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INHOMOGENEOUS EXPONENTIAL JUMP MODEL

ALEXEI BORODIN AND LEONID PETROV

Abstract. We introduce and study the inhomogeneous exponential jump model — an integrable
stochastic interacting particle system on the continuous half line evolving in continuous time. An
important feature of the system is the presence of arbitrary spatial inhomogeneity on the half line
which does not break the integrability. We completely characterize the macroscopic limit shape
and asymptotic fluctuations of the height function (= integrated current) in the model. In par-
ticular, we explain how the presence of inhomogeneity may lead to macroscopic phase transitions
in the limit shape such as shocks or traffic jams. Away from these singularities the asymptotic
fluctuations of the height function around its macroscopic limit shape are governed by the GUE
Tracy–Widom distribution. A surprising result is that while the limit shape is discontinuous at a
traffic jam caused by a macroscopic slowdown in the inhomogeneity, fluctuations on both sides of
such a traffic jam still have the GUE Tracy–Widom distribution (but with different non-universal
normalizations).

The integrability of the model comes from the fact that it is a degeneration of the inho-
mogeneous stochastic higher spin six vertex models studied earlier in [BP16a]. Our results on
fluctuations are obtained via an asymptotic analysis of Fredholm determinantal formulas aris-
ing from contour integral expressions for the q-moments in the stochastic higher spin six vertex
model. We also discuss “product-form” translation invariant stationary distributions of the ex-
ponential jump model which lead to an alternative hydrodynamic-type heuristic derivation of the
macroscopic limit shape.
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1. Introduction

1.1. Background. The study of nonequilibrium stochastic interacting particle systems in one
space dimension (together with applications to traffic models and other settings) has been success-
ful for several past decades [MGP68], [Spi70], [Lig05], [Spo91], [Hel01]. A prototypical example of
a particle system modeling traffic on a one-lane road is TASEP (Totally Asymmetric Simple Ex-
clusion Process) in which particles evolve on Z. Important questions about interacting particle
systems include describing their asymptotic (long-time and large-scale) behavior, and under-
standing how this behavior depends on the initial condition. Since early days hydrodynamic-type

1
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methods have been applied to answer these questions (e.g., [AK84], [Rez91], [Sep99]), which al-
lowed to establish laws of large numbers for asymptotic particle locations and integrated particle
currents.

The introduction of exact algebraic (“integrable”) techniques into the study of interacting
particle systems pioneered in [Joh00] brought results on asymptotics of fluctuations (i.e., the next
order of asymptotics after the law of large numbers). In particular, Johansson [Joh00] showed
that the fluctuations in the TASEP started from a densely packed (“step”) initial configuration
are governed by the GUE Tracy–Widom distribution from the random matrix theory [TW94].
This and related fluctuation results contribute to a general belief that driven interacting particle
systems with an exclusion mechanism belong (under mild conditions) to the Kardar–Parisi–Zhang
universality class [FS11], [Cor12], [QS15].

Studying asymptotics of interacting particle systems by means of exact formulas have brought
much progress over the last two decades. At the same time, these methods have certain limitations
even when applied to a single particular particle system such as TASEP. For example, proving
asymptotic results for general (arbitrary) initial data is typically quite hard (cf. however the
case of TASEP in [MQR17]). Another type of questions which has been evading integrable
methods is the asymptotic behavior of systems in spatially inhomogeneous environment (also
referred to as systems with defects or site-disordered systems). Spatial inhomogeneity should
be contrasted with another type of inhomogeneity under which each particle has its own speed
parameter (such as the jump rate in TASEP). Systems with particle-dependent inhomogeneity
often1 possess the same integrable structure as their homogeneous counterparts (in the case of
TASEP this structure comes from Schur processes [Oko01], [OR03], [BF14]). This integrability
then leads to fluctuation results for systems with particle-dependent inhomogeneity (e.g., [Bai06],
[BFS09], [Dui13], [Bar15]).

Interacting particle systems with spatial inhomogeneity are connected to situations naturally
arising in traffic models, and have been the subject of numerical simulations (e.g., [KF96],
[Ben+99], [Kru00], [DZS08], see also [Hel01]). Moreover, such particle systems were extensively
studied by hydrodynamic methods and other techniques, which has led to law of large numbers
type results for various models including TASEP [Lan96], [Sep99], [GKS10], [Bla11], [Bla12]. A
notable hard problem in this direction is the effect of a “slow bond” (i.e., a selected site jump-
ing over which requires longer waiting time) on global characteristics of the system such as the
current. In one case this problem was recently resolved in [BSS14] (see also [Sep01], [CLST13]).

1.2. Inhomogeneous exponential jump model. We introduce and study the inhomogeneous
exponential jump model — an integrable interacting particle system on R>0 with a rather general
spatial inhomogeneity governed by a piecewise continuous speed function ξ(x), x ∈ R≥0. Let us
briefly describe this system (see Section 2.1 below for a detailed definition in full generality).
Initially the configuration of particles X(0) in R>0 is empty, and at any time t ≥ 0 the particle
configuration X(t) on R>0 is a finite collection of finite particle stacks. That is, one location
on R>0 can be occupied by several particles. In continuous time one particle can become active
and leave a stack at a given location x with rate ξ(x)(1 − q#{number of particles in the stack}) (here
0 < q < 1 is a fixed parameter), or a new active particle can be added to the system at location
0 at rate ξ(0).2 In continuous time almost surely only one particle can become active. The

1But not always: a notable open problem is to find an integrable structure in ASEP (a two-sided generalization
of TASEP) with particle-dependent jump rates.

2Here and below we say that a certain event has rate µ > 0 if it repeats after independent random time intervals
which have exponential distribution with rate µ (and mean µ−1). That is, P(time between occurrences > ∆t) =
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active particle desires to travel to the right by an exponentially distributed random distance with
mean 1/λ (where λ > 0 is a parameter of the model), but it may be stopped by other particles
it encounters along the way. Namely, the active particle jumps over each sitting particle with
probability q, or else is stopped and joins the corresponding stack of particles. See Figure 1 for
an illustration (and for now assume that p(b) = 1 in that picture).

Let the height function hX(t)(x) be the number of particles in our configuration at time t ≥ 0
which are weakly to the right of the location x ∈ R>0. For each t this is a random nonincreasing
function in x. Moreover, hX(t)(x) weakly increases in t for fixed x.

The inhomogeneous exponential jump model is integrable in the sense that we are able to
explicitly compute observables E

(
(1− ζH)−1(1− ζHq)−1(1− ζHq2)−1 . . .

)
, H = qhX(t)(x) (where

x, t > 0 are arbitrary and ζ ∈ C \ R≥0 is a parameter of the observable), in a Fredholm determi-
nantal form (see Theorem 2.14 below). This Fredholm determinant is amenable to asymptotics
and opens a way to study law of large numbers and fluctuations of the inhomogeneous exponential
jump model.

1.3. Asymptotic behavior. We are interested in describing the asymptotic behavior of the
inhomogeneous exponential jump model in terms of its height function hX(t)(x) as λ→ +∞ and
the time scales as t = τλ, τ > 0. We assume that q ∈ (0, 1) and the speed function ξ(·) are fixed.
When λ grows, the expected distance of individual jumps of the particles goes to zero, while more
and more particles are added to the system with time. Our asymptotic results are the following:

1. We show that there exists a limit shape H(τ, x) such that limλ→+∞ λ
−1hX(τλ)(x) = H(τ, x)

in probability for any τ, x > 0. The limit shape is determined by ξ(·) and q in terms of
integrals of q-polygamma functions and their inverses.

2. We also present an informal hydrodynamic-type argument (relying on constructing a one-
parameter family of translation invariant stationary distributions for the homogeneous ex-
ponential jump model with arbitrary density ρ > 0, and computing the associated particle
current j(ρ)) suggesting that the limit shape H(τ, x) should satisfy a partial differential
equation in τ and x. This equation is similar to the one considered for TASEP in inhomo-
geneous environment, see [GKS10] and references therein. We then explicitly verify that
H(τ, x) described in terms of q-polygamma functions satisfies this equation.

3. Our main result is that the inhomogeneous exponential jump model belongs to the Kardar–
Parisi–Zhang universality class, that is, the fluctuations of the random height function

around the limit shape have scale λ
1
3 and are governed by the GUE Tracy–Widom distri-

bution F2:

lim
λ→+∞

P

(
hX(τλ)(x)− λH(τ, x)

λ
1
3 c(τ, x)

≥ −r

)
= F2(r), r ∈ R.

Here x ∈ (0, xe(τ)), where xe(τ) is the asymptotic location of the rightmost particle in the
system, i.e., H(τ, x) = 0 for all x ≥ xe(τ).

We obtain the limit shape and the fluctuation results simultaneously by analyzing the Fredholm
determinant of Theorem 2.14 by the steepest descent method. Because the model depends on an
arbitrary speed function ξ(·), we had to make sure that this analysis does not impose unnecessary
restrictions on the generality of this function. This presented the main technical challenges of
our work.

e−µ∆t. These independent exponentially distributed random times are also assumed independent from the rest of
the system.
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One of the most striking features of our asymptotic results is a new type of phase transitions
caused by a sufficient decrease in the speed function ξ(·) on an interval. Namely, at the beginning
of such a decrease the limit shape H(τ, x) becomes discontinuous (leading to what we call a traffic
jam), but the asymptotic fluctuations of the height function on both sides of this traffic jam (and

at the location of the traffic jam itself!) have scale λ
1
3 and the GUE Tracy–Widom distribution,

but with different non-universal normalizations. Computer simulations also suggest that these
Tracy–Widom fluctuations on both sides of a traffic jam are independent. A finer analysis of the
fluctuation behavior in a neighborhood of a traffic jam will be the subject of a future work.

In fact, we also consider a slightly more general situation when the inhomogeneous space
might contain deterministic roadblocks which capture particles with some fixed probabilities.
The presence of these roadblocks leads to shocks in the limit shape and phase transitions in
the fluctuation exponent and fluctuation distribution of Baik–Ben Arous–Péché type [BBP05].
This phase transition is known to appear in interacting particle systems with particle-dependent
inhomogeneity (e.g., see [Bai06], [Bar15]) and in other related situations (cf. [AB16]). We refer to
Theorem 2.12 below for a complete formulation of the results on asymptotics of fluctuations, and
to Section 2.5 for more discussion and examples of phase transitions arising for various choices of
the speed function ξ(·) and the configuration of the roadblocks.

Let us emphasize that the ability to analyze an interacting particle system with spatial in-
homogeneity to the point of asymptotic fluctuations comes from new integrable tools developed
in [BP16a] for the inhomogeneous six vertex model. It seems that earlier methods of Integrable
Probability are not directly applicable to such particle systems with spatial inhomogeneity.

1.4. Remark. Model for q = 0. The inhomogeneous exponential jump model has a natural
degeneration for q = 0 which changes the behavior of the particle system in two aspects. First,
for q = 0 particles leave each stack and become active at rate ξ(x) (where x is the location of this
stack), independently of the number of particles in the stack. Second, moving particles cannot
fly over sitting particles, so one can say that the particles are ordered and the process preserves
this ordering.

Although the q = 0 process is simpler than the one for q ∈ (0, 1), the methods of the present
paper are not directly applicable to rigorously obtaining asymptotics of fluctuations in the q = 0
case. However, the q ∈ (0, 1) results in the present paper have natural q = 0 degenerations which
are proven in a companion paper [KP17] using a different approach based on a connection with
Schur measures (which in turn follows from the coupling construction of [OP16]).

This need for a different approach for q = 0 should be compared to the situation of ASEP and q-
TASEP vs TASEP. Namely, the asymptotic analysis of ASEP or q-TASEP by means of Fredholm
determinants (see [TW09a] and [FV15], respectively) does not survive the limit transition to the
TASEP. On the other hand, some of the ASEP and q-TASEP results (most notably, on the GUE
Tracy–Widom fluctuations of the height function) remain valid in the TASEP case and were
established earlier in [Joh00] by a different method which can also be traced to Schur measures.

1.5. Outline. In Section 2 we define the inhomogeneous exponential jump model in full gener-
ality, and describe the main results of the paper. In Section 3 we show how formulas for the
stochastic higher spin six vertex model from [BP16a] lead to a Fredholm determinantal formula
for the q-Laplace transform of the height function of the exponential model. In Section 4 we
perform the asymptotic analysis of the Fredholm determinant and prove the main results. Nec-
essary formulas pertaining to q-digamma and q-polygamma functions are given in Appendix A.
In Appendix B we discuss translation invariant stationary distributions of our particle systems,
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and perform computations leading to an alternative hydrodynamic-type heuristic derivation of
the macroscopic limit shape in the inhomogeneous exponential jump model.
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2. Model and main results

2.1. Definition of the model. The inhomogeneous exponential jump model is a continuous time
Markov process {X(t)}t≥0 on the space of finite particle configurations in R>0 := {y ∈ R : y > 0},
that is,

Conf•(R>0) := {(x1 ≥ x2 ≥ . . . ≥ xk) : xi ∈ R>0 and k ∈ Z≥0 is arbitrary} .
Note that several particles can occupy the same point of R>0. Denote by ∅ ∈ Conf•(R>0) the
empty particle configuration (having k = 0), and let the initial configuration of the exponential
jump model be X(0) = ∅. For later convenience, let us also assume that there is an infinite stack
of particles at location 0.

For X ∈ Conf•(R>0) and x ∈ R≥0 denote by η(x) = ηX(x) ∈ Z≥0 the number of particles of the
configuration X at location x. Next, define the height function associated with X ∈ Conf•(R>0)
by

h(x) = hX(x) := # {particles xi ∈ X which are ≥ x} ∈ Z≥0. (2.1)

The height function is weakly decreasing in x, hX(0) = +∞ (due to the infinite stack at 0), and
limx→+∞ hX(x) = 0.

The inhomogeneous exponential jump model X(t) on Conf•(R>0) depends on the following
data:

• Main “quantization” parameter q ∈ (0, 1);
• Jumping distance parameter λ > 0;
• Speed function ξ(x), x ∈ R≥0, which is positive, piecewise continuous, has left

and right limits in R≥0, and is bounded away from 0 and +∞.
• Discrete set B ⊂ R>0 without accumulation points in R≥0 (however, B can be

infinite) and a function p : B→ (0, 1). Points belonging to B will be referred
to as roadblocks.

(2.2)

Under the Markov process X(t) particles randomly jump to the right in continuous time. Let
us begin by describing how particles “wake up” and start moving. First, new particles enter
the system (leaving the infinite stack at location 0) at rate ξ(0). Next, if at some time t > 0
there are particles at a location x ∈ R>0, then one particle decides to leave this location at rate
ξ(x)(1 − qηX(t)(x)). Almost surely at each time moment at most one particle can start moving,
and waking up events at different locations are independent.

Each particle which wakes up at some time moment t ≥ 0 instantaneously jumps to the right
by a random distance according to the distribution

P
(
the moving particle travels distance ≥ y

∣∣ it started at x ∈ R≥0

)
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= e−λyqhX(t)(x+)−hX(t)(x+y)
∏

b∈B, x<b<x+y

p(b), (2.3)

where y > 0 is arbitrary and the height function above corresponds to the configuration X(t)
before the moving particle started its jump. In words, distribution (2.3) means that the mov-
ing particle’s desired travel distance has exponential distribution with rate λ (and mean λ−1).
However, in the process of its move the particle has a chance to be stopped by other particles
or by roadblocks it flies over. Namely, the moving particle flies past each sitting particle with
probability q per particle (indeed, hX(t)(x+)− hX(t)(x+ y) is the number of such sitting particles
strictly between x and x + y), and flies past each roadblock b ∈ B with probability p(b). Note
that to fly past a roadblock at b ∈ B the moving particle must also pass all particles possibly
sitting at b, with probability q per particle. See Figure 1 for an illustration.

0 x

Rate = ξ(0), P = q Rate = ξ(x)(1− q3), P = p(b)(1− q4)

b

Figure 1. Two possible jumps in the inhomogeneous exponential jump model
X(t) (but only one can occur at an instance of continuous time). The left jump
has rate ξ(0) and the desired travel distance has exponential distribution with
parameter λ. The moving particle flies over one sitting particle with probability q.
The right jump has rate ξ(x)(1 − q3), the desired travel distance has the same
exponential distribution, and the moving particle joins the stack of 4 other particles
with probability p(b)(1− q4). Here p(b) corresponds to flying over the roadblock
at b, and 1 − q4 is the complementary probability to flying over the stack of 4
sitting particles.

Remark 2.1. The parameter λ can in fact depend on the location x, too. However, this de-
pendence can be eliminated by a change of variables (cf. Remark B.4), and so without loss of
generality we can and will consider constant λ.

2.2. Hydrodynamics. The main goal of this paper is to perform an asymptotic analysis of the
inhomogeneous exponential jump model X(t) in the regime as λ→ +∞ and the continuous time
grows as t = τλ, where τ ≥ 0 is the fixed rescaled time. In this regime the mean desired travel
distance of the jumping particles goes to zero, while more and more particles enter the system
as time grows. In this regime one expects that the rescaled height function (2.1) converges (in
probability) to a deterministic limit shape, λ−1hX(τλ)(x) → H(τ, x). An example of such a limit
shape is given in Figure 2.

At least in the case of no roadblocks, a partial differential equation for the limit shape H(τ, x)
can be written down by looking at the hydrodynamic behavior similarly to the treatment of driven
interacting particle systems in one space dimension in, e.g., [AK84], [Rez91], [Lan96], [GKS10].
To write such an equation for our model, we need the following notation:

φn(w) :=

∞∑
k=1

knwk

1− qk
, |w| < 1, n ∈ Z≥0.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

1.0

1.5

2.0
Gaussian fluctuations

BBP transition point

Tracy–Widom
fluctuations

traffic jam

traffic jam

Tracy–Widom fluctuations

σ
x

Figure 2. Example of a random height function (solid), its limit shape approx-
imation H(τ, x) (dashed), and a zoom at x = 0.2 showing the behavior around
the traffic jam. The parameters are q = 1

2 , τ = 3, and the speed function is
ξ(x) = 0.7 ·1x=0 +10<x<0.2 +0.4 ·1x≥0.2 (here and below 1A stands for the indica-
tor function of an event A). Solid red dots indicate points where a curved shape
is tangent to the adjacent linear part.
The value ξ(0) = 0.7 < 1 plays the role of a roadblock and creates a singularity,
namely, the fluctuation exponents and the fluctuation behavior undergoes a Baik–
Ben Arous–Péché phase transition at x = σ ≈ 0.045. Moreover, H(τ, x) is linear
for 0 ≤ x ≤ σ. The discontinuous decrease in ξ(x) at x = 0.2 leads to a traffic
jam, namely, the limit shape is discontinuous at x = 0.2 but fluctuations on both
sides of 0.2 are governed by the GUE Tracy–Widom distribution.

