
VirtualHome: Simulating Household Activities via

Programs

by

Xavier Puig Fernandez

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
A uth or ......... ...................

Department of Etectrical Engineering and Computer Science

May 21, 2018

Signature redacted
Certified by...................

Antonio Torralba
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Signature redacted
A ccepted by .....................

1Les4&9. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students
MASSACHUSMlS INSTITUTE

OF TECHNOLOGY

JUN 18 2018

LIBRARIES





VirtualHome: Simulating Household Activities via Programs

by

Xavier Puig Fernandez

Submitted to the Department of Electrical Engineering and Computer Science

on May 21, 2018, in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract

In order to learn to perform complex activities, autonomous agents need to know
the sequences of actions needed to reach a given task. In this thesis, we propose
to use programs, i.e., sequences of atomic actions and interactions, as a high level
representation of complex tasks. Programs are interesting because they provide a
non-ambiguous representation of a task, and allow agents to execute them. How-
ever, nowadays, there is no database providing this type of information. Towards
this goal, we first crowd-source programs for a variety of activities that happen in
people's homes, via a game-like interface used for teaching kids how to code. Us-
ing the collected dataset, we show how we can learn to extract programs directly
from natural language descriptions or from videos. We then implement the most

common atomic (inter)actions in the Unity3D game engine, and use our programs
to "drive" an artificial agent to execute tasks in a simulated household environment.
Our VirtualHome simulator allows us to create a large activity video dataset with
rich ground-truth, enabling training and testing of video understanding models. We

further showcase examples of our agent performing tasks in our VirtualHome based
on language descriptions.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to start by thanking Antonio Torralba for all his advice in this work and

the research I have done with him, but also for the opportunity to be part of his

team and meet outstanding researchers, for all the support and for the passion he

has transmitted me for Computer Vision. I would also like to thank Sanja Fidler for

hosting me in the University of Toronto, for the endless help and discussions and for

the opportunity to start and continue this project together. This work would not be

possible without my collaborators Kevin Ra, Marko Boben, Jiaman Li and Tingwu

Wang.

I would also like to thank my labmates, Yusuf Aitar, Manel Baradad, David Bau,

Aditya Khosla, Agata Lapedriza, Yunzhu Li, Javier Marin, Dim Papadopoulos, AdriA

Recasens, Amaia Salvador, Didac Surfs, Carl Vondrick, Jonas Wulff, Hang Zhao, Bolei

Zhou and Jun-Yan Zhu for all the research discussions and collaborations, as well as

the professional and personal advice throughout my time here.

I want to thank la Fundaci6 La Caixa and the Massachusetts Institute of Tech-

nology for all the economical and logistic support.

Thank you to all the friends I have met here, for helping in making this an incred-

ible experience. Thank you Junkal, Livia, Lorenzo, In6s, Angels, Hector, Toni, Carla,

Tal and many others for helping me feel like at home. Thank you to my long-time

friends in Spain: Gonzalo, Marc, Albert, Miriam and Victor, for sharing this journey

with me despite the physical distance.

Finally, I would like to deeply thank my family, without which I would not have

made it here. Thank you Albert and Guillem, for all the encouragement, fun times

and love. Lastly thank you to my parents Maite and Lluis, for always being there,

for all the love, the guidance and all the unconditional support. Thank you for

everything.

5



6



Contents

1 Introduction

2 Related Work

2.1 Actions as programs .............

2.2 Code generation . . . . . . . . . . . . . .

2.3 Robotics . . . . . . . . . . . . . . . . . .

2.4 Sim ulation . . . . . . . . . . . . . . . . .

2.5 Household Activity Datasets . . . . . . .

3 Knowledge Base of Household Activities

3.1 Data Collection . . . . . . . . . . . . . .

3.2 Dataset Analysis . . . . . . . . . . . . .

3.2.1 Completeness of programs . . . .

4 VirtualHome: Simulator of Household Tasks

4.1 Animating Programs in VirtualHome . . . . . . . . . . . . . . . . . .

5 From Videos and Descriptions to Programs

5.1 Learning and inference . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Textual Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 .3 V id eo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Experiments

6.1 Instruction Classification from Video . . . . . . . . . . . . . . . . . .

7

13

17

17

18

18

18

19

21

22

25

28

29

30

35

37

38

38

41

41

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .



6.1.1 Effect of input . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Program Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Language-based prediction . . . . . . . . . . . . . . . . . . . . 43

6.2.2 Video-based prediction . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Executing programs in VirtualHome . . . . . . . . . . . . . . 45

6.2.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Conclusion 51

8



List of Figures

1-1 We first crowdsource a large knowledge base of household tasks, (top).

Each task has a high level name, and a natural language instruction.

We then collect "programs" for these tasks, (middle left), where the

annotators "translate" the instruction into simple code. We implement

the most frequent (inter)actions in a 3D simulator, called VirtualHouse,

allowing us to drive an agent to execute tasks defined by programs. We

propose methods to generate programs automatically from text (top)

and video (bottom), thus driving an agent via language and a video

dem onstration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3-1 Example block to construct activity programs. . . . . . . . . . . . . . 23

3-2 Example program for watch tv. . . . . . . . . . . . . . . . . . . . . . 23

3-3 Interface for annotating programs from descriptions. Annotators would

first read the description of the activity (step 2). They would set the

scene (3) by adding the necessary objects and rooms and they would

finally write a program by composing blocks (4). . . . . . . . . . . . . 24

3-4 Histogram of the most common actions (a) and objects (b) in Activi-

tyProgram s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-5 Examples of programs for the activities Make a coffee and Read a book. 28

4-1 3D households in our VirtualHome. Notice the diversity in room and object

layout and appearance. Each home has on average 357 objects. First 4

scenes are used for training, the fifth is also used in val, and all scenes are

used when testing our video-to-script model. . . . . . . . . . . . . . . . . 30

9



4-2 Agents in VirtualHome. We use male 1 and female 1 in train., and all agents

when testing our video-to-program model. . . . . . . . . . . . . . . . . . 30

4-3 Examples of how our hand poses are used while interacting with an

object. We support both left and right for each hand pose. . . . . . . 31

4-4 Different groundtruth modalities generated for VirtualHome videos. . 33

5-1 Our encoder-decoder LSTM for generating programs from natural lan-

guage descriptions or videos. . . . . . . . . . . . . . . . . . . . . . . . 37

6-1 Confusion matrix for action classification in 2-sec clips. . . . . . . . . 42

