder of this
paper, m = 15, γ = 0.7, since these parameter choices yield
a very precise discretization at angles near zero, while giving
larger bin sizes to larger magnitude angles. More details on
why this bin selection was chosen is covered in Section IV.

We trained a single CNN to predict the probability of
steering distributions, given a single image frame, using
stochastic gradient descent (SGD). To predict the full dis-
cretized distribution we optimize the cross entropy loss
between the predicted distribution and the ground truth
steering angle distribution defined below. Given a set of input
images X = {x(1), . . . , x(n)} and true steering outputs Y =
{y(1), . . . , y(n)}, we define a neural network, N, with weights
w capable of estimating steering outputs ŷ(i) = N(x(i) ; w)
for a specific input example. The loss function is defined as:

L(ŷ, y) =
1

n

n∑
i=1

H(ŷ(i), y(i)) = − 1

n

n∑
i=1

m∑
j=1

ŷ
(i)
j log(y

(i)
j )

where H(ŷ(i), y(i)) is the cross entropy for training data i.
Figure 3 outlines the architecture of the proposed proba-
bilistic neural network. The first 10 layers used the network
proposed in [1] as inspiration with a different input size. Our
network can be split into two pieces where each piece is com-
posed of (1) convolutional layers to generate feature maps
and (2) fully connected layers to perform the classification
and output the probability distribution.

We express ground truth steering as 1-of-m encoding
vectors (as opposed to a single real-valued number). In such
a scheme, at a given time instant the bin containing the true
steering angle is given a probability of 1, while all other bins
have a probability of 0. Final activations are passed through
a normalizing softmax function to compute the probability
distribution. More formally, one can express the probability
that the vehicle should be steered within any one of the m
bins, βj , given input image x and a neural network N with
weights w as:

P
(
ŷ ∈ βj

)
= δj

(
ŷ ∈ βj

)
=

exp(ŷ ∈ βj)∑m
l′=1 exp

(
ŷ ∈ βl′

)
where δj is the softmax function for estimating the proba-
bility of bin j.



Now that we have the entire discretized distribution of
predicted steering trajectories, one could deduce a control
signal using a variety of techniques. One simple example
would be to take the maximum likelihood action. In other
words, we could define the predicted steering command
signal, θ̂, as arg maxβj

{P (ŷ ∈ βj)}. While this is one
simple estimate of the final predicted steering angle given
a full probability distribution, we introduce a more robust
technique to extract both valid control signal modes and
steering bounds.

B. Variational Bayesian Mixture Models
Under normal driving conditions, an operator will often

encounter states where multiple actions are appropriate. For
example, if a vehicle is at an intersection where it is only
possible to either turn left or right then we would like the
probability distribution to be bimodal: one peak representing
a right turn and the other representing a left turn. The
magnitude of the peak would correspond to the statistical
likelihood of the turn in each case. From this simple example
we can see that in a state with A actions, we would expect to
see a mixture of approximately A random variables centered
at the specific turning angle for that action.

We formulate this problem as follows. Given a discrete
probability distribution of steering angles, can we (1) infer
the number of possible actions that can be executed, (2)
compute a control signal for any of these actions, and (3)
determine bounds of steering to properly execute any of these
actions. If we assume each action can be approximated by a
Gaussian random variable, then it is possible to sample our
discrete distribution and fit a Variational Bayesian mixture
model (VBMM) [38].

As opposed to performing a hard clustering (such as k-
means), VBMM is a generative model that allows for soft
probability classifications, wherein a single steering angle
could have been generated by any of the A Gaussians with
some probabilistic weighting. This is critical in our system
since there may be certain steering angles in the space that
correspond to multiple different actions in the environment.
Furthermore, VBMM can be seen as an extension of the Ex-
pectation Maximization (EM) algorithm which also approx-
imates data according to a model depending on unobserved
latent variables. Perhaps most importantly, VBMM, unlike
EM and k-means, does not require the number of mixture
components, A, in the model to be specified before fitting.
Rather, it automatically determines the number of mixtures
throughout its optimization, iteratively shrinking mixtures to
zero if they are not well fit within the data. For example,
we start the algorithm with A0 mixtures, for A0 > A (i.e.,
strictly greater than the true number of mixtures).

