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We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials:
The low-energy onset of spectral functions near the threshold follows universal power laws with an
exponent that depends only on the statistics of the anyons. This provides a route, using experimental
techniques such as neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in
topologically ordered states such as gapped quantum spin liquids and hypothesized fractional Chern
insulators. Our calculations also explain some recent theoretical results in spin systems.
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Quantummechanics allows for the possibility of phases not
characterized by symmetry breaking, including the complex
of the fractional quantum Hall effects [1,2]. These are
characterized from a theoretical point of view by subtle
characteristics of their quantum entanglement known as
topological order [3–5]. This phenomenon may also appear
in quantum spin liquids, of which we have several candidates
[6–8]. From an experimental point of view, the most interest-
ing phenomenon in such phases is not the lack of long-range
order—a negative characteristic—but rather the existence of
fractionalized quasiparticle excitations that have anyonic
statistics [9–11]. In this Letter, we suggest a way to measure
these quantum statistics through the threshold behavior of
spectroscopic cross sections for creating these excitations.We
will focus on gapped phases with Abelian excitations.
It is interesting to ask howwe canmeasure the phases that

anyons accumulate when they wind around one another; is it
necessary to guidemicroscopic particles along specific paths
tomake sure they circle around one another a certain number
of times? Proposals for methods can be tested soon, since
anyons have been proven to exist in theoretical states that
model the fractional quantum Hall effect and possibly spin
liquids; see [12] for theoretical calculations in model wave
functions, and see [13] for calculations in realistic states
utilizingdegenerate ground states on a torus. Experimentally,
there have been attempts using interferometerswith twoarms
enclosing trapped anyons [14], and other proposals such as
measuring non-Abelian statistics through the entropy asso-
ciated with the quasiparticles [15]. However, neutron scat-
tering,whichmeasures the dynamical correlation function, is
a much more established technique for magnetic materials,
like the candidates for spin liquids. Neutron scattering can
create multiple excitations, which would then move around

one another (in a partly randomway), and the statistics could
be hidden in the time dependence of this process.
Neutron scattering has already been used to demonstrate

signatures of fractionalization in candidate spin liquids
[16–18]. Here the characteristic feature is the absence of
sharp dispersive lines (e.g., magnons). They are replaced by
a broad continuum, interpreted as arising from the creation
of multiple fractionalized quasiparticles, leading to a spread
in energies because of the different ways of sharing
momentum among them. Thus, it seems that, at low
energies, several fractional particles are automatically
created. How can one tell whether these particles have
fractional “anyon” statistics and accumulate phase factors
as they braid around one another, without controlling them?
In classic work, Wigner demonstrated that the onset

behavior of cross sections near production thresholds is
often dominated by long-range interactions [19]. Anyons
effectively have a long-range interaction due to the stat-
istical phases—so it seems possible that the statistical phase
can be revealed in such measurements when the anyons
do not have more dominant long-range interactions like
Coulomb interactions. We derive the behavior of the cross
section near the threshold for two anyons analytically,
showing that there is a distinct power law that reveals the
nature of the anyons. The structure factor is given by

Sðq⃗;ωÞ ∝ ðω − ΔÞα; ð1Þ
whereα is the statistical parameter for the anyons (ranging from
0 for bosons to 1 for fermions) and Δ is the minimum energy
needed to create two anyons at a given wave vector. When
α ¼ 0, short-range interactionsmodify the power law.We also
perform numerics to verify the robustness of the behavior to
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interactions. Extending our results, we explore the correspond-
ing behavior for three particles. This, too, displays an interest-
ing dependence on the statistics, reflecting the braiding of three
particles.We then discuss which types of excitations one could
identify using this method experimentally in spin liquids. We
will also use our method to rederive recent results for the
dynamic structure factor in topologically ordered phases.
Setup and eigenvalue problem.—Weconsider a 2D system

in which gapped fractionalized excitations can be created by
the action of a local operator (Fig. 1). For example, we can
consider inelastic neutron scattering on a gapped spin liquid,
resulting in the creation of n fractionalized excitations, which
in general obey anyonic exchange and mutual statistics. The
double differential scattering cross section d2σ=dΩdω thus
obtained is proportional to the dynamic structure factor
Sαβðq⃗;ωÞ, defined as the Fourier transform of the correlation
function hSαðr; tÞSβð0; 0Þi, where α; β ¼ fx; y; zg [20].
Since the excitations are gapped,we can focus on the effective
n-particle system to calculate Sðq⃗;ωÞ at energies below those
involving additional excitations.
An anyon can be viewed [10] as a composite particle

