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This is a tutorial and selective review explaining the fundamental concepts and some currently

open questions concerning the plasma phenomenon of the electron hole. The widespread

occurrence of electron holes in numerical simulations, space-craft observations, and laboratory

experiments is illustrated. The elementary underlying theory is developed of a one-dimensional

electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped

electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what

determines the minimum and maximum possible lengths is explained, addressing the key aspects

of the as yet unsettled dispute between the integral and differential approaches to hole structure. In

multiple dimensions, holes tend to form less readily; they generally require a magnetic field and

distribution-function anisotropy. The mechanisms by which they break up are explained, noting

that this transverse instability is not fully understood. Examples are given of plasma circumstances

where holes play an important role, and of recent progress on understanding their holistic kinemat-

ics and self-acceleration. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976854]

I. INTRODUCTION: HOLE CHARACTER AND
OCCURRENCE

The term electron hole refers to a localized plasma region

where the electron density is lower than the surrounding

plasma, because of reduced phase-space density on trapped

electron orbits. The decreased electron density causes a local

maximum in charge density and hence in electric potential,

which is self-consistently responsible for electron trapping. It

is a type of Bernstein, Greene, and Kruskal (BGK) mode,1

and has also been referred to by a variety of related terms:

“phase-space(-density) holes (or structures),”2–8 “electrostatic

solitary (or coherent) waves (or structures)”9–18 (especially

ESW in space-plasma literature), “phase-space vortices,”19

“Debye-scale structures,”20,21 “coherent electric field

structures,”22,23 and “time domain structures.”24 Many of

these more diverse names appropriately represent ambiguity

in identifying the precise nature of observed phenomena, but

for simplicity, I will refer to all by the name electron hole.

The defining characteristics of the BGK subset implied by this

name are: first, that the electron hole is a localized positive-

potential structure so that electrons are the trapped species (in

contrast with ion holes which are negative potential), and sec-

ond that the potential is predominantly symmetric about the

potential peak, thus ruling out from our present topic “double

layers” and strongly asymmetric holes that can be considered

a combination of a hole and a double-layer. See Fig. 1.

Electron holes were observed to form in the earliest one-

dimensional kinetic computational simulations of the two-

stream instability,25,26 and in countless simulations since. To

illustrate, Fig. 2 shows frames from a simulation using the

simple one-dimensional particle in cell (PIC) code XES1,

distributed with the textbook of Birdsall and Langdon.27 Two

separated electron streams of opposite velocity and equal den-

sity give rise to instability. The wave grows until a non-linear

regime is entered and reflection and trapping of some of the

electrons occur, by the strong potential perturbations. Four

electron holes are formed in this case, but they quite quickly

merge in pairs (by encircling one another) until only one big

hole is left. The particle density (density of points) is low in

the center of the phase-space vortex, and enhanced at its rim,

giving rise to a positive charge peak with adjacent slightly

negative wings: just what is needed for a positive potential

peak. An animation of this progress is available at the URL in

Fig. 2. This illustrates the fact that essentially any collisionless

electron two-stream instability in one-dimension gives rise to

electron holes in the long-time limit.

In Fig. 3 are shown the orbits in phase-space of electrons

and ions in a schematic positive-potential hole. The orbits

are contours of constant distribution function for collision-

less particles governed by the Vlasov equation, and are con-

tours of constant total energy (sum of kinetic and potential

energy), when the potential is time-invariant, as it is in the

rest-frame of the hole. The electron orbits are of two types,

passing, open orbits, which connect to the distant plasma,

FIG. 1. Schematic illustration of the potential shape of simple generic types

of BGK-modes.

Note: Paper CT2 1, Bull. Am. Phys. Soc. 61, 62 (2016).
a)Invited speaker.
b)Electronic mail: ihutch@mit.edu
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and trapped, closed orbits, localized to the hole region and to

a small speed. The separatrix is the boundary between these

two phase-space regions. Ions, having the opposite charge,

are repelled by the positive potential. All their orbits are then

open. No ions are locally trapped, but some may be reflected;

others are passing. The much heavier ions generally have a

velocity spread much less than the electrons. However, holes

usually move substantially faster than the ion thermal speed;

so in the hole rest-frame, the ions can be considered to be a

stream with a relatively narrow spread of velocities with val-

ues near to minus the hole speed (in the ion frame). In that

case, negligibly few ions exist on reflected orbits.

Electron holes have been observed both in laboratory

experiments and in space measurements. A much cited Q-

machine experiment28 succeeded in 1979 in generating elec-

tron holes that were observed with an array of electric probes.

It was only in the 1990s that electron holes were unambigu-

ously identified in spacecraft measurements. Earlier spectral

analysis had identified “broadband electrostatic noise” extend-

ing up to the plasma frequency, for example, in the geomag-

netic tail.29 But only when sufficiently rapid sampling was

able to resolve the time behavior and identify individual bipo-

lar pulsed parallel electric fields,9 was it established that elec-

tron holes were a major constituent, see Fig. 4(a). Satellite

measurements are generally performed at a single location,

and determine the electric field by the potential difference

between two Langmuir probes, or between the spacecraft and

a probe. A single time trace measurement cannot then deter-

mine the spatial scale, since the hole speed is unknown. But

some satellites obtain two synchronized signals from potential

difference between the craft and two probes, sufficiently sepa-

rated to observe a time delay. From it, the hole speed and spa-

tial extent can be deduced, see Fig. 4(b). Fast “cadence” (i.e.,

fast sampling, optimally every �0.1 ms or faster) electric field

measurements from various satellites continue to show elec-

tron holes in many different space environments: the Earth’s

auroral region (FAST),20 bow shock (Wind)30 magnetopause

(GEOTAIL),31 magnetosheath (Cluster)16,32 (MMS),33 plasma

sheet (THEMIS)34 (Cluster),35 outer radiation belt (Van Allen

Probes)36,37 and also in the free solar wind, at interplanetary

shocks, and current sheets (Wind).18,38–40

Electron holes have been deliberately generated in the

laboratory in a pure-electron plasma by a chirped autoreso-

nant field oscillation that drags a bucket of low-phase-space-

density into the electron distribution.41,42 More recent

laboratory experiments have also observed electron holes8,17

in quasineutral plasmas. Fig. 5 shows an example obtained

with extremely small (10 lm) Langmuir probes on the linear

FIG. 2. Two-stream instability PIC sim-

ulations develop into electron holes.

