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Abstract

The surfaces of host cells and viruses are decorated by complex glycans, which play multifaceted 

roles in the dynamic interplay between the virus and the host including viral entry into host cell, 

modulation of proteolytic cleavage of viral proteins, recognition and neutralization of virus by host 

immune system. These roles are mediated by specific multivalent interactions of glycans with their 

cognate proteins (generally termed as glycan-binding proteins or GBPs or lectins). The advances 

in tools and technologies to chemically synthesize and structurally characterize glycans and 

glycan-GBP interactions have offered several insights into the role of glycan-GBP interactions in 

viral pathogenesis and have presented opportunities to target these interactions for novel antiviral 

therapeutic or vaccine strategies. This review covers aspects of role of host cell surface glycan 

receptors and viral surface glycans in viral pathogenesis and offers perspectives on how to employ 

various analytical tools to target glycan-GBP interactions.

Introduction

Complex glycans decorate surfaces of both host cells (and tissues) and viruses and play 

multifaceted roles in interactions between the viruses and host organisms that critically 

govern viral pathogenesis [1–4]. These complex glycans are attached N-linked or O-linked 

to proteins as a part of post-translational modifications or attached to lipids. The complexity 

and structural heterogeneity of the glycans displayed on host cell/tissue surface and on viral 

surface glycoproteins predominantly arises from the complex non-template driven 

biosynthetic machinery of the host cell involving several enzymes that show tissue-specific 

expression patterns [5–7]. The interplay between the virus and the host involves interactions 

between two surfaces decorated by complex glycans. In addition to the glycans, a critical 

component involved in this interplay is a set of proteins known as glycan-binding proteins 

(GBPs) or lectins.

The GBPs involved in virus-host interplay mediated by glycans are typically anchored on 

the surfaces of cells (for example C-type lectins, Siglecs, etc. [1,8] and viruses (envelop 

proteins or spike glycoproteins) [2–4]. The functional unit of GBP is often multimeric 

comprising of homo-oligomers of individual protein domains each having a glycan-binding 

site [1]. Each glycan-binding site shows specific recognition to glycan motif or substructure 

of the complex glycan structure comprising of 2–5 sugars; however, the binding affinity for a 
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given site to a glycan motif is typically low to moderate. The binding affinity and specificity 

are further enhanced through avidity and multivalency wherein multiple glycan motifs 

displayed on the surface bind to multiple glycan binding sites in the GBP oligomer unit 

[1,9].

The complex glycans displayed on host cell surfaces typically act as attachment factors, co-

receptors or primary receptors that are specifically recognized by the viral surface 

glycoproteins. For example, complex glycans terminated by α2–3- or α2–6-linked sialic 

acid (N-acetyl neuraminic acid) act as receptors for several different viruses [10]. Linear 

sulfated glycosaminoglycans such as heparan sulfate act as co-receptors for a variety of 

viruses [11] including dengue virus [12,13], hepatitis C virus [14], and foot-and-mouth 

disease virus [15]. The predominant display of specific glycan motifs on surfaces of 

different cells and tissues contributes to the host restriction and cell/tissue tropism of the 

virus. As an example, the human upper respiratory epithelial surface predominantly display 

sialylated glycan receptors terminated by α2–6-linked sialic acid and these receptors are 

specifically recognized by hemagglutinin glycoprotein (HA) on surface of influenza A 

viruses that are known to infect and transmit via respiratory droplets in humans [4,16–18]. 

On the other hand, when influenza A viruses that are commensal or epizootic in birds infect 

humans, they typically affect deep lung and other tissues that predominantly display 

sialylated glycan receptors terminated by α2–3-linked sialic acid and are unable to transmit 

efficiently via respiratory droplets.