6-2 Example results for language-based prediction on ActivityPrograms

dataset. . . . . .. .. . . . . .. .. .. . . . . .. . . . . . . . . . . . . . 46

6-3 Example results for language-based prediction on SyntheticPrograms

dataset. . . . . . . . . . . .... ....................46

6-4 Example results for video-based prediction on SyntheticPrograms dataset. 47

6-5 Videos generated from descriptions in SyntheticProgram. . . . . . . . 48

6-6 Human judgement of videos generated from text descriptions. . . . . 48

10



List of Tables

3.1 We analyze programs and natural language descriptions for both real

activities in ActivityPrograms and SyntheticPrograms (4) with real de-

scriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Analyzing diversity in the same activity by computing similarities

across all pairs of the collected programs. "LCS" denotes longest com-

mon subsequence. For "norm.LCS" we normalize the LCS by the length

of the longest of the two programs. . . . . . . . . . . . . . . . . . . . 26

3.3 ActivityPrograms similarity matrix (sorted to better show the block

diagonal structure) between different activities in our dataset. .... 27

6.1 Accuracy of video-based action classification and action-subject-object

(step in the program) prediction in 2-sec clips from our VirtualHome

Activity dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Accuracy of video-based action classification and action-subject-object

(step in the program) prediction in 2-sec clips using ground-truth

segmentation (a) and RGB images (b). . . . . . . . . . . . . . . . . . 43

6.3 Programs from description: Accuracy on VirtualHome Act.. We evalu-

ate using the normalized longest common subsequence, mimicking IoU

for programs, as well as the percentage of scripts executable in the

sim ulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Programs from description: Accuracy on ActivityPrograms. Since real

programs are mainly not executable in our simulator due to the lack

of implemented actions, we cannot report the executability metric. . . 44

11



6.5 Video-based program generation. . . . . . . . . . . . . . . . . . . . .

12

45



Chapter 1

Introduction

Autonomous agents need to know the sequences of actions that need to be performed

in order to achieve certain goals. For example, we might want a robot to clean our

room, make the bed, or cook dinner. One can define activities with procedural recipes

or programs that describe how one can accomplish the task. A program contains a

sequence of simple symbolic instructions, each referencing an atomic action (e.g. "sit")

or interaction (e.g. "pick-up object") and a number of objects that the action refers

to (e.g., "pick-up juice"). Assuming that an agent knows how to execute the atomic

actions, programs provide an effective means of "driving" a robot to perform different,

more complex tasks. Programs can also be used as an internal representation of an

activity shown in a video or described by a human (or another agent). Our goal is to

automatically generate programs from natural language descriptions, as well as from

video demonstrations, potentially allowing naive users to teach their robot a wide

variety of novel tasks.

Towards this goal, one important missing piece is the lack of a database describing

activities composed of multiple steps. We first crowdsource common-sense informa-

tion about typical activities that happen in people's homes, forming the natural lan-

guage know-how of how these activities are performed. We then adapt the Scratch [1]

interface used for teaching kids how to code and design a programming language

for modeling activities, allowing to collect programs that formalize the activity as

described in the knowledge base. This allows to collect a database of programs rep-

13



wiki roduc arownl dg Base of Household Tasks

Each ctask - has ahigh ee nAean ak n l action.e
Desripio: Trnon ou copuerad Descriptionc Got64o he tnand -% L VL.

lec "pro rms"ofit.Typeonthekeyboard,. swith on tht t k ( i e I machine. Wait until an o tators "trnlt e
instruction usin to smple it's dnend pour the coffee into a cuf.eqen ( e t i

VirtualHome
robot playground

defined by programs. We propose methods to generate programs automatically from

text (top) and video (bottom), thus driving an agent via language and a video

demonstration.

resenting activities, providing information about object affordances, typical locations

of objects or co-occurrence of actions within an activity. Furthermore, the collected

programs include all the steps required for the robot to accomplish a task, even those

that are not mentioned in the language descriptions. We then implement the most

common atomic (inter)actions in the Unity3D game engine, such as pick-up, switch

on/off, sit, stand-up. By exploiting the physics, navigation and kinematic models in

the game engine we enable an artificial agent to execute these programs in a simulated

household environment.

We first introduce our data collection effort and the program based representation

of activities. In Chapter 5 we show how we can learn to automatically translate

natural language instructions of activities into programs. In Chapter 4 we introduce

the VirtualHome simulator that allows us to create a large activity video dataset with

rich ground-truth by using programs to drive an agent in a synthetic world. Finally,

we use the synthetic videos to train a system to translate videos of activities into

14



the program being executed by the agent. Our VirtualHome opens an important

"playground" for both vision and robotics, allowing agents to exploit language and

visual demonstration to execute novel activities in a simulated environment.

15



16



Chapter 2

Related Work

2.1 Actions as programs

A few works have defined activities as programs. In [34], the authors detect objects

and actions in cooking videos and generate an "action plan" using a probabilistic

grammar. By generating the plan, the robots were able to execute complex actions

by simply watching videos. These authors further collected a tree bank of action plans

from annotated cooking videos [33], creating a knowledge base of actions as programs

for cooking. [22] tried to translate cooking recipes into action plans using an MRF.

[26, 3] also argued for actions as a sequence of atomic steps. They aligned YouTube

how-to videos with their narrations in order to parse videos into such programs. Most

of these works were limited to either a small set of activities, or to a narrow domain

(cooking). We go beyond this by creating a knowledge base about an exhaustive set

of activities and tasks that people do in their homes.

[28] crowd-sourced scripts of people's actions at home in the form of natural

language. These were mostly comprised of one or two sentences describing a short

sequence of actions. While this is valuable information, language is very versatile and

thus hard to convert into a usable program on a robot. We show how to do this in

our work.

17



2.2 Code generation

There is increased interest in generating and interpreting source code (17]. Work

most relevant to ours produces code given natural language inputs. [4] retrieves code

snippets from Stackoverflow based on language queries. Given a sentence describing

conditions, [23] produces If-This-Then-That code. [18] generates a program specifying

the logic of a card game given a short description of the rules. In [12], the authors

inferred programs to answer visual questions about images. In recent work [9],

authors adversarially train an agent to generate programs that produce target images

when executed on a rendering engine. Our work differs in the domain, and works

with text or video as input.

2.3 Robotics

A subfield of robotics aims at teaching robots to follow instructions provided in natural

language by a human tutor. However, most of the existing literature deals with a

constrained problem, for example, they learn to translate navigational instructions

into a sequence of robotic actions [30, 19, 16, 20]. These instructions are typically

simpler as they directly mention what to do next, and the action space is small. This is

not the case in our work which also considers interactions with objects, and everyday

activities which are typically far more complex. In [15], authors model the spatio-

temporal relations of actions and objects in high-level activities, allowing robots to

anticipate actions to assist humans. The work uses a dataset of 10 activities, composed

of 10 atomics actions. Our proposed dataset contains a broader set of activities and

they are composed of a larger vocabulary of atomic actions and objects.