Simulation particles are plotted as points

in phase space (v versus x). Initial small

amplitude instability (a), grows with

time until particles are trapped and

phase-space eddies form (b). The result-

ing (four) holes eventually merge into

one (c), whose charge density is shown

in panel (d). (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4976854.1]

FIG. 3. In a steady potential (in the rest-frame of the hole), the orbits of elec-

trons (a) and ions (b) are contours of constant total energy. The collisionless

distribution-functions fe and fi are constant along orbits, the functions of

energy. Positive potential traps electrons, but not ions.
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LAPD basic plasma facility.17 Two probes separated by 1.7

times the Debye length (kDe� 60lm) show a phase shift that

indicates hole speed. The electrons are strongly magnetized,

the ratio of electron-cyclotron frequency to plasma fre-

quency is X/xp¼ 4. Phase shifts between adjacent probes

have similarly been observed in experiments on the toroidal

experiment VTF,8,43 in which the holes are generated

through the process of magnetic reconnection. Reconnection

is implicated in many space-plasma situations as the context

of electron hole occurrence;31,44 and holes occur in some

reconnection simulations.45,46

II. HOLE STRUCTURE: 1-D EQUATIONS AND
SOLUTIONS

The equations governing the one-dimensional electron

hole are the Vlasov equation and Poisson’s equation. A hole

is a collisionless phenomenon but absolutely requires a

kinetic theory description, hence Vlasov’s equation. In some

cases, the ion response must also be considered, but to begin

with we will assume the ion density to be simply a uniform

neutralizing background. Electron holes are predominantly

electrostatic, described by an electrostatic potential / gov-

erned by Poisson’s equation. In some (e.g., relativistic)

situations, full Maxwell equations ought to be used, but in

this tutorial, we will consider only the electrostatic case.

It simplifies the algebra and expresses the physics more

directly to use scaled dimensionless parameters as follows.

Length x is measured in units of the Debye length

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0Te=n1e2

p
, and time t in units of the inverse plasma

frequency x�1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0me=n1e2

p
, (consequently velocity v is

units
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
). Potential / is measured in units of Te/e, and

density n in units of n1. Here the electron temperature Te

and density n1 are some fixed values representative of the

background plasma. In terms of these dimensionless parame-

ters, the Vlasov equation governing the distribution function

f(v, x) is

@f

@t
þ v

@f

@x
� @/
@x

@f

@v
¼ 0: (1)

It expresses the fact that f is constant along the particle orbits

(which are the characteristics of this hyperbolic equation).

We generally use that fact rather than explicitly solving the

differential equation.

Poisson’s equation relates the potential to the charge

density q

@2/
@x2
¼ �q ¼ �ni þ ne; (2)

where for simplicity we assume the ions are singly charged,

and in this section ni¼ n1 (¼ 1 in dimensionless units).

In the rest frame of an electron hole of constant size and

shape, the potential is steady @
@t ¼ 0. Then the total electron

energy is E ¼ 1
2
v2 � /, constant on particle orbits. A further

algebraic convenience in performing velocity space integrals

FIG. 4. Examples of the electric field pulses of electron holes in space. (a)

GEOTAIL data (adapted from Matsumoto et al., Geophys. Res. Lett. 21,

2915–2918 (1994), Copyright 1994 John Wiley and Sons9) showing the first

satellite-measured resolved electron holes. (b) POLAR data (adapted from J.

R. Franz, P. M. Kintner, and J. S. Pickett, Geophys. Res. Lett. 25,

1277–1280 (1998). Copyright John Wiley and Sons22) showing (inversion

and) a time delay between two probes extended in opposite parallel direc-

tions (bottom two panels), from which the hole speed can be deduced. The

perpendicular electric field is in the top panel of (b).

FIG. 5. Electron hole measurements with small Langmuir probes on the

LAPD facility (adapted from B. Lefebvre et al., Phys. Rev. Lett. 105,

115001 (2010). Copyright 2010 American Physical Society17) show a local-

ized potential peak and the accompanying electric field and charge density.

There is a small phase shift between the measurements at adjacent probes (1

and 4), indicating the hole speed.
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is gained by using an alternative velocity u ¼ v=
ffiffiffi
2
p

(which

can be considered to be the velocity scaled to the alternative

form of the thermal velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Te=me

p
) because then E ¼

u2 � / and various tiresome factors of 2 are eliminated from

the equations.

When a steady potential is given, we therefore know the

orbits in phase space to be the contours of constant energy,

and that f is constant on them. Referring to Fig. 3(a), we see

that if the distribution function f(u) is known at the peak

(/ ¼ w) of the potential, at x¼ 0, then it is known on all
orbits. Denoting that distribution function as f0, so

f u; x ¼ 0ð Þ ¼ f0 uð Þ ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffi
E þ w

p� �
, the distribution function

anywhere else is simply a function of the potential (and

velocity)

f u; xð Þ ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � / xð Þ þ w

q� �
: (3)

Consequently the density is

ne /ð Þ ¼
ð

f u;/ð Þdu ¼
ð

f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � /þ w

p� �
du; (4)

which provides us with the charge density q /ð Þ, also a func-

tion only of potential. It should be noted that being constant

on orbits, the trapped part of the distribution (for E < 0)

must be symmetric, i.e., independent of the sign of velocity;

in contrast, the passing part (E > 0) need not be symmetric,

depending on the symmetry of the external distribution.