The glycans displayed on viral surfaces are posttranslational modifications of envelop 

proteins in viruses such as flaviviruses including dengue and zika virus or of glycoprotein 

spikes as observed in influenza A virus, Ebola virus, etc. These glycans are added to the 

viral glycoproteins as a part of the host-cell glycan biosynthesis upon viral replication in the 

host. In most cases, glycosylation sites on viral surface proteins are highly conserved since 

the glycans at these sites critically maintain the stability of these proteins and the viral 

particles as a whole. In addition to maintaining the stability of the viral particles, these 

glycans also play key roles in mediating infection of host cells by certain viruses such as 

dengue and Ebola viruses through specific interactions with GBPs (such as C-type lectins) 

displayed on the host cell surface [1,19].

The complex glycans on the viral surface also play a key role in host immune response to 

counter the viral infection. While GBPs anchored on surfaces of host cells such as dendritic 

cells (DCs) play a role in viral entry, it also plays a dual role to enhance antigen presentation 

and processing for adaptive immune response [1]. Sites of N-linked glycosylation are often 

positively selected during evolution of the virus in human host to increase glycans on the 

viral surface so as to present glycans that mimic self-antigens and mask the underlying 

protein epitope which in turn permits the virus to evade host immune response. In other 

cases, particularly with HIV, the clustering of glycosylation sites on the gp120 surface 

glycoprotein present novel glyco-eptiopes that do not mimic self-antigens and therefore lead 

to potent neutralization by antibodies that target these novel eptiopes across a broad 

spectrum of viral strains [20]. This review covers some general concepts on role of host cell 

surface glycan receptors and viral surface glycans in viral pathogenesis. Some perspectives 
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on developing the appropriate tools to define target glycan motifs on host cells or viral 

surface towards developing antiviral strategies is also presented.

Glycans on Host Surface Mediating Viral Entry, Infection and Tropism

The viral surface glycoproteins have evolved to specifically recognize distinct glycan motifs 

on the host cell surface and these specific interactions are one of the many factors that 

contribute to virus entry into specific host cells and host tissue tropism. Depending on the 

virus, the host cell surface glycans act as general attachment factors, co-receptors or primary 

receptors that mediate viral infection and entry.

Acidic glycans such as linear heparan sulfate glycosaminoglycan polysaccharides or 

branched glycans terminated by sialic acid displayed on cell surfaces in many instances play 

a role in attracting viruses based on their negative charge and serve as initial attachment 

factors to the host cell. Specifically, heparan sulfate by virtue of its chain length and 

distribution of sulfate groups has been implicated to play key role as attachment factor or co-

receptors mediating the initial attachment of several viruses including HIV [21,22], 

enterovirus EV71 [23,24], echovirus E5 [25], coxsackievirus A9 and B3 strains [26,27], 

dengue virus [12,13] and Ebola virus [28]. An established example of specific modification 

in heparan sulfate that mediates virus entry is that of 3-O sulfation of the glucosamine that 

plays a critical role in specific interactions with herpes simplex virus [29–31]

Sialylated glycan receptors play a more directed role in mediating binding, attachment and 

entry of viruses into host cells [10]. It has been demonstrated that enterovirus EV-D68 binds 

sialylated glycan receptors along the canyon of the viral surface and that this binding event 

causes significant conformational change in the viral envelop that displaces the fatty acid 

(also known as pocket factor which maintains structural stability of the envelop) and 

prepares the virus for infection [32,33]. Furthermore, it has been indicated that sialylated 

glycan receptors specifically in the context of O-linked glycans and glycolipids and not in 

the context of N-linked glycans mediate infection of EV-71 virus [34]. Picornaviruses 

including coxsackievirus A24 and EV-70 which cause severe conjunctivitis have been 

demonstrated to preferentially bind to α2–6-linked sialylated glycan receptors [35–39].

The influenza A virus is among the best studied viruses that are known to bind to host cell 

surface sialylated glycan receptors. The binding specificity of the viral surface 

hemagglutinin (HA) to sialylated glycan receptors on the host cell surface is one of many 

factors that critically govern adaptation of influenza to the human host. Avian virus HA 

binds with high specificity and affinity to glycans terminated by α2–3-linked sialic acid 

which are found in abundance in avian gut and lower respiratory tract of humans [40–42]. 