2.4 Simulation

Simulations using game engines have recently been developed to facilitate training vi-

sual models for autonomous driving [8, 25, 6], quadcopter flying [27], or other robotic

tasks [5]. Some works have released simulators for target-driven indoor navigation

18



[14, 32] and question answering [32, 10]. A12-THOR [14] includes actionable objects,

allowing to perform a set of interactions in the environment. Our proposed environ-

ment is similar in this sense, but allows to execute a wider range of actions, allowing

to simulate complex activities. We are not aware of simulators at the scale of objects

and actions in a home, like ours. Lastly, we give credit to the popular game Sims

which we draw our inspiration from. Sims is a strategic video game mimicking daily

household activities. Unfortunately, the source of the game is not public and thus

cannot be used for our purpose.

2.5 Household Activity Datasets

Over the past years, there have been multiple efforts in collecting video datasets to

understand every-day activities and acquire common sense knowledge [28, 11, 7]. [28]

collects videos of people performing multiple actions by asking to perform activities

given a script. However, the script is built by using a constrained set of actions and

objects, which limits the complexity of the activities. In [7], authors collect common

activities implicitly by crowd sourcing Lifestyle Vlog videos and annotating them

afterwards. While this allows for a more natural and complex set of activities, they

only provide annotations about objects and people poses and body parts, missing

explicit annotations of the activity being performed. Our work focuses on generating

synthetic videos of common activities, allowing to obtain a diverse set of annotations

and generate complex videos with a broader set of action and object interactions.

19



20



Chapter 3

Knowledge Base of Household

Activities

Our goal is to build a large repository of common activities and tasks that we per-

form in our households in our daily lives. These tasks can include simple actions like

"turning on TV" or complex ones such as "make coffee with milk". What makes our

effort unique is that we are interested in collecting this information so that robots

can understand and perform them. If this information was collected for humans, we

could give a description of how to perform each task, but robots need more direct

instructions. For example, in order to "watch tv", one might describe it to a human as

"Switch on the television, and watch it from the sofa". Here, the actions "grab remote

control" and "sit/lie on sofa" have been omitted, since they are part of the common-

sense knowledge that humans have. We aim to collect all the steps required for a

robot to successfully execute a task, including the commonsense steps. In particular,

we want to collect programs that fully describe how to perform the activities.

Describing actions as programs has the advantage that it provides a clear and

non-ambiguous description of all the steps needed to complete a task. Such programs

can then be used to instruct a robot or a virtual character on how to perform the

activity. Programs can also be used as a representation of a complex task that involves

a number of simpler actions, providing a way to understand and compare activities

and their implied goals.

21



3.1 Data Collection

In order to collect a diverse set of activities, we use crowd-sourcing to build our

Knowledge Base. Describing activities as programs is not a trivial task, and using

crowd-sourcing makes it more challenging, as most annotators have no programming

experience. We address this by splitting the data collection into two parts.

In the first part, we asked Amazon Mechanical Turk (AMT) workers to provide

verbal descriptions of daily household activities. In particular, each worker was asked

to come up with a common activity/task, give it a high level name, eg "make coffee",

and describe it in detail. In order to cover a wide spectrum of activities we pre-

specified in which scene the activity should start. Scenes were selected randomly from

a list of 8 scenes (living room, kitchen, dining room, bedroom, kids bedroom, bathroom,

entrance hall, and home office). An example of a described activity is shown in Fig. 3-

3. Note that these descriptions are written as if the activity was being described to

another human. Because of this, they may likely omit some necessary steps that are

commonsense, for example, opening a fridge before grabbing something from it and

closing the fridge afterwards.

In the second stage, we showed the collected descriptions to the AMT workers and

asked them to translate these descriptions into programs, telling them to produce a

program that would "drive" a robot to successfully accomplish the described activ-

ity, without missing any step. We designed a programming language to represent

each description, together with an interface so that annotators with no programming

experience could write them. Our interface builds on top of Scratch [1, a visual

programming language developed by the Lifelong Kindergarten Group at MIT Media

Lab aimed at introducing young children into programming. In Scratch, people write

programs by stacking blocks of instructions as if they were Lego pieces, allowing to

create interactive stories, games or animations. We designed our language so that

each activity program could also be written by composing blocks representing simple

actions or interactions, such as sit, walk, grab or open.

Each block contains the name of an action and a list of arguments to be filled with

22



Figure 3-1: Example block to construct activity programs.

Figure 3-2: Example program for watch tv.

objects. Actions like stand up would not need any argument whereas put something

into something would require two arguments to be filled with objects. Each object

is linked to an instance number so that the programs are not ambiguous when they

refer to multiple objects belonging the same class: if an activity consists in setting

a table for two people, this allowed to disambiguate which plate should be used at

every instruction. An example block can be seen in figure 3-1.

The blocks allow to select from a predefined list of 77 actions and 312 objects,

compiled by analyzing the frequency of verbs and objects in the collected descriptions.

We manually added affordance constraints to the objects, so that it is not possible

to create invalid action/object combinations such as grab shower. We also allowed

annotators to use a "special" block" which allowed to introduce missing actions as

free-form text. These blocks were later discarded or replaced, but they allowed to

identify blocks that needed to be added into the interface. Figure 3-2 shows an

example of a program collected for "watch tv", where the instance number indicates

that the television always refers to the same object instance.

Annotators were firstly shown a set of activities and descriptions to annotate,

then they were asked to select, for each of them, the rooms and objects needed to

perform the activity, and they finally created a program by using those items. Figure

3-3 shows the annotation interface.

23



Create scripts for the given actions Ir""

We went to teach robots to perform tasks inside a house. To do so, we need to translate the tasks into scripts that the robot can read
and owcute as a se of oomrnmands.

Your goal Is is to write aorpts for the tasks we present below. Irrgne you are in a house and think about all the steps and objects
tsquwed to perform the given tasks. Then write a program to execute every of the steps.

Task Ust * "'"'p'"

Watch TV
2. ead the deectpitof of the tak

Swltch on the tlsWvsin and watch It from th sota

3. Set scene fore task

Locatcn ving Room

Prop DeiOlea O Pm

Oblet TeOavislon Oblct Sofa Object Rernote Control

Ouunft 1- uanty1I- Oueey I-

4. Create the script for the task

~~-I wa - ads~ ~ -

Figure 3-3: Interface for annotating programs from descriptions. Annotators would

first read the description of the activity (step 2). They would set the scene (3) by

adding the necessary objects and rooms and they would finally write a program by

composing blocks (4).

24



Dataset # prog. avg # steps avg # sent. avg # words
ActivityPrograms 2821 11.6 3.2 21.9
SyntheticPrograms 5193 9.6 3.4 20.5

Table 3.1: We analyze programs and natural language descriptions for both real
activities in ActivityPrograms and SyntheticPrograms (4) with real descriptions

We started annotating a small set of programs using Upwork crowd-sourcing plat-

form, which allows to hire freelancers to perform jobs. While this approach was more

expensive and slow than using AMT, it allowed to obtain very high quality pro-

grams, as well as feedback on how to improve the interface for easier crowd-sourcing.