The solution task is to find self-consistent / xð Þ and f0(u)

that satisfy Eqs. (2) and (4). It is helpful to portray it using

Fig. 6, which shows (in the rest frame of the hole) four quan-

tities related to one another, with appropriately matched

axes. The right hand column has a spatial position x as its

abscissa (x-axis), and shows half of the hole potential, panel

(c), and the corresponding contours of constant energy (and

hence constant f), panel (d). The lower row has a velocity u
as its ordinate (y-axis). Panel (a) plots the distribution func-

tion f0(u) (at x¼ 0), but it does so sideways so as to match

panel (d). The upper row has an electric potential as its ordi-

nate, and panel (b) will be explained later.

A. Integral solution approach

There are two different ways to obtain hole solutions.

These are called by Bernstein, Greene, and Kruskal1 the

“integral equation” and the “differential equation” methods. In

the literature, the integral approach is sometimes called the

BGK approach, and the differential is often called the

Sagdeev, or Schamel (after influential authors), or Classical

Potential approach; but actually BGK’s paper introduced both

approaches.

In the integral approach, one starts with a specified

potential shape / xð Þ (panel c) which defines orbits (panel d)

FIG. 6. Illustration of the dependencies in the solution of an electron hole.
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and also gives q /ð Þ ¼ � d2/
dx2 and consequently the total elec-

tron density ne /ð Þ. The background distribution function f(u,

1) is also presumed given. It then determines everywhere

the passing particle part of the distribution fp, and the density

attributable to it np. The remainder of the electron density ne

– np¼ nt is the trapped density; and

nt /ð Þ ¼
ð

ft uð Þdu ¼
ð0

�/
f0

ffiffiffiffiffiffiffiffiffiffiffiffi
E þ w

p� �
dEffiffiffiffiffiffiffiffiffiffiffiffi
E þ /
p : (5)

This is an integral equation that must be solved to find the

trapped part of the distribution function (ft uð Þ ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffi
E þ w

p� �
for E < 0) knowing nt /ð Þ. Fortunately it is Abel’s integral

equation, whose solution is well known

f0 u0ð Þ ¼
ðw�u2

0

0

dnt

d/
d/

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� u2

0 � /
p : (6)

That result fills in the trapped part47 of panel (a), the passing

part was known from the presumed background distribution

and the passing orbits (d). Panel (b) is not needed for the

integral approach.

The remarkable thing about this result is that it appears

to show that any monotonic potential shape (/ xð Þ) hole can

be constructed. There are, however, constraints that must be

satisfied. One is that ft cannot be negative. Others relate to

the smoothness of f, which is more subtle. We’ll return to

these points later.

B. Differential solution approach

The alternative solution approach is to start by specify-

ing the entire distribution f0(u0), panel (a). That provides us

with the charge density q /ð Þ. Poisson’s (differential) equa-

tion can then be solved by multiplying it by d/
dx

� d/
dx

d2/
dx2
¼ � 1

2

d

dx

d/
dx

� �2

¼ d/
dx

q; (7)

to obtain (taking / ¼ 0 at d/=dx ¼ 0)

� 1

2

d/
dx

� �2

¼
ð/

0

q /ð Þd/ � V /ð Þ; (8)

which defines what is called a Classical or Sagdeev potential

V, simply the integral of charge density with respect to

potential. It is plotted (sideways so as to match ordinates) in

panel (b). The spatial form of / is then implicitly the second

integral, obtained from the square root of Eq. (8), that is

6
Ð

d/ffiffiffiffiffiffiffiffiffiffiffiffi
�2V /ð Þ
p ¼ x½ �:

The boundary conditions need a careful consideration.

A hole (half-)solution generally has two positions where

d/=dx ¼ 0, so V¼ 0. One such boundary is the distant edge

of the hole, where it merges into the background plasma. We

can choose / to be zero there. The final merging takes place

at jxj ! 1, provided V � /p with p� 2. This is the usual

presumption although it is mathematically possible to have a

hole-edge at finite distance when p< 2.

The other V¼ 0 position (x¼ 0) is the potential peak

where / ¼ w. This limit must be localized, requiring V �
w� /ð Þp with p< 2. Consequently

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V /ð Þ

p
emerges from

V (w) with an infinite slope, and the form of V is as shown in

Fig. 7. Then

ðw

/

d/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2V /0

� �q ¼ x /ð Þ: (9)

The differential approach thus starts at panel (a) of Fig. 6,

and moves through (b), and (c), to (d) defining the orbits.

There is, however, no guarantee that the features of the origi-

nally specified f0(u0) actually align with the orbits that are

obtained. In particular, the distribution function of an electron

hole is generally depleted in the trapped region and specified

by the external plasma in the passing region. There is

therefore a slope discontinuity or distinctive feature at the

separatrix. If we start with an arbitrary hole “width” (separa-

trix u-value at the peak us(x¼ 0)) and arbitrary hole “depth”

(degree of depletion of the trapped distribution, f0(us) – f0(0))

the orbits will not in fact align at the boundary between panels

(a) and (d). The solution will be inconsistent, not with the

equations, but with the implicit presumptions about how the

specified f0 shape is related to the trapped and untrapped

regions. A fully consistent hole calculation using the differen-

tial approach must therefore solve an eigenproblem: only

certain related combinations of hole width and depth are per-

mitted that satisfy a consistency condition. The consistency

condition can conveniently be expressed by noticing that the

total charge of the (half-)hole must be zero, which is the same

thing as requiring V to be zero at both boundaries:

0 ¼
ðw

0

qd/ ¼
ðw

0

ni /ð Þ � np /ð Þd/

�
ðw

0

2

ð ffiffiffi
/
p

0

f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � /þ w

p� �
dud/: (10)

The passing (ionþelectron) contribution ni – np is deter-

mined by external conditions. The final trapped integral must

zero the total. In general satisfying this consistency condition

requires that the width and depth are approximately propor-

tional to one another us / f0(us) – f0(0). The constant of pro-

portionality is determined by the presumed shape of the hole

distribution function in the trapped region and by the exter-

nal distribution function fp.