Figure 4 shows an example of the Variational Bayesian al-
gorithm running on a probability distribution extracted while
driving. From the distribution we can see that there are three
potential actions that the driver can take. The algorithm starts
out with A0 = 10 mixtures placed throughout the data, and
as it iterates some of these shrink (both in terms of weight
and standard deviation) while other mixtures get stronger.
Eventually, the algorithm converges to a combination of
A = 3 Gaussians after about 200 steps.
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Fig. 4. Variational Bayesian mixture model fitting. Output of the
Variational Bayesian algorithm running on a sample probability output
extracted while driving and converging to the true number of mixtures
(A = 3), causing some mixtures to die over time and others to progressively
get stronger.

Through this process, the algorithm automatically deter-
mines the ideal number of potential actions which could be
executed in the current state of the vehicle, and assigns each
action its own generative Gaussian random variable. The
extraction of each of these possible steering actions will be
used to extract bounds for steering (as described presently).

C. Steering Control Bounds for Parallel Autonomy

The Variational Bayesian mixture model (VBMM) fits the
data to a mixture of Normal-Wishart distributions, whose
PDF can be sampled by a Gaussian random variable centered
at the mean. More concretely, if the output of a VBMM has
component k with strength αk, mean µ̄k, precision matrix
Λk, and support vk, we can sample θ from a Gaussian of
the form N (θ;µk, σk) with

φk =
αk∑A

k′=1 αk′
; µk = µ̄k; σk = (vΛk)−1

Furthermore, we can determine the probability that any
steering angle, θ, belongs to the kth mixture (or action) and
use this to deduce which mixture contributes to it the most
as

P (θ;µk, σk) = φkN (θ;µk, σk)

k̂ = arg max
k

(N (θ;µk, σk))

where φk represents the mixing proportion of action k.
Now that we have a full Gaussian mixture model (GMM)

we can define the set of accepted steering angles as the set
union of each bounded Gaussian, in other words:

S(ω) =

{
θ : θ ∈

A⋃
k=1

[µk − ωσk, µk + ωσk]

}
where ω is a tunable constant representing the number of
standard deviations away from the mean of each mixture.
Now we are able to define a simple parallel autonomy
controller which tries to keep a human operator within these
bounds of steering S(ω). In other words, given a desired
human steering angle, θH , which is implicitly computed from
the torque applied on the steering wheel, we can determine
the parallel autonomy control angle, θPA, as:

θPA =

{
θH θH ∈ S(ω)
1
2 (θH + θA) otherwise

where θA, the predicted autonomous steering angle, is the
angle within the predicted bounds which is closest to the



human controlled angle. More specifically, we solve θA as an
optimization problem over the space of all predicted bounds:

θA = arg min
θ

(
S(ω)− θH

)2
where this difference in human and autonomous angle rep-
resents the least drastic change in control in order to re-enter
the predicted bounds.

From this control policy we can see that as long as the
human is executing “safe” commands (i.e. operating within
the bounds of steering) the computer should not intervene.
However, if the human was to execute a command outside
these bounds, the autonomous controller should then apply
an extra torque to the steering wheel, gently guiding the
human back towards safe ranges of steering.

IV. RESULTS

In this section, we briefly describe our dataset collection
environment and provide a summary of results in inferring
steering control bounds from raw pixel data collected from
the on-vehicle camera.

A. Experimental Setup

The vehicle base platform used for this study is a Toyota
Prius 2015 V, which was retrofitted with sensors, power,
and computing systems for parallel and autonomous driving
[6]. A forward facing PointGrey Grasshoper 3 camera [39],
which captures RGB images at approximately 20Hz, is the
vision data source for this study. Sensors also collected
steering wheel angle and encoder clicks, which are used
to infer speed. The dataset was collected largely in the
Boston metropolitan area across a variety of driving scenar-
ios, including urban, suburban, and highway environments,
and at varying times of the day and week. The dataset,
approximately 7 hours (500 GB) of driving data in total,
was split into training and testing portions with some of the
training dataset used for validation. The video is sampled at
10Hz to expunge consecutive frames which are too similar
to each other. Additionally, to filter out points where the car
is not moving, we only consider frames when the vehicle is
moving faster than 2 miles per hour.