We later asked annotators on AMT to write programs for our collected descriptions,

which were finally validated by the annotators in Upwork. We found that annotators

on AMT were capable to quickly learn to produce programs by providing a carefully

designed tutorial, costing 15 cents per program annotated.

3.2 Dataset Analysis

In the first part we collected 1814 descriptions. From those, we were able to collect

programs for 1703 descriptions. Some of the programs contained several "special

blocks" for missing actions, which we remove, resulting in 1257 programs. We finally

selected a subset of the tasks and asked workers to write programs for them, obtaining

1564 additional programs. The resulting 2821 programs form our ActivityPrograms

dataset. On average, the collected descriptions have 3.2 sentences and 21.9 words,

and the resulting programs have 11.6 steps on average. The dataset statistics are

summarized in Table 3.1.a.

The dataset covers 75 atomic actions and 308 objects, making 2709 unique steps.

Fig. 3.2.a shows a histogram of the 50 most common actions appearing in the dataset,

and, Fig. 3.2, the 50 most common objects.

The programs in the dataset represent 576 activities, each with several examples,

and we analyze their diversity by comparing their programs. Table 3.2 analyzes 4

selected activities. We compute their similarities as the average length of the longest

25



400 { I

(a) (b)

Figure 3-4: Histogram of the most common actions (a) and objects (b) in Activi-

tyPrograms

Action # Prog. LCS Norm. LCS

Make coffee 69 4.56 0.26
Fold laundry 11 1.29 0.08

Watch TV 128 3.65 0.40

Clean 42 0.76 0.04

Table 3.2: Analyzing diversity in the same activity by computing similarities across

all pairs of the collected programs. "LCS" denotes longest common subsequence. For

"norm.LCS" we normalize the LCS by the length of the longest of the two programs.

common subsequence computed between all pairs of programs within the activity.

Figure 3-5 shows some example programs for the activities "Make coffee" and "Read

a book".

We can also measure the similarity between activities by measuring the distance

between programs. The similarity between two programs is measured as the length

of their longest common subsequence of instructions divided by the length of the

longest program. We can measure the similarity between 2 activities by taking the

average similarity across programs belonging to the 2 activities. Table 3.3. shows

the similarity matrix (sorted to better show the block diagonal structure) between

different activities in our dataset. As it can be seen, the similarity measure allows to

cluster semantically similar activities.

The collected programs also provide a source of commonsense knowledge. By

looking at the instructions, one can infer information such as the relative location of

objects (e.g. the nightstand is near the bed, Fig. 3-5), or the affordance of certain

obejcts (e.g. spectacles are used to read, Fig. 3-5)

26



Eat
Eat dinner

Set up table
Prepare Dinner

Put groceries in Fridge
Chop vegetables
Cook some food

Bake 0 9
Mop floor

Water plants
Drink

Make drink
Make coffee

Wash dishes with dishwasher
Wash dishes by hand n

Wash dishes
Do dishes

Shave
Wash face

Wash hands
Take shower

Take bath 0.7
Wash teeth
Brush teeth
Go to toilet
Clean toiletStretch

Make bad
Take nap 06

Go to sleep
Sleep

Tuck kids in bed
Tum off liht
Turm on Iht
Change ht
Pick up toys 5
Clean 

roomVacuum
Get dressed

Take off shoes
Hang up jacket

Fold laundry
Wash clothes 04Sweep floor

Clean floor
Dust

Clean
Pe t cat

Reiax on sofa
Listen to music

Watch movie 0.3
Change TV channel

Watch TV
Play games

Pick up phone
Read book

Read
Greet guests 0.2

Entertain
Write letter

File documents
Homework

Do homework
Study

Talk on phone 0.1
Read newspaper

Write an email
Browse internet

Work
Us.8 compute'

Check email
Pay bills n

Table 3.3: ActivityPrograms similarity matrix (sorted to better show the block diag-
onal structure) between different activities in our dataset.

27



Figure 3-5: Examples of programs for the activities Make a coffee and Read a book.

3.2.1 Completeness of programs

We analyze the correctness and completeness of the collected programs to execute

the task they describe. To do so, we sample 100 of the collected programs, and ask 5

workers on AMT to rate each of the programs on whether they are complete, missing

minor steps or missing important steps. A program is complete when it contains

all the actions so that a robot could execute them, misses minor steps when the

program says "sit on the sofa" but there is no previous instruction to "walk towards

the sofa" and misses crucial steps when it lacks an action that is crucial to complete

the activity, for example "switch on TV" in order to watch TV, or pour water into a

cup if one needs to drink water. For each of the programs, we take the median score

from the 5 workers as a measure of the quality of that program. Results show that

64% of the programs are complete, 28% are missing minor steps and 8% are missing

crucial steps. Note that many of the minor steps can be automatically corrected by,

for example, adding walking actions before interacting with objects.

28



Chapter 4

VirtualHome: Simulator of

Household Tasks

The main motivation behind using programs to represent activities is to "drive" robots

to perform tasks by having them executing these programs. As a proxy, we here use

programs to drive characters in a simulated 3D environment. Simulations are useful

as they define a playground for "robots", an environment where artificial agents can

be taught to perform tasks. Here, we focus on building the simulator, and leave

learning inside the simulator to future work. In particular, we will assume the agent

has access to all 3D and semantic information about the environment, as well as to

manually defined animations. Our focus will be to show that programs represent a

good way of instructing such agents. Furthermore, our simulator will allow us to

generate a large-scale video dataset of complex activities that is rich and diverse. We

can create such a dataset by simply recording the agent executing programs in the

simulator. The simulator then provides us with dense ground-truth information, eg

semantic segmentation, depth, pose, etc.

We implemented our VirtualHome simulator using the Unity3D game engine

which allows us to exploit its kinematic, physics and navigation models, as well as

user-contributed 3D models available through Unity's Assets store. We obtained six

furnished homes and 4 rigged humanoid models from the web. On average, each home

contains 357 object instances (86 per room). We collected objects from additional

29



Figure 4-1: 3D households in our VirtualHome. Notice the diversity in room and object

layout and appearance. Each home has on average 357 objects. First 4 scenes are used for

training, the fifth is also used in val, and all scenes are used when testing our video-to-script

model.

male 1 female 1 male 2 female 2

Figure 4-2: Agents in VirtualHome. We use male 1 and female 1 in train., and all agents

when testing our video-to-program model.

30 object classes that appear in our collected programs yet are not available in the

package, via the 3D warehouse 1. To ensure visual diversity, we collected at least 3

different models per class. The apartments and agents are shown in 4-1 and 4-2.

4.1 Animating Programs in VirtualHome

Every step in the program requires us to animate the corresponding (inter)action in

our virtual environment. We thus need to both, determine which object in the home

(which we refer to as the game object) the step requires as well as properly animating

the action. To get the former we need to solve an optimization problem by taking

into account all steps in the program and finding a feasible path. For example, if the

program requires the agent to switch on a computer and type on a keyboard, ideally

the agent would type on the keyboard next to the chosen computer and not navigate

to another keyboard attached to a different computer in possibly a different room.

lhttps://3dwarehouse.sketchup.com

30

----I



Figure 4-3: Examples of how our hand poses are used while interacting with an object.
We support both left and right for each hand pose.