FIG. 7. Form of V /ð Þ defining boundaries.
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A very fruitful hole model introduced and explored by

Schamel3,48–53 and others is to take the shape of the trapped

distribution to be the exponential of a parabola / u2. It can

be argued2 that this shape, which is sometimes called a

Maxwell-Boltzmann hole, is the state of minimum entropy

subject to certain constraints. However, since many holes do

not have this shape, and in a collisionless situation any

approach to minimum energy is extremely slow, it is proba-

bly better to regard the form as representing the first two

terms of a Taylor expansion of the hole shape: a mathemati-

cal ansatz. In a shifted-Maxwellian external distribution, the

distribution function is then

f uð Þ ¼

1ffiffiffi
p
p exp � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � /

p
þ U

h i2
� �

; E > 0

1ffiffiffi
p
p exp �b u2 � /

	 

� U2

� �
; E � 0:

8>>>><
>>>>:

(11)

Here, b is the inverse “temperature” (in units of Te) of the

trapped region, a negative quantity; U is minus the shift of

the external distribution in the hole frame (the hole velocity

in the stationary Maxwellian frame).

Fig. 8 illustrates this distribution, and some other fea-

tures to be explained in Section II C. The specified shape

allows one to write integral relations between the hole depth

(represented by b) and width (represented by w). If the hole

is narrow, in the sense w 	 1, (and hence shallow) an

approximate analytic solution by expansion is54

ne ¼ 1� 1

2
Z0r Uð Þ/� 4

3
b/3=2 þ 1

32
Z000r Uð Þ/2 þ O /5=2

� �
;

(12)

where

b ¼ exp �U2ð Þ 1� b� 2U2
� �

=
ffiffiffi
p
p

: (13)

The resulting analytic spatial form using terms to order /3=2

is / xð Þ ¼ w sech4 b
ffiffiffiffi
w

p
=15

h i1=2

x

� �
, and the consistency

condition, which is often referred to as the “Nonlinear

Dispersion Relation” is

� 1

2
Z0r Uð Þ ¼ 16

15
b
ffiffiffiffi
w

p
: (14)

Here, Z0r uð Þ is the derivative of the real part of the Fried-

Conte plasma dispersion function.55 The combination

� 1
2

Z0r Uð Þ is equal to 1 at U¼ 0 and falls monotonically to

zero at U¼ 0.92. A slow hole (U	 1) thus has 16
15

b
ffiffiffiffi
w

p
’ 1,

and gives a hole spatial form

/ xð Þ ¼ w sech4 x=4ð Þ: (15)

C. Comparing approaches, the hole length

Over the years, there has been some controversy about

the relative merits of the integral and differential approaches.

As far as mathematical convenience is concerned, the inte-

gral approach is more direct, and starts with what generally

emerges from the observations: the potential shape (and the

background or passing f(v)). It also appears to permit almost

any hole length (spatial extent). By contrast, the differential

approach requires an eigenproblem to be solved; and it

appears to prevent long hole solutions (except near

U¼ 0.92). Setting aside mathematical or practical conve-

nience, the interesting question is why there appear to be dif-

ferent conclusions about the allowable hole length.

There is no controversy about minimum hole length. It is

easy to understand. Minimum length is constrained by non-

negativity of fe. Requiring ft� 0 gives an upper limit on the

hole depth and hence the charge density q. Consequently the

/-curvature jd2/=dx2j in the region near x¼ 0 has an upper

limit. It cannot be greater than q ¼ ni � np ’ 2=
ffiffiffi
p
p� � ffiffiffiffi

w
p

(ignoring ni variation) obtained by putting the trapped ft
equal to zero. If we set the curvature constant, equal to that

limit, an inverted parabolic shape of / xð Þ is obtained whose

half-length L (where / ¼ 0 at most) must be at least such

that jd2/=dx2jL2 ’ 2=
ffiffiffi
p
p� � ffiffiffiffi

w
p

L2 � w. This implies

Lmin � w1=4: (16)

The precise coefficient of proportionality depends14,56 upon

the external distribution which determines np /ð Þ. There is

observational statistical evidence that approximately con-

firms this minimum size.57,58

The maximum allowable hole length is where opinions

are divided. There is no mathematical limit on hole length

unless additional constraints on f are enforced. But there are

physical arguments that might lead one to enforce them; so

we briefly explore the mathematical consequences of hole

length increases.

Consider the slow Schamel hole Eq. (15). Why does it

have the asymptotic (x!1 and /! 0) form /�sech4 x=4ð Þ
! exp �xð Þ? The answer is that, asymptotically, the potential

is governed by approximately Debye shielding: ne/e/!1

þ/. As /!0, the trapped region becomes infinitesimally nar-

row, us¼
ffiffiffiffi
/
p
!0. Moreover, if the trapped distribution f0(u)

has a finite slope at the separatrix (us), then the local depth of

FIG. 8. Example Schamel distribution shape Eq. (11), for w¼ 0.1, U¼ 0.4.

Center panel shows in detail the low-speed region, with the nominal trapped

distribution drawn dashed. Two adjacent additional distributions are shown;

they are (integral approach) solutions for longer or shorter than nominal hole

length, with spatial form plotted in the third frame.
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the trapped region f0 us;/ð Þ� f0 0;/ð Þ becomes small, and the

trapped distribution can be considered to be asymptotically

flat, i.e., ft(u) independent of u. The total density of a flat-

trapped ft(u)¼const.¼fp(us) distribution, when the background

passing distribution is Maxwellian, is readily evaluated as ne¼
nf lattrap¼n1½2/1=2=

ffiffiffi
p
p
þe/erfcð/1=2Þ� (for zero U) and has

the asymptotic form n /ð Þ!1þ/. This linear asymptotic

dependence is because there is an exact cancellation between

the
ffiffiffiffi
/
p

terms in ne that arise from the trapped (first term) and

passing (second term) densities.