An NVIDIA DGX-1 supercomputer was used for training
and validation of the DNNs. While training, a random mini-
batch of size 20 was randomly aggregated and fed through
the network. Training frames were sampled from our dataset
such that an approximately equal number of examples from
each bin were fed through the network, to reduce bias
towards any particular steering direction. To validate our
results we periodically evaluated our model with a pre-
extracted validation set. We tested and validated our model
on a section of the dataset that does not overlap with the
training dataset. Our model ran for approximately 20 epochs
before convergence.

All results were obtained using a binning of k = 15 and
γ = 0.7, which produced minimum bin sizes of 2.5 degrees
at the center, and maximum bin sizes of 40 degrees at the
extreme steering angles, −π2 and π

2 . This binning scheme
was selected to produce tighter (i.e., more precise) bounds
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Fig. 5. Sample inference over a test set. The figure on the left illustrates
the temporal evolution of the predicted steering probability distributions
(over a 40 second sample). The heat-map represents the intensity of the
probabilities while the human executed steering wheel angle data is overlaid
as a red line. The figures on the center and right outline three common
driving scenarios (A: left turn, B: right turn, C: ambiguous intersection) and
the probability distribution overlaid on the steering wheel (center). Gaussian
mixtures and bounds (right) of one standard deviation are overlaid on the
posterior distribution.

where turning angles were smallest, and allow larger bounds
where turning angles were larger (i.e., less precise).

In addition to offline testing or our algorithm, we also
implemented our entire codebase to run onboard a laptop
controlling the car using drive-by-wire. This includes running
the entire inference and posterior estimation in real time
(15Hz) to compute an autonomous steering command, as
well as the corresponding bounds. We use an Intel i5 CPU
with 4 cores to perform our computation, and in the future,
plan to also install an NVIDIA Drive PX2 inside of our
vehicle to increase neural network inference speeds even
more.

B. Temporal Evolution of Steering Bounds
Figure 5 (left) illustrates actual human steering control

inputs (red plot) over a 40 second period, overlaid on the
predicted steering bounds, and shows the human inputs
operating within the predicted bounds. Moreover, confidence
is high (yellow) when bounds are tight, and lower (teal) when
bounds are loose. The high confidence regions coincide well
with inflection points in human control. For example, near
t = 0, rightward steering with tight bounds is predicted and
corresponds with the true steering action taken. At t = 10,
the bounds reflect initiating leftward steering control up to
t = 12, at which time the left turn execution completes, and
the steering control returns to steering angle near 0 as the
driver straightens out.

Intuitively, Figure 5 also illustrates the impact of bin size
on the tightness of bounds and confidence in those bounds.
Specifically, near β = 0 (straight-on steering control),
the confidence in making what would amount to minor
adjustments (due to the small bin size) is lower and the
bounds are more loose. Additionally, larger adjustments to
execute left turns (i.e., β approaches −π2 ) and right turns
(i.e., β approaches π

2 ), result in more significant adjustments
to steering control, with higher confidence.

The center right section of Figure 5 provides illustrative
results for 3 commonly encountered driving scenarios. For
each scenario, the camera image on the left depicts the data
provided as input to the inference pipeline in Figure 2, and
the Gaussian Mixture and Bounds plot on the right depicts
the output produced by the pipeline for the corresponding
image. The x-axis is the turning angle (i.e., steering control)



and y-axis provides the probability for that steering control
angle. Each image on the left includes an overlay (bottom,
center), which is a projection of the turning angle onto a
semi-circle, where the green line shows the predicted steering
control angle, and the red line shows the actual steering
control angle taken by the driver. Within a single shaded
arc, the darkness of the shading represents the probability
that the car should steer in that direction, with dark blue
indicating the highest probability turning angles and lighter
shading indicating lower probability turning angles. The red
arc hovering slightly above the semi-circle indicates the
steering bounds for control.

For example, Scenario A is an example of the vehicle
approaching another vehicle positioned slightly to its right,
with room for passing on the left. The steering control
indicates a leftward turning angle, with tighter bounds on
the right than on the left, as illustrated by the semi-circle
overlay. Note that the Gaussian Mixture and bounds also
indicate leftward steering control. In comparison, Scenario
B is an example of the vehicle following another vehicle at
a distance. Here, because the preceding vehicle is in far view,
the bounds are more loose, as illustrated by both the wider
arc on the overlaid semicircle and the Gaussian mixture on
the right. Finally, Scenario C shows 3 turning ranges at
approximately [−π2 , −

π
4 ], [0, π8 ], and [π4 ,

π
2 ], which repre-

sent a) an immediate left turn, b) continuing straight-on and
slightly to the right, or c) an immediate right turn.