We now describe our simulator in more detail.

Animating atomic actions. There is a huge variety and number of atomic

actions that appear in the collected programs. We implemented the 12 most frequent

ones: walk/run, grab, switch-on/off, open/close, place, look-at, sit/standup, touch.

Note that there is a large variability in how an action is performed depending on to

which object it is applied to (e.g., opening a fridge is different than opening a drawer).

We distinguish between actions that require interacting with objects and actions

that do not. The later ones correspond to locomotion actions (walk and run) and

standup. Locomotion actions are implemented using Unity's NavMesh framework for

navigation (path planner to avoid obstacles) and standup is implemented through an

animation. For the actions requiring objects, we compute the agent's target pose

and animate the action using RootMotion FinalIK inverse kinematics package. To

allow for more realistic animations, we annotate typical hand poses for humans when

interacting with objects, shown in Figure 4-3. We further animate certain objects

the agent interacts with, e.g., we shake a coffee maker, animate toast in a toaster,

show a (random) photo on a computer or TV screen, light up a burner on a stove,

and light up the lamps in the room, when these objects are switched on by the agent.

The animation is done by keeping a state over the object, and changing it when the

character's hand reaches the object.

Preparing the Scene. While every 3D home already contains many objects, the

programs may still mention objects that are not present in the scene. To deal with

this, we first "set" the scene by placing all missing objects that a program refers to in

the home, before we try to execute the program. To be able to prepare a scene in a

31



plausible way, we collect a knowledge base of possible object locations. The annotator

is shown the class name and selects a list of other objects (including floor, wall) that

are likely to support it. Using this knowledge base, we place al missing objects

by randomly selecting the 3D model for the object class and the target supporting

surface, making sure it is placed in a free space on the selected surface by using the

bounding boxes of the placed objects.

Executing a Program. To animate a program we need first to create a mapping

between the objects in the program and the corresponding instances inside the virtual

simulator. Furthermore, for each step in the program, we also need to compute

the interaction position of the agent with respect to an object, and any additional

information needed to animate the action (e.g., which hand to use, speed of the action,

orientation). We build a tree of all possibilities of assigning game objects to objects in

the program, along with all interaction positions and attributes. To traverse the tree

of possible states we use backtracking and stop as soon as a state executing the last

step is found. Since the number of possible object mappings for each step is small,

and we can prune the number of interaction positions to a few, our optimization runs

in a few seconds, on average.

Animation. Given that we want to generate videos depicting the executed ac-

tivities, we place 6-9 static cameras in each room, 26 per home on average, allowing a

third person view of the action. During recording, we switch between cameras based

on agent's visibility. In particular, we randomly select a camera which sees the agent,

and keep it until the agent is visible and within allowed distance. For agent-object

interaction we also try to select a camera and adjust its field of view to enhance the

visibility of the interaction. We further randomize the position, angle and field of

view of each camera. Randomization is important when creating a dataset to ensure

diversity of the final video data.

VirtualHome Activity dataset. Since the programs in ActivityPrograms rep-

resent real activities that happen in households, they contain significant variability

in actions and objects that appear in steps. While our ultimate aim is to be able to

animate all these actions in our simulator, our current efforts only support the top

32



RGB Pose Optical Flow

Arr
Semantic Segm. Instance Segm. Depth

Figure 4-4: Different groundtruth modalities generated for VirtualHome videos.

12 most frequent actions. We thus create another dataset that contains programs

containing only these actions in their steps, in order to be able to execute all of the

programs. The creation of this dataset is explained below.

We synthesized 5,193 programs using a simple probabilistic grammar encoding

activities supported by VirtualHome, such as watch TV, work on computer or moving

objects. For each program, we asked a human annotator to describe it in natural

language. Although these programs were not given by annotators, they produced

reasonable activities, creating a much larger dataset of paired descriptions-programs

at a fraction of the cost. We then animated each program in our simulator, and

automatically generated ground-truth which allows us to train and evaluate our video

models.

We animate the programs as described above, by randomizing the selection of

home, an agent, cameras, placement of a subset of objects, initial location of the

agent, speed of the actions, and choice of objects for interactions. We build on top

of [2] to automatically generate groundtruth: 1) time-stamp of each step to video, 2)

agent's 2D/3D pose, 3) class and instance segmentation, 4) depth, 5) optical flow, 6)

camera parameters.

33



34



Chapter 5

From Videos and Descriptions to

Programs

We introduce a novel task using our dataset. In particular, we aim to generate a

program for the activity from either a natural language description or from a video

demonstration. Note that once a script is generated, an agent could perform the task

it describes in a different environment, using new 3D models and planning paths.

We aim to generate programs that are 1) consistent with the input description

or video and 2) executable in VirtualHome, avoiding actions such as standing up

before having sit or closing a fridge that is already closed. A script fulfills the second

criteria when it is fully executable in the environment. We measure the first criteria

by calculating the normalized longest common subsequence with the ground-truth

script
LCS(Proggt, Pro gpred) (5.1)

max(jProggt\, Progpred)(

We simplify our programs and remove the instance number for the task of prediction,

our scripts are now a sequence of steps of the form:

stept = [actiont] < objectt,1 > ... < objectt,n > (5.2)

Where n be 0, 1 or 2 depending on the action. We treat the task of transcribing an

35



input (description or video) into a program as a translation problem. We adapt the

seq2seq model [29] for our task, and train it with Reinforcement Learning to optimize

the two objectives.

Our model consists of an RNN encoder that encodes the input sequence into a

hidden vector representation, and another RNN acting as a decoder, generating one

step of the program at a time. We use the same architecture for both description and

video and assume the input has been transformed to a sequence of vector embeddings.

We use a LSTM with 100-dim hidden states as our encoder. At each step t, our RNN

decoder decodes a step which takes the form of 5.2. Let xt denote an input vector to

our RNN decoder at step t, and let ht be the hidden state. Here, ht is computed as

in the standard LSTM using tanh as the non-linearity. Let ai be a one-hot encoding

of an action i, and o0 a one-hot encoding of an object. We compute the probability

pi of an instruction i at step t as:

di = Waai, bi,, = Wooin, vi = mean(di, i,, ... , bin)

p =v softmaxi( Vi T. W(htxat)) (5.3)

where Wa and Wo and Wv are learnable matrices, and vi denotes an embedding

of an instruction.

The input vector xt concatenates multiple features. In particular, we use the

embedding v of the step with the highest probability from the previous time instance

of the decoder. Following [291, we further use the attention mechanism over the

encoder's states to get another feature xat. In particular:

aj = softmaxj (v (Wat(hIJhjn))) (5.4)

x Zt = ahi (5.5)

where Watt, v are learnable parameters. An overview of the model can be seen in

figure 5.