In order to change the asymptotic exponential fall-off

length, one must change the trapped density dependence on /
in such a way that a different coefficient of / arises in the

total density. That requires there to be a slope singularity of

trapped f(u) at the separatrix. This effect is clearly visible in

the central panel of Fig. 8, where the nominal hole length is

changed by the factors indicated. The required distribution

function is obtained by a numerical implementation of

the integral approach in Figs. 8 and 9. Fig. 9, shows the distri-

bution solution for a potential shape (right panel) / ¼
w eF þ 1½ �= eF þ cosh4 x=4Lð Þ

	 

(and zero hole velocity U¼ 0,

in external Maxwellian distribution). The parameter F pre-

scribes a flattening of the top of the potential. Positive values

of F such as F¼ 4, used in Fig. 9, are approximately the

length of the flattened region. Negative values of F quickly

remove any flattening and return to a w sech4(x/4L) form. The

consequences of F will be discussed in a moment. The length

factor, L, changes the asymptotic potential fall-off at large x.

The first key aspect of Figs. 8 and 9 is to observe (top right of

left panel of Fig. 9) the slope singularities at u ! us, when

L 6¼ 1.

The slope singularity requirement can be demonstrated

analytically as follows. If we suppose the trapped distribu-

tion to have a difference from flat of ft � fp usð Þ ¼ df ¼
a �Eð Þ1=2 þ bE (E being the energy, which is negative), then

it can readily be shown that the trapped density difference

relative to a flat distribution is dn ¼ p
2
a/þ 4

3
b/3=2. Thus, a

trapped contribution to density difference proportional to /

requires an f contribution proportional to �Eð Þ1=2
, which has

a slope singularity at E ¼ 0. And this is the key point:

Schamel’s form disallows such an infinite-slope distribu-

tion.59 It enforces a finite f-slope constraint amounting to

a¼ 0. Therefore, its asymptotic decay-length is fixed.

This type of analysis also explains the variation of

Schamel hole length with speed, which shifts the external

Maxwellian in the hole frame. A more general Debye shielding

calculation obtains / / exp /=kð Þ, where k ¼ dn=d/ð Þ�1=2
,

which follows immediately from dn � / dn=d/ and d2/=dx2

¼ dn. As hole speed U increases, k increases because

dnf lattrap=d/ decreases, as illustrated by Fig. 10 (in which the

slope of the curves at /! 0 is equal to � 1
2

Z0r Uð Þ). The hole

length in the differential approach also increases � k. In fact,

in Fig. 8, for which U¼ 0.4, the nominal hole length was k ’
1.18. It becomes infinite (for Maxwellian) at U ¼ vhole=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Te=me

p
¼ 0:92 ¼ Umax. Large k-enhancement occurs only

for U close to (but below) Umax.

Beyond that speed, no holes exist because the sign of

dn=d/ for small / becomes negative, being dominated by

passing particles far from the separatrix. This hole speed

limit can theoretically be overcome only by non-thermal dis-

tortions of the background distribution function that enhan-

ces the electron population at a slow speed in the hole frame.

Non-maxwellian fp also changes the hole length k, in a way

that has been calculated for various external distributions

and Schamel type holes60 with a view of trying to deduce

something about non-thermal fp from the hole length.

The other generic possibility for increasing the hole

length is to flatten the top of the potential in the center. That

reduction in jd2/=dx2j requires a reduction in the positive

charge at the hole center, by an increase of electron density

there, back towards the external density. So, as illustrated in

Fig. 9, in order for the electron density in the flat region to

return toward the external value, the phase-space density f(u)

on the innermost (lowest energy) trapped orbits must be

greater than on the intermediate-energy orbits responsible

for the negative-q region of the / xð Þ profile. Thus, f0(u)

must have a local minimum at an intermediate speed, um,

such that 0< um< us. The Schamel form of hole excludes

FIG. 9. Numerical solution of the BGK integral equation to obtain the

trapped electron distribution function. When the length factor L is increased

or decreased from its nominal value 1, slope singularities appear at the sepa-

ratrix, us ¼
ffiffiffiffi
w

p
¼

ffiffiffiffiffiffiffi
0:1
p

. Also this flattened-top potential requires a non-

monotonic inner f0.

FIG. 10. Flat-trapped distribution total density in a Maxwellian external dis-

tribution, for different hole speeds U. Inset illustrates the velocity distribu-

tion f(u) for U¼ 0.2, / ¼ 0:1.
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that possibility by its presumed monotonic ft(u) shape; so it

cannot accommodate hole lengthening by central flattening.

The extreme limit of flattening, when there is literally a

finite region jxj < xf , where d/=dx ¼ 0, requires a zero

charge density there, with the electron density equal to the

(presumably unperturbed) ion density. Such a situation can

be considered to be two double-layers, back to back. There is

evidence for the existence of such extended hole structures

in space.61 The inner shape of the distribution f0(u) required

for such extreme flatness looks hardly different from that

illustrated in Fig. 9 for L¼ 0.75.

Whether or not finite separatrix f-slope or other con-

straints such as monotonicity on the shape of ft, implied by a

differential approach, ought in fact to be enforced are the real

physics questions behind the integral versus differential

debate. They are not fully resolved. To do so requires theoreti-

cal considerations beyond those implied by the presumption

of constant-f on steady orbits. One must take into account the

initial (unsteady) conditions of hole formation, and the

dynamics of particles close to the separatrix, whose transit

time becomes theoretically infinite, and for which f being a

function only of energy therefore becomes poorly justified.

III. MULTIPLE DIMENSIONS AND TRANSVERSE
STABILITY

Everything discussed so far is one-dimensional. What

happens in the real three-dimensional world? Clearly holes

do exist under some circumstances, because they have been

observed. But what are the conditions for their existence,

what happens if the conditions are violated, and what is their

multidimensional character when they do exist? The sum-

mary answer is that for holes to exist, there must be a strong

enough magnetic field and distribution-function anisotropy.

There is considerable numerical simulation evidence that

holes in a magnetic field weaker than to satisfy X � xb

(where xb �
ffiffiffiffi
w

p
xp is the trapped-electron bounce-fre-

quency) are broken up by a transverse “kinking” instability,

but no convincing analysis has determined the detailed

mechanism or threshold. Moreover, even if the magnetic

field is strong, there is computational evidence of transverse

modulation or break-up of holes by whistlers.