This function can be analytically continued to a meromorphic function of w ∈ C, see Appendix A
for details.

Theorem 2.2. Let there be no roadblocks, and ξ(x) be continuous at x = 0. Then the limit shape
H(τ, x) (whose existence follows from Theorem 2.12 below) satisfies the following equation:

∂H(τ, x)

∂x
= −φ1

(
1

ξ(x)

∂H(τ, x)

∂τ

)
, (2.4)

with initial condition H(0, x) = 0 (x > 0) and boundary condition H(τ, 0) = +∞ (τ ≥ 0).

We require that ξ(x) is continuous at x = 0 to avoid the singularity near x = 0 as in Figure 2.

Heuristic argument for Theorem 2.2. We first present a heuristic hydrodynamic-type argument
leading to equation (2.4). Later in Section 2.3 we will verify this equation using an explicit
expression for H(τ, x) arising from asymptotic analysis of the Fredholm determinantal formula for
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the q-Laplace transform of the height function hX(t) of the exponential jump model. Details and
necessary computations pertaining to the hydrodynamic approach may be found in Appendix B.

The hydrodynamic argument is based on the following assertions:

• (existence of limit shape) The limit (in probability) H(τ, x) = limλ→+∞ λ
−1hX(τλ)(x) exists,

and ρ(τ, x) := − ∂
∂xH(τ, x) ∈ [0,+∞] exists for any x ∈ R≥0. Clearly, ρ(τ, x) has the

meaning of the limiting density (at location x ∈ R≥0 at scaled time τ ≥ 0) of particles in the
inhomogeneous exponential jump model.
• (local stationarity) Locally at each x ∈ R>0 where ρ(τ, x) < +∞ the asymptotic behavior

of our particle system (as λ → +∞ and under the rescaling of the space around x by λ)
is described by a translation invariant stationary distribution3 on Conf∼• (R), the space of
(possibly countably infinite) particle configurations in R with multiple particles per location
allowed.
• (classification of translation invariant stationary distributions) All distributions on Conf∼• (R)

which are translation invariant and stationary under the homogeneous version of the expo-
nential jump model with speed ξ(x) ≡ ξ and λ = 1 depend on one real parameter c ≥ 0 and
are given by the marked Poisson processes mc,1 defined in Appendix B.3. That is, a random
configuration under mc,1 is obtained by taking the standard Poisson process on R of intensity
φ0(c), and independently putting j ≥ 1 particles at each point of this Poisson process with

probability ϕc(j) = 1
φ0(c)

cj

1−qj .

We prove the first assertion about the limit shape using exact formulas (Theorem 2.12), and
do not prove local stationarity. We also do not prove the full classification of translation invari-
ant stationary distributions, but establish its weaker version (Proposition B.3) that the marked
Poisson process mc,1 is indeed stationary under the homogeneous exponential jump model on R
(which exists for a certain class of initial configurations, see Appendix B.1).

One can compute (Appendix B.3) the particle density and the particle current (sometimes also
called the particle flux) associated with mc,1, they have the form:

ρ(c) = φ1(c), j(c) = ξc.

From Proposition A.1 it readily follows that φ1 : [0, 1] → [0,+∞] is one to one and increasing,
and so the particle current in the local stationary regime depends on the density as

j(ρ) = ξφ−1
1 (ρ).

One then expects that the limiting density satisfies

∂

∂τ
ρ(τ, x) +

∂

∂x
j
(
ρ(τ, x)

)
= 0 ⇔ ∂

∂τ
ρ(τ, x) +

∂

∂x

[
ξ(x)φ−1

1 (ρ(τ, x))
]

= 0, (2.5)

with initial condition ρ(0, x) = 0 (x > 0) and boundary condition ρ(τ, 0) = +∞ (τ ≥ 0).
Using the fact that

H(τ, x) =

∫ +∞

x
ρ(τ, u)du,

and integrating (2.5) from x to +∞, we obtain

∂H(τ, x)

∂τ
= ξ(x)φ−1

1

(
ρ(τ, x)

)
.

Dividing this by ξ(x) and applying φ1 to both sides leads to the desired equation (2.4). �

3By stationary we mean distributions which do not change under the corresponding stochastic evolution, and
translation invariance means invariance under spatial translations of R.
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2.3. Limit shape. Let us now present an explicit expression for the limit shape H(τ, x) of the
height function in the inhomogeneous exponential jump model in full generality of Section 2.1,
i.e., with possible roadblocks. We start with some notation.

Definition 2.3 (Essential ranges). Denote for x > 0:

Ξx := {ξ(0)} ∪
⋃

b∈B : 0<b<x

{ξ(b)} ∪ EssRange{ξ(y) : 0 < y < x}, Wx := min Ξx, (2.6)

where EssRange stands for the essential range, i.e., the set of all points for which the preimage
of any neighborhood under ξ has positive Lebesgue measure. Note that we include values of ξ
corresponding to 0 and the roadblocks even if they do not belong to the essential range. These
latter values play a special role because there are infinitely many particles at 0, and each of the
locations b ∈ B contains at least one particle with nonzero probability. Let also

Ξ◦x := EssRange{ξ(y) : 0 < y < x}, W◦x := min Ξ◦x. (2.7)

Clearly, Wx ≤ W◦x for all x.

Definition 2.4 (Edge). Fix τ ≥ 0, and let xe = xe(τ) ≥ 0 be the unique solution to the equation

τ =

∫ xe

0

dy

(1− q)ξ(y)
. (2.8)

This solution is well-defined since the integrand is positive and bounded away from zero. Clearly,
xe(0) = 0, and xe(τ) increases with τ . We call xe the edge of the limit shape.

This name can be informally justified as follows. Instead of looking at the rightmost particle
in our exponential jump model, consider the model with just one particle. Then (1 − q)ξ(y) is
the rate with which this particle decides to leave a location y, and 1

(1−q)ξ(y) is the mean time this

single particle spends at y. In the limit as λ→ +∞ (i.e., as the travel distance goes to zero), the
integral in the right-hand side of (2.8) represents the scaled time it takes to reach location xe.
Equating this time with τ determines the asymptotic location of this single particle.

Let us also denote for all x > 0:

τe(x) :=

∫ x

0

dy

(1− q)ξ(y)
; (2.9)

this is the time at which the location x becomes the edge.

Proposition 2.5. Fix τ > 0. For any x ∈ (0, xe), the equation

τw =

∫ x

0
φ2

(
w

ξ(y)

)
dy (2.10)

on w ∈ (0,W◦x) has a unique root which we denote by ω◦τ,x. For a fixed x the function τ 7→ ω◦τ,x
is strictly increasing, and ω◦τe(x),x = 0, limτ→+∞ω

◦
τ,x =W◦x. Moreover, for a fixed τ the function

x 7→ ω◦τ,x is strictly decreasing, and ω◦τ,xe(τ) = 0.

Note that equation (2.10) can have other roots outside the interval w ∈ (0,W◦x). We prove
Proposition 2.5 in Section 4.2. We are now in a position to describe the limit shape:
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Definition 2.6 (Limit shape). The limit shape H(τ, x) for (τ, x) ∈ R2
≥0 is defined as follows:

H(τ, x) :=


+∞, if x = 0 and τ ≥ 0;

0, if x ≥ xe(τ);

τ min
(
ω◦τ,x,Wx

)
−
∫ x

0
φ1

(
min(ω◦τ,x,Wx)

ξ(y)

)
dy, if τ > 0 and 0 < x < xe(τ).

(2.11)

From the very definition of H(τ, x) it is possible to deduce the following properties one naturally
expects of a limiting height function (see Section 4.2 for the proof of Proposition 2.7):

Proposition 2.7. For any fixed τ > 0, the function x 7→ H(τ, x) of Definition 2.6 is left contin-
uous, decreasing for x ∈ R>0, strictly decreasing for x ∈ (0, xe(τ)), and H(τ, xe(τ)) = 0.

The law of large numbers stating that H(τ, x) of Definition 2.6 is indeed the limit of the
rescaled random height function λ−1hX(τλ)(x) as λ → +∞ would follow from Theorem 2.12
below. Modulo this law of large numbers, we can check that the limit shape satisfies the partial
differential equation (2.4) explained above via hydrodynamic-type arguments:

Proof of Theorem 2.2 modulo Theorem 2.12. When there are no roadblocks, we have Wx =
W◦x > ω◦τ,x, and so the limit shape is given for 0 < x < xe(τ) by

H(τ, x) = τω◦τ,x −
∫ x

0
φ1

(
ω◦τ,x
ξ(y)

)
dy.

One can directly check by differentiating this expression (see Proposition B.5 for details on com-
putations) that this function satisfies (2.4), as desired. �

Remark 2.8. When ω◦τ,x > Wx, one can write down partial differential equations for H(τ, x)
different from (2.4) using the explicit formula (2.11). Fix x ∈ R>0 and assume that there are no
roadblocks at x. In particular, this implies that Wx is constant in a neighborhood of x. Then in
this neighborhood we have:

∂H(τ, x)

∂τ
=Wx,

∂H(τ, x)

∂x
= −φ1

(
Wx

ξ(x)

)
.

These equations are simpler than (2.4) and in particular imply that the speed of growth of H(τ, x)
at x is constant. Moreover, if ξ is constant in a neighborhood of x, then the limit shape is linear
in this neighborhood (cf. the leftmost part of the limit shape in Figure 2).

2.4. Asymptotic fluctuations. To formulate our main result on fluctuations of the random
height function we need to recall the standard notation of limiting fluctuation distributions. We
define the Fredholm determinant det(1 + K) corresponding to a kernel K(z, w) on a certain
contour γ in the complex plane via the expansion

det(1 +K) = 1 +
∞∑

M=1

1

M !

∫
γ

dz1

2πi
. . .

∫
γ

dzM
2πi

M
det
i,j=1

[
K(zi, zj)

]
. (2.12)

One may regard (2.12) as a formal series, but we will be interested in situations when it converges
numerically. In particular, this happens when K is trace class. We refer to [Bor10] for a detailed
discussion.
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Definition 2.9. 1. The GUE Tracy–Widom distribution function [TW94] is defined as

F2(r) := det (1− KAi)L2(r,+∞) ,

where KAi(v, v
′) is the Airy kernel:

KAi(v, v
′) =

1

(2πi)2

∫ e2πi/3∞

e−2πi/3∞
dw

∫ eπi/3∞

e−πi/3∞
dz

1

z − w
exp

{
z3

3
− w3

3
− zv + wv′

}
,

where the integration contours do not intersect.
2. The Baik–Ben Arous–Péché (BBP) distribution function introduced in [BBP05] is defined

for any m ∈ Z≥1 and b = (b1, . . . , bm) ∈ Rm as

FBBP,m,b(r) := det (1− KBBP,m,b)L2(r,+∞) ,

where the kernel has the form

KBBP,m,b(v, v′) =
1

(2πi)2

∫ e2πi/3∞

e−2πi/3∞
dw

∫ eπi/3∞

e−πi/3∞
dz

1

z − w
exp

{
z3

3
− w3

3
− zv + wv′

} m∏
i=1

z − bi
w − bi

.

Here the integration contours do not intersect and pass to the right of the points b1, . . . , bm.
When m = 0, the BBP distribution coincides with the GUE Tracy–Widom distribution.

3. Let Gm(r) be the distribution function of the largest eigenvalue of a m ×m GUE random

matrix H = [Hij ]
m
i,j=1, H∗ = H, ReHij ∼ N

(
0,

1+1i=j
2

)
, i ≥ j, ImHij ∼ N

(
0, 1

2

)
, i > j.

When m = 1, this is the standard Gaussian distribution.

Definition 2.10 (Phases of the limit shape). Depending on the cases coming from taking the
minimum in (2.11), we say that a point (τ, x) belongs to one of the phases according to the
following table:

(τ, x) is in the Tracy–Widom phase ω◦τ,x <Wx

(τ, x) is a transition point ω◦τ,x =Wx

(τ, x) is in the Gaussian phase ω◦τ,x >Wx

Note that the root ω◦τ,x ∈ (0,W◦x) afforded by Proposition 2.5 does not depend on which phase
the point (τ, x) is in, and also does not depend on the roadblocks or the value ξ(0). On the other
hand, the definition of Wx in (2.6) includes the values of ξ at 0 and at all roadblocks b ∈ B,
b < x.

If (τ, x) is a transition point or is in the Gaussian phase, denote

mx := #
{
y ∈ {0} ∪ {b ∈ B : 0 < b < x} : ξ(y) =Wx

}
. (2.13)

Remark 2.11. Proposition 2.5 implies that if a point (τ, x) is in the Gaussian phase, then it
“stays there forever”: for any τ ′ > τ the point (τ ′, x) is in the Gaussian phase as well.

Theorem 2.12 (Asymptotic fluctuations). 1. If (τ, x) is in the Tracy–Widom phase, then

lim
λ→+∞

P

(
hX(τλ)(x)− λH(τ, x)

λ
1
3ω◦τ,xd

TW
τ,x

≥ −r

)
= F2(r), r ∈ R,

where dTW
τ,x depends on the parameters of the model as in (4.22).

2. If (τ, x) is a transition point, then

lim
λ→+∞

P

(
hX(τλ)(x)− λH(τ, x)

λ
1
3ω◦τ,xd

TW
τ,x

≥ −r

)
= FBBP,mx,b(r), r ∈ R,



INHOMOGENEOUS EXPONENTIAL JUMP MODEL 12

where mx is given in (2.13), b = (0, 0, . . . , 0), and dTW
τ,x is given by (4.22).

3. If (τ, x) is in the Gaussian phase, then

lim
λ→+∞

P

(
hX(τλ)(x)− λH(τ, x)

λ
1
2WxdG

τ,x

≥ −r

)
= Gmx(r), r ∈ R,

where mx is given in (2.13) and dG
τ,x is given by (4.27).

Remark 2.13. By changing x, τ , and ξ on scales λ−
1
3 and λ−

2
3 one can obtain different (in

particular, nonzero) parameters b in the BBP distribution in the second part of Theorem 2.12,
but for simplicity we will not discuss this.

2.5. Traffic jams. Theorem 2.12 shows that points whereω◦τ,x =Wx correspond to phase transi-
tions in the fluctuation exponents and the fluctuation behavior. Note that the limit shape H(τ, x)
is continuous (in x) at these points. On the other hand, the presence of spatial inhomogeneity
(coming from changes in the speed function ξ as well as from roadblocks) makes it possible for
H(τ, x) to become discontinuous. We will call such discontinuity points the traffic jams as they
correspond to macroscopic buildup of particles. An example of a traffic jam is given in Figure 2.

Let us discuss two mechanisms for creating traffic jams. Fix τ > 0 and σ ∈ (0, xe(τ)) such that
there are no roadblocks at σ and, moreover, ξ(x) is continuous at x = σ. Then H(τ, x) is also
continuous at x = σ. A traffic jam at σ can be created by either:

• Inserting a new roadblock at σ, i.e., modifying B∨ := B ∪ {σ}, taking

ξ∨(x) := ξ(x)1x 6=σ + α1x=σ, 0 < α < ω◦τ,x,

and arbitrary p(σ) ∈ (0, 1). Then the limit shape H∨ of the modified model will have a
traffic jam at σ with Gaussian phase to the right of it.
• Inserting a slowdown in the speed function, i.e., changing the values of ξ(x) on a whole

interval (σ, σ1) to the right of σ:

ξ∨(x) := ξ(x)1x/∈(σ,σ1) + κ1x∈(σ,σ1), 0 < κ < ω◦τ,x.

Then the modified limit shape H∨ will have a traffic jam at σ and the Tracy–Widom phase
to the right of it.

Clearly, H∨(τ, x) = H(τ, x) for all x < σ. See Figure 3 for examples. Observe that if a roadblock
does not lead to a traffic jam (i..e, if α ≥ ω◦τ,x), then it does not change the limit shape at all.4

On the other hand, if a slowdown (or a speedup) does not make the limit shape discontinuous
(i.e., if κ ≥ ω◦τ,x) then its derivatives at x = σ may become discontinuous.

While computer experiments suggest that the fluctuations on both sides of a traffic jam (of any
of the two above types) are uncorrelated, the microscopic behavior of particles is expected to be
very different depending on the type of the jam. Namely, if a jam at σ is caused by a roadblock
then there should be one very large stack of particles located precisely at σ. On the other hand,
if a jam is caused by a slowdown then the buildup of particles should happen to the right of σ
(but very close to it), and locations of large stacks of particles there will be random. A more
detailed study of the behavior of the model close to a traffic jam will be performed in a future
publication.

4Though for α = ω◦τ,x this roadblock changes the fluctuation distribution at x = σ from the GUE Tracy–Widom

to a BBP one.
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(a) (b)

σ

TW

G
TW σ

TW

TW

(c) (d)

b σ

TW

G

G TW b σ

TW

TW

G

Figure 3. Examples of traffic jams obtained by inserting a roadblock at σ (a,c)
or a slowdown on (σ,+∞) (b,d). There is an additional roadblock at b in pictures
(c,d) generating a Gaussian phase before the jam at σ. The speed function ξ(x) in
all examples is piecewise constant. Dashed and solid curves are limit shapes before
and after creating a traffic jam at σ, respectively. Tracy–Widom and Gaussian
phases related to solid curves are also indicated. Solid red dots stand for points
where a curved shape is tangent to a straight line.

2.6. Pre-limit Fredholm determinant. The starting point of our asymptotic analysis is the
following Fredholm determinantal formula for the q-Laplace transform of the height function hX(t)

of the exponential jump model (before the λ→ +∞ limit):

Theorem 2.14. Fix t > 0 and x ∈ R>0. We have for any ζ ∈ C \ R≥0:5

E
1(

ζqhX(t)(x); q
)
∞

= det
(
1 +Kζ

)
L2(Ca,ϕ)

, (2.14)

where the contour Ca,ϕ is given in Definition 3.6 below with 0 < a < Wx and ϕ ∈ (0, π/2). The
kernel Kζ in (2.14) is

Kζ(w,w
′) :=

1

2πi

∫
Dw

Γ(−u)Γ(1 + u)(−ζ)u
g(w)

g(quw)

du

quw − w′
, w, w′ ∈ Ca,ϕ, (2.15)

with the contour Dw as in Definition 3.10 below, and

g(w) :=
1

(w/ξ(0); q)∞

∏
b∈B, b<x

(wp(b)/ξ(b); q)∞
(w/ξ(b); q)∞

exp

{
−tw + λ

∫ x

0
φ0

(
w

ξ(y)

)
dy

}
. (2.16)

5Throughout the paper we use the q-Pochhammer symbol notation (z; q)m =
∏m−1
i=0 (1 − zqi), m ∈ Z≥0. Since

0 < q < 1 it makes sense for m = +∞, too.
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We prove Theorem 2.14 in Section 3. The asymptotic analysis of the Fredholm determinantal
formula (2.14) performed in Section 4 leads to our main result, Theorem 2.12.