carrying “electric” charge and attached to an infinitesimal
“magnetic” flux tube (where the charge and flux pertain to
an emergent gauge field, not ordinary electromagnetism).
The braiding phases arise as effective Aharonov-Bohm
phases as these particles are exchanged or taken around one
another. We will work in the magnetic or boson gauge,
where the Hamiltonian acts on bosonic wave functions and
the statistics is encoded in the Hamiltonian as an interaction
through minimal coupling of the gauge field a⃗.
For the case of two identical fractionalized excitations

[21], a⃗ ¼ ðℏcα=qÞ∇θ, where θ is the angle between the
particles, q is the charge, and α is the statistics parameter
which varies from 0 for bosons to 1 for fermions. Thus, for
two excitations with a quadratic dispersion, the effective
Hamiltonian is

H ¼
P2

R⃗

4m
þ p2

r

m
þ ðpϕ − ℏαÞ2

mr2
þ Vðr;ϕÞ ð2Þ

in the center of mass frame, where R⃗ is the center of
mass coordinate, m; r;ϕ are the mass and relative coor-
dinates of the particles, and Vðr;ϕÞ is the effective
interaction between the two particles.
One can show (see below and Supplemental Material

[22]) that the behavior of the cross section close to the
threshold is not altered by the potential V except for
bosons. Therefore, we temporarily set Vðr;ϕÞ ¼ 0. Then
we can solve the eigenvalue problem for Hr using the

separation of variables. The complete normalized solution
to the eigenvalue problem for H ¼ HR þHr is

ΨðR⃗; r;ϕÞ ∼
ffiffiffiffiffi

k
L3

r

Jjl−αjðkrÞ expðilϕÞ expðiK⃗ · R⃗Þ; ð3Þ

where l ¼ 2n; n ∈ Z; relativemomentum k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðErm=ℏ2Þ
p

,
center of mass momentum jK⃗j ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðERm=ℏ2Þ
p

, total
energy E ¼ Er þ ER, and Jjl−αj is a Bessel function of the

first kind. The box normalization of
ffiffiffiffiffiffiffiffiffiffi

k=L3
p

is strictly valid
onlywhenk > 0 and in the largeL limit.We see that different
sorts of anyons have different probabilities to be close to
one other. In particular, bosons are the only particles which
can be at the same point (r ¼ 0), since Jjl−αjð0Þ > 0 only if
l ¼ α ¼ 0; other anyons satisfy a hard-core condition for all
l. Spectral functions for creating localized excitations can be
expected to show signs of these differences, which reflect
repulsive angular momentum barriers.
Spectral function.—We consider the Lehmann represen-

tation [23] of a zero temperature spectral function SðQ⃗;ωÞ
associated to a spectroscopic measurement

SðQ⃗;ωÞ ¼
X

jψfi
jhψfjÔQ⃗jψ iij2δðωþ ωi − ωfÞ: ð4Þ

Here, jψfi are two anyon energy eigenstates and jψ ii is the
topologically ordered ground state. We will look at the
behavior close to a momentum q⃗ with quadratic dispersion.
We assume the operator ÔðR⃗Þ creates a superposition of
all the states of two anyonswhose center ofmass is located at R⃗
and that are separated from each other by a distance a, i.e.,
ÔðR⃗Þjψ ii ¼

R

dϕjR⃗; a;ϕi. This is motivated from the cre-
ation of excitations in lattice models with topological order
such as the toric code,where a local operator such as σz creates
excitations on neighboring sites. Breaking rotational invari-
ance does not affect the final answer at low energies where s-
wave eigenstates (l ¼ 0) dominate. In general, ÔðR⃗Þ creates
some local perturbation to the many-body ground state (like a
certain spin texture), and the matrix element reflects the
overlap between this state and two-anyon many-body eigen-
states. However, it can be shown that the resulting energy
dependence near the threshold is insensitive to details (see
Supplemental Material [22]). We set ℏ ¼ 1 henceforth.