Analytic existence criteria in 3-d have a much shorter

and sparser literature than simulations. But it has been

argued,62 by reference to early papers63–65 that the non-

existence of unmagnetized isotropic-distribution holes is sim-

ple, arising from the fact that the trapped-electron phase-space

volume is proportional to wNd=2 where Nd is the number of

dimensions. The depletion of trapped density is therefore too

small for Nd� 2 to furnish the positive charge required to sus-

tain a hole. Although spherically symmetric holes (without B-

field) have been shown to exist whose passing (as well as

trapped) velocity distributions are anisotropic, depending

upon angular momentum as well as energy,66,67 they imply

implausibly pathological background distributions at infin-

ity.68 Having an imposed magnetic field bypasses these

non-existence proofs, which seem essential for multidimen-

sional holes. With a strong magnetic field, reduced-

dimensionality (e.g., gyrokinetic) plasma treatments can yield

tractable equilibria (e.g., Refs. 12 and 69) but the question

still remains whether such equilibria are or are not stable. If

they are unstable on electron transit timescales, then they can

be observed, if at all, only transiently.

It was found in the earliest PIC research25 that in

unmagnetized two-stream instabilities, holes did not visibly

form in two- and three-dimensional simulations, though they

did very clearly in 1-d. If a magnetic field is included (still

using electrostatic response) then multidimensional simula-

tions (using far greater computational power) in the 1990s

and later, showed hole formation, but a subsequent hole

modulation and break up.11,70–76

Studies of an initially two-stream electron distribution

are illustrated by Fig. 11. The simulation has a strong mag-

netic field X/xp¼ 5. Its snap-shots show the initial instability

(at a nonlinear stage), the individual electron holes into

which it evolves, extended in the transverse (y) direction,

and a final state with strong “whistlers.” These are near-

horizontal (k� k?) striations that have the effect of partially

breaking up the holes into shorter individual “blobs” of

lower electron density, that are sometimes almost spherical.

FIG. 11. Simulations of two-stream instability showing a hole formation and

break up adapted from M. Oppenheim, D. L. Newman, and M. V. Goldman,

Phys. Rev. Lett. 83, 2344–2347 (1999). Copyright 1999 American Physical

Society.72 The magnetic field is parallel to the x-axis, and at early time t ¼
24x�1

p (a) nonlinear unstable waves arise, which quite soon, t ¼ 448x�1
p

(b), merge into discrete holes with long transverse extent. At a much later

time, t ¼ 1920x�1
p (c), “whistler” fluctuations with transverse wavevector

(striations almost aligned with x) predominate, and the holes are less evident

in the quantity contoured: log jEj2.
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The effect of the magnetic field strength is illustrated

in Fig. 12, also a two-stream instability simulation, but

showing separately Ek and E?, for two cases: weaker and

stronger B-field: X/xp¼ 0.4, 2.0. The strongly magnetized

case (right) shows even after t¼ 2100 that an elongated

hole persists in Ek. The whistlers are also very evident in

E? at a comparable field intensity. The weaker magnetic

field case (left) has holes with limited transverse y-extent,

although still present at t> 2700. The whistlers are hardly

evident.

The two-stream studies are of rather violent instability,

and show a complicated nonlinear evolution caused by multi-

ple processes. In order to try to understand the processes

better, it is valuable to run simulations that start with an

already-formed isolated hole. In effect, this is an exploration

in multiple dimensions of the stability of simplest equilibrium,

namely, an equilibrium independent of the two transverse car-

tesian coordinates (which is precisely the 1-D hole). This

approach has yielded insight into the transverse instability to

which holes are susceptible. Fig. 13 shows frames from a sim-

ulation that is 2-d in space but 3-d in velocity (“2d3v”) as is

necessary for a magnetized plasma. It starts from a sech4(x/4)

Schamel-form hole (without any applied perturbation other

than noise) in a stationary Maxwellian plasma (with immobile

ions) and has a fairly weak magnetic field such that X/

xp¼ 0.2. It is initialized uniform in the y (“axis-2”) direction

perpendicular to B at t¼ 0. A long wavelength (constrained

by the box size) kink, consisting predominantly of hole dis-

placement dx yð Þ / exp ikyð Þ of the hole along the B-field (x-

direction), with little change in potential shape or height,

grows to a significant amplitude at t¼ 204. As time pro-

gresses, the perturbation causes a substantial reduction in the

hole potential height together with a separation of the kinked

region into two different y-humps. The full time evolution as

an animation is available at the URL in Fig. 13. There are no

signs of the “whistler” perturbations.

Simulations like those of Fig. 13 with different parame-

ters often result in almost a complete destruction of the hole,

as was observed in early studies of the transverse instability

of an isolated prepared hole using a PIC code by Muschietti

et al.73 Those authors observed that the stability boundary

was approximately at X/xb¼ 1. Larger values suppressed

the kinking. The trapped particle bounce frequency is xb ’
xp

ffiffiffiffi
w

p
=L for hole length L. Later simulations of the same

cases found very similar results.77 The amplitude and length

of holes measured at the magnetopause,32 for example, are

observed to obey the stability criterion X/xb> 1. Muschietti

et al. also proposed single-particle focusing by the transverse

electric field of the kink as the instability mechanism, a sup-

position that has been taken up by subsequent authors.

However, their numerical results showed unexplained depen-

dence upon the details of the external distribution function

FIG. 12. Long-time behavior of two-stream instability-generated holes

in two dimensions for stronger (a) and weaker (b) magnetic field

strength, adapted from Q. M. Lu et al., J. Geophys. Res. 113, A11219

(2008). Copyright John Wiley and Sons.76 Upper panels Ek; lower pan-

els E?.

FIG. 13. Transverse instability of a 2-D electron hole at xpt¼ 204 (a) and

xpt¼ 628 (b). PIC simulation, 25 600 particles per Debye cell for low noise.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4976854.2]
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such as the effective transverse temperature. My own investi-

gations (unpublished, using the code COPTIC78,79 which

also produced the results of Fig. 13), while they confirm the

stability criterion within approximately a factor of 2, and

show a self-stabilization of the holes by amplitude (w) reduc-

tion, do not reproduce the charge density perturbations that

were much of the evidence that Muschietti et al. invoked for

their mechanism identification. Moreover, analytic investiga-

tions of 2-d hole stability80 have not yielded eigenmodes

consistent with the simulation’s observations. Therefore,

overall, the detailed mechanism of transverse instability and

analytic understanding of the stability criterion appear still to

be open questions.