3. From a vertex model to the exponential model

In this section we explain how the inhomogeneous exponential jump model defined in Sec-
tion 2.1 arises as a degeneration of the stochastic higher spin six vertex model studied in [Bor17],
[CP16], [BP16a]. We also employ the q-moment formulas obtained in the latter paper to prove
our main pre-limit Fredholm determinantal formula (Theorem 2.14).

3.1. Stochastic higher spin six vertex model. For future convenience we describe the sto-
chastic higher spin six vertex model in the language of particle systems. Moreover, to avoid
unnecessary parameters and limit transitions we only focus on the time-homogeneous model with
the step Bernoulli boundary condition (about the name see Section 3.2 below). This model is a
discrete time Markov chain {Xv(t)}t=0,1,... on the space of finite particle configurations Conf•(Z≥1)
depending on the parameters

q ∈ (0, 1); u ∈ (0,+∞); ξ(0) ∈ (0,+∞); ξi ∈ (0,+∞), si ∈ (−1, 0), i ∈ Z≥1,
(3.1)

such that ξi and si are uniformly bounded away from the endpoints of their corresponding in-
tervals. The parameter ξ(0) will eventually become the rate at which new particles are added in
the inhomogeneous exponential jump model, so we can already use this notation here.

Definition 3.1 (Stochastic higher spin six vertex model). Under Xv(t) during each step of the
discrete time, the particle configuration η = (η(1), η(2), . . .) (where η(i) ≥ 0 is the number of
particles at location i ∈ Z≥1) is randomly updated to

η′ = (η′(1), η′(2), η′(3), . . .) = (η(1)− h(1) + h(0), η(2)− h(2) + h(1), η(3)− h(3) + h(2), . . .) ,

where h(0) ∈ {0, 1} is the number of new particles entering the system, and h(i) ∈ {0, 1}, i ≥ 1,
is the number of particles which moved from location i to location i+ 1 during this time step (so
particles move only to the right). The update propagates from left to right and is governed by
the following probabilities (where i = 1, 2, . . .):

P (h(0) = k) =
ξ(0)u

1 + ξ(0)u
1k=1 +

1

1 + ξ(0)u
1k=0; (3.2)

P (h(i) = k | h(i− 1) = 0) =
−ξisiu(1− qη(i))

1− ξisiu
1k=1 +

1− ξisiuqη(i)

1− ξisiu
1k=0; (3.3)

P (h(i) = k | h(i− 1) = 1) =
s2i q

η(i) − ξisiu
1− ξisiu

1k=1 +
1− s2i q

η(i)

1− ξisiu
1k=0. (3.4)

Because the configurations are finite and all weights in (3.3)–(3.4) are uniformly bounded away
from 0 and 1, almost surely there exists M such that h(j) = 0 for all j > M , which means that
the random update η 7→ η′ eventually stops. See Figure 4.

Probabilities (3.3)–(3.4) have a very special property which justifies their definition: they
satisfy (a version of) the Yang–Baxter equation. We do not reproduce it here and refer to

[Man14], [Bor17], [CP16], [BP16b], [BP16a] for details in the context of Uq(ŝl2) vertex models,
and to [Bax07] for a general background. The Yang–Baxter equation is a key tool used in [BP16a]
to compute averages of certain observables of the higher spin six vertex model in a contour integral
form which we recall in Section 3.5 below.
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probabilities
1− ξisiuqη(i)

1− ξisiu
−ξisiu(1− qη(i))

1− ξisiu
s2i q

η(i) − ξisiu
1− ξisiu

1− s2i q
η(i)

1− ξisiu
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1
)

=
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h
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)
=
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−

1
)

=
0

h
(i

)
=

1
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(i
−

1
)

=
1

h
(i

)
=

1

ih
(i
−

1
)

=
1

h
(i

)
=

0

vertex
configurations

η(i)

0

η′(i) = η(i)

0

η(i)

0

η′(i) = η(i)− 1

1 1

η(i)

η′(i) = η(i)

1

η(i)

1

η′(i) = η(i) + 1

0

Figure 4. Probabilities (3.3)–(3.4) of individual moves in the particle system
Xv(t) and their interpretation in terms of vertex weights: vertical arrows corre-
spond to particles and horizontal arrows — to their moves during one step of the
discrete time.

Setting s2i ≡ 1/q turns Xv(t) into the stochastic six vertex model in which at most one particle
per location i ∈ Z≥1 is allowed. If a new particle from i− 1 decides to move on top of a particle
already present at i, then the particle at i gets displaced to the right (i.e., if η(i) = 1 and
h(i − 1) = 1, then h(i) = 1 with probability 1). This model was introduced in [GS92], and its
asymptotic behavior was investigated in [BCG16], [AB16], [Agg16], [Bor16].

3.2. Remark. Boundary conditions. The step Bernoulli boundary condition for Xv(t) cor-
responds to particles entering the system at location 1 independently at each time step with
probability ξ(0)u/(1 + ξ(0)u), see (3.2). The term follows [AB16] where this type of bound-
ary condition for the stochastic six vertex model was connected with the step Bernoulli (also
sometimes called half stationary) initial configuration for the ASEP [TW09b]. Formulas for the
q-moments are also available for the step boundary condition corresponding to P (h(0) = 1) = 1
in (3.2) (i.e., a new particle enters at location 1 at every time step), see [BP16a] or [OP16].

The step boundary condition on Z≥1 can be degenerated to the step Bernoulli one on Z≥2 in
two ways (related via the fusion procedure [KRS81], [CP16]). One way involves sending s1 → 0
and ξ1 → +∞ such that α = −ξ1s1 > 0 is fixed. In this limit we get the system with the step
Bernoulli boundary condition on Z≥2, in which the role of ξ(0) is played by α.

Another way [BP16a, Section 6.6] deals with time-homogeneous parameters u1, u2, . . . (with
ut+1 used during time step t→ t+1). Specializing the first K of them into a geometric progression,
formally putting ξ1 = s1, and sending K → +∞ places infinitely many particles at location 1.
Probabilities (3.3)–(3.4) with η(1) = +∞ reduce to (3.2) with the role of ξ(0) played by −s21
(which is assumed positive), and this also leads to a system with the step Bernoulli boundary
condition on Z≥2.

This second way suggests that in the process Xv(t) on Z≥1 described in Section 3.1 one can
for convenience put an infinite stack of particles at location 0, similarly to the exponential model
(see Section 2.1).
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3.3. Half-continuous vertex model. Let us take the limit as u ↘ 0 and t → +∞ so that
ut → t ∈ R≥0. Here t is the rescaled continuous time. The expansions as u ↘ 0 of probabilities
(3.2)–(3.4) are

P (h(0) = k) =
(
ξ(0)u+O(u2)

)
1k=1 + (1 +O(u)) 1k=0; (3.5)

P (h(i) = k | h(i− 1) = 0) =
(
−ξisiu(1− qη(i)) +O(u2)

)
1k=1 + (1 +O(u)) 1k=0; (3.6)

P (h(i) = k | h(i− 1) = 1) =
(
s2i q

η(i) +O(u)
)

1k=1 +
(

1− s2i q
η(i) +O(u)

)
1k=0. (3.7)

These expansions imply that the u↘ 0 limit leads to the following system:

Definition 3.2 (Half-continuous vertex model). The half-continuous stochastic higher spin six
vertex model (or the half-continuous vertex model, for short) is a continuous time Markov process
{Xhc(t)}t≥0 on Conf•(Z≥1) defined as follows. Initially all locations i ∈ Z≥1 are empty, and
there is an infinite stack of particles at location 0. Almost surely at most one particle can “wake
up” and start moving in an instance of continuous time. Particles wake up by either leaving the
infinite stack at 0 at rate ξ(0), or by leaving a stack of η(i) particles at some location i ∈ Z≥1

at rate ξi(−si)(1 − qη(i)). The wake up events at different locations are independent and have
exponential waiting times.

Every particle which wakes up at some time moment t ≥ 0 then instantaneously jumps to the
right according to the following probability:

P
(
the moving particle ends exactly at location j > i | it started at i ∈ {0} ∪ Z≥1

)
= s2i+1 . . . s

2
j−1q

ηXhc(t)(i+1)+...+ηXhc(t)(j−1)
(

1− s2jq
ηXhc(t)(j)

)
, (3.8)

where j > i is arbitrary and the quantities ηXhc(t) correspond to the configuration of particles
before the moving particle started its jump. In words, to move past any location k > i the moving

particle flips a coin with probability of success s2kq
ηXhc(t)(k). If the coin comes up a success, the

particle continues to move, otherwise it stops at location k.
The process Xhc(t) depends on q, ξ(0), and the parameters ξi, si, where i ≥ 1.

The fact that Xhc(t) is a continuous time limit of Xv(t) follows by a standard application of a
Poisson-type limit theorem, much like how a discrete time random walk on Z with jumps ∈ {0, 1}
and with small probability of a jump by 1 can be approximated in the continuous time limit by
a Poisson jump process. Indeed, this is because up to any time t = btu−1c the total number
of particles in Xv(t) can be approximated by a Poisson random variable with parameter ξ(0)t,
and conditioned on having a given number of particles the discrete time finite particle system is
approximated by the corresponding continuous time finite particle system.

Remark 3.3. A similar half-continuous limit of the stochastic six vertex model (the case s2i ≡ 1/q)
was considered recently in [BBW16], [Gho17], see also [BCG16].

3.4. Limit to continuous space. Consider the scaling limit of discrete to continuous space,
Z≥1 3 i 7→ iε ∈ R>0 as ε ↘ 0. Let us show that under this limit the process Xhc(t) becomes
the inhomogeneous exponential jump model X(t) described in Section 2.1. Let us first describe
the scaling of parameters of Xhc(t) assuming that the parameters λ, ξ(x), B, and p(b), b ∈ B, of
X(t) are given. Denote

Bε :=
{
bε−1bc : b ∈ B

}
⊂ Z≥1, (3.9)
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and put
s2i = e−ελ, −ξisi = ξ(iε), for i ∈ Z≥1 \Bε;

s2i = p(b), −ξisi = ξ(b), for i = bε−1bc ∈ Bε.
(3.10)

Denote this ε-dependent process by Xε
hc(t). Because the rates at which new particles are added

to both Xε
hc(t) and X(t) are the same, we can couple these processes so that they have the same

Poisson number of particles at each time t ≥ 0. This reduces the question of convergence of
{Xε

hc(t)}t≥0 to {X(t)}t≥0 to finite particle systems. Because ξ(x) is piecewise continuous with
left and right limits, the rates at which particles decide to start moving in Xε

hc are close to those
in X. To conclude the convergence of {Xε

hc(t)}t≥0 to {X(t)}t≥0 it remains to observe that the
limit as ε↘ 0 of traveling probabilities (3.8) gives rise to (2.3), which is straightforward.

Let us summarize the development of Sections 3.1 to 3.4:

Proposition 3.4. Under the sequence of limit transitions{
Xv(t)

}
t=0,1,...

−−−−−−−−−−−−−−→
speed up time as
t = btu−1c, u↘ 0

{
Xhc(t)

}
t≥0
−−−−−−−−−−−−−−−−−−−−−−−−−−→
rescale parameters ξi, si, i ≥ 1,
as in (3.9)–(3.10), and rescale
the space Z≥1 to R>0

{
X(t)

}
t≥0

the stochastic higher spin six vertex model with the step Bernoulli boundary condition described
in Section 3.1 converges to the inhomogeneous exponential jump model defined in Section 2.1.

3.5. q-moments for the half-continuous model. Here and in Sections 3.6 to 3.8 below we
prove Theorem 2.14. Except passing to the continuous space in the last step, the proof is quite
similar to the treatment of q-moments and q-Laplace transforms performed in [BCF14], [FV15],
[Bar15]. However, to make the present paper self-contained we discuss all the necessary steps,
which are as follows:

1. First, in this subsection we recall a nested contour integral formula for the q-moments of the
height function of the stochastic higher spin six vertex model, and take a (straightforward)
limit to the q-moments in the half-continuous model.

2. In Section 3.6 we rewrite these q-moments for the half-continuous model in terms of contour
integrals over certain infinite contours (which will be convenient for asymptotic analysis in
Section 4).

3. In Section 3.7 we turn the q-moment formulas for the half-continuous model into a Fredholm
determinantal formula for this model. This requires some technical work to justify choices
of integration contours which will be optimal for asymptotics.

4. Finally, in Section 3.8 we pass to the limit to the continuous space, and obtain a Fredholm
determinantal formula for the q-Laplace transform of the height function in the inhomoge-
neous exponential jump model.

Let the height function hXhc(t)(k), k ∈ Z≥0, of the process on the discrete space be defined
similarly to (2.1). We have hXhc(t)(0) = +∞, and hXhc(t)(M) = 0 for M large enough. The next
proposition is our first step towards Theorem 2.14.

Proposition 3.5. Assume that the parameters of the half-continuous model Xhc(t) satisfy

min

(
ξ(0), inf

j≥1
{−ξjsj}

)
> q ·min

(
ξ(0), sup

j≥1
{−ξjsj}

)
. (3.11)

Then the q-moments of the height function of Xhc(t) at any k ∈ Z≥1 are given by
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−ξjsj

ξ(0)

0

w3

w2

w1

Figure 5. A possible choice of nested integration contours in (3.12) for ` = 3.
The contours qw3 and q2w3 are shown dotted.

E q`hXhc(t)(k) = (−1)`q
`(`−1)

2

∮
dw1

2πi
. . .

∮
dw`
2πi

∏
1≤A<B≤`

wA − wB
wA − qwB

×
∏̀
i=1

 e(q−1)twi

wi(1− wi/ξ(0))

k−1∏
j=1

ξjsj + s2jwi

ξjsj + wi

 , (3.12)

where ` = 1, 2, . . ., the integration contours are positively oriented simple closed curves which
encircle the poles ξ(0) and −ξjsj, j = 1, 2, . . ., but not 0, and the contour for wA contains the
contour for qwB for all A < B (see Figure 5).

Proof. We start with the formula of [BP16a, Corollary 10.3] which gives q-moments of the height
function of the discrete time stochastic higher spin six vertex model with the step Bernoulli
boundary condition on Z≥2. However, since our process Xv(t) lives on Z≥1, we need to shift the
parameters by 1. Thus, the formula yields for any ` ≥ 1 and k ≥ 0:

E q`hXv(t)(k) = (−1)`q
`(`−1)

2

∮
dw1

2πi
. . .

∮
dw`
2πi

∏
1≤A<B≤`

wA − wB
wA − qwB

×
∏̀
i=1

 1

wi(1− wi)

k−1∏
j=0

ξj − sjwi

ξj − s−1
j wi

(
1− quwi
1− uwi

)t
 , (3.13)

where ξ0 ≡ s0 (and −s20 = ξ(0) > 0), the integration contours are positively oriented and closed,
encircle {ξisi}i=0,1,..., leave outside 0, 1 and u−1, and the contour for wA contains the contour

for qwB for all A < B. These contours exist thanks to (3.11). Formula (3.13) is obtained from a
q-moment formula for the step boundary condition [BP16a, Theorem 9.8] via the second of the
limit transitions mentioned in Section 3.2.

Let us now assume that k ≥ 1 since the case k = 0 will not be needed for our asymptotic
analysis. When k ≥ 1 we get the following cancellation:

1

1− w
ξ0 − s0w

ξ0 − s−1
0 w

=
s20

s20 − w
=

1

1 + w/ξ(0)
.

Let us change the variables as wi → −wi. Then (3.13) turns into
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E q`hXv(t)(k) = (−1)`q
`(`−1)

2

∮
dw1

2πi
. . .

∮
dw`
2πi

∏
1≤A<B≤`

wA − wB
wA − qwB

×
∏̀
i=1

 1

wi(1− wi/ξ(0))

k−1∏
j=1

ξjsj + s2jwi

ξjsj + wi

(
1 + quwi
1 + uwi

)t
 ,

with the integration contours as in Figure 5. Putting t = btu−1c and taking u ↘ 0 (note that
this is allowed by the integration contours) leads to the desired formula for the q-moments of the
height function of the half-continuous model Xhc(t). �

3.6. Rewriting q-moment formulas. Let us introduce new integration contours:

Definition 3.6. Let Ca,ϕ, a ∈ (0,+∞), ϕ ∈ (0, π/2), be the contour including two rays at the
angles ±ϕ with the real line which meet at the point a, and such that the imaginary part decreases
along this contour. Namely,

Ca,ϕ :=
{
a− iyeiϕ sgn(y) : y ∈ R

}
. (3.14)

See Figure 6 for an illustration.

−ξjsj

ξ(0)

0

a3a2a1

ϕ

w1

w2

w3

Figure 6. A possible choice of contours Cai,ϕ, i = 1, 2, 3, in Proposition 3.7 for
` = 3. The contours qCa3,ϕ and q2Ca3,ϕ are shown dotted. The contour

Proposition 3.7. If the parameters of the half-continuous vertex model satisfy (3.11), then the

q-moments E q`hXhc(t)(k), k, ` ≥ 1, t > 0, are given by the same formula as in the right-hand side
of (3.12), but with wj integrated over Caj ,ϕ, where ϕ ∈ (0, π/2) and a1, . . . , a` are such that

0 < aj < qaj+1, j = 1, . . . , `− 1; a` < min

(
ξ(0), inf

j≥1
{−ξjsj}

)
.

Proof. This statement is established in the same way as [BCF14, Lemma 4.10], by expanding
the closed contours for w1, . . . , w` in (3.12) one by one to the right, and using the fact that the

exponent e(q−1)t
∑
i wi in the integrand makes the integrals over the far right parts of the contours

negligible. �
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Proposition 3.8. The q-moments E q`hXhc(t)(k), k, ` ≥ 1, t > 0, of the half-continuous vertex
model can be rewritten in the following form with all integrals over one and the same contour
Ca,ϕ with ϕ ∈ (0, π/2) and 0 < a < min

(
ξ(0), infj≥1 {−ξjsj}

)
:

E q`hXhc(t)(k) = (q; q)`
∑
µ``

µ=1m12m2 ...

1

m1!m2! · · ·
1

(2πi)l(µ)

∫
. . .

∫
l(µ)

det
i,j=1

[
1

wiqµi − wj

]

×
l(µ)∏
j=1

fhc(wj)f
hc(qwj) . . . f

hc(qµj−1wj)dwj , (3.15)

where the sum is over all partitions µ of ` (i.e., ` =
∑

i µi) having m1 parts equal to 1, m2 parts
equal to 2, etc., l(µ) denotes the number of nonzero parts in µ, and

fhc(w) :=
e(q−1)tw

1− w/ξ(0)

k−1∏
j=1

ξjsj + s2jw

ξjsj + w
. (3.16)

Proof. This is [BC14, Proposition 3.2.1] or [BCPS15, Proposition 7.4]. �

The q-moment formula in Proposition 3.8 implies that we can drop condition (3.11) on the
parameters ξ(0), ξj , sj , j ≥ 1 (which was present in contour integral formulas with bounded
contours coming from [BP16a]). From now on we only assume that ξ(0) > 0, ξj > 0 are
uniformly bounded away from 0 and +∞, and sj ∈ (−1, 0) are uniformly bounded away from −1
and 0, and with these assumptions the q-moment formula (3.15) continues to hold.