Figure 5 helps to illustrate why learning bounds, as op-
posed to simply predicting a steering control angle, provide
important advantages for parallel autonomy. For example, in
autonomous mode, the predicted steering control angle can
be used directly for control, or navigation can be optimized
with the computed bounds; in human control mode, the
human can be alerted when the vehicle steering angle is
approaching the computed bounds; in parallel autonomy
mode, the autonomy system can bring the vehicle to within
computed bounds when human steering inputs to not con-
form to computed bounds.

C. Accuracy of Steering Control Bounds
We assessed the accuracy of our steering control bounds

technique by aggregating the normalized probability distri-
bution of a true steering angle predicted over the space of
all possible steering control bins in Figure 6A. This plot is
shown on the logarithmic scale to better visualize the small
differences between probabilities.

The bright green regions along the diagonal illustrate good
alignment between the predicted bin and the bin selected by
the driver, and a high confidence in that prediction. We also
observe in Figure 6A that the off-diagonal regions, especially
at predicted bin 6-10 (where the steering angle is closer to 0)
show dispersion across bins. The challenge with this measure
of accuracy is that in most cases, there is no single correct
steering control. That is, measuring the accuracy of a neural
network by comparing the predicted control to the control
executed by a human driver (or some statistical average of
control executed by human drivers) is valid when only if
there is “gold standard” or uniquely correct action to be
compared against. While commonly used to assess neural
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a human control signal is away from the bounds of steering computed by
our algorithm as a function of the size of the bound.

network based driving algorithms [5], in the absence of a
gold standard, this technique does not actually measure the
accuracy of the controller to be safe, rather, it measures
the similarity between the controller and human drivers.
Simulator based approaches [1] provide a more realistic
sense of accuracy since the model is only penalized when
it deviates far enough that a human driver must intervene.
However, even in this case, the simulator is still constrained
to driving along the same general path of the human who
collected the data, making it an unsuitable metric for our
algorithm which allows for multiple different actions within
the road (ex. an intersection).

Instead, we define a measure of accuracy of our system
as the percent of time that a human driver stays within
an upper and lower bound, which the algorithm computes
via Variational Bayesian methods. Defining accuracy in this
sense means that a controller which operates within the
expected bounds not be penalized (even if it might be
different than one particular human driver). Additionally, this
allows us to account for the different possible actions that
arise when driving.

More formally, as long as the human driver is within
any of the possible computed bounds the model prediction
is deemed valid, otherwise it is penalized according to the
Mahalanobis distance, which measures the distance between
a point and a distribution. The point in question is the human
steering command, θ, while the distribution is characterized
by (µk̂, σk̂) with k̂ defined in Sec. III-C. Putting this all
together we can define the error of our model to stay within
the bounds of our ground truth human driving according to:

ε(ω) =
1

n

n∑
i=1

(
1S(ω)(θ)

(
θ(i) − µ(i)

k̂

)2
σ
(i)

k̂

)
where ω, like defined in Sec. III-C, is a tunable parameter
representing the number of standard deviations over which
the steering bound extends and 1S(ω)(θ) is the mathematical
indicator function which is 1 when θ /∈ S(ω) and 0 other-
wise. Figure 6B shows the error of our system as a function
of ω. Starting with a bound of ±σ4 on the far left x-axis,
which is approximately the variation we observe from human
drivers, we obtain a mean error of approximately 2 degrees.
Increasing ω, and thus increasing the bounds, causes our
error to drop roughly exponentially. This is precisely what
we would expect to see since increasing the bounds means
the model is able to encapsulate more and more steering
angles within each action. We test up until ω = 3 (i.e. ±3



Fig. 7. Scenes from our test environment. The lack of lane markers
and extensive shadows, cracks, and vegetation make autonomous driving
particularly challenging. Images are taken from a camera mounted on the
roof rack of our autonomous vehicle.

standard deviations from the mean), and observe a decrease
in error to only about 1

4 degrees.
Overall, these results (i.e., mean error of 2 degrees at

a bound of ±σ4 ) are extremely promising; however, we
acknowledge that with only 7 hours of driving data it is
unlikely that our model was able to generalize well to every
complex driving scenario. To provide a more robust test
environment we also implemented our algorithms onboard
our own autonomous vehicle to evaluate its performance in
a real-time testbed.