IV. HOLE CAUSES AND CONSEQUENCES

Broadly speaking, if there is sufficiently a strong mag-

netic field, electron holes can be and often are formed when-

ever an electron velocity distribution arises that is

electrostatically (Penrose81) unstable. Holes are the natural

long-term non-linear states of many “bump on tail” (beam-

plasma), and “warm bistream” (dimpled) distributions10,11 as

well as the well-separated two-stream instability distributions

illustrated by Fig. 2. They can be expected whenever the

instability is dominated by a single wavelength or narrow

range of wavelengths. The alternative (non-hole) saturated

final state of collisionless instability is the generation of a

wide range of wavelengths incoherent with each other, giving

rise to quasi-linear diffusion and flattening of the distribution

in the unstable region. Simulations suggest that hole forma-

tion is at least as important as quasi-linear flattening in many

cases. It may be that ion parameters, (e.g., ion temperature)

influence the predominance of electron holes. However, one

must be cautious in concluding so from simulations with arti-

ficially low mass ratio mi/me, because such treatments (often

adopted to decrease computational cost) reduce and largely

remove the velocity separation of ion and electron waves.

Electron (and ion) holes are observed in simulations to result

from electron-ion instabilities5,82 of the kinetic Buneman

type, i.e., caused by a relative flow of electrons and ions. This

instability can be enhanced by the presence of a distortion of

fe in the form of an electron beam83 and lead to initially very

slowly moving holes. Holes have been observed in space

measurements of reconnection,44,84,85 where they appear to

result from electron beams of small angular spread; their

occurrence is considered an indicator that an ambient guide

magnetic field is present. The kinetic-electron simulation of

reconnection is a very fast-developing field46,86,87 where elec-

tron holes are now a frequent phenomenon.

I now use as an illustration, a different context where

electron holes prove to be key. It is in the cross-field flow of

plasma past an obstacle. One can speak of this as the flow of

the solar wind past the moon, although the physics applies to

other situations too. When this happens, the plasma wake is

highly depleted immediately behind the obstacle, but fills in

by mostly parallel (cross-wake) flow of electrons (quickly)

and ions (more slowly), forming a negative potential hill that

repels electrons and attracts ions. In this wake, the collision-

less electron distribution function acquires a “dimple” (or

“notch”) in the vicinity of orbits that are only just reflected or

passed by the repelling potential hill.88 This dimple is at a dif-

ferent local velocity depending upon the transverse position in

the wake, which determines how far down the transverse

wake potential profile the location is. A dimple near the center

of the electron distribution is sometimes referred to as giving

rise to a “warm bistream instability.”10,32,70 Such a distribu-

tion arises from counter-propagating streams of electrons of

comparable density whose thermal speed is comparable to the

stream speed. The wake does represent counter-propagating

streams of electrons entering from either side along the B-

field. But at positions away from the wake symmetry axis,

electrons reflected from the repelling wake potential are also

important “counter-propagating” contributors to the shape,

and the dimple is not centered. In any case, the dimple is

(Penrose) unstable, and in 1-d, PIC simulations are observed89

to spawn electron holes. Fig. 14 illustrates the parallel phase

space of ions (top) and electrons (bottom). The space

coordinate, y, here is along the B-field which is across the

wake, whose width is approximately twice the obstacle radius

RM. The simulation has a very small Debye length

kDe¼ 0.00125RM. The mass ratio for this plot, mi/me¼ 459,

assists the visibility of the features; but similar results are

obtained at a physical mass ratio (1836). The electron color

contours are of the difference between the actual PIC fe and a

Maxwellian of the same density (even though this is a full-f
simulation). This difference more clearly shows the dimple,

along the diagonal separatrix in phase-space that arises from

the wake’s electron-repelling potential structure. Along the

dimple, barely visible small electron holes are continually

spawned. Most of them move out of the wake almost exactly

following the individual electron phase-space orbits (that is,

following the separatrix) before experiencing much growth.

But some holes (one in this case) remain almost stationary

and during their long dwell time in the wake, grow in ampli-

tude, often sufficiently to perturb (and later to disrupt) the

counter-propagating ion streams shown in the top panel. This

full process can be viewed as an animation at the URL in

Fig. 14. The growth of pre-formed coherent holes is therefore

crucial to understand how the wake eventually re-thermalizes

the ions. The growth mechanism has been identified90 as, in

FIG. 14. Holes growing in a cross-field plasma wake. Most holes move out

at the electron orbit speed. One here remains stationary and grows large

enough to perturb the ions. (Multimedia view) [URL: http://dx.doi.org/

10.1063/1.4976854.3]
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essence, the result of movement of a hole from a lower to a

higher density background plasma. Since the trapped phase-

space density is fixed while the external phase-space density

rises, the hole deepens, and the amplitude (velocity width)

therefore increases. This is an example of a situation where

the entire outcome depends upon how an electron hole

behaves as a composite object: how it moves or does not

move, and how it grows or does not.

V. HOLISTIC KINEMATICS AND SELF-ACCELERATION

In view of the importance of the behavior of holes as

composite objects, the question arises as to what determines

the hole’s lumped parameters and their evolution. Most nota-

bly what determines the hole speed. Contrary to some impli-

cations in the literature, the “non-linear dispersion relation”

arising from the consistency condition does not fix the speed.