3.7. Fredholm determinantal formulas for the half-continuous model. Our first Fred-
holm determinantal formula follows by taking a generating function of the q-moments given in
Proposition 3.8:

Proposition 3.9. Fix t > 0 and k ∈ Z≥1. For any 0 < a < min
(
ξ(0), infj≥1 {−ξjsj}

)
, ϕ ∈

(0, π/2), and ζ ∈ C with sufficiently small |ζ| we have

E
1(

ζqhXhc(t)(k); q
)
∞

= det
(
1 +K

(1),hc
ζ

)
L2(Z>0×Ca,ϕ)

, (3.17)

where the kernel K
(1),hc
ζ is given by

K
(1),hc
ζ (n1, w1;n2, w2) =

ζn1fhc(w1)fhc(qw1) · · · fhc(qn1−1w1)

qn1w1 − w2
, (3.18)

with fhc(w) defined in (3.16).

The Fredholm determinant of a kernel on Z>0×Ca,ϕ is defined similarly to (2.12), but along with

integrating determinants of K
(1),hc
ζ of sizes M = 1, 2, . . . in the continuous variables w1, . . . , wM ∈

Ca,ϕ we also sum them over the discrete variables n1, . . . , nM ∈ Z>0. See also (3.26) below.

Proof. We first use the q-binomial theorem [GR04, (1.3.2)] to write

E
1

(ζqhXhc(t)(k); q)∞
=
∞∑
`=0

ζ` E q`hXhc(t)(k)

(q; q)`
.
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Because q`hXhc(t)(k) ≤ 1, the series converges for small enough |ζ|, which justifies the interchange

of the summation and the expectation. Using the formula of Proposition 3.8 for E q`hXhc(t)(k) we
can reorganize the above summation (see [BC14, Proposition 3.2.8] for details) and write

E
1

(ζqhXhc(t)(k); q)∞
=

∞∑
M=0

1

M !

∑
n1,...,nM∈Z>0

∫
Ca,ϕ

. . .

∫
Ca,ϕ

M
det
i,j=1

[
1

qniwi − wj

]

×
M∏
j=1

ζnjfhc(wj)f
hc(qwj) . . . f

hc(qnj−1wj)
dwj
2πi

. (3.19)

This coincides with the Fredholm expansion of det
(
1+K

(1),hc
ζ

)
L2(Z>0×Ca,ϕ)

in the right-hand side

of (3.17) with the kernel given by (3.18). To finish the proof and show that identity (3.17) holds
numerically for small |ζ|, we need to justify that the expansion in (3.19) converges absolutely.
First, observe that fhc(qnw) given by (3.16) is bounded on the contour Ca,ϕ uniformly in n ≥ 0,

and fhc(w) decays exponentially as |w| grows. This implies that6

|fhc(wj)f
hc(qwj) . . . f

hc(qnj−1wj)| ≤ B
nj
1 e−cRe(wj). (3.20)

Next, observe that minw1,w2∈Ca,ϕ |qnw1 − w2| = (1− qn)a sinϕ ≥ (1− q)a sinϕ for any n ∈ Z>0,
and so by the Hadamard’s inequality we have∣∣∣∣ M

det
i,j=1

[
1

qniwi − wj

]∣∣∣∣ ≤ BM
2 MM/2.

Therefore, the sum of integrals of the absolute values in the right-hand side of (3.19) can be
estimated as ∑

M≥0

BM
2 MM/2

M !

∑
n≥1

Bn
1 ζ

nB3

M

,

where B3 arises from integrating the exponent in (3.20). The inside geometric series in n converges
for sufficiently small |ζ|, and the series in M converges thanks to the factorial in the denominator.
This completes the proof. �

Following [BCF14], let us define another contour which will play a role in the next Fredholm
determinantal formula.

Definition 3.10. For R, d > 0 let

DR,d :=
(
R−i∞, R−id

]
∪
(
R−id, 1

2−id
]
∪
(

1
2−id, 1

2 +id
]
∪
(

1
2 +id,R+id

]
∪
(
R+id,R+i∞

)
, (3.21)

oriented so that the imaginary part does not decrease along DR,d. Now, for every w ∈ Ca,ϕ,
where a > 0, ϕ ∈ (0, π/2), let us choose R(w), d(w) such that:

• For any u ∈ DR(w),d(w) we have arg(w(qu − 1)) ∈ (π/2 + b, 3π/2− b), where b = π/4− ϕ/2.
• For any u ∈ DR(w),d(w) the point quw stays to the left of the contour Ca,ϕ.

Denote the resulting contour DR(w),d(w) simply by Dw. By [BCF14, Remark 4.9], the contour

Dw exists, and for large |w| it suffices to take d(w) ∼ Bd|w|−1 and R(w) ∼ BR log |w| for some
constants Bd, BR > 0. See Figure 7 for an illustration.

6Here and below B,B1, B2, . . . and c, c′, c′′, c1, c2, . . . are positive constants which may depend on q, the param-
eters of the models, or the data in the formulation of the statements (such as the angle ϕ, etc.).
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DR,d

2d

R

1
2 qR

1q
1
2

qu, u ∈ DR,d

angle < b = π
4 −

ϕ
2

Figure 7. Left: the contour DR,d. Right: the points qu for u ∈ DR,d. The angle
indicated in the picture should be less than b = π/4− ϕ/2 in order to satisfy the
condition arg(w(qu − 1)) ∈ (π/2 + b, 3π/2− b).

Proposition 3.11. Fix t > 0 and k ∈ Z≥1. We have for any ζ ∈ C \ R≥0:

E
1(

ζqhXhc(t)(k); q
)
∞

= det
(
1 +K

(2),hc
ζ

)
L2(Ca,ϕ)

, (3.22)

where the contour Ca,ϕ is given in Definition 3.6 with 0 < a < min
(
ξ(0), infj≥1 {−ξjsj}

)
and

ϕ ∈ (0, π/2). The kernel in (3.22) is

K
(2),hc
ζ (w,w′) =

1

2πi

∫
Dw

Γ(−u)Γ(1 + u)(−ζ)u
ghc(w)

ghc(quw)

du

quw − w′
, (3.23)

with the contour Dw as in Definition 3.10 and where ghc(w) is expressed through fhc(w) (3.16)
via

ghc(w) := fhc(w)fhc(qw) . . . =
e−tw

(w/ξ(0); q)∞

k−1∏
j=1

(−wsjξ−1
j ; q)∞

(−ws−1
j ξ

−1
j ; q)∞

. (3.24)

Proof. Step 1. We first prove (3.22) for small |ζ| by rewriting the previous formula of Propo-
sition 3.9, and then will analytically continue in ζ using the properties of the contour Ca,ϕ. To
rewrite the sums coming from the Z>0 part of the Fredholm determinant in (3.17), we use the
Mellin–Barnes summation formula (e.g., [BCF14, Lemma 7.1]) which follows from the fact that
Resu=n Γ(−u)Γ(1 + u) = (−1)n+1:

∞∑
n=1

F (qn)ζn =
1

2πi

∫
C1,2,...

Γ(−u)Γ(1 + u)(−ζ)uF (qu)du, |ζ| < 1, ζ /∈ R≥0, (3.25)

where the contour C1,2,... encircles points 1, 2, . . . and winds around them in the negative direction,
and encircles no other singularities of F (qu). For the above equality to hold, the series in the left-
hand side must converge, and the integral in the right-hand side must be able to be approximated
by integrals over a sequence of (negatively oriented) contours Ck, k = 1, 2, . . ., such that:

• Each contour Ck encircles 1, . . . , k and no other singularities of the integrand;
• The contours Ck partly coincide with C1,2,...;
• The integral over the symmetric difference of Ck and C1,2,... goes to zero as k→∞.
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The Fredholm determinant in the right-hand side of (3.17) looks as

det
(
1 +K

(1),hc
ζ

)
L2(Z>0×Ca,ϕ)

= 1 +
∞∑

M=1

1

M !

∑
σ∈S(M)

(−1)σ
M∏
j=1

∫
Ca,ϕ

dwj
2πi

∞∑
nj=1

ζnj

qnjwj − wσ(j)

ghc(wj)

ghc(qnjwj)
. (3.26)

We aim to apply (3.25) to each of the sums over nj above (which converge for sufficiently small
|ζ|, as follows from the proof of Proposition 3.9), that is, with

F (qu) = Fw,w′(q
u) :=

ghc(w)

(quw − w′)ghc(quw)
, (3.27)

where w,w′ ∈ Ca,ϕ are fixed. For that we define Ck to be a closed contour which coincides with
Dw of Definition 3.10 inside the disc of radius k + 1

2 centered at 0 and which is closed by an arc
of the corresponding circle, see Figure 8. The contour Dw will then serve as C1,2,....

Ck

2d

R

1
2

k k + 1

Csegk

Csegk

Carck

Figure 8. The contour Ck (solid) used in the proof of Proposition 3.11, and the
parts Csegk and Carck (dotted) of the symmetric difference between Ck and Dw.

Because of our definitions of Ca,ϕ and Dw, the contours Ck and Dw do not encircle any u
singularities of the integrand Γ(−u)Γ(1+u)(−ζ)uFw,w′(q

u) except for the poles of Γ(−u). Indeed,
the part of the plane to the right of Dw maps under u 7→ qu to the union of the disc and the
sector in Figure 7, right. Therefore, because quw lies to the left of Ca,ϕ 3 w′, the denominator

quw−w′ does not vanish for u to the right of Dw. Moreover, poles coming from ghc(quw) = 0 are
quw = −ξjs−1

j q−m, m ∈ Z≥0, and they also do not occur for u to the right of Dw because quw is

to the left of Ca,ϕ while the points −ξjs−1
j q−m are all to the right of Ca,ϕ.

Thus, to apply (3.25) to (3.26) it remains to show that the integrals over the symmetric
difference of Dw and Ck go to zero as k→ +∞. The symmetric difference contains two straight
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lines the union of which is denoted by Csegk and an arc denoted by Carck , see Figure 8. First, observe
that for fixed w,w′ ∈ Ca,ϕ the function Fw,w′(q

u) is uniformly bounded in u ∈ Csegk ∪ Carck .

Consider Csegk . We have |(−ζ)u| = rxe−σy for −ζ = reiσ, r < 1, σ ∈ (−π, π), and u = x + iy.
Moreover, we have

|Γ(−u)Γ(1 + u)| =
∣∣∣∣ π

sin(−πu)

∣∣∣∣ ≤ B

eπ|y|
, u = x+ iy, dist(u,Z) ≥ 1

2
.

Therefore, on Csegk one has

|(−ζ)uΓ(−u)Γ(1 + u)| ≤ BrRe−yσe−π|y|, u = x+ iy.

Because |σ| < π, the integral of the above expression over the infinite vertical contour converges,
and so the integral over Csegk goes to zero as k→ +∞.

Now consider Carck . On this contour

|(−ζ)uΓ(−u)Γ(1 + u)| ≤ Brxe−yσ−π|y| ≤ B1e
−c(x+|y|).

Therefore, for k→ +∞ the integrand decays exponentially in k, while the length of the contour
grows only linearly in k, and so the integrals over Carck go to zero. Thus, we can apply the
Mellin–Barnes summation which gives the desired Fredholm determinant (3.22) for small |ζ|.

Step 2. Now that we have established (3.22) for sufficiently small |ζ|, it remains to justify
that this identity can be analytically continued to ζ ∈ C \ R≥0. The left-hand side is analytic
because it can be represented as a series

∑∞
n=0 P(hXhc(t)(k) = n)/(ζqn; q)∞ with probabilities in

the numerator bounded by 1. To show that the Fredholm determinant det(1 + K
(2),hc
ζ )L2(Ca,ϕ)

in the right-hand side of (3.22) is analytic, we will show that its Fredholm expansion (as a sum
over M ≥ 0) is uniformly absolutely convergent in ζ belonging to any closed disc in C \ R≥0.

We have

det
(
1 +K

(2),hc
ζ

)
L2(Ca,ϕ)

= 1 +

∞∑
M=1

1

M !

∫
Ca,ϕ

dw1

2πi
. . .

∫
Ca,ϕ

dwM
2πi

M
det
i,j=1

[
K

(2),hc
ζ (wi, wj)

]
= 1 +

∞∑
M=1

1

M !

∫
Ca,ϕ

dw1

2πi
. . .

∫
Ca,ϕ

dwM
2πi

∫
Dw1

du1

2πi
. . .

∫
DwM

duM
2πi

M
det
i,j=1

[
1

quiwi − wj

]

×
M∏
j=1

Γ(−uj)Γ(1 + uj)(−ζ)uj
ghc(wj)

ghc(qujwj)
,

(3.28)

where ghc(w) is given by (3.24). First let us estimate the product of the q-Pochhammer symbols
coming from the product of ghc(wj)/g

hc(qujwj):

M∏
j=1

(wjq
uj/ξ(0); q)∞

(wj/ξ(0); q)∞

k−1∏
i=1

(−wjsiξ−1
i ; q)∞

(−wjquj siξ−1
i ; q)∞

(−wjquj s−1
i ξ

−1
i ; q)∞

(−wjs−1
i ξ

−1
i ; q)∞

. (3.29)

The q-Pochhammer symbols are estimated as follows (where z ∈ C \ {0} is arbitrary):

|(z; q)∞| = |(z; q)r(zqr; q)∞| ≤ B1 |(z; q)r| ≤ B2|z|c2 log |z|,
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where r is such that |zqr| ≤ 1 and hence can be chosen to satisfy r ≤ c1 log |z|. Because Re uj > 0
for uj ∈ Dwj , we have |quj | < 1. Thus, we can write for all wj ∈ Ca,ϕ:

∣∣(3.29)
∣∣ ≤ BM

3

M∏
j=1

|wj |c3(log |wj/ξ(0)|+
∑k−1
i=1 log |wjsiξ−1

i |+
∑k−1
i=1 log |wjs−1

i ξ−1
i |) ≤ BM

4

M∏
j=1

|wj |c3 log |wj |+c4 .

(3.30)
Indeed, |wj | is bounded from below along Ca,ϕ, and so the product of the inverses of the q-
Pochhammer symbols in (3.29) can be bounded from above by a constant.

The product of ghc(wj)/g
hc(qujwj) also contains the following exponential terms:

exp
{
t
M∑
j=1

wj(q
uj − 1)

}
. (3.31)

From Definition 3.10 it follows that Re (wj(q
uj − 1)) ≤ −cϕ|wj | for all wj ∈ Ca,ϕ and uj ∈ Dwj ,

where cϕ > 0 is a constant depending on ϕ ∈ (0, π/2). Therefore,

∣∣(3.31)
∣∣ ≤ exp

{
−cϕt

M∑
j=1

|wj |
}
.

Moreover, the expression |quiwi − wj | is bounded from below for wi, wj ∈ Ca,ϕ and ui ∈ Dwi ,
and so Hadamard’s inequality allows to bound the determinant in the right-hand side of (3.28)

by BM
5 MM/2.

Therefore, one can bound the absolute value of the M -th term in the series in the right-hand
side of (3.28) by

1

M !
BM

4 BM
5 MM/2

(∫
Ca,ϕ

|dw|
∫
Dw

|du|
∣∣Γ(−u)Γ(1 + u)(−ζ)u

∣∣ |w|c3 log |w|+c4e−cϕt|w|

)M
, (3.32)

where |dw| and |du| stand for integration with respect to the arc length.
Fix a closed disc in C \ R≥0 in which ζ lies, and let sup |ζ| = ρ > 0 in that disc. The integral

with respect to |du| can be estimated as follows. For the part (R− id, 1
2 − id] ∪ (1

2 − id, 1
2 + id] ∪

(1
2 + id,R + id] of the contour Dw (recall that R = R(w) ∼ BR log |w| and d = d(w) ∼ Bd|w|−1)

one can check that | sinπu| ≥ B6d, and so |Γ(−u)Γ(1 + u)| ≤ B7|w|. This part of the integration
contour has length of order R, and |(−ζ)u| is bounded by ρR. Therefore, the integral with respect

to |du| over this part of the contour is bounded by B8|w|ρc5 log |w| log |w|. On the remaining part
(R − i∞, R − id] ∪ (R + id,R + i∞) of the contour Dw the integrand decays exponentially in
u thanks to the presence of the gamma functions. Therefore, the integral over this part of the
contour is estimated by B9ρ

R ∼ B9ρ
c5 log |w|.

Plugging these estimates into (3.32) we see that

(3.32) ≤ BMMM/2

M !

(∫
Ca,ϕ

|dw||w|c log |w|+c′ρc
′′ log |w| log |w|e−cϕt|w|

)M
.

Due to the exponential term the integral in w converges, and thus the sum over M in (3.28) is
absolutely convergent, uniformly in ζ belonging to any fixed closed disc in C\R≥0. This completes
the proof. �
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3.8. Completing the proof of Theorem 2.14. Passing to the continuous space limit in the
Fredholm determinantal formula of Proposition 3.11 for the half-continuous vertex model Xhc(t)
yields Theorem 2.14. Indeed, let the parameters ξi and si depend on ε and on parameters (2.2)
of the inhomogeneous exponential jump model X(t) as explained in Section 3.4. Let also k in
(3.22) depend on ε as k = bε−1xc with x ∈ R>0 fixed. The convergence of the ε-dependent
half-continuous vertex model Xε

hc(t) to X(t) (Proposition 3.4) readily implies that

lim
ε↘0

E
1(

ζq
hXε

hc
(t)(bε−1xc)

; q
)
∞

= E
1(

ζqhX(t)(x); q
)
∞
.