Human virus HAs possess characteristic glycan receptor binding properties; their HA 

predominantly binds with high affinity (or avidity) to glycan receptors terminated by α2–6-

linked sialic acid, which are predominantly expressed in the upper respiratory epithelia of 

humans [40,43,44]. The human upper respiratory epithelium is the primary target site for 

infection of human-adapted viruses and is thought to be a prerequisite for efficient human-

to-human transmission via respiratory droplets [4]. In addition to HA, influenza A virus 

surface also has an enzyme that cleaves sialic acid from both viral surface and host cell 
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surface glycans to enhance productivity of infection, prevent self-aggregation of new virions 

that emerge from productive infection in a host cell [45,46]. In fact one of the earliest 

antiviral therapeutic strategies based on host cell surface glycan receptors was the design of 

sialic acid analogues (oseltamivir, zanamivir, etc.) to specifically bind to and inactivate the 

influenza A virus NA [47].

In addition to acidic glycans, neutral glycans such as histo-blood group antigens present on 

bodily secretions and also epithelial surface of the human intestine play a key role in 

mediating initial infection and entry of most norovirus genotypes. The characteristic motif 

among these histo-blood group antigens is a fucose α1–2 linked to galactose which is 

specifically recognized by protruding domain (P) of the viral capsid [48,49]. In fact, 

oligosaccharides in milk which also comprise of terminal α1–2 fucosyl glycan motif 

(similar to that in histo-blood group antigen) have been shown to have a potent inhibitory 

role in norovirus infection by serving as receptor decoys [50,51].

Role of Viral Surface Glycoproteins in Pathogenesis

During the natural course of viral pathogenesis in different mammalian hosts including 

humans, the glycan biosynthetic machinery of the host cell also glycosylates the viral 

surface proteins. These viral surface glycans interact with the GBPs on the host cell. These 

interactions either favor the virus in terms of gaining entry to specific target cells that 

display the GBP or favor the host where the viral glycans are recognized by various 

circulating GBPs that mediate clearance of the virus or by anchored GBPs on antigen 

presenting cells that prime host immune response to target the viruses (see [1] for a detailed 

review). The glycan motifs on the viral surface glycans can be classified into three broad 

categories – i) high mannose type, ii) acidic (terminal sialylation) and iii) neutral (not 

capped by sialic acid).

Some of the circulating GBPs in different hosts that help in viral clearance include collectins 

(recognize high mannose type and neutral glycans), surfactant proteins SP-A and SP-D 

(recognize high mannose and acidic glycans), mannose binding lectin, ficolins and galectins 

that show a broader diversity in recognition of high mannose, neutral and acidic glycans 

[1,8]. Langerin is a C-type lectin on surface of Langerhans cells (antigen presenting cells) 

that specifically recognize high-mannose type glycans on viral surface and plays a key role 

in priming the host immune response to recognize viral glycopeptides as antigens. A 

prototypic example of immune response targeted to viral surface glycans is that of HIV 

where numerous antibodies targeting the glyco-eptiopes achieve potent neutralization 

against a broad spectrum of viral strains [20].

Among the GBPs on host cell surface that bind to viral surface glycans to facilitate viral 

entry and infection, the dendritic cell-specific ICAM-grabbing non integrin (DC-SIGN) and 

liver/lymph node specific ICAM-grabbing non integrin (L-SIGN) are the most prominent 

and play a key role in pathogenesis of numerous viruses including HIV, flaviviruses (dengue, 

zika), Ebola virus, measles virus, respiratory syncytial virus, coronavirus (SARS), etc. 