D. Physical Experimentation
In this section, we outline an experiment we conducted to

evaluate our system’s ability to predict bounds of steering
control in a real-time physical testbed. All experimentation
was conducted on a test track, spanning about 2 km in
length. This test track contains no lane markers, many large
cracks, vegetation growing into the road, as well as huge
amounts of variation in luminosity (as illustrated in Figure 7).
All of these factors make it a difficult and meaningful test
environment which captures a large number of possible
corner cases that one may encounter during driving.

In order to quantitatively understand the performance
of our predicted bounds and control signal we setup an
experiment while running under “parallel autonomy” mode
as defined in section III-C. We started by setting up 10 evenly
spaced locations on our test track and observing the human
machine interaction with two different types of driver:

1) An “ideal” driver who adheres as close as possible to
the correct behavior of steering at that location; and

2) An “erratic” driver who tries to execute a dangerous
maneuver (such as driving off the road) at that location.

We ran this experiment by driving (speed ∼25 miles per
hour) around our track as the two drivers, ten times each.
We measured the performance of our system to accurately
predict control steering bounds by its ability to intervene and
prevent the human from performing any erratic action and
its ability to not intervene while a human is executing proper
control.

Figure 8 shows the results for this experiment under
both types of human behavior. The track is mapped out for
illustration using a 3D laser scanner with all points projected
onto the 2D ground plane and drawn in grayscale in the
figure. The top map shows the fraction of times which the
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Fig. 8. Parallel autonomy interventions under different scenarios. The
fraction of times that the controller intervened over ten loops around our
test track (mapped in black). At each point, the driver was instructed to act
in one of two ways (1) execute proper control (bottom) or (2) try to drive
off the road (top). The color of each dot represents the fraction at which
these interventions occurred at that given location.

human intervened the ideal human driver at each of the 10
locations around the track. The respective color of each point
corresponds to this fraction. Averaging over all the locations
and runs, we see that our algorithm successfully determined
that the ideal human was operating within the bounds of
steering (97%) of the time and incorrectly intervened on a
very small number of trials.

Since ω, the number of standard deviations away from
the mean of each mixture, is a tunable constant we can
arbitrarily increase this accuracy even more. By defining ω
to be some very large number, we essentially say that the
entire space of steering commands are acceptable and the
computer should never intervene. Of course, this is not the
desired behavior since we clearly want to intervene when a
driver acts improperly as well. Therefore, we are faced with
a pair of constraints on ω, where we wish to minimize the
number of interventions while the human is acting properly,
but maximize the number of interventions when the driver is
not behaving well. The bottom map of Figure 8 shows the
number of interventions for the erratic driver; averaging again
over all trials, we observed a successful intervention rate of
91%. Together with the ideal driver, we observed an average
successful behavior of the system 94% of the time. There are
several reasons for the differences in performance between
the two types of driver. Most importantly, we observed that
the largest discrepancies came on tight turns, where the room
for error is naturally smaller than on straight or more gentle
curves. Since our model uses a constant ω for all steering
wheel angles we are unable to capture this, and as a result
are unable to recover from minor errors made on these tight
turns. We plan to address this in greater detail in the future.

V. CONCLUSION

This paper presents a novel deep learning based algorithm
for autonomous driving that computes an intermediate prob-



ability distribution of steering angles. While previous work
in end-to-end learning presents a form of reactionary control,
lane following, and object avoidance, this technique encodes
a much richer set of information in a probability distribution,
thereby making it an attractive algorithm for incorporating
navigation and decision making capabilities. Our results
indicate the ability to dynamically compute the number of
potential actions at any point in time and to accurately extract
steering bounds from each of these mixtures with a mean
deviation error of approximately 2 degrees.

We demonstrate our algorithms working on an au-
tonomous vehicle testbed operating in real-time, both to
autonomously control the car as well as to provide par-
allel autonomous control, successfully intervening when a
human makes dangerous decisions. Overall, our algorithm
maintained ideal behavior throughout this parallel autonomy
paradigm for 94% of the test evaluation.

In the future, we aim to incorporate higher level decision
making capabilities into our pipeline, specifically targeting
more complex turn-by-turn navigation. Further, we seek to
improve the human-computer interface within our parallel
autonomy platform, particularly under situations of shared
human-robot control.
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