Sðq⃗;ωÞ ¼ c
X

jψfi

�

�

�

�

Z

dR⃗dϕeiq⃗·R⃗hψfjR⃗; a;ϕi
�

�

�

�

2

× δ
�

ωþ k2

m
−
jK⃗j2
4m

− Δ
�

ð5Þ
¼ cmJ2αða

ffiffiffiffi

Ω
p

ÞΘðΩÞ ð6Þ
≈ cmða2ΩÞαΘðΩÞ; ð7Þ

where Ω ¼ mðω − ΔÞ − jq⃗j2=4, Δ is the energy gap to the
threshold of two-particle excitations, and in the last step we
have made a low-energy approximation. An infrared cutoff
is set to avoid spurious divergences, and c is an energy-
independent constant.

(b)(a)

FIG. 1. (a) In phases with topological order, scattering proc-
esses can create fractionalized anyonic excitations above some
threshold energy. (b) The statistics of the excitations mediate
long-range effects between them.
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Above the gap, the cross section for bosons has a sharp
onset, whereas fermions show a linear increase with energy
and semionic excitations (α ¼ 0.5) show a characteristic
square-root dependence. It is important to note that the
difference arises due to the effect of statistics on the matrix
elements and is not an effect from the density of states. This
can be seen easily for bosons and fermions, where the two-
particle density of states is the same in the thermodynamic
limit, since Pauli exclusion for fermions excludes only a
one-dimensional curve in the three-dimensional constant
energy manifold available to two bosons.
Although we have considered only the case of identical

excitations, the results generalize to the case of two distinct
particles interacting through mutual statistics. There are a
few minor differences, such as the presence of two distinct
masses and the ability of (formerly) “bosonic” angular
momentum l to assume odd values.
Universality and effect of interactions between anyons.—

These results apply more generally than appears from the
calculation. The Schrödinger equation applies to isolated
gapped excitations as longas theyhave aquadratic dispersion,
which we get near the threshold. In general, the anyons will
interact at a short distance, i.e., Vðr;ϕÞ ≠ 0. However, in the
absence of resonances, weak short-range interactions will
generically not affect the power law of the dynamic structure
factor at low energies. This can be seen from the fact that the
anyon eigenstates are rigidwhen the anyons are close together
and depend on the value of the kinetic energy only at large
distances, where interactions are not important. This means
that Sðq⃗;ωÞ changes by only an overall energy-independent
factor near the threshold (see Supplemental Material [22]).
However, bosons behave differently in the presence of

interactions, since the noninteracting point is fine-tuned. Put
differently, since bosons lack a statistical repulsion that
prevents them from getting close to each other, they are
susceptible to short-range repulsive interactions. To quantify
this, we obtain Sðq⃗;ωÞ for a system with two excitations
which are hard-core bosons, i.e., bosonswhich interactwith a
hard-core potential VðrÞ which is infinite for r ≤ b and zero
everywhere else. The general form of the eigenstates is

ΨðR; r;ϕÞ ¼ expðiK⃗ · R⃗Þ expðilϕÞ½AlJlðkrÞ þ BlNlðkrÞ�;
ð8Þ

where we may focus on l ¼ 0 at low energies.
The effect of the potential can be incorporated into a

phase shift defined by tan δ0 ¼ −B0=A0 ¼ J0ðkbÞ=N0ðkbÞ.
Normalization of the eigenstates yields A0 ¼ cosδ0

ffiffiffiffiffiffiffiffiffiffiffi

k=2L
p

,
where L is the radius of the system. We can now obtain
Sðq⃗;ωÞ using Eq. (8):

Sðq⃗;ωÞ ¼ cm
1þ tan2δ0

jJ0ða
ffiffiffiffi

Ω
p

Þ − tan δ0N0ða
ffiffiffiffi

Ω
p

Þj2ΘðΩÞ

ð9Þ

≈
cmlog2ðabÞ

½logðΩb2
4
Þ þ 2γ�2 þ π2

ΘðΩÞ; ð10Þ

where Ω and a are the same as in the free anyon case, γ
is the Euler-Mascheroni constant, and we have made a
low-energy approximation in the last step. We see that the
hard-core interaction drastically changes the low-energy
behavior for bosons, and one can also show that any finite
repulsive interaction produces a similar effect. A correspond-
ing analysis for semions and fermions shows that interactions
do not affect their low-energy behavior, as expected.
Long-range interactions can, however, affect the low-