36



action, - triplet encoding ® dot product

object2 1  Y' mean-pooling
objecti. - eC

nodr hen" decoder

O R - ~---~-- --- ~-~r - ~ ~ ~ ~- -- --- ----- ~ ~ ~ ~~- -- ~ ~--

L-. .. _ _ .- _ ..--- ----- ......-.. L--.--- --_ -.. .. --- ------------- j
descr stion Sit on sofa and rest <eos>

Xtriple O t

Figure 5-1: Our encoder-decoder LSTM for generating programs from natural lan-
guage descriptions or videos.

5.1 Learning and inference

. Our goal is to generate programs that are both close to the ground-truth programs

in terms of their LCS (eq. 5.1) and are also executable by our renderer. To that end,

we train our model in two phases. Firstly, we pre-train the model using cross-entropy

loss at each time step of the RNN decoder. We follow the typical training strategy

where we make a prediction at each time instance but feed in the ground-truth step

to the next time instance. We use the word2vec [21] embeddings for matrices W, and

W and fix their weights.

In the second stage, we treat program generation as an Reinforcement Learning

problem, where the agent is learning a policy that generates steps to compose a

program. We follow [24], and use policy gradient optimization to train the model,

using the greedy policy as the baseline estimator. In particular, given the policy

po defined in eq.5.3, we define the sequence generated by the greedy policy as 7tb

{)i, ... , iT} with:

ibt = arg max po(w) (5.6)
Wt

And the sequence wS generated by sampling from the policy po. Our reward

becomes r(w8 , g) - r(tb, g). Given that the baseline r(tb, g) does not depend on the

sampled wS, we have that

EWs-p~ [r(zb, g)Vo logpo(w')] -r(t, g) E Vopw 8) -r(&, g)Vo Zpo(w) = 0
WS( .)

(5.7)

37



And therefore

- Ew,,PO[(r(w', g) - r(tb, g))Vo log po (w)] = -E,,p[ (r(w', g)Vo log p, (w 8 )] (5.8)

Which corresponds to the expected gradient of the loss using REINFORCE [31]. This

means tha using the baseline will not affect the expected gradient, while allowing to

reduce its variance.

We exploit two different kinds of reward r(w', g) for RL training, where w' denotes

the sampled program, and g the ground-truth program. To ensure that the generated

program is semantically correct (follows the description/video), we use the normalized

LCS metric (eq. 5.1) as our first reward rLcs(w', g). The second reward comes from

our simulator, and measures whether the generated program is executable or not.

This reward, rsim(W'), is a simple binary value. We start by training using the LCS

reward alone, and fine-tune the best model using a balance of the two rewards, as

r(w8 , g) = rLCS(Ws, 9) + 0 -I - rsim (w).

So far we did not describe the input to the RNN encoder. Our model accepts

either a language description or a video depicting the action, which are converted into

a sequence of vector embeddings to serve as input to the encoder show in Fig. 5. We

explain in the following sections how the embeddings are obtained for each modality.

5.2 Textual Description

To encode a textual description, we split the description by its words, remove punc-

tuation symbols and use word2vec j21] embedding trained on GoogleNews to encode

each word.

5.3 Video

To generate programs from videos, we partition each video into 2-second clips, corre-

sponding to 9 frames and encode each of the clips as the embedding of the instruction

38



happening at the middle frame. These embeddings serve as input to our RNN en-

coder. Notice that, some actions (e.g. walk) take longer than others (e.g. switch on).

In order to avoid having an imbalance in the number of clips for the long actions, we

allow a maximum of 5 clips for every step in the video.

To obtain the embedding of each clip, we use the Temporal Relation Network [36]

with 4-frame relations to predict the embedding of an instruction (action+ object -- object).

Given, the embedding, we obtain the probability of every instruction through eq. 5.2

and train the network using cross-entropy loss.

We still have to specify what is the input of the TRN model. In order to make

the model potentially generalizable to real videos, we use the semantic segmentation

mask, which we obtain by training a DilatedNet [351 segmentation network using the

ground-truth segmentations.

39



40



Chapter 6

Experiments

In our experiments we exploit both of our datasets: ActivityPrograms containing de-

scriptions and programs for real activities, and VirtualHome Activity dataset that

contains synthesized programs, yet natural descriptions to describe them. Virtual-

Home Activity dataset further contains videos animating the programs.

6.1 Instruction Classification from Video

We first evaluate our model for the task of video-based action and action-object-

subject (step in the program) classification. Here, we partition each video in 2-sec

clips, and use the clip-based TRN on the predicted segmentation mask to perform

classification. We compute performance as the mean per-class accuracy across all

2-sec clips in test. We consider accuracy at the level of action, object, or the whole

instruction. To better understand the generalization properties of the video-based

models, we further divide the test set into videos recorded in homes seen at train

time, and videos in homes not seen at train time. We report the results in Table 6.1.

To set the lower bound, we also report a simple random retrieval baseline, in which

a program is randomly retrieved from the training set. In figure 6.1 we show the

confusion matrix for action classification. Notice that the model is biased towards

the walk action but that is also the most common action in the programs, and we

empirically found out that this setting provided better script generation results. The

41



Walk 0.96

Run -

StandUp 0.7

PutBack 0.-7-1

Grab

Open i

Close

SwitchOn

SwitchOff-

Touc hi05

TurnTo 0.78

Watch

Walk Run Sit StandUp PutBack Grab Open Close SwitchOnSwitchOff Touch TurnTo Watch
Predicted label

Figure 6-1: Confusion matrix for action classification in 2-sec clips.

Action Objects Steps Mean

Rand. Retrieval 8.30% 1.50% 0.51% 3.43%
Seen homes 70.32 % 42.14 % 23.81 % 45.42%
Unseen homes 31.34% 14.55% 11.48% 19.12%
All 46.85% 25.76% 18.41% 30.34%

Table 6.1: Accuracy of video-based action classification and action-subject-object (step

in the program) prediction in 2-sec clips from our VirtualHome Activity dataset.

model struggles to differentiate between switch on and switch off, which makes sense

given that this information is generally not encoded in the semantic segmentation.

We can also see that the model mistakes Watch with sit/stand up, which is due to the

fact that the video is clipped without taking into account action boundaries. Given

that watch is normally preceded by a sitting action (e.g. for watch tv) followed by

standing up, it is likely that some shots fall in the intersection between these actions.