[1,52]. In fact it has been demonstrated that the dengue virus switches its specificity from 

DC-SIGN (high mannose and fucosylated N-linked glycans) which plays a key role in 
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infection of the primary monocyte cells to L-SIGN (stricter binding to high mannose 

glycans) during subsequent secondary infection of other cells including hepatocytes [53–55].

In addition to their interactions with mammalian host GBPs, glycosylation of the viral 

surface proteins also impacts binding of these proteins to host cell glycan receptors as 

observed in the case of influenza A virus HA. Molecular dynamics simulation studies 

predicted that HA glycans may form interactions near the binding pocket to influence 

receptor binding [56]. Site-directed mutagenesis to knock-out glycosylation sites on HA or 

modifying structure of N-linked glycans on the virus by enzymatic treatment or transgenic 

cell lines have shown distinct changes in glycan-receptor binding specificity [57]. In the case 

of the 1918 pandemic H1N1 influenza viruses, a mutation that abrogates glycosylation at a 

single highly conserved site significantly impacted the ability of the virus to bind to α2–6 

sialylated glycan receptors but not to α2–3 sialylated glycan receptors [58]. Site-specific 

loss-of-glycosylation mutations have also been shown to impact glycan receptor-binding 

specificity which in-turn governed virulence in mice [59–61]. Therefore, it is evident that the 

viral surface glycosylation governed by specific glycosylation sites and the structural 

heterogeneity of the glycans at each site in the relevant physiological context of virus 

interaction with the host cell has multidimensional roles in pathogenesis of the virus in the 

host.

Tools for defining glycan-specific targets in virus-host interactions

The dynamic interplay between virus and its mammalian host involving glycan-GBP 

interactions presents new opportunities to target these interactions so as to develop novel 

antiviral therapies. Based on what is known about role of complex glycans in viral – host 

interactions, the key question is how does one define a target in the right physiological 

context of these interactions? [43] Given that glycosylation biosynthesis machinery is 

complex and does not have a template, the results from in vitro experiments may be biased 

towards glycans made by a given cell line used in the experiment and may not be related to 

the actual physiological context of the virus-host cell interactions. For example, the 

glycosylation on gp120 protein on the surface of the virus is different from that of a 

recombinantly expressed protein in different cell lines [62–64]. Therefore, framing this 

question would guide the integration of the datasets from the various tools developed to 

decode glycan structures and glycan-protein interactions. Some of the key tools and 

perspectives on how to integrate the tools from the standpoint of characterizing glycan-

protein interaction targets is summarized in the following.

Structural characterization of glycans

The characterization of glycan-specific targets in virus-host interactions can range from 

simple to very complex definitions. An example of a simple glycan-specific target is a single 

terminal sugar such as sialic acid as seen in the case of neuraminidase inhibitors or a defined 

oligosaccharide glycan motif such as tri- or tetra-saccharide motif capped by α2–3- or α2–

6- linked sialic acid that has specific recognition and high affinity binding by the viral 

surface glycoproteins. A highly complex description of glycan target would involve defining 

the glycan motif, the linkage of the glycan comprising this motif to specific glycosylation 
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site on a specific protein and a geometrical arrangement of such glycosylation sites on the 

glycoprotein. An example of such a complex definition is the glyco-epitope surfaces on HIV 

gp120 targeted by potent broad spectrum neutralizing antibodies. Therefore the scope of the 

target definition would guide the development and integration of diverse analytical tools.

The GBPs or lectins that are known to recognize specific glycan motifs are valuable tools 

that can be used to assess the distribution of these motifs. Furthermore, the advances in 

chemical synthesis of glycans coupled with the ability to probe finer nuances of glycan motif 

recognition by various lectins using glycan array platforms has substantially improved the 

knowledge on the diversity of glycan motifs recognized by various GBPs [65,66]. These 

GBPs can be directly used to stain host cell or tissue surfaces and multiplexing the staining 

of more than one GBP can expand the knowledge of the glycan motifs distributed on these 

surfaces [4,67,68]. As an example co-staining of host tissues or cells with Sambucus nigra 
agglutinin I (SNA-I) which binds with high specificity to α2–6 sialylated glycans and 