For a given speed, it relates depth and width, and determines

length (under the differential approach). But there is great

freedom for a hole to adjust these other parameters to accom-

modate different speeds up to the limit of Umax. It is known

that the influence of the ions is important, and slow holes

interact with the ion response in a way that has been referred

to as a “coupled electron hole and ion soliton,”91,92 which

can sometimes lead to splitting of slow holes. Perhaps the

most remarkable consequence is that holes deliberately

formed at effectively zero initial speed with respect to a

Maxwellian ion distribution are observed in simulations to

self-accelerate quickly to high speed. Fig. 15 shows an

example of a (continuum) Vlasov 1-d simulation,19,93 where

a hole is initialized with an electron distribution of the

Schamel type, but uniform ions. As time evolves, the ions

are repelled by the hole and suddenly at time t ’ 130, the

hole heads away at a speed approximately half the electron

thermal speed, leaving the ion perturbation (and a smaller

corresponding electron perturbation) behind. A heuristic

understanding of this process is simple. Initially near-

stationary uniform ions repelled outward by the sudden

application of the hole potential give rise to a negative cen-

tral charge density that repels the hole itself (which has an

effective charge-to-mass ratio that of electrons). But the

question arises whether one can predict such phenomena

quantitatively. Dupree2,94 developed expressions for the

charge, momentum, and energy of holes conceived as holis-

tic objects. But his interest was mostly ion holes in the con-

text of simulations of extremely low mass ratio (4).

Consequently, he emphasized passing particle reflection as

causing hole deceleration and consequent growth. Realistic

mass-ratio electron holes usually (with some notable excep-

tions) move fast enough that the ion thermal velocity spread

can be ignored. We have recently developed a comprehen-

sive “kinematics” of electron hole’s momentum conserva-

tion,95 which shows that the important ion momentum

transfer terms are usually those of second order in the hole

potential (/w2), neglected by Dupree. The new expressions

of momentum, which are explicit integrals over the hole, but

are more complicated than is useful to present here, explain

semi-quantitatively hole self-acceleration such as that of Fig.

15 and quantitatively the self-acceleration of holes initialized

less violently. The agreement with individual hole simula-

tions96 is gratifying, as illustrated by Fig. 16.

Moreover, the hole kinematics explains an important fea-

ture of the phenomena of Fig. 14. The question is, what keeps

the stationary holes that grow large from moving out of the

wake? The answer can be summarized by saying that holes

cannot, without violence, overtake ion streams. The kinematic

calculations show that if a hole velocity smoothly approaches

the velocity of an ion stream, it experiences a momentum

transfer that becomes larger and larger, and opposes the

approach. The strength of that ion interaction is more than suf-

ficient to overcome the hole acceleration from background

electric field, which is what causes the small holes to move as

they do, along the separatrix in the wake. The stationary

hole(s) are those whose velocities lie between the velocities of

the two ion streams, shown in the upper panel. Those streams

act as velocity barriers, imprisoning the hole velocity between

them, preventing the hole from escaping from the wake. Thus

it is a complex interaction between the streaming character of

the ion distribution and the holistic kinematics of the electron

hole that explains the slow holes.

The reason why this holistic hole analysis works so well

is that the hole is a long-lived object whose self-consistent

structure is remarkably rigid for times longer than the elec-

tron transit timescale. There is a very wide range of time-

scales from the period of hole-length oscillation, of order the

transit or bounce time tt � kD=v � x�1
b , out to the long colli-

sional relaxation time tc of the distribution function. What is

more, provided it does not experience transverse instability,

a hole rather well preserves its potential height, length, and

shape within quite wide limits of hole velocity changes. For

phenomena such as acceleration or amplitude growth having

timescales s between, but well separated from, the two

extremes, tt	 s	 tc, the dynamics, in the hole, of electrons

and ions can be well described in an approximation of short

FIG. 15. Self-acceleration of an electron hole, adapted from B. Eliasson and

P. K. Shukla, Phys. Rev. Lett. 93, 045001 (2004). Copyright 2004 American

Physical Society.93

FIG. 16. Self-acceleration of an electron hole, adapted from C. Zhou and I.

H. Hutchinson, Phys. Plasmas 23, 082102 (2016). Copyright 2016 AIP

Publishing LLC.96 PIC simulation observations (points) are compared with

with the kinematic theory prediction (lines). The final hole speed U, in the

ion frame, is shown for different initial speeds U0, in units of ion sound

speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
.
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transit time compared with the typical hole perturbation

time-scale. Yet collisional effects still remain negligible.

VI. CONCLUSION

Electron holes are now known to occur widely in mag-

netized plasmas subject to electrostatic instability arising

from violation of the Penrose criterion. They may perhaps

occur even more widely than already observed, because their

spatial extent, of order a few Debye lengths, is very short

compared with what can typically be resolved in confined

plasmas; and the frequency of their potential variation in the

lab frame, up to the plasma frequency, is higher than can typ-

ically be time-resolved by laboratory plasma measurements.

We know that they are implicated at the subscale of

many phenomena such as reconnection, shocks, and plasma

wakes. In some cases, e.g., wakes, they appear to play an

important role in the macroscopic evolution. In others, e.g.,

space plasma reconnection, in which it is hard to know

where a spacecraft is relative to macroscopic features such

as the current sheet, they might offer valuable diagnostic sig-

nals of the satellite’s whereabouts. Electron holes’ impor-

tance in controlling or diagnosing such phenomena has yet

to be fully explored.

The theory of electron holes has a 60 year history, but

it is a history that has developed relatively slowly because

of the difficulty of the non-linear analysis and the

paucity, until fairly recently, of experimental observations.

Multidimensional questions are by no means settled, despite

the insights that have come from numerical simulations; the

mechanisms of transverse instability are not firmly estab-

lished. The subtleties of what counts as reasonable trapped

distribution functions, and therefore what can be the hole

lengths under what conditions, are still open questions. The

quantitative analysis of holes as composite objects, for exam-

ple, their kinematic behavior, is only recently beginning to

be understood. The merging or splitting of holes (not covered

in this tutorial) is also a holistic topic that might benefit from

creative analysis to improve and establish quantitative under-

standing of how and when holes merge.

Simulation has played an important role in electron hole

physics from the beginning. Current computational power is

now sufficient that many of the tougher questions can be

addressed numerically as well as analytically. Indeed, it seems

likely that comparison with simulation might be the most

available resource for testing new analytic developments.

These, together with increasingly comprehensive satellite

measurements, and perhaps innovative laboratory experiments,

offer opportunities for major progress in the near future.
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