Let us show the convergence of the corresponding Fredholm determinants. The integration
contours Ca,ϕ and Dw in Proposition 3.11 can be chosen independent of ε as long as we take
0 < a <Wx and ε sufficiently small (recall the notation Wx from Definition 2.3). Observe that

ghc;ε(w) =
e−tw

(w/ξ(0); q)∞

∏
b∈B, b<x

(wp(b)/ξ(b); q)∞
(w/ξ(b); q)∞

× exp

{bε−1xc−1∑
j=1
j /∈Bε

∞∑
i=0

log

(
1 + (1− e−λε) qiw/ξ(jε)

1− qiw/ξ(jε)

)}

(here we take the standard logarithm with cut along R≤0). We can expand for small ε > 0:

∞∑
i=0

log

(
1 + (1− e−λε) qiw/ξ(jε)

1− qiw/ξ(jε)

)
= λε

∞∑
i=0

qiw/ξ(jε)

1− qiw/ξ(jε)
+O(ε2) = λε φ0

(
w

ξ(jε)

)
+O(ε2),

where O(ε2) is uniform in j and φ0 is defined in Appendix A. Thus, the sum over j in the exponent
in ghc;ε(w) can be approximated by the integral λ

∫ x
0 φ0

(
w/ξ(y)

)
dy, and so limε↘0 g

hc;ε(w) =

g(w), where g(w) is given in (2.16). Moreover, for the integrand in the kernel K
(2),hc;ε
ζ (3.23)

corresponding to the ε-dependent half-continuous model we have

lim
ε↘0

Γ(−u)Γ(1 + u)(−ζ)u

quw − w′
ghc;ε(w)

ghc;ε(quw)
=

Γ(−u)Γ(1 + u)(−ζ)u

quw − w′
g(w)

g(quw)
, (3.33)

where the convergence is uniform in w,w′ ∈ Ca,ϕ and u ∈ Dw because of the rapid decay of the
pre-limit and the limiting functions for large |w| or |u|. This decay follows from arguments similar
to the proof of step 2 of Proposition 3.11. The only new estimate needed is

Lemma 3.12. For w ∈ Ca,ϕ and any h > a we have the following estimate:

Reφ0(w/h) < c log |w|+ c′, c, c′ > 0.

Proof. For simplicity let us assume that h = 1 and a < 1. Since φ0(w) is continuous on Ca,ϕ,
it suffices to obtain the estimate for large |w|. Using representation (A.6) for φ0, we have for
w = |w|eiθ, θ ∈ (0, π/2) (here θ ≈ ϕ for large |w|; the case when Imw < 0 is symmetric):

Reφ0(w) =
∞∑
i=0

|w|qi(cos θ − |w|qi)
(1− |w|qi)2 + 2|w|qi(1− cos θ)

≤
∞∑
i=0

|w|qi cos θ

(1− |w|qi)2 + 2|w|qi(1− cos θ)
.

Let m be the smallest integer such that |w|qm < 1
2 (thus, m is of order log |w|). When i > m, we

can estimate each term above by |w|qi cos θ
(1−|w|qi)2 , and the sum of these terms over i > m is bounded
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from above by cos θ φ1(|w|qm) ≤ cos θ φ1(1
2), which is a constant. Next, when i ≤ m, we can write

|w|qi cos θ

(1− |w|qi)2 + 2|w|qi(1− cos θ)
≤ cos θ

2(1− cos θ)
,

which is a constant. Thus, the sum over i ≤ m is bounded by a constant times log |w|. �

The uniform convergence in (3.33) plus the absolute convergence of the series in M for the
Fredholm determinant (3.22) uniformly in ζ belonging to closed discs in C \ R≥0 (established in
the proof of Proposition 3.11) implies that

lim
ε↘0

det
(
1 +K

(2),hc;ε
ζ

)
L2(Ca,ϕ)

= det
(
1 +Kζ

)
L2(Ca,ϕ)

,

where Kζ is given in (2.14). This completes the proof of Theorem 2.14.

Remark 3.13. It seems likely that the continuity conditions on the speed function ξ(x) in (2.2)
can be relaxed, and Theorem 2.14 together with our asymptotic results of Section 4 would still
hold. However, these conditions are relatively general, and are convenient for taking the limit of
the half-continuous vertex model formulas because one avoids pathologies in approximating the
exponential model by the ε-dependent half-continuous models in discrete space.

4. Asymptotic analysis

In this section we perform the asymptotic analysis of the inhomogeneous exponential jump
model X(t) described in Section 2.1 in the regime λ → +∞ and t = τλ (with τ > 0 fixed), and
prove the main result of the paper, Theorem 2.12.

4.1. Setup of the asymptotic analysis. The starting point of our asymptotic analysis is the
Fredholm determinantal formula

E
(
ζqhX(t)(x); q

)−1

∞ = det
(
1 +Kζ

)
L2(Ca,ϕ)

(4.1)

of Theorem 2.14. Set

ζ = ζ(λ) := −q−λH(τ,x)+rλβ . (4.2)

The function H(τ, x) will be chosen so that both sides of (4.1) have nontrivial limits, and will
eventually coincide with the limit shape described in Section 2.3. The term rλβ (with r ∈ R) is
a lower order correction capturing the distribution of fluctuations. The exponent β is equal to 1

3

or 1
2 depending on the phase (Tracy–Widom or Gaussian, respectively, cf. Definition 2.10). With

this choice of ζ, the asymptotic behavior of the left-hand side of (4.1) is as follows:

Lemma 4.1. With ζ(λ) given by (4.2) we have

lim
λ→+∞

E
1(

ζ(λ)qhX(τλ)(x); q
)
∞

= lim
λ→+∞

P
(
hX(τλ)(x)− λH(τ, x)

λβ
≥ −r

)
. (4.3)

Equality (4.3) is understood in the sense that if one of the limits exists, then the other one also
exists and they are equal to each other.

Proof. See [BC14, Lemma 4.1.39] and [FV15, Lemmas 5.1 and 5.2]. �
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Setting t = τλ and plugging ζ = ζ(λ) into the Fredholm determinant in the right-hand side of
(4.1) we have in the integrand in Kζ (2.15):

(−ζ)u
g(w)

g(quw)
=

(z/ξ(0); q)∞
(w/ξ(0); q)∞

∏
b∈B, b<x

(z/ξ(b); q)∞
(w/ξ(b); q)∞

(wp(b)/ξ(b); q)∞
(zp(b)/ξ(b); q)∞

× exp

{
τλ(z − w) + (λH(τ, x)− rλβ) log(w/z) + λ

∫ x

0

(
φ0

(
w

ξ(y)

)
− φ0

(
z

ξ(y)

))
dy

}
,

(4.4)

where we denoted z = quw, and hence u = log(z/w)/ log q. In fact, the change of variables form
u to z is not one to one, and in Section 4.4 below we will take care of this issue. For now, observe
that the terms above which may grow exponentially in λ have the form exp

(
λ(Gτ,x(w)−Gτ,x(z))

)
,

where

Gτ,x(w) := −τw + H(τ, x) logw +

∫ x

0
φ0

(
w

ξ(y)

)
dy (4.5)

(since β = 1
3 or 1

2 , the terms containing r grow slower). Note that replacing log(w/z) by logw −
log z may introduce additional imaginary terms, but they do not contribute to the exponential
growth.

In Section 4.2 we investigate critical points of the function Gτ,x(w), and in Section 4.3 discuss
steep descent or ascent contours for this function. Using these results, in Section 4.4 we will
return to the analysis of the whole Fredholm determinant in the right-hand side of (4.1) by the
steepest descent method.

4.2. Critical points of Gτ,x and limit shape formulas. Here we explain how formulas for the
limit shape H(τ, x) given in Definition 2.6 arise from (4.4)–(4.5). For shorter notation, denote

Φn(w | x) :=

∫ x

0
φn

(
w

ξ(y)

)
dy, n = 0, 1, 2, . . . . (4.6)

Observe that the derivatives of Gτ,x have the following form (using Proposition A.1):

G′τ,x(w) =
1

w
H(τ, x)− τ +

1

w
Φ1(w | x);

G′′τ,x(w) = − 1

w2
H(τ, x) +

1

w2
(Φ2(w | x)− Φ1(w | x)) ; (4.7)

G′′′τ,x(w) =
2

w3
H(τ, x) +

1

w3
(Φ3(w | x)− 3Φ2(w | x) + 2Φ1(w | x)) .

We first consider double critical points of Gτ,x which in the end will correspond to the Tracy–
Widom phase. Equations G′τ,x(w) = G′′τ,x(w) = 0 for double critical points can be equivalently
written as

τw = Φ2(w | x); (4.8)

H(τ, x) = τw − Φ1(w | x), (4.9)

that is, we can separately find w from the first equation (4.8) and then plug it into (4.9) to get
the value of H(τ, x) leading to a double critical point. Existence and uniqueness of a solution to
(4.8) on (0,W◦x) (with W◦x given in (2.7)) is afforded by Proposition 2.5 which we now prove.

Proof of Proposition 2.5. Equation (4.8) (which is the same as (2.10)) can be rewritten as

τ =
∂

∂w
Φ1(w | x). (4.10)
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We need to show that this equation has a unique solution w = ω◦τ,x in w ∈ (0,W◦x). We will use
properties of the functions φn(w) summarized in Proposition A.1. The functions Φn(w | x) are
smooth on (−∞,W◦x). Therefore, (4.10) is equivalent to finding a point in (0,W◦x) at which the
tangent line to the graph of the function Φ1(w | x) has slope τ .

The function Φ1(w | x) is positive, strictly increasing, and strictly convex on (0,W◦x). Indeed,
the positivity and monotonicity follow from the facts that φ1(w) and φ′1(w) = w−1φ2(w) are
positive on (0, 1). To get convexity, observe that φ′′1(w) = w−2(φ3(w)− φ2(w)), and

φ3(w)− φ2(w) =

∞∑
k=0

(
qkw(1 + 4qkw + q2kw2)

(1− qkw)4
− qkw(1 + qkw)

(1− qkw)3

)
=

∞∑
k=0

2q2kw2(2 + qkw)

(1− qkw)4
> 0

(4.11)
for w ∈ (0, 1). Thus, if a solution to (4.10) exists, it is unique.

At W◦x the function Φ1(w | x) and all its derivatives go to infinity. On the other hand, the
slope of the tangent line to the graph of Φ1(w | x) at w = 0 is

∂

∂w

∣∣∣∣
w=0

∫ x

0
φ1

(
w

ξ(y)

)
dy =

∫ x

0

dy

(1− q)ξ(y)
= τe(x) < τ

because x < xe (recall Definition 2.4). Thus, τ is greater than the slope at 0, so the solution ω◦τ,x
exists. All other claims in Proposition 2.5 are straightforward. �

Note that equation (4.8) can have other roots outside the interval w ∈ (0,W◦x).
If ω◦τ,x is accessible by contour deformations (see Section 4.4 below for details), we say that

the space-time point (τ, x) is in the Tracy–Widom phase. In this case H(τ, x) should be chosen
in such a way that ω◦τ,x is a double critical point of Gτ,x, i.e., equation (4.9) should also hold.
This leads to the limit shape H(τ, x) = τω◦τ,x − Φ1(ω◦τ,x | x) in the Tracy–Widom phase.

On the other hand, the point ω◦τ,x may be inaccessible by contour deformations due to the
presence of denominators in (4.4). Then we say that the space-time point (τ, x) is in the Gaussian
phase. The smallest of the poles in these denominators, w = Wx with Wx given in (2.6), is the
first of the obstacles preventing the contour deformations (the obstacle exists if and only if
Wx < ω

◦
τ,x). Then we can choose H(τ, x) so that Wx becomes a simple critical point (equation

(4.9) is equivalent to G′τ,x(w) = 0). Therefore, H(τ, x) = τWx −Φ1(Wx | x) is the limit shape in
the Gaussian phase. Thus, the function H(τ, x) given in (2.11) serves in both Tracy–Widom and
Gaussian phases.

We have now explained how Definitions 2.6 and 2.10 arise from looking at the integrand in the
kernel in the Fredholm determinantal formula (4.1). Let us establish the monotonicity properties
of H(τ, x) (2.11) listed in Proposition 2.7:

Proof of Proposition 2.7. The left continuity of x 7→ H(τ, x) follows from the left continuity in x
of Wx and Φ1,2(w | x), which also implies that ω◦τ,x is left continuous in x.

The claim that H(τ, xe(τ)) = 0 follows from the fact that ω◦τ,xe(τ) = 0. Note that this implies

that points (τ, x) in a neighborhood of the edge, i.e., for x ∈ (xe(τ)− δ, xe(τ)), are always in the
Tracy–Widom phase.

For the monotonicity of H(τ, x) in x, observe that x 7→ min(ω◦τ,x,Wx) is decreasing: in the
Gaussian phase is it piecewise constant and decreases, and in the Tracy–Widom phase it strictly
decreases by Proposition 2.5. Denote

ωcr = ωcr(x) := min(ω◦τ,x,Wx) > 0 (4.12)
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for simpler notation, and observe that for any 0 < x < x′ < xe(τ) we have

H(τ, x)−H(τ, x′) = τ(ωcr(x)−ωcr(x
′)︸ ︷︷ ︸

≥0

)+Φ1(ωcr(x
′) | x)−Φ1(ωcr(x) | x)+

∫ x′

x
φ1

(
ωcr(x

′)

ξ(y)

)
dy.

The last integral is positive. Since for fixed x the function w 7→ Φ1(w | x) is differentiable, there
exists w0 between ωcr(x) and ωcr(x

′) such that

Φ1(ωcr(x
′) | x)− Φ1(ωcr(x) | x) = (ωcr(x

′)−ωcr(x))
∂

∂w

∣∣∣
w=w0

Φ1(w | x).

To prove monotonicity it suffices to show that

τ − ∂

∂w

∣∣∣
w=w0

Φ1(w | x) ≥ 0.

But from Proposition 2.5 it follows that τ is equal to the same derivative of Φ1, but at w = ω◦τ,x.
Since w0 ≤ ωcr(x) ≤ ω◦τ,x, the above inequality holds by the convexity of Φ1, which completes
the proof. �

4.3. Steep descent and steep ascent contours. In this subsection we show that certain
contours are steep descent or ascent for the function ReGτ,x(w) (4.5) in the sense that on these
contours ReGτ,x(w) attains its only maximum or minimum, respectively, at a critical point of
Gτ,x. For shorter formulas in the rest of the section we will continue to use the notation ωcr

(4.12). Recall that ωcr is a double critical point of Gτ,x in the Tracy–Widom phase or a simple
critical point of Gτ,x in the Gaussian phase. Let also Γcr be the clockwise oriented circle centered
at zero of radius ωcr.

4.3.1. Tracy–Widom phase. Recall the contour Ca,ϕ of Definition 3.6.

Proposition 4.2. If the space-time point (τ, x) is in the Tracy–Widom phase, then the contour
Cω◦τ,x,π4 is steep descent for the function ReGτ,x in the sense that

ReGτ,x(w) < ReGτ,x(ω◦τ,x), w ∈ Cω◦τ,x,π4 \
{
ω◦τ,x

}
.

Proof. We aim to write down the v-derivative of the real part of Gτ,x(ω◦τ,x + veiϕ), where v > 0
and 0 < ϕ < π/2 (the case of the negative imaginary part is symmetric), and show that it is
negative for ϕ = π

4 . We have for the first two terms in Gτ,x (4.5):

∂

∂v
Re
(
−τ(ω◦τ,x + veiϕ) +

(
τω◦τ,x − Φ1(ω◦τ,x | x)︸ ︷︷ ︸

H(τ,x)

)
log(ω◦τ,x + veiϕ)

)

= −τ cosϕ+
(
τω◦τ,x − Φ1(ω◦τ,x | x)

) v +ω◦τ,x cosϕ

v2 + 2vω◦τ,x cosϕ+ (ω◦τ,x)2

= −v
Φ2(ω◦τ,x | x)

ω◦τ,x

v cosϕ+ω◦τ,x cos(2ϕ)

v2 + 2vω◦τ,x cosϕ+ (ω◦τ,x)2
− Φ1(ω◦τ,x | x)

v +ω◦τ,x cosϕ

v2 + 2vω◦τ,x cosϕ+ (ω◦τ,x)2
.

The advantage of expressing everything through the integrals Φ1,2 using (4.8)–(4.9) is that it then
suffices to prove the desired negativity under the integral. For the term in (4.5) containing φ0 we
have (using (A.6))
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∂

∂v
Re

 ∞∑
j=0

(ω◦τ,x + veiϕ)qj

ξ(y)− (ω◦τ,x + veiϕ)qj


=
∞∑
j=0

qjξ(y)
(
q2j
(
2vω◦τ,x + (v2 + (ω◦τ,x)) cosϕ

)
− 2qjξ(y)(v +ω◦τ,x cosϕ) + ξ(y)2 cosϕ

)(
q2j
(
v2 + (ω◦τ,x)2 + 2vω◦τ,x cosϕ

)
− 2qjξ(y)(ω◦τ,x + v cosϕ) + ξ(y)2

)2 .

(4.13)

To shorten notation, let D4.2 := v2+2vω◦τ,x cosϕ+(ω◦τ,x)2, and let D̃4.2 stand for the denominator

in (4.13). Clearly, both D4.2 and D̃4.2 are positive. Using Proposition A.1 and adding two previous
expressions, we see that

∂

∂v
ReGτ,x(ω◦τ,x + veiϕ) =

∫ x

0

( ∞∑
j=0

q2jv2ξ(y)

D4.2D̃4.2

(
qjω◦τ,x − ξ(y)

)3︸ ︷︷ ︸
< 0 because ω◦τ,x < ξ(y)

P4.2(qj ,ξ(y), v,ω◦τ,x, ϕ)

)
dy,

(4.14)
where P4.2 is an explicit polynomial in qj , ξ(y), v, and ω◦τ,x also containing cos(kϕ), k = 1, 2, 3, 4.

Recall that qjω◦τ,x−ξ(y) < 0 for all j. To incorporate this condition into the analysis of P4.2, let

us change variables as ξ(y) = Ω + qjω◦τ,x, where Ω > 0. Then the polynomial P4.2 takes the form

P4.2(Q,Ω +Qω, v,ω, ϕ) = −(2Ω + 3Qω)ΩQ2v3

+Qv2
(
4Ω3 + 4Ω2Qω+ ΩQ2v2 − 3ΩQ2ω2 + 2Q3v2ω

)
cosϕ

− v
(
2Ω4 − Ω3Qω+ 2Ω2Q2v2 − 6Ω2Q2ω2 + 3ΩQ3v2ω− 2Q4v2ω2

)
cos(2ϕ)

− Ω
(
2Ω3ω− Ω2Qv2 + 3Ω2Qω2 + 4Q3v2ω2

)
cos(3ϕ)

+ Ω2Qvω(Ω + 2Qω) cos(4ϕ). (4.15)

Let us now substitute ϕ = π/4 and check that P4.2 is always positive. First, one can readily
verify that

∂2

∂v2
P4.2(Q,Ω +Qω, v,ω, π4 ) > 0 for all v ∈ R

(this derivative is a quadratic polynomial in v). Therefore, P4.2 is strictly convex in v and thus
has a only minimum at v = vmin. If vmin ≤ 0, then we are done, because

P4.2(Q,Ω +Qω, 0,ω, π4 ) =
Ω3ω(2Ω + 3Qω)√

2
> 0.