Concanavalin A (ConA) which binds to trimannosyl core of N-linked glycans would give 

information on predominance of α2–6 sialylated glycans that are N-linked to the 

glycoproteins. These lectins can also be displayed in an array-like platform and samples 

such as whole viruses or virus-like particles comprising of the viral surface glycoprotein can 

be probed for their binding to such lectin-arrays [65,69–71]. This would again provide 

information on the prevalence of specific glycan motifs that are present as a part of the 

glycans on the viral surface glycoproteins. The advantages of using lectins is that it provides 

a read on the glycan motif in their physiological context either on the host tissue or cell or 

viral surface and do not require any additional processing that may change the structural 

diversity of the glycans prior to analysis. However, a limitation in this approach arises from 

the lack of a comprehensive panel of lectins that can completely decode the structural 

diversity of the glycans. As an example while lectins like SNA-I give an accurate picture of 

distribution of glycans capped by α2–6-linked sialic acid, the information on whether this 

motif is a part of highly branched N-linked glycans or a part of long oligosaccharide branch 

length cannot be deduced.

There are several analytical methods building on the use of different mass spectrometric 

methods such as MALDI-MS, LC-MS, tandem MS-MS, and other methods using NMR 

spectroscopy, and HPLC that have been developed over several decades for detailed 

structural characterization of complex glycans, glycopeptides and glycolipids. Each 

analytical method is unique but they provide overlapping information on the detailed 

nuances of glycan structure, occupancy of the glycosylation site, etc. Therefore integration 

of information from different analytical techniques would provide comprehensive 

information on the glycan structures displayed on host and viral surfaces. One limitation of 

this approach is the challenges in accessing and isolating glycans from their right 

physiological context prior to analysis. For example, the HA from influenza A virus 

subtypes H1N1 and H3N2 that have adapted well to the human host shows extensive 

staining of non-ciliated goblet cells in the upper respiratory epithelial surface. However it is 

challenging to obtain and grow these cells in vitro to extract the glycans from these cells for 

detailed structural analyses.
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Therefore, depending on the scope of glycan target definition it would be necessary to 

employ both lectin-based tools and analytical tools and integrate the information from 

applying these tools for an unbiased definition of the target. Such an approach was used to 

expand the target definition of sialylated glycan receptors for human adapted influenza A 

viruses going beyond just the terminal α2–6 sialic acid linkage to a long oligosaccharide 

motif capped by α2–6 sialic acid both in the context of N-linked glycans on the ciliated 

epithelial surface and non-ciliated goblet cell surface in respiratory tract of humans and 

established animal models such as ferrets [44,68,72].

Probing glycan-GBP interactions

A variety of biochemical methods have been used to characterize the specificity in the 

context of multivalent GBP–glycan interactions. Among the various tools, glycan array 

platforms are rapidly emerging as a popular tool to probe finer nuances of glycan structures 

that are recognized by various GBPs. Glycan platforms consist of hundreds of synthetic 

glycan motifs (typically present on N- and O-linked glycoproteins and glycolipids) 

displayed on the surface of the array. Multiple types of arrays have been developed that 

utilize different strategies including the formation of neoglycolipids [73], neoglycoproteins 

[74], or the direct application of glycans to various surfaces [75–80]. Studies have also 

begun to adapt these technologies towards the presentation of natural glycans by harvesting 

glycans from the cells or tissues and imprinting these on a glycan array format, thus 

allowing one to probe the glycan repertoire of a biological system [81].