energy behavior depending on how fast they decay. For
power-law interactions of the form 1=rβ, the threshold
behavior is unchanged when β > 2, since the interaction
is still dominated by the repulsive angular momentum
[Eq. (2)] at large distances [19]. However, Coulomb inter-
actions (if present) will dominate and wash out the effects
due to the statistics.
Numerics.—We check some of the results numerically

by considering an effective model of two anyons hopping
on a square lattice which can be constructed from a many-
body system by projecting into the two-anyon subspace.
We assume a local operator creates anyons on neighboring
sites of the lattice and perform an exact diagonalization to
obtain the corresponding spectral function. Figure 2(a)
shows Sð0;ωÞ for fermions on a 600 × 600 square lattice
interacting with nearest-neighbor repulsion U and next-
nearest-neighbor repulsion V. Interactions drastically affect
the high-energy behavior but leave the low-energy linear
onset unchanged as expected for fermionic excitations.
The linear onset can be seen clearly in the log-log plot in
Fig. 2(b), where the exponent for all three cases is
approximately 0.95 with the difference between them being
less than 0.01. The exponents slowly converge towards the
expected value of 1 as the system size is increased.
We also obtain the spectral function for general anyons

which are modeled as charges living on the sites of the
lattice which move together with fluxes living on adjacent
plaquettes [24]. Since we use periodic boundary conditions,
there are large gauge transformations of the vector potential
which result in doubling the Hilbert space for semions.
Figure 2(c) shows Sð0;ωÞ for particles of various statistics.
Although we are restricted to small system sizes and
additionally the presence of a broadening which occurs
as a result of smoothing discrete data points (over an
ϵ ¼ 0.1 range of energies in the 20 × 20 system as opposed
to ϵ ¼ 0.005 for the previous 600 × 600 system), the
behavior at low energies is qualitatively similar to the
analytic predictions for two anyons in the continuum
[Eqs. (7) and (10)]. Bosons shows a decreasing behavior
which fits inwith the fact that their low-energy dependence is
dominated by J0ðxÞ. Extracting the power law for semions,
we get an exponent of around 0.45, which fits in with the
expected square-root dependence. As expected, the density
of states [Fig. 2(d)] is the same for the different statistics.
Three particles.—We now consider a system with three

identical fractionalized excitations (n ¼ 3) where we see
nontrivial effects due to the braiding of three particles
around each other. Unlike bosons and fermions, a system of
three anyons is no longer exactly solvable even without

PRL 118, 227201 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
2 JUNE 2017

227201-3



interactions [Vðr;ϕÞ ¼ 0], but the low-energy dependence
of Sðq⃗;ωÞ can still be obtained for certain anyons. After
separating out the center of mass motion, the resulting
system [25] can be described using hyperspherical coor-
dinates consisting of a radial coordinate ρ and three angular
coordinates θ;ϕ;ψ . The eigenfunctions of the angular
equation can be complicated, since they are not determined
by symmetry as in the two-particle case. The angular form
of the wave function can be related (see Supplemental
Material [22]) to the ground state of the same anyons in a
harmonic oscillator potential which has been studied [25].
In some cases this ground state can be found analytically,
while in other cases the eigenvalue is irrational.
In particular, for the interesting case of three fractional-

ized particles with α¼ 1
3
, the eigenstates are ψðρ; θ;ϕ;ψÞ ¼

½J2ð
ffiffiffiffiffiffi

2E
p

ρÞ=ρ�gðθ;ϕ;ψÞ, where E is the energy of the
relative motion and g is a function which is independent
of the energy. This leads to a threshold behavior of Sðq⃗;ωÞ
which increases as ðω − ΔÞ2.
Applications.—Our results [Eqs. (7) and (10)] could be

used to study the statistics of excitations in a spin liquid or a
fractional Chern insulator by measuring the scattering cross
section as a function of energy close to the threshold. At
low energies, the excitations would be described by
Schrödinger’s equation (as assumed above), because the
dispersion can generically be expanded to quadratic order
around the minimum. In practice, one needs temperatures
much lower than the gap and a mean free path much longer
than the wavelength. Then, one can measure the structure
factor slightly above the threshold, so that disorder which
dominates the behavior near the threshold can be neglected,
but not so far above the threshold that the universal
behavior is lost.
Consider an experiment on a chiral spin liquid [26].