If vmin > 0, observe that

P4.2(Q,Ω +Qω, vmin, 0,
π
4 ) =

1

2
ΩQv2

min

(
3
√

2Ω2 − 4ΩQvmin +
√

2Q2v2
min

)
> 0,

and

∂

∂ω
P4.2(Q,Ω +Qω, vmin,ω,

π
4 ) = ΩQω

(
3
√

2Ω2 − 4ΩQvmin +
√

2Q2v2
min

)
+
√

2Ω4 − Ω3Qvmin + 2
√

2Ω2Q2v2
min − 3ΩQ3v3

min +
√

2Q4v4
min.

The polynomials 3
√

2a2 − 4a +
√

2 and
√

2a4 − a3 + 2
√

2a2 − 3a +
√

2 have no real roots and
hence are always positive, so the above ω-derivative is also always positive. This implies that
P4.2(Q,Ω +Qω, vmin,ω,

π
4 ) > 0, which completes the proof of the proposition. �
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Proposition 4.3. If the space-time point (τ, x) is in the Tracy–Widom phase then the circle Γcr

centered at the origin of radius ω◦τ,x is steep ascent for ReGτ,x in the sense that

ReGτ,x(w) > ReGτ,x(ω◦τ,x), w ∈ Γcr \
{
ω◦τ,x

}
.

Proof. Similarly to the proof of Proposition 4.2, let us show that the θ-derivative of
ReGτ,x(ω◦τ,xe

iθ) is positive for θ ∈ (0, π) (the case of the negative imaginary part is symmet-
ric). We have

∂

∂θ
ReGτ,x(ω◦τ,xe

iθ) =

∫ x

0

∞∑
j=0

P4.3(qj ,ξ(y),ω◦τ,x, θ)

D4.3(qj ,ξ(y),ω◦τ,x, θ)
dy,

where (using ξ > Qω)

D4.3(Q, ξ,ω, θ) = (Qω− ξ)3
(
ξ2 +Q2ω2 − 2ξQω cos θ

)2
< 0;

P4.3(Q, ξ,ω, θ) = −16ξ2Q2ω2(ξ +Qω)
(
ξ2 +Q2ω2 − ξQω(1 + cos θ)

)
sin3(θ/2) cos(θ/2) < 0,

which completes the proof. �

Remark 4.4. In connection with Proposition 4.3 note that the real part ReGτ,x(w) is well-
defined for negative real w regardless of the branch of the logarithm.

4.3.2. Gaussian phase. Let us now turn to the Gaussian phase (we also include into the consid-
eration the transition case when ω◦τ,x =Wx). Then the limit shape is

H(τ, x) = τWx − Φ1(Wx | x),

where 0 < Wx ≤ ω◦τ,x can be arbitrary. Recall that by Proposition 2.5 the root ω◦τ,x of (4.8) is
defined regardless of which phase (τ, x) is in. Let us use this root and rewrite Gτ,x as

Gτ,x(w) =
Φ2(ω◦τ,x | x)

ω◦τ,x

(
Wx logw − w

)
− Φ1(Wx | x) logw + Φ0(w | x). (4.16)

Proposition 4.5. If the space-time point (τ, x) is in the Gaussian phase, then the contour CWx,
π
4

is steep descent for ReGτ,x in the sense that on this contour the function ReGτ,x(w) attains its
only maximum at w =Wx.

Proof. The function w 7→ w−1Φ2(w | x) is strictly increasing in w ∈ (0,W◦x), so

τ =
Φ2(ω◦τ,x | x)

ω◦τ,x
≥ Φ2(Wx | x)

Wx
. (4.17)

On the other hand, Re(Wx logw − w) on our contour attains its only maximum at w = Wx.
Indeed, we have for v > 0:

∂

∂v
Re
(
Wx log(Wx + veiϕ)− (Wx + veiϕ)

)
= −v(v cosϕ+Wx cos(2ϕ))

v2 + 2vWx cosϕ+W2
x

< 0

for ϕ = π/4. Therefore,(
Φ2(ω◦τ,x | x)

ω◦τ,x
− Φ2(Wx | x)

Wx

)(
Re(Wx logw − w)− Re(Wx logWx −Wx)

)
≤ 0,

so it suffices to prove that the contour CWx,
π
4

is steep descent for a modification G̃τ,x of Gτ,x
(4.16) obtained by replacing Φ2(ω◦τ,x | x)/ω◦τ,x by Φ2(Wx | x)/Wx in the first summand. Denote

τ̃ := Φ2(Wx | x)/Wx and note that Wx = ω◦τ̃ ,x, so the modified function G̃τ,x is simply the same
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as Gτ̃ ,x corresponding to the Tracy–Widom phase. Therefore, the desired statement now follows
from Proposition 4.2, and so we are done. �

Proposition 4.6. If the point (τ, x) is in the Gaussian phase then the circle Γcr centered at the
origin of radius Wx is steep ascent for ReGτ,x in the sense that on this contour the function
ReGτ,x(w) attains its only minimum at w =Wx.

Proof. The function ReGτ,x is well-defined on all of Γcr, cf. Remark 4.4. We have using (4.16):

∂

∂θ
Gτ,x(Wxe

iθ) =

∫ x

0

( ∞∑
j=0

−q2jξ(y)Wx sin θ

D4.6(qj ,ξ(y),ω◦τ,x,Wx, θ)
P4.6

(
qj ,ξ(y),ω◦τ,x,Wx, θ

))
dy,

where D4.6(· · · ) < 0, and P4.6 has the form

P4.6(Q, ξ,ω,W, θ) = −Q4ω3W2 +Q4ωW4 + 3ξQ3ω2W2 + ξQ3W4 + ξ2Q2ω3

+ ξ2Q2ωW2 − 3ξ3Qω2 + 5ξ3QW2 + 4ξ4ω

− 4ξW(ξ +Qω)
(
ξ2 +Q2W2

)
cos θ + 2ξ2QW2(ξ +Qω) cos(2θ).

It suffices to show that P4.6 is positive for all θ (due to the factor sin θ in front of P4.6 which
changes sign in the lower half plane). Viewing P4.6 as a quadratic polynomial aU2 + bU + c in
U = cos θ, one can check that a > 0, that the polynomial is positive for U = 1 and U = −1 (here

one should use ξ > Qω > QW), and that the half-sum of its roots is − b
2a = QW

2ξ + ξ
2QW ≥ 1.

This implies that the polynomial is positive for U ∈ [−1, 1], and completes the proof. �

Ca,π
4

w

Γw

qR

Figure 9. The contour Ca,π
4
3 w and the contour Γw which is the image of

D
(0)
w 3 u under the change of variables z = quw. The red dots inside Γw are qw

and q2w. The blue dot on Γw corresponds to the branch cut of log(z/w).

4.4. Contour deformations and extra residues. Our next goal is to understand the asymp-
totic behavior of the whole kernel Kζ(w,w

′) (2.15) with ζ given by (4.2). To this end, let us split
the integration contour Dw (described in Definition 3.10) into parts

D(k)
w :=

{
u ∈ Dw :

π

log q−1
(2k − 1) ≤ Im u <

π

log q−1
(2k + 1)

}
, k ∈ Z.

By taking d = d(w) in Dw smaller if needed we can make sure that Re u = R(w) for k 6= 0 and

all u ∈ D(k)
w . (While in Definition 3.10 the parameters R(w) and d(w) in Dw depend on w, the
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upper bound on d(w) required for the latter condition Re u = R(w) can be taken independent

of w.) Later we will see that only the contribution from the part D
(0)
w matters in the λ → +∞

limit.
On each D

(k)
w the map u 7→ qu is one to one, so we can change the variables as z = quw, or

u =
log(z/w)

log q
+

2πik

log q
,

where log(z/w) is the standard branch of the logarithm with argument ∈ (−π, π), so thus defined

u belongs to D
(k)
w . The variable z is integrated over a circle of radius qR(w)|w| for k 6= 0 or, for

k = 0, over a more complicated contour which we denote by Γw, see Figure 9.
With this splitting of the u contour and under the above change of variables the kernel

Kζ(w,w
′), w,w′ ∈ Ca,π

4
(with 0 < a <Wx), becomes

Kζ(λ)(w,w
′) = − 1

2i

∫
Γw

e(−λH(τ,x)+rλβ) log(z/w)

sin
(
π log(z/w)/ log q

) g(w)

g(z)

dz

(z − w′)z log q

−
∑

k∈Z\{0}

1

2i

∫
|z|=qR(w)|w|

e(−λH(τ,x)+rλβ)(log(z/w)+2πik)

sin
(
π
(

log(z/w)
log q + 2πik

log q

)) g(w)

g(z)

dz

(z − w′)z log q
, (4.18)

where (−ζ)ug(w)/g(z) = e(−λH(τ,x)+rλβ) log(z/w)g(w)/g(z) is given by (4.4).
Take a = ωcr (4.12) in the contour Ca,π

4
3 w,w′. Then by Propositions 4.2 and 4.5 this contour

is a steep descent one. In the Gaussian phase or at the transition point (when ωcr = Wx) we
need to modify the contour in a small neighborhood of Wx to avoid the pole at this point (i.e.,
the contour will pass slightly to the left of Wx, see Sections 4.6 and 4.7 below for details on local
structure of contours). Let us keep the same notation Cωcr,

π
4

for this modified contour. This

choice of the steep descent contour does not change det(1 +Kζ)L2(Cωcr,
π
4

).

Next, we aim to deform the contour Γw for z to the steep ascent contour Γcr (again, we need
to locally modify the latter contour in a small neighborhood of the critical point to avoid the
intersection with Cωcr,

π
4
, see Sections 4.5 to 4.7 below). When k 6= 0 in (4.18), this deformation

does not encounter any poles. However, for k = 0 such a deformation may pass through a pole
coming from the sine in the denominator. These poles have the form z = qnw, n ∈ Z, but for
fixed w one can encounter only a finite (logarithmic in |w|) number of poles corresponding to
n = 1, 2, . . . Nw (for some Nw ∈ Z≥0; if Nw = 0 then it means that the deformation encounters
no poles). Taking the residue at z = qnw makes the terms under the integral which may grow
exponentially in λ look as exp

(
λ(Gτ,x(w)−Gτ,x(qnw))

)
. Comparing ReGτ,x(w) and ReGτ,x(qnw)

by moving along the contours similarly to [Bar15] we will show that these extra residues are
asymptotically negligible:

Proposition 4.7. For all w ∈ Cωcr,
π
4

and n = 1, . . . , Nw we have

Re(Gτ,x(w)−Gτ,x(qnw)) < −δ1|w| − δ2, (4.19)

where δ1, δ2 > 0 do not depend on w and λ.

Proposition 4.7 will imply that the deformations of the contours explained above do not affect
the asymptotics of the Fredholm determinant (a detailed statement is Proposition 4.11 below).
The proof of Proposition 4.7 is based on Lemmas 4.8 and 4.9 which we establish first. Before
discussing these lemmas, observe that it suffices to consider only the case Imw > 0. Indeed, the
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case Imw < 0 is symmetric, and Imw = 0 corresponds to w = ωcr, in which case all points of the
form qnωcr, n ∈ Z≥1, are inside Γcr and thus are not encountered by our contour deformation.

Cωcr,
π
4

w

V1

V2V3

ωcr

Figure 10. For any w ∈ Cωcr,
π
4

and any w̃ belonging to the (closed) shaded

region we have ReGτ,x(w) < ReGτ,x(w̃). Indeed, any such w̃ can be reached from
w by moving along a combination of contours V1 (part of Cωcr,

π
4
), V2 (part of a line

passing through the origin in the half plane Re w̃ > Reωcr), and V3 (arc of a circle
centered at the origin in the half plane Re w̃ < Reωcr). The increase of ReGτ,x
in the direction from w to w̃ along these contours follows from Propositions 4.2
and 4.5 (for V1), Lemma 4.9 (for V2), and Lemma 4.8 (for V3). The dashed arc
centered at the origin is a part of the steep ascent contour Γcr.

Lemma 4.8. On any contour of the form w = (ωcr + iv)eiθ, where v ∈ (0,ωcr) is fixed and θ
increases from 0 to π

4 the function w 7→ ReGτ,x(w) is increasing in θ.

See the contour V3 in Figure 10; note that V3 is a part of the larger contour corresponding to
θ ∈ (0, π4 ) considered in Lemma 4.8.

Proof of Lemma 4.8. Conditions v < ωcr and 0 < θ < π
4 reflect the geometry of the contour.

In the Tracy–Widom phase (where ωcr = ω◦τ,x) we have

∂

∂θ
ReGτ,x

(
(ω◦τ,x + iv)eiθ

)
=

∫ x

0

( ∞∑
j=0

−q2jξ(y)(v cos θ +ω◦τ,x sin θ)

D4.8(qj ,ξ(y),ω◦τ,x, v, θ)
P4.8(qj ,ξ(y),ω◦τ,x, v, θ)

)
dy,

where D4.8(· · · ) < 0, and we want to show that the polynomial P4.8 is positive. It has the form

P4.8(Q, ξ,ω, v, θ) = R0 +R1 cos θ +R2 cos(2θ) +R3 sin θ +R4 sin(2θ),

where Ri = Ri(Q, ξ,ω, v) are the following polynomials:

R0 = Q4v2ω
(
v2 +ω2

)
+ ξQ3

(
v4 + 5v2ω2 + 4ω4

)
+ ξ2Q2ω

(
v2 + 2ω2

)
+ ξ3Q

(
5v2 + 2ω2

)
+ 4ξ4ω,

R1 = −4ξω(ξ +Qω)
(
ξ2 +Q2v2 +Q2ω2

)
,

R2 = −2ξ2Q
(
v2 −ω2

)
(ξ +Qω),

R3 = 4ξv(ξ +Qω)
(
ξ2 +Q2v2 +Q2ω2

)
,
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R4 = −4ξ2Qvω(ξ +Qω).

One can readily check that these polynomials satisfy (for our range of parameters)

R0 > 0, R1 < 0, R2 > 0, R3 > 0, R4 < 0,

and
R3 + 2R4 = 4ξv(ξ +Qω)

(
ξ2 +Q2

(
v2 +ω2

)
− 2ξQω

)
> 0,

which implies that
R3 sin θ +R4 sin(2θ) = (R3 + 2R4 cos θ) sin θ > 0.

Moreover, after substituting ξ = Ω +Qω with Ω > 0 (since Qω < ξ), we have

7R0 + 5R1 = 8Ω4ω+ 35Ω3Qv2 + 26Ω3Qω2 + 92Ω2Q2v2ω+ 24Ω2Q2ω3 + 7ΩQ3v4

+ 94ΩQ3v2ω2 + 10ΩQ3ω4 + 14Q4v4ω+ 44Q4v2ω3 + 4Q4ω5 > 0,

so

7(R0 +R1 cos θ) ≥ 7R0 +
7√
2
R1 >

(
−5 +

7√
2

)
R1 > 0,

which establishes the claim in the Tracy–Widom phase.
The proof in the Gaussian phase (when ωcr = Wx ≤ ω◦τ,x) is similar to how Proposition 4.5

was reduced to Proposition 4.2. Namely, the function w 7→ Re(Wx logw−w) for w = (Wx+iv)eiθ

is increasing in θ, and so to show that the function Gτ,x (4.16) is increasing on the desired contour
is suffices to replace ω◦τ,x by Wx in the first summand in (4.16) due to (4.17). The statement for

the modified function G̃τ,x (i.e., with ω◦τ,x replaced by Wx) is the same as for the Tracy–Widom
phase with a different time τ̃ = Φ2(Wx | x)/Wx. This completes the proof. �

Lemma 4.9. On any contour of the form w = seiθ, where θ ∈ (0, π4 ) is fixed and s increases
from ωcr

cos θ to ωcr
cos θ−sin θ , the function w 7→ ReGτ,x(w) is decreasing in s.

The contour in Lemma 4.9 is exactly the contour V2 in Figure 10, where θ corresponds to the
angle between V2 and the real line.

Proof of Lemma 4.9. Again, conditions 0 < θ < π
4 and ωcr

cos θ < s < ωcr
cos θ−sin θ reflect the geometry

of the contour.
Consider the Tracy–Widom phase, so ωcr = ω◦τ,x. We have

∂

∂s
ReGτ,x(seiθ) =

∫ x

0

( ∞∑
j=0

q2jξ(y)

D4.9(qj ,ξ(y),ω◦τ,x, s, θ)
P4.9(qj ,ξ(y),ω◦τ,x, s, θ)

)
dy,

where D4.9(· · · ) < 0 and we would like to show that the polynomial P4.9(Q, ξ,ω, s, θ) is positive
for our range of parameters. To see this, change the variables as

s =
ω

cos θ(1− V tan θ)
, 0 < V < 1,

and let θ = arctanU with 0 < U < 1. With these substitutions we have

(1− UV )5

U2ω2ξ4
P4.9(Q, ξ,ω, s(U, V ), θ(U))

= Q4ω4ξ−4
(
U2 + 1

)
(2UV + V 2 − 1) +Q3ω3ξ−3(1 + U2)(2UV 3 − V 2 + 1)

+Q2ω2ξ−2
(
−2U3V 3 + U2(V 2 + 11)V 2 + 2U(V 2 − 6)V − 3V 2 + 3

)
+Qωξ−1(1− UV )2(6UV + 5V 2 − 5) + 2(1− V 2)(1− UV )3.

(4.20)
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Denote T := Qω/ξ, and observe that 0 < T < 1. The right-hand side of (4.20) becomes a
polynomial in T,U, V ∈ (0, 1), denote it by P(T,U, V ). One can see that P is cubic in U . Its
discriminant in U is

− 4(1− T )6T 6(1 + V 2)3
(
T 4(1 + V 2) + 2T 3(1 + 9V 2)

+ T 2(11V 2 + 59)V 2 + 24T (3 + V 2)V 2 − V 6 + 10V 4 + 27V 2
)
< 0,

hence P has one real root in U . We have

P(T, 0, V ) = (1− T )3(T + 2)(1− V 2) > 0,

Thus, it suffices to show that P(T, 1, V ) > 0. We have

P(T, 1, 1− V ) = 4T 3(T + 1)− 8T 2(T 2 + T + 1)V + 2T (T + 1)2(T + 3)V 2

− 4T (T 2 + T + 4)V 3 + (T + 1)(T + 4)V 4 − 2V 5. (4.21)

Let us minimize (4.21) in (T, V ) ∈ [0, 1]2 and show that the minimum is positive. Solving
∂
∂T P(T, 1, 1−V ) = ∂

∂V P(T, 1, 1−V ) = 0 numerically, we see that the only critical points of (4.21)

on [0, 1]2 are (T, V ) = (0, 0) and (T, V ) ≈ (0.646, 0.829), and the values of P(T, 1, 1− V ) at both
points are nonnegative. The critical point inside (0, 1)2 is a saddle, so the polynomial attains its
minimum on the boundary. Further looking at the univariate polynomials on the boundary one
can readily check that the minimum of (4.21) on [0, 1]2 is P(0, 1, 1) = 0, which shows that P4.9 is
positive, as desired.