Designing the experimental method and array platform to probe glycan-GBP interactions 

needs to be carefully done based on the scope of the analysis. In most cases the scope of the 

analysis is to obtain a primary screen of a whole virus or viral surface glycoprotein or 

mammalian GBP against the maximum diversity of glycan motifs that can be generated in a 

defined fashion synthetically. Following this primary screen, the second objective is to 

usually probe deeper into the quantitative differences in affinity and avidity between 

different viruses for specific glycan motifs. This would often involve doing a dose-

dependent binding of the viral surface glycoprotein (or whole virus) to defined motifs in 

secondary assays such as surface plasmon resonance or isothermal titration calorimetry 

[77,82]. It is important to understand the glycan target motif while designing the glycan 

arrays for probing nuances of glycan binding specificities. For example, if one were trying to 

understand the nuances in binding of antibodies that target glycan shield of HIV surface 

protein gp120-gp41, then using an array of just different high mannose and complex glycans 

may not fully capture the nuances in the antibody-binding given that the underlying peptide 

epitope would not be present in such a platform. This might lead to confounding 

interpretations on link between target glycan motif recognized by these antibodies and their 

neutralization potential in in vitro and in vivo assays. It m therefore be more appropriate to 

use the recently developed BG505 SOSIP.644 gp120-gp41 trimeric unit [83] expressed in 

different cell types (and also mutant forms that lack specific glycosylation sites) by 

presenting this trimeric unit and its variants on an platform to probe the nuances of glycan 

recognition by the glycan shield targeting antibodies
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Structural and molecular specificity of glycan-GBP interactions

At the three-dimensional structure and molecular level, the interactions between glycans and 

GBPs have been captured in numerous X-ray co-crystal structures of viral surface 

glycoprotein-glycan receptor complexes and antibody-glyco-eptiope complexes as in the 

case of HIV. Over the past several years, there has been a substantial progress in developing 

tools for accurate molecular simulation of glycan-protein interactions including 

improvement in force-fields to include glycan-specific parameters [84]. This progress has 

led to improvements in modeling the electron density of glycans to assign their coordinates 

in the co-crystal structures and also rectify errors in past assignments pertaining to 

incomplete ring closures, inaccurate ring and exocyclic torsion angles, etc. [85–87]. The 

growing wealth of GBP-glycan co-crystal structures and development of molecular 

simulation tools have permitted successful predictions of amino acid changes that would 

alter glycan-binding specificity of the GBP. A couple of areas where this approach has been 

extensively applied is in prediction and validation of mutations in influenza A virus HA that 

would switch its binding specificity from α2–3 to α2–6 sialylated glycan receptors [4,88–

90] and in engineering antibodies that target known glycan epitopes to alter their epitope 

specificity [91–93].

More recent studies have described glycan-binding sites by mapping the three-dimensional 

structure into a two-dimensional network of non-bonded inter-residue interactions involving 

key residues that contact the glycan structure [88,94]. This network approach has permitted 

obtaining insights into the molecular determinants of glycan receptor-binding specificity of 

influenza A virus HA going beyond just the residues that contact the glycans. This include 

role of site-specific glycosylation that impacts receptor-binding specificity [58,59]. This 

network approach had also provided a framework to investigate amino acid changes required 

to switch glycan receptor-specificity (from α2–3 to α2–6 sialylated glycan receptors) of the 

H5N1 influenza HA in the context of additional changes in the glycan-binding site resulting 

from natural sequence evolution [88]. Importantly the network analyses studies transformed 

the notion of hallmark residues across different strains associated with glycan-binding 

specificity by demonstrating that each strain depending on its sequence evolution needed 

distinct set of amino acid changes to switch receptor specificity.