6.1.1 Effect of input

We also study the effect of using ground-truth segmentation or RGB images in the

clip classification task. The results are shown in table 6.2. As it can be seen, there is

a significant performance drop from ground-truth segmentation to the predicted one,

42

. .4



Action Objects Steps Mean Action Objects Steps Mean
Seen homes 78.06 % 73.00 % 56.42 % 69.16% 77.46 % 60.21 % 44.45 % 60.71%
Unseen homes 54.89% 52.94% 43.50% 50.44% 40.56% 26.56% 26.46% 31.19%
All 62.58% 61.18% 48.49% 57.42% 54.60% 40.44% 35.17% 43.40%

(a) (b)

Table 6.2: Accuracy of video-based action classification and action-subject-object (step
in the program) prediction in 2-sec clips using ground-truth segmentation (a) and
RGB images (b).

which suggests that more effort should be put in training the segmentation. Many of

the interactions in VirtualHome are done with small objects, with which segmentation

networks typically struggle with. The model using RGB images performs better than

the one using the predicted segmentations, but drops significantly in performance

when testing on apartments unseen during training, which suggests it would not

fit for transferring to unseen environments. Given that our future goal is to have

this models working on real environments, we resort to using semantic segmentation

information for our video-based prediction task.

6.2 Program Generation

We now evaluate the task of program generation. We evaluate program induction

using the normalized LCS, as described in eq. 5.1. We also compute accuracies for

actions and objects alone. Since LCS does not measure whether the program is valid,

we report another metric that computes the percentage of generated programs that

are executable in our simulator.

6.2.1 Language-based prediction

Since we have descriptions for all activities, we first evaluate how well our model

translates natural language descriptions into programs. We report results on Activi-

tyPrograms (real activities), as well as on VirtualHome Activity datasets (where we

first only consider descriptions, not videos). We compare our models to four base-

lines: 1) random sampling, where we randomly pick both an action for each step

43



Method Action Objects Steps Mean Simulator (%)
Rand. Sampling .226 .039 .020 .095 0.6%
Rand. Retrieval .473 .079 .071 .207 100.0%
Skipthoughts .642 .272 .252 .389 100.0%
MLE .777 .723 .686 .729 38.6%
PG(LCS) .803 .766 .732 .767 35.5%
PG(LCS+Sim) .806 .775 .740 .774 39.8%

Table 6.3: Programs from description: Accuracy on VirtualHome Act.. We evaluate

using the normalized longest common subsequence, mimicking IoU for programs, as

well as the percentage of scripts executable in the simulator

Method Action Objects Steps Mean

Rand. Sampling .106 .018 .004 .043
Rand. Retrieval .320 .037 .032 .130
Skipthoughts .469 .297 .266 .344
MLE .497 .392 .340 .410
PG(LCS) .522 .433 .387 .447

Table 6.4: Programs from description: Accuracy on ActivityPrograms. Since real

programs are mainly not executable in our simulator due to the lack of implemented

actions, we cannot report the executability metric.

and its arguments, 2) random retrieval, where we randomly pick a program from the

training set, 3) skipthoughts, where we embed the description using [13, 37], retrieve

the closest description from training set and take its program, 4) our model trained

with MLE (no RL). Table 6.4 and 6.3 shows the results. Note that the retrieval base-

lines (skipthoughts and random retrieval) are always executable, since our training

set scripts were generated to be executable. We can see that our model outperforms

all baselines on both datasets. Our RL model that exploits LCS reward outperforms

the MLE model on both metrics (LCS and executability). Our model that uses both

rewards slightly decreases the LCS score, but significantly improves the executability

metrics. Fig. 6.2.2 shows some example results for ActivityPrograms, trained using

the LCS reward, and Fig.6-2 shows results on SyntheticPrograms for the trained using

both rewards.

44



Action Objects Steps Mean Simulator
Rand. Retrieval .473 .079 .071 .207 100.0%
MLE .735 .359 .341 .478 19.4%
PG(LCS) .761 .383 .364 .502 19.0%
PG(LCS+Sim) .751 .377 .358 .495 22.4%
PG(LCS+Sim) Seen homes .851 .556 .528 .645 24.6%
PG(LCS+Sim) Unseen homes .680 .250 .236 .389 20.9%

Table 6.5: Video-based program generation.

6.2.2 Video-based prediction

We also report results on the most challenging task of video-based program generation.

The results are shown in Table 6.5. One can observe that RL training with LCS reward

improves the overall accuracy over the MLE model (the generated programs are more

meaningful given the description/video), however its executability score decreases.

This is expected: MLE model typically generates shorter programs, which are thus

more likely to be executable (an empty program is always executable). A careful

balance of both metrics is necessary. RL with both the LCS and the simulator reward

improves both LCS and the executability metrics over the LCS-only model. Fig. 6.2.2

shows example results for script generation from video on SyntheticPrograms test set.

6.2.3 Executing programs in VirtualHome

. Given that we are optimizing our programs to be executable in VirtualHome, we

can try running the script predictions to generate new videos. In Fig. 6.2.3 we show

a few examples of our agent executing programs generated from natural descriptions.

To understand the quality of our simulator as well as the plausibility of our program

evaluation metrics, we perform a human study. We randomly selected 10 examples per

level of performance: (a) [0.95 -11, (b) [0.8--0.95], (c) [0.65 -0.8], and (d) [0.5-0.65].

For each example we had 5 AMT workers judge the quality of the performed activity

in our simulator, given its language description. Results are shown in Fig. 6.2.3. One

can notice agreement between our metrics and human scores. Generally, at perfect

performance the simulations got high human scores, however, there are examples

45



NormLCS: 0.857

Groundtruth Predicted
Norm LCS: 0.714

Groundtruth

NormLCS: 0.375 NormLCS: 0.090

Groundtruth Predicted Grcundtruth

IMLn

Predicted

Predicted

Figure 6-2: Example results for language-based prediction on ActivityPrograms

dataset.
S Check the time, then put glasses on the coffee table, and Take the bowl to the coffee table. Turn the toaster on

Check the stove. Take the bowl to the table. Turn the toaster off,

NormLCS- 1.000 NormLCS: 0.833

Grouncdtruth Predicted Groundtruth Predicted

I Put the plate on the counter and then put the printing Use the aftershave. Turn on the light and find the diary.

paper on the desk Put it on the couch before YOU turn oft the light.

NormLCS- 0.727 NormLCS- 0.40

Groundtruth Predicted Groundtruth Predicted

Figure 6-3: Example results for language-based prediction on SyntheticPrograms

dataset.

46

___ - -- - - - -_L -. 0

1111iuon: I sit at my computer desk and open the browser.



NormLCS: 0.833 Groundtruth Predicted

NormLC&~~~Od; OWO Gmfdf-t rdce

NormLCS. 0.61W Groundtruth Predicted

Figure 6-4: Example results for video-based prediction on SyntheticProgramns dataset.

47

--awl



Description: Get an empty glass. Take mil from refrigerator and open it. Pour mil into glass.

Description: Go watch TV on the couch. Turn the TV off and grab the coffee pot. Put the coffee pot on the table and go turn the light on.

Description: Look at the clock then get the magazine ands use the to let. When done put the magazine on the table.