Now assume that the space-time point (τ, x) is in the Gaussian phase. Observe that the
function w 7→ Re(Wx logw − w) decreases along the contour {seiθ : s > Wx

cos θ} (with 0 < θ < π
4

fixed). Thus, it suffices to replace ω◦τ,x by Wx in the first summand in (4.16) due to (4.17), and

prove the statement for the resulting modified function G̃τ,x. Taking τ̃ = Φ2(Wx | x)/Wx we have

G̃τ,x = Gτ̃ ,x, and for the latter function the desired statement follows from the Tracy–Widom
case just established. This completes the proof. �

Proof of Proposition 4.7. We need to show that Re(Gτ,x(w) − Gτ,x(qnw)) < −δ1|w| − δ2 for
all w ∈ Cωcr,

π
4

and n = 1, . . . , Nw. First, observe that the distance from w to every qnw,

n = 1, . . . , Nw, along the contours V1, V2, and V3 as in Figure 10 is bounded from below uniformly
in |w| because Nw = 0 for w close to ωcr. For |w| bounded from above by a constant independent
of λ the bounds on the derivative of ReGτ,x along the contours Vi in Lemmas 4.8 and 4.9 can be
made uniform in |w|, which leads to (4.19) without δ1|w|. However, if |w| is bounded from above
then this implies the full desired estimate (4.19).

For large |w| the path as in Figure 10 from w to any of the points qnw, n = 1, . . . , Nw has
length of order |w|. One can readily check that both derivatives

∂

∂s
ReGτ,x(ωcr + sei

π
4 ) and

∂

∂s
ReGτ,x(seiθ)

along contours V1 and V2, respectively, have strictly negative limits as s → ∞. Together with
Lemmas 4.8 and 4.9 this implies (4.19) for large |w|, and thus completes the proof. �

We need one more definition to formulate the main result of this subsection:

Definition 4.10. Let Ksteep
ζ (w,w′) stand for the kernel as in (4.18) but with the z integration

contours replaced by Γcr for all k ∈ Z (recall that the latter is the clockwise oriented circle
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centered at 0 with radius ωcr modified in a neighborhood of ωcr to avoid poles, see Sections 4.5
to 4.7 below for details).

Proposition 4.11. With the above notation and with ζ = ζ(λ) given by (4.2) we have

lim
λ→+∞

det
(
1 +Kζ(λ)

)
L2(Cωcr,

π
4

)
= lim
λ→+∞

det
(
1 +Ksteep

ζ(λ)

)
L2(Cωcr,

π
4

)

The above equality is understood in the sense that if one of the limits exists, then the other one
also exists and they are equal to each other.

Proof. We have

Kζ(λ)(w,w
′) = Ksteep

ζ(λ) (w,w′) +R(w,w′),

where R(w,w′) is the sum of residues corresponding to the first integral in (4.18) at z = qnw,
n = 1, . . . , Nw (recall that Nw is of order log |w|). As will follow from the analysis in a small
neighborhood of ωcr in Sections 4.5 to 4.7 below, the terms corresponding to 1

quw−w′ under the

integral in the kernel can be bounded from above by a power of λ, uniformly in quw and w′. Indeed,
this is because the steep descent and ascent integration contours Cωcr,

π
4

and Γcr, respectively, are

going to be separated by a distance of order λ−δ for some δ > 0. Thus, to get the desired claim

it suffices to show that
∣∣∣∫Cωcr,

π
4

R(w,w′)dw
∣∣∣ decays exponentially in λ. Having estimate (4.19) of

Proposition 4.7, we can write∣∣∣∣∫
Cωcr,

π
4

R(w,w′)dw

∣∣∣∣ ≤ λc1 ∫
w∈Cωcr,

π
4
, | Imw|>c2

e−λδ1|w| log |w|dw

for some c1, c2 > 0 independent of λ. Here the condition | Imw| > c2 arises from the fact that for
w close to ωcr (up to distance which depends on q,ξ, τ, x but not on λ) we have Nw = 0 and so no
residues are picked during the contour deformation. Thus, the integral of R decays exponentially
in λ, which yields the statement. �

Proposition 4.11 and results of Section 4.3 on contours Cωcr,
π
4

and Γcr being steep descent

and steep ascent, respectively, imply that the asymptotic behavior of the Fredholm determinant
det(1+Kζ(λ))L2(Cωcr,

π
4

) as λ→ +∞ is governed by the contribution coming from a small neighbor-

hood of the critical point ωcr. Therefore, to finish the proof of our main results (Theorem 2.12)
it remains to compute the contributions from a small neighborhood of ωcr in each of the phases.
This is performed in Sections 4.5 to 4.7 below.

4.5. Contribution in the Tracy–Widom phase. In the Tracy–Widom phase (ωcr = ω◦τ,x <

Wx) we take the power in (4.2) to be β = 1
3 . Then w = ω◦τ,x is a double critical point of the

function Gτ,x(w).

Lemma 4.12. We have G′′′τ,x(ω◦τ,x) > 0.

Proof. From (4.7) and (4.8)–(4.9) we have

(ω◦τ,x)3G′′′τ,x(ω◦τ,x) = Φ3(ω◦τ,x | x)− Φ2(ω◦τ,x | x),

which is positive by (4.11). �

This implies that locally in a neighborhood ofω◦τ,x the regions where ReGτ,x(w)−ReGτ,x(ω◦τ,x)
has constant sign look as in Figure 11. Deform the z and w contours in the kernel Kζ(λ)(w,w

′)

(4.18) to Γcr and Cω◦τ,x,π4 , respectively, to get the kernel Ksteep
ζ(λ) (w,w′) of Definition 4.10. Here Γcr
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is a circle centered at zero with radius ω◦τ,x modified in a small neighborhood of ω◦τ,x to look as
the left contour in Figure 11. Define (recall notation (4.6))

dTW
τ,x :=

3

√
G′′′τ,x(ω◦τ,x)

2
=

2−
1
3

ω◦τ,x

(
Φ3(ω◦τ,x | x)− Φ2(ω◦τ,x | x)

) 1
3 > 0 (4.22)

and make a change of variables

w = ω◦τ,x+λ−
1
3 (dTW

τ,x )−1w̃, w′ = ω◦τ,x+λ−
1
3 (dTW

τ,x )−1w̃′, z = ω◦τ,x+λ−
1
3 (dTW

τ,x )−1z̃, (4.23)

where z̃ ∈ γAi
z and w̃, w̃′ ∈ γAi

w (these contours are made out of straight half lines depicted in

Figure 11). Let us work in the neighborhood of ω◦τ,x of size λ−
1
6 , so that |w̃|, |w̃′|, and |z̃| are

O(λ
1
6 ). In this neighborhood the Taylor expansion of Gτ,x has the form

Gτ,x(w) = Gτ,x(ω◦τ,x) +
w̃3

3λ
+ o(λ−1).

ω◦τ,x

γAi
wγAi

z

Figure 11. Behavior in a neighborhood of the double critical point ω◦τ,x of Gτ,x.
Shaded are regions where ReGτ,x(z) < ReGτ,x(ω◦τ,x). The z and w contours in a

neighborhood of ω◦τ,x are also shown. The contour γAi
z is shifted in order to avoid

the pole at z = w′ coming from the denominator in (4.18).

Thus, from (4.18) and (4.4) we obtain the following scaled kernel which now contains r ∈ R as
a parameter:7

Ksteep
ζ(λ) (w,w′)

√
dw dw′

= − 1

2i

∑
k∈Z

∫
Γcr

e(−λH(τ,x)+rλ
1
3 )(log(z/w)+2πik)

sin
(
π
(

log(z/w)
log q + 2πik

log q

)) g(w)

g(z)

dz

(z − w′)z log q

√
dw dw′

7The change of variables in a neighborhood of ω◦τ,x introduces a scaling factor λ−
2
3 (dTW

τ,x )−2 coming from dz in
the kernel itself and from the integrals over w,w′, cf. (2.12). This scaling of the kernel is reflected in the notation√
dw dw′ which we will also use below in similar situations.
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= −
λ−

1
3 (dTW

τ,x )−1

2i

∑
k∈Z

∫
Γ̃cr

e2πik(−λH(τ,x)+rλ
1
3 )

sin
(
π
(

z̃−w̃
ω◦τ,xd

TW
τ,x log q

λ−
1
3 (1 + o(1)) + 2πik

log q

)) (4.24)

× exp

{
w̃3

3
− z̃3

3
+

r

ω◦τ,xd
TW
τ,x

(z̃ − w̃) + o(1)

} (
1 + o(1)

)
dz̃

(z̃ − w̃′)(ω◦τ,x + o(1)) log q

√
dw̃ dw̃′

=: K̃Ai
r (w̃, w̃′)

√
dw̃ dw̃′,

where Γ̃cr is the contour Γcr under the above change of variables z → z̃. Here we used the fact
that in the Tracy–Widom phase the non-exponential prefactor in (4.4) is regular in w and thus
behaves as 1 + o(1) as λ→ +∞. When k 6= 0, the sine in the denominator is regular:

sin

(
π

(
z̃ − w̃

ω◦τ,xd
TW
τ,x log q

λ−
1
3 (1 + o(1)) +

2πik

log q

))
= sin

(
2π2ik

log q

)
(1 + o(1)) 6= 0, (4.25)

and so all summands in (4.24) with k 6= 0 vanish as λ → +∞ due to the prefactor λ−
1
3 . On the

other hand, for k = 0 the sine behaves as

sin

(
π

z̃ − w̃
ω◦τ,xd

TW
τ,x log q

λ−
1
3 (1 + o(1))

)
= π

z̃ − w̃
ω◦τ,xd

TW
τ,x log q

λ−
1
3 (1 + o(1)).

Therefore,

lim
λ→+∞

K̃Ai
r (w̃, w̃′) = − 1

2πi

∫
γAi
z

exp

{
w̃3

3
− z̃3

3
+

r

ω◦τ,xd
TW
τ,x

(z̃ − w̃)

}
dz̃

(z̃ − w̃)(z̃ − w̃′)
,

where γAi
z is the left contour in Figure 11. Denote the kernel in the right-hand side above by

KAi
r (w̃, w̃′), where w̃, w̃′ belong to γAi

w , the right contour in Figure 11.
Combining the above computation in a neighborhood of ω◦τ,x with the results of Sections 4.3

and 4.4, we conclude that

lim
λ→∞

det
(
1 +Kζ(λ)

)
L2(Cω◦τ,x, π4

)
= det

(
1 +KAi

r

)
L2(γAi

w )
.

The Fredholm determinant in the right-hand side is readily identified with a Fredholm determi-
nant of the Airy kernel, producing the GUE Tracy–Widom distribution function of Definition 2.9
(cf. [TW09a], [BCF14, Lemma C.1]):

det
(
1 +KAi

r

)
L2(γAi

w )
= F2

(
r

ω◦τ,xd
TW
τ,x

)
,

which completes the proof of the first part of Theorem 2.12.

4.6. Contribution in the Gaussian phase. In the Gaussian phase (ωcr = Wx < ω◦τ,x) the

function Gτ,x has a simple critical point at Wx, and we take the power β = 1
2 . Define

mx := #
{
y ∈ {0} ∪ {b ∈ B : 0 < b < x} : ξ(y) =Wx

}
(4.26)

(cf. (2.6)), this is the multiplicity of the pole at w =Wx in (4.4).

Lemma 4.13. We have G′′τ,x(Wx) < 0.

Proof. We have from (4.9)

WxG
′′
τ,x(Wx) = −τ +

1

Wx
Φ2(Wx | x),
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which is nonpositive by (4.17) and cannot be zero because Wx > ω
◦
τ,x. �

Thus, locally in a neighborhood ofWx the regions where ReGτ,x(w)−ReGτ,x(Wx) has constant
sign look as in Figure 12. Deform the z and w contours in the kernel Kζ(λ)(w,w

′) (4.18) to Γcr

and CWx,
π
4
, respectively, modified in a small neighborhood of Wx to look as in Figure 12. Define

(recall notation (4.6))

dG
τ,x :=

√
−G′′τ,x(Wx) =W−1

x

√
τWx − Φ2(Wx | x) > 0, (4.27)

and make a change of variables

w =Wx + λ−
1
2 (dG

τ,x)−1w̃, w′ =Wx + λ−
1
2 (dG

τ,x)−1w̃′, z =Wx + λ−
1
2 (dG

τ,x)−1z̃,

where z̃ ∈ γG
z and w̃, w̃′ ∈ γG

w (these contours are made out of straight half lines, see Figure 12).

Let us work in the neighborhood of Wx of size λ−
1
3 , so that |w̃|, |w̃′|, and |z̃| are O(λ

1
6 ). In this

neighborhood the Taylor expansion of of Gτ,x looks as

Gτ,x(w) = Gτ,x(Wx)− w̃2

2λ
+ o(λ−1).

Wx

γG
wγG

z

Figure 12. Behavior in a neighborhood of the simple critical point Wx of Gτ,x.
Shaded are regions where ReGτ,x(z) < ReGτ,x(Wx). The z and w contours in a
neighborhood of Wx are also shown, modified in this neighborhood to avoid the
pole in the kernel.

Thus, we obtain the following scaled kernel (which contains r ∈ R as a parameter):

Ksteep
ζ(λ) (w,w′)

√
dw dw′

= − 1

2i

∑
k∈Z

∫
Γcr

e(−λH(τ,x)+rλ
1
2 )(log(z/w)+2πik)

sin
(
π
(

log(z/w)
log q + 2πik

log q

)) g(w)

g(z)

dz

(z − w′)z log q

√
dw dw′

= −
λ−

1
2 (dG

τ,x)−1

2i

∑
k∈Z

∫
Γ̃cr

e2πik(−λH(τ,x)+rλ
1
2 )

sin
(
π
(

z̃−w̃
WxdG

τ,x log q
λ−

1
2 (1 + o(1)) + 2πik

log q

)) (1 + z̃
WxdG

τ,x
λ−

1
2 ; q
)mx
∞(

1 + w̃
WxdG

τ,x
λ−

1
2 ; q
)mx
∞
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× exp

{
− w̃

2

2
+
z̃2

2
+

r

WxdG
τ,x

(z̃ − w̃) + o(1)

} (
1 + o(1)

)
dz̃

(z̃ − w̃′)(Wx + o(1)) log q

√
dw̃ dw̃′

=: K̃G
r,mx(w̃, w̃′)

√
dw̃ dw̃′, (4.28)

where Γ̃cr is the image of Γcr under the change of variables z → z̃. Here we used the fact that
among the factors in (4.4) corresponding to ξ(0) or the roadblocks, exactly mx contain a simple
pole at w = Wx, while other factors are regular and thus behave as 1 + o(1) as λ → +∞. We
have for one such factor with a pole:(

1 + z̃
WxdG

τ,x
λ−

1
2 ; q
)
∞(

1 + w̃
WxdG

τ,x
λ−

1
2 ; q
)
∞

=
z̃

w̃

(
1 + o(1)

)
.

Similarly to Section 4.5 one sees that the terms in (4.28) corresponding to k 6= 0 vanish in the
limit, and so

lim
λ→+∞

K̃G
r,mx(w̃, w̃′) = − 1

2πi

∫
γG
z

exp

{
− w̃

2

2
+
z̃2

2
+

r

WxdG
τ,x

(z̃ − w̃)

}(
z̃

w̃

)mx dz̃

(z̃ − w̃)(z̃ − w̃′)
,

where γG
z is the left contour in Figure 12. Denote the kernel in the right-hand side above by

KG
r,mx(w̃, w̃′), where w̃, w̃′ belong to γG

w , the right contour in Figure 12.
Combining the above computation in a neighborhood of Wx with the results of Sections 4.3

and 4.4, we conclude that

lim
λ→∞

det
(
1 +Kζ(λ)

)
L2(CWx, π4

)
= det

(
1 +KG

r,mx

)
L2(γG

w )
.

The Fredholm determinant in the right-hand side can be identified with the distribution function
of the largest eigenvalue of an mx ×mx GUE random matrix (cf. [Bar15]):

det
(
1 +KG

r,mx

)
L2(γG

w )
= Gmx

(
r

WxdG
τ,x

)
,

which completes the proof of the third part of Theorem 2.12.

4.7. Contribution at a transition point. Finally, we consider the case when the double critical
point coming from the function Gτ,x coincides with a pole outside the exponent in (4.4), that
is, ωcr = Wx = ω◦τ,x. We use the notation mx (4.26) for the multiplicity of this pole. Take

the power β = 1
3 , consider the same change of variables (4.23) as in the Tracy–Widom phase,

where z̃ ∈ γBBP
z and w̃, w̃′ ∈ γBBP

w . The only difference between the contours γBBP
z,w and γAi

z,w

in Figure 11 is that the former contours should pass to the left of ω◦τ,x to avoid the pole (in

particular, γBBP
z is the same as γAi

z ). The regions where ReGτ,x(w)−ReGτ,x(ω◦τ,x) has constant
sign in a neighborhood of ω◦τ,x look exactly the same as in Figure 11. Thus, arguing similarly to
Sections 4.5 and 4.6, we see that

lim
λ→+∞

det
(
1 +Kζ(λ)

)
L2(Cω◦τ,x, π4

)
= det

(
1 +KBBP

r,mx

)
L2(γBBP

w )
, (4.29)

where the latter kernel has the form

KBBP
r,mx (w̃, w̃′) = − 1

2πi

∫
γBBP
z

exp

{
w̃3

3
− z̃3

3
+

r

ω◦τ,xd
TW
τ,x

(z̃ − w̃)

}(
z̃

w̃

)mx dz̃

(z̃ − w̃)(z̃ − w̃′)
.
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The Fredholm determinant in the right-hand side of (4.29) can be identified with the BBP dis-
tribution function of Definition 2.9 (cf. [BCF14, Lemma C.2]):

det
(
1 +KBBP

r,mx

)
L2(γBBP

w )
= FBBP,mx,b

(
r

ω◦τ,xd
TW
τ,x

)
.

The particular distribution we obtain in this limit regime has order mx and b = (0, 0, . . . , 0).
This completes the proof of the second part of Theorem 2.12.

Appendix A. q-polygamma functions

Here we list a number of formulas related to the q-gamma and q-polygamma functions which
are used throughout the paper. The q-gamma function is defined by (we always assume q ∈ (0, 1))

Γq(z) := (1− q)1−z (q; q)∞
(qz; q)∞

.

We have limq↗1 Γq(z) = Γ(z). The log-derivative of Γq(z) (the q-digamma function) is denoted
by

ψq(z) :=
1

Γq(z)

∂Γq(z)

∂z
.

It is straightforward that

ψq(z) = − log(1− q) + log q

∞∑
k=0

qk+z

1− qk+z
, (A.1)

which is a meromorphic function in z having poles when qz+k = 1 (and the series converges for
any z except these poles thanks to the factors qk).