On the glycan side, the availability of co-crystal structures and molecular simulation tools 

has provided insights into the preferential conformations of the glycans sampled in the 

unbound and protein-bound states. In fact, the conformational space sampled by sialylated 

glycan receptors in binding site of avian and human influenza HA has been described using 

shape-based definitions such umbrella- and cone-like topologies. These shape-based 

definition of the glycan conformational space simplifies the parameterization to capture the 

conformational sample going from a series of glyosidic torsion angles to a one or two 

parameters that capture the shape [44]. In addition to X-ray co-crystal structures, glycan-

GBP complexes have been analyzed in solution using various NMR methods including 

STD-NMR. For example, NMR analyses of α2–3- and α2–6 sialylated glycan receptors 

bound to different HAs complimented the information on glycan-protein contacts from the 

X-ray co-crystal structures by providing additional information on dynamics of glycan 

motion in the free and protein-bound states [95,96].
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Unlike protein-protein interactions that cover a large surface area on both interacting 

proteins, protein-glycan interactions cover substantially lower surface area on the protein 

which is consistent with the low to moderate binding affinity of a given glycan-binding site 

to a given glycan-motif. Despite this affinity, there is specificity in the glycan-binding site – 

glycan contacts which is also governed by the dynamics of glycan motion in the binding site 

compared to the unbound state. As a result, mutations in the amino acid that directly 

contacts the glycan or in other amino acids in its network of inter-residue contacts are likely 

to significantly impact the glycan-binding properties of the GBP. Thus it is important to 

capture the network properties on the protein and dynamics of glycan motion while 

modeling the molecular interactions between glycans and GBPs so as to engineer these 

interactions in a predictable fashion.

Summary

Complex glycans play multidimensional roles in various stages of viral pathogenesis in a 

given host starting from viral attachment and entry to host immune response to counter the 

infection. The advances in development of tools to chemically synthesize glycans, 

sophisticated analytical methods for structural characterization of glycans, novel array 

platforms to simultaneously probe interactions between multitude of GBPs and glycan 

motifs have transformed our understanding of these multidimensional roles. However, given 

that the context of glycan-GBP interactions (in different hosts, within the host versus outside 

the host in in vitro assays) critically impacts the structural diversity of the glycans, there are 

gaps in bridging the definition of glycan-based targets to the biological functions in viral 

pathogenesis mediated by these interactions. Therefore one has to take an integrated 

approach by bridging different tools such as synthetic, analytical, array platforms, molecular 

modeling to fill these gaps and appropriately frame and validate target definition in these 

interactions. Such an approach would substantially augment ongoing efforts to in targeting 

glycan-GBP interactions to develop vaccine strategies as in the case of HIV or novel 

antiviral therapeutics.
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Figure 1. Schematic of complex glycans in the interplay between virus and host
Shown in the figure (on the left) is a schematic of a virus surface glycoprotein (such as 

influenza A virus hemagglutinin) that recognized glycans on the host cell surface as their 

primary receptors for viral attachment and entry. The viral surface protein is in itself 

glycosylated and depending on the site of glycan occupancy, the glycosylation would impact 

the binding of this protein to the host-cell glycan receptor. Shown on the right is a schematic 

of glycan on the surface of virus envelop proteins (such as dengue) interacting with GBP 

anchored on the host cell. This interaction could either be beneficial for the virus wherein it 

plays a role in viral attachment and entry into a cell capable of promoting the productive 

infection or it could be beneficial to the host wherein antigen presenting cells could uptake 

the virus and prime the host immune response.
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Figure 2. Tools to define glycan-specific targets in viral-host interactions
A. Shows snapshots of various analytical tools that either directly probe glycans in the 

appropriate physiological context (such as lectin-based staining and lectin array) or provide 

detailed characterization of glycans isolated from host or viral surface (using mass 

spectrometry and NMR based approaches. B. shows analysis of glycan-binding proteins and 

their glycan-binding site using a network approach which not only takes into account key 

residues in glycan-binding but also those that are related to these residues through their 

inter-residue interaction network. C. shows a schematic of biochemical (top) and structural 

(bottom) tools to probe glycan-GBP interactions. As shown in the bottom, shape based 

definitions of the conformational space sampled by glycans relates the conformations 

defined by 7 different glyosidic torsion angle (for a tetrasaccharide) into a single parameter 

θ whose variation can be studied during molecular dynamics simulations.
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