They have one type of topological excitation, which are

semions. A single semion is not accessible from the ground
state by local processes, such as inelastic scattering by
neutrons due to the conservation law that the total topo-
logical charge must be trivial. However, a neutron could
excite two semions, because semions are their own anti-
particles, which then leads to the dramatic consequence of a
square-root onset with energy at the threshold.
In the case of materials in the toric code universality class

(i.e., Z2 spin liquids), one could also measure anyonic
statistics. The possible topological charges of excitations are
m and e (which are bosons but have a mutual phase of −1)
and a composite em, which is a fermion.
The most interesting thresholds (consistent with the

topological conservation law requiring e’s and m’s to be
created in pairs) are the production of an ðmeÞ − ðmeÞ pair,
which would show a linear onset because me is a fermion,
and a triple, e −m − ðmeÞ. (The pairs m −m and e − e are
both mutual bosons, so their structure factor would have the
same form as that possessed by local excitations such as
two triplon excitations in a valence bond state.) There are
two difficulties here: First, there may not be a stable particle
of type me (in a spin liquid, the stable spinon might either
have type m or me); second, the excitations also carry spin;
therefore, the pair of me particles can be in either a triplet
channel or a singlet channel (which would have the same
behavior as a pair of bosons). This can be avoided with a
weak magnetic field to favor parallel spins.
It is also appropriate to consider the quantum Hall effect,

for which the propagator of a pair of anyons is calculated in
Ref. [27]. Universality does not emerge in a straightforward
way for this case, because the quasiparticles in such states
are generally electrically charged. The Coulomb force then
formally dominates any effective statistical force at large
distances, and it will be quantitatively significant even if it
is weakly screened. In addition, the motion of charged
quasiparticles is inhibited by the background magnetic
field. The presence of the magnetic field causes the
appearance of discrete responses in spectroscopy instead
of a threshold, and additionally the quasiparticles are
hindered from moving far apart enough to see the universal
effects of the statistics. These problems are avoided in
fractional Chern insulators [28], where we can expect to see
the universal threshold behavior.
There are also measurable signatures in tunneling spec-

troscopy which can involve neutral particles or cases where
theCoulomb interaction between the excitations is screened.
We expect a different exponent here, since the particles do
not have a well-defined momentum any more. For the
simplest case where the tunneling tip resembles a Fermi
liquid,we find that the tunneling current goes as ðω − ΔÞ1þα.
Several recent works [17,29–31] contain calculations of

dynamic structure factors in topologically ordered phases
of spin systems. We now consider two prominent examples.
Qi, Xu, and Sachdev [29] describe a bosonic Z2 spin liquid
on the triangular lattice where the low-energy behavior near
the bottom of the band is obtained through a large-N
analysis of a sigma model. There is a constant onset above

FIG. 2. (a) Two-particle spectral function from exact diagonal-
ization on a 600 × 600 square lattice for fermions with nearest-
neighbor repulsion U and next-nearest-neighbor repulsion V.
The high-energy behavior is drastically affected by interactions,
but the low-energy linear onset is unchanged as seen in the
log-log plot on the top right, where the exponents for all three
cases is 0.95. (c) Sð0;ωÞ for noninteracting bosons (b), semions
(s), fermions (f), and hard-core bosons (hcb) on a 20 × 20 lattice.
(d) Density of states for bosons and fermions.
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the gap for noninteracting bosonic spinons which changes
to an inverse-log behavior on adding interactions, exactly
as expected. For the case of the Q1 ¼ Q2 spin liquid on the
kagome lattice [32], the spinons have a quadratic dispersion
around the high symmetryM point, and the structure factor
[17] there shows a sharp onset above the gap, as expected
for bosonic excitations.
Discussion.—We have shown that the production rates

for fractionalized excitations (for example, in neutron
scattering or tunneling experiments) contain a signature
of anyons that allows one to measure the statistical
parameter of the anyons experimentally: The cross section
follows a power law determined by this parameter. This
may also be accessible in systems of ultracold atoms in
optical lattices following recent ideas of how to access their
spectral functions [33].
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