The following formula is an alternative series representation for derivatives of ψq(z) (the so-
called q-polygamma functions):

ψ(n)
q (z) = (log q)n+1

∞∑
k=1

knqkz

1− qk
, n ≥ 1, (A.2)

e.g., see [BC16, Lemma 2.1] for the computation. In contrast with (A.1), this series converges
only when |qz| < 1, i.e., when Re z > 0.

It is convenient to replace qz by w, and define for any n ≥ 0:

φn(w) :=

∞∑
k=1

knwk

1− qk
, |w| < 1. (A.3)

We thus have

φn(w) =
log(1− q)

log q
1n=0 +

1

(log q)n+1
ψ(n)
q (logq w), n ≥ 0. (A.4)

The latter formula gives an analytic continuation of the series (A.3) to a meromorphic function
of w ∈ C having poles of order n+ 1 at w = q−k, k ∈ Z≥0.

Several useful properties of the functions φn are summarized below:

Proposition A.1. We have

∂

∂w
φn(w) =

1

w
φn+1(w), n ≥ 0. (A.5)
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The functions φ0(w) and φ1(w) are negative for negative real w, and φ1(w) and φ3(w) are positive
for positive real w /∈ qZ≤0, while φ2(w) is positive for w ∈ (0, 1). Moreover, φn(0) = 0 for all n.

Proof. The claim about the derivatives is straightforward from either (A.3) or (A.4). To check
the signs of the φn’s, let us use the series (A.1) and its derivatives to get formulas for φn(w) valid
for all w. We have

φ0(w) =
∞∑
k=0

qkw

1− qkw
, φ1(w) =

∞∑
k=0

qkw

(1− qkw)2
, (A.6)

φ2(w) =
∞∑
k=0

qkw(1 + qkw)

(1− qkw)3
, φ3(w) =

∞∑
k=0

qkw(1 + 4qkw + q2kw2)

(1− qkw)4
. (A.7)

This immediately implies all the remaining claims. �

Appendix B. Translation invariant stationary distributions

B.1. Preliminaries. Here we perform computations related to translation invariant stationary
distributions of homogeneous versions of our particle systems on the whole (discrete or continuous)
line. Classification of translation invariant stationary distributions for rather general zero range
processes (in the sense of [Spi70]) on Z is well-known, e.g., see [And82]. In particular, under
mild conditions on the process every translation invariant stationary distribution is a mixture of
product measures. Here by a product measure we mean assigning random independent identically
distributed numbers of particles at each location in Z (such a random configuration is clearly
translation invariant).

While neither the half-continuous stochastic higher spin six vertex model nor the exponential
jump model are zero range, the existence (for suitable initial configurations) of these processes
on Z and R, respectively, can be established similarly to [Lig73], [And82]. The main observation
is that our process on Z (denote it by XZ

hc(t)) is “slower” than the zero range process (with
the geometric jumping distribution) obtained by dropping the interaction of the flying particles
with the sitting ones. In the case of the continuous space, our process (denote it by XR(t))
is “slower” than simply the process of independent particles each of which jumps to the right
by an exponentially distributed random distance after exponentially distributed time intervals.
Therefore, to show the existence of both XZ

hc and XR one can essentially repeat the estimates
of [Lig73] or [And82] (with suitable modifications in the case of the continuous space). This
also implies that product measures on Z or their analogues on R, marked Poisson processes (see
Definition B.2 below), can serve as (random) initial configurations for XZ

hc and XR, respectively,
provided that the random number of points at a single location has, say, two finite first moments.

Here we do not attempt to classify all translation invariant stationary distributions of XZ
hc and

XR, but instead show that certain specific product measures or marked Poisson processes are
indeed stationary under our systems. We also obtain formulas for particle density and particle
current (sometimes also called particle flux) for these measures which (in the case of XR) are
employed in the heuristic derivation of the macroscopic limit shape for the height function in
Section 2.2 (based on the assumption that these measures describe local behavior of the inhomo-
geneous exponential jump model).

B.2. Stationary distributions for half-continuous vertex model. Let XZ
hc(t) be the ho-

mogeneous version of the half-continuous stochastic higher spin six vertex model (described in
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Section 3.3) which is well-defined on a suitable subset of Conf∼• (Z), the space of possibly count-
ably infinite particle configurations in Z with multiple (but finitely many) particles per location
allowed. This process depends on parameters ξi ≡ ξ > 0 and si ≡ s ∈ (−1, 0).

For any c ≥ 0, let ϕhc
c,s2 be the probability distribution on {0, 1, 2, . . .} defined as

ϕhc
c,s2(j) := cj

(s2; q)j
(q; q)j

(c; q)∞
(cs2; q)∞

, j ≥ 0. (B.1)

The fact that these quantities sum to one follows from the q-binomial theorem [GR04, (1.3.2)].
When s = 0, ϕhc

c,s2 turns into the distribution (c; q)∞c
j/(q; q)j which is often called the q-geometric

distribution. The latter in turn becomes the usual geometric distribution (1− c)cj when q = 0.

Let mhc
c,s2 = (ϕhc

c,s2)⊗Z be the product probability measure on {0, 1, 2, . . .}Z corresponding to

the number of particles at each location distributed as ϕhc
c,s2 , all of them being independent.

Proposition B.1. For any c ≥ 0, the measure mhc
c,s2 on Conf∼• (Z) is stationary under the process

XZ
hc(t) with the matching parameter s and arbitrary ξ.

Proof. It suffices to consider the evolution of the distribution of the number of particles at a given
location in Z. If there are k ≥ 0 particles at this location, then one particle leaves it at rate

Rate(k → k − 1) = −ξs(1− qk).
Let us compute Rate(k → k + 1). Let Y hc, Y hc

1 , Y hc
2 , . . . be independent random variables dis-

tributed as ϕhc
c,s2 . The rate at which a particle joins a stack of k particles has the following

form:

Rate(k → k + 1) = E

( ∞∑
n=0

−ξs(1− qY hc
)︸ ︷︷ ︸

rate at which a parti-

cle leaves a stack n+1

positions to the left

· qY hc
1 . . . qY

hc
n (s2)n︸ ︷︷ ︸

probability that the

flying particle travels

distance n

· (1− s2qk)︸ ︷︷ ︸
probability that the

flying particle stops

at our location hav-

ing k sitting particles

)
. (B.2)

One readily sees that

E qY
hc

=

∞∑
j=0

(cq)j
(q; q)j
(s2; q)j

(c; q)∞
(cs2; q)∞

=
(cqs2; q)∞
(cq; q)∞

(c; q)∞
(cs2; q)∞

=
1− c

1− cs2
,

and thus the sum in (B.2) simplifies to

Rate(k → k + 1) = −ξsc(1− s2qk).

The desired stationarity now follows from the identity which can be readily verified:(
ϕhc
c,s2(k − 1)−ϕhc

c,s2(k)
)

Rate(k − 1→ k) +
(
ϕhc
c,s2(k + 1)−ϕhc

c,s2(k)
)

Rate(k + 1→ k) = 0

(if k = 0, then by agreement Rate(0→ −1) = Rate(−1→ 0) = 0). �

Let us now compute the particle density ρhc(c) and the particle current hc(c) associated with
the product measure mhc

c,s2 (a similar computation appears in [Vet15]). The particle current is

the average number of particles jumping over any given location per unit time. This quantity is
given by the sum in the right-hand side of (B.2) without the last factor (1− s2qk), and hence

hc(c) = −ξsc.
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The particle density is the average number of particles per location, it is equal to

ρhc(c) = E (Y hc) =
∞∑
j=0

jcj
(s2; q)j
(q; q)j

(c; q)∞
(cs2; q)∞

=
(c; q)∞

(cs2; q)∞
c
∂

∂c

(
(cs2; q)∞
(c; q)∞

)

=
c ∂∂c(cs

2; q)∞

(cs2; q)∞
−
c ∂∂c(c; q)∞

(c; q)∞
=

∞∑
i=0

−cs2qi

1− cs2qi
+

∞∑
i=0

cqi

1− cqi
= φ0(c)− φ0(cs2),

where in the last equality we used (A.6). We will not further pursue formulas for the discrete
model, and instead in the next two subsections turn to the exponential jump model as it is the
main object of the present paper.

B.3. Stationary distributions for the exponential jump model. The homogeneous expo-
nential jump model XR(t) on the whole line depends on parameters ξ(x) ≡ ξ > 0 and λ > 0, and
we assume that there are no roadblocks.8 We will use the following analogue of product measures
on the continuous line:

Definition B.2. A marked Poisson process with marks following a probability distribution ϕ on
Z≥1 is a probability measure on Conf∼• (R) (i.e., a random particle configuration in R) obtained
as follows. Take a (homogeneous) Poisson process on R with some rate µ > 0, and at each point
of this Poisson process put a random number of particles according to the distribution ϕ on Z≥1,
independently for each point of the Poisson process.

As explained in Section 3.4, the exponential jump model arises from the half-continuous vertex
model as s2 = e−λε → 1, −ξs = ξ is fixed, and the discrete space is rescaled by ε to become
continuous. In this limit regime the distribution ϕhc

c,s2 (B.1) behaves as follows:

ϕhc
c,s2(0) =

(c; q)∞
(ce−λε; q)∞

= exp

{ ∞∑
i=0

(−ελ)
cqi

1− cqi
+O(ε2)

}
= 1− ελφ0(c) +O(ε2),

and for any j ≥ 1 we have

ϕhc
c,s2
(
j | j ≥ 1

)
= cj

(e−λε; q)j
(q; q)j

1
(ce−λε;q)∞

(c;q)∞
− 1

= cj
(1− e−λε)

ελφ0(c) +O(ε2)

(qe−λε; q)j−1

(q; q)j
→ 1

φ0(c)

cj

1− qj
.

In other words, the product measure mhc
c,s2 from Appendix B.2 turns into a marked Poisson process

with rate λφ0(c) and marking distribution

ϕc(j) :=
1

φ0(c)

cj

1− qj
, j ≥ 1. (B.3)

Denote this marked Poisson process by mc,λ.

Proposition B.3. For any c ≥ 0 the measure mc,λ on Conf∼• (R) is stationary under the process

XR(t) with the matching parameter λ and arbitrary parameter ξ.

8The assumption that there are no roadblocks makes sense because we expect that XR should describe local
behavior under the inhomogeneous exponential jump model from Section 2.1, and roadblocks cannot accumulate
locally.
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Proof. The proof is a continuous space modification of the one of Proposition B.1. However, as
the continuous space computations are somewhat more involved, let us give some details. Fix
x ∈ R, and consider the evolution of the distribution of the number of particles in (x, x + dx).
First, if there are k ≥ 1 particles there, then the rate at which one particle leaves is

Rate(k → k − 1) = (1− qk)ξ.
Let Y, Y1, Y2, . . . be independent random variables distributed asϕc, and also let x > p1 > p2 > . . .
be all points of the Poisson process of rate λφ0(c) to the left of our x. We have, similarly to (B.2):

Rate(k → k+1) = E

( ∞∑
i=1

(1− qY )ξ︸ ︷︷ ︸
rate at which a par-

ticle wakes up at the

stack at pi

· qY1 . . . qYi−1e−λ(x−pi)︸ ︷︷ ︸
probability that the

flying particle travels

past location x

· (1− qke−λdx)︸ ︷︷ ︸
probability that the

flying particle stops in

(x, x+ dx), see below

)
. (B.4)

The last factor 1 − qke−λdx serves two cases: for k = 0, the probability that the flying particle
stops in (x, x + dx) is λdx + O(dx2) (which is small), while for k ≥ 1 it is 1 − qk + O(dx). We
have

E qY =
1

φ0(c)

∞∑
j=1

(cq)j

1− qj
=
φ0(cq)

φ0(c)
= 1− c

(1− c)φ0(c)
,

where in the last equality we used (A.6). Next, observe that x − pi is a sum of i independent
exponential random variables with parameter λφ0(c) (denote one such variable by Y ′), and so

E e−λ(x−pi) =
(
E e−λY

′
)i

=

(
φ0(c)

1 + φ0(c)

)i
.

Thus, (B.4) turns into

Rate(k → k + 1) = ξ
c(1− qke−λdx)

(1− c)φ0(c)

∞∑
i=1

(
φ0(c)

1 + φ0(c)

)i(
1− c

(1− c)φ0(c)

)i−1

= ξc(1− qke−λdx).

The desired stationarity follows from the identities

k = 0 : − e−λφ0(c)dxξc(1− e−λdx) + (1− e−λφ0(c)dx)
c

(1− q)φ0(c)
(1− q)ξ = O(dx2);

k = 1 : − (1− e−λφ0(c)dx)
c

(1− q)φ0(c)

[
ξc(1− qe−λdx) + (1− q)ξ

]

+ (1− e−λφ0(c)dx)
c2

(1− q2)φ0(c)
(1− q2)ξ

+ e−λφ0(c)dxξc(1− e−λdx) = O(dx2);

k ≥ 2 : − (1− e−λφ0(c)dx)
ck

(1− qk)φ0(c)

[
ξc(1− qke−λdx) + (1− qk)ξ

]

+ (1− e−λφ0(c)dx)
ck+1

(1− qk+1)φ0(c)
(1− qk+1)ξ
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+ (1− e−λφ0(c)dx)
ck−1

(1− qk−1)φ0(c)
ξc(1− qk−1e−λdx) = O(dx2),

which are readily verified. �

Let us now write down the particle density ρ(c) and the particle current j(c) under the measure
mc,λ. We have

ρ(c) = λφ0(c)E (Y ) = λ

∞∑
j=1

jcj

1− qj
= λc

∂

∂c
φ0(c) = λφ1(c), (B.5)

where we employed (A.5). The particle current is given by the sum in the right-hand side of (B.4)
without the last factor 1− qke−λdx, and so is equal to

j(c) = ξc. (B.6)

From Proposition A.1 it readily follows that φ1 : [0, 1]→ [0,+∞] is one to one and increasing.
Let φ−1

1 denote the inverse. From (B.5) and (B.6) we see that the dependence of the current on
the density is

j(ρ) = ξφ−1
1 (ρ/λ). (B.7)

B.4. Verification of the macroscopic limit shape. Recall the inhomogeneous exponential
jump model on R>0 defined in Section 2.1 depending on the speed function ξ(x) and the jump
distance parameter λ > 0. Let us assume that there are no roadblocks, and, moreover, that ξ(x)
is continuous at x = 0. Let us take a slightly more general model in which λ also depends on
the location x ∈ R>0 as λ̃(x)L, where L is a large parameter and λ̃(x) is a positive continuous
function bounded away from zero and infinity. We also rescale the continuous time as t = τL.

Assume that in the limit as L→ +∞ there is a limiting density of particles ρ(τ, x) ∈ [0,+∞].
Moreover, assume that locally at each x ∈ R>0 where ρ(τ, x) < +∞ the behavior of the par-
ticle system is described by the translation invariant stationary distribution mc,̃λ(x) defined in

Appendix B.3. Under these assumptions and using (B.7), one naturally expects (following the
hydrodynamic treatment of driven interacting particle systems in, e.g., [AK84], [Rez91], [Lan96],
[GKS10]) that the limiting density satisfies the following partial differential equation:

∂

∂τ
ρ(τ, x) +

∂

∂x

[
ξ(x)φ−1

1

(
ρ(τ, x)/λ̃(x)

)]
= 0, (B.8)

with the initial condition ρ(0, x) = 0 (x > 0) and the boundary condition ρ(τ, 0) = +∞ (τ ≥ 0).

Remark B.4. The case λ̃(x) ≡ 1 considered in the main part of the paper does not restrict
the generality. Indeed, let Λ(x) :=

∫ x
0 λ(u)du. This is a strictly increasing function, and let Λ−1

denote its inverse. If ρ(τ, x) satisfies (B.8) then a straightforward computation shows that

ρ̌(τ, y) :=
ρ(τ,Λ−1(y))

λ(Λ−1(y))

satisfies the same equation (B.8) in the variables (τ, y), with λ̃ replaced by 1, and with the
modified speed function ξ̌(y) := ξ(Λ−1(y)).

By virtue of Remark B.4, we assume that λ̃(x) ≡ 1, and consider the following equation for
the density:

∂

∂τ
ρ(τ, x) +

∂

∂x

[
ξ(x)φ−1

1

(
ρ(τ, x)

)]
= 0, (B.9)

with initial condition ρ(0, x) = 0 (x > 0) and boundary condition ρ(τ, 0) = +∞ (τ ≥ 0).
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Let us verify that the limiting density coming from the asymptotic analysis of the Fredholm
determinant in Section 4 satisfies (B.9). Recall that in the absence of roadblocks the macroscopic
limit shape H(τ, x) for the height function is given as follows. First, let xe = xe(τ) ≥ 0 be the

edge point, i.e., the unique solution to τ =
∫ xe

0
dy

(1−q)ξ(y) . Let also w = ω◦τ,x for 0 < x < xe be

the root of τw =
∫ x

0 φ2

(
w/ξ(y)

)
dy on the segment

(
0, ess infy∈[0,x) ξ(y)

)
(by Proposition 2.5 this

root exists and is unique). The limit shape is

H(τ, x) =

τω◦τ,x −
∫ x

0
φ1

(
ω◦τ,x/ξ(y)

)
dy, 0 < x < xe;

0, x ≥ xe.

Proposition B.5. The density defined as ρ(τ, x) := − ∂
∂xH(τ, x) satisfies equation (B.9) (when-

ever all derivatives involved make sense).

Proof. Assume that 0 < x < xe(τ), otherwise the density is zero and thus trivially satisfies
the equation. Differentiating H(τ, x) in τ and x and using Proposition A.1 together with the
definition of ω◦τ,x, we obtain

∂

∂τ
H(τ, x) = ω◦τ,x + τ

∂ω◦τ,x
∂τ

− 1

ω◦τ,x

∂ω◦τ,x
∂τ

∫ x

0
φ2

(
ω◦τ,x/ξ(y)

)
dy = ω◦τ,x;

∂

∂x
H(τ, x) = τ

∂ω◦τ,x
∂x

− φ1

(
ω◦τ,x/ξ(x)

)
− 1

ω◦τ,x

∂ω◦τ,x
∂x

∫ x

0
φ2

(
ω◦τ,x/ξ(y)

)
dy = −φ1

(
ω◦τ,x/ξ(x)

)
.

Therefore, we can write

ρ(τ, x) = −∂H(τ, x)

∂x
= φ1(ω◦τ,x/ξ(x)) = φ1

(
1

ξ(x)

∂H(τ, x)

∂τ

)
,

or, inverting φ1:
∂H(τ, x)

∂τ
= ξ(x)φ−1

1

(
ρ(τ, x)

)
.

Differentiating the last equality in x we arrive at equation (B.9) for ρ(τ, x). �
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