Description: Take the face soap to the kitchen counter and place it there. Turn toaster on and then switch it off. Place the pot on the stove.

Figure 6-5: Videos generated from descriptions in SyntheticProgram.

where this was not the case. This may be due to imperfect animation or planning in

our simulator, or the fact that the generated scripts do not have information about

object instances. Future models should be able to incorporate such information in

the generation of scripts.

0.9

0.8

0.7

0 6
05
04

03

02

01

=Failed
F7 ~]=Marginal

=Adequate

=xcellent
-Perfect

Figure 6-6: Human judgement of videos generated from text descriptions.

48



6.2.4 Implications

The high performance of text-based activity animation opens exciting possibilities for

the future. It would allow us to replace the more rigid program synthesis that we

used to create our dataset, by having annotators create these animations directly via

natural language. Similarly, the text-based program generation could allow to reduce

human annotation by crowd-sourcing scripts for activities from existing text corpora.

We leave this as an avenue for future work.

49



50



Chapter 7

Conclusion

In order to understand or learn to perform complex activities, systems need to know

what are the steps required to perform such tasks. To this end we collected a large

knowledge base of how-to for household activities specifically aimed for robots. Our

dataset contains natural language descriptions of activities as well as programs, a

formal symbolic representation of activities in the form of a sequence of steps. What

makes these programs unique is that they contain all the steps necessary to perform

an activity, as compared to human descriptions, which tens to omit common sense

steps. We further introduced VirtualHome, a 3D simulator of household activities in

which the activity programs could be executed. We used it to create a large video

activity dataset with rich ground-truth. We proposed a simple model that infers a

program from either a video or a textual description, allowing robots to be "driven" by

naive users via natural language or video demonstrations. We finally showed examples

of agents performing these programs in our simulator. We believe this work opens

many exciting avenues going forward, for example, training agents to perform tasks

from visual observation alone using RL techniques or anticipating actions or objects

of interaction from partial observation of human activities.

51



52



Bibliography

[1] https://scratch.mit.edu/.

[21 https://bitbucket.org/Unity-Technologies/ml-imagesynthesis.

[3] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic, and S. Lacoste-
Julien. Unsupervised learning from narrated instruction videos. In CVPR, 2016.

[41 Miltos Allamanis, Daniel Tarlow, Andrew D. Gordon, and Yi Wei. Bimodal
modelling of source code and natural language. In ICML, 2015.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. Openai gym. In arXiv:1606.01540, 2016.

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proc. of the 1st Annual

Conference on Robot Learning, pages 1-16, 2017.

[7] David F. Fouhey, Weicheng Kuo, Alexei A. Efros, and Jitendra Malik. From
lifestyle vlogs to everyday interactions. In Arxiv, 2017.

[8] A Gaidon, Q Wang, Y Cabon, and E Vig. Virtual worlds as proxy for multi-

object tracking analysis. In CVPR, 2016.

[9] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol
Vinyals. Synthesizing programs for images using reinforced adversarial learning.
CoRR, abs/1804.01118, 2018.

[10] Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon,
Dieter Fox, and Ali Farhadi. IQA: visual question answering in interactive envi-
ronments. CoRR, abs/1712.03316, 2017.

[11] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyn-
ska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Friind, Peter Yianilos,
Moritz Mueller-Freitag, Florian Hoppe, Christian Thurau, Ingo Bax, and Roland
Memisevic. The "something something" video database for learning and evalu-
ating visual common sense. CoRR, abs/1706.04261, 2017.

112] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman,
Li Fei-Fei, C. Lawrence Zitnick, and Ross Girshick. Inferring and executing
programs for visual reasoning. In arXiv:1705.03633, 2017.

53



[13] Ryan Kiros, Yukun Zhu, Russ Salakhutdinov, Richard Zemel, Antonio Torralba,
Raquel Urtasun, and Sanja Fidler. Skip-thought vectors. NIPS, 2015.

114] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and
Ali Farhadi. AI2-THOR: an interactive 3d environment for visual Al. CoRR,
abs/1712.05474, 2017.

[151 H. S. Koppula and A. Saxena. Anticipating human activities using object af-
fordances for reactive robotic response. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(1):14-29, Jan 2016.

[16] S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and A. Klein. Training personal
robots using natural language instruction. Intelligent Systems, pages 38-45, 2001.

[17] Chengtao Li, Daniel Tarlow, Alexander L. Gaunt, Marc Brockschmidt, and Nate
Kushman. Neural program lattices. In ICML, 2017.

[181 Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomas Kooisky, An-
drew Senior, Fumin Wang, and Phil Blunsom. Latent predictor networks for
code generation. arXiv:1603.06744, 2016.

[19] M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the talk: Connecting
language, knowledge, and action in route instructions. In AAAI, 2006.

[20] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Listen, attend, and walk:
Neural mapping of navigational instructions to action sequences. In AAAI, 2016.

[211 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

122] D. Nyga and M. Beetz. Everything robots always wanted to know about house-
work (but were afraid to ask). In IROS, pages 243-250, 2012.

[23] Chris Quirk, Raymond Mooney, and Y. Michel Galley. Language to code: Learn-
ing semantic parsers for if-this-then-that recipes. In ACL, 2015.

[24] Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaib-
hava Goel. Self-critical sequence training for image captioning. CoRR,
abs/1612.00563, 2016.

[251 Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In ECCV, 2016.

[261 Ozan Sener, Amir Zamir, Silvio Savarese, and Ashutosh Saxena. Unsupervised
semantic parsing of video collections. In arXiv:1506.08438, 2015.

[271 Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Aerial In-
formatics and Robotics platform. Technical Report MSR-TR-2017-9, Microsoft
Research, 2017.

54



[28] Gunnar A. Sigurdsson, Gul Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev,
and Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection for
activity understanding. In ECCV, 2016.

[29] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning
with neural networks. In NIPS, 2014.

[30] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller,
and N. Roy. Understanding natural language commands for robotic navigation

and mobile manipulation. In AAAI, 2011.

[31] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Mach. Learn., 8(3-4):229-256, May 1992.

[32] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable
agents with a realistic and rich 3d environment. CoRR, abs/1801.02209, 2018.

[33] Yezhou Yang, Anupam Guha, Cornelia Fermuller, and Yiannis Aloimonos. Ma-

nipulation action tree bank: A knowledge resource for humanoids. In IEEE-RAS

Intl. Conf. on Humanoid Robots, 2014.

[34] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos. Robot learning

manipulation action plans by "watching" unconstrained videos from the world

wide web. In AAAI, 2015.

[35] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-

volutions. In arXiv:1511.07122, 2015.

[36] Bolei Zhou, Alex Andonian, and Antonio Torralba. Temporal relational reasoning

in videos. CoRR, abs/1711.08496, 2017.

[37] Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning Books and Movies: Towards Story-

like Visual Explanations by Watching Movies and Reading Books. In ICCV,
2015.

55




