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Abstract 21 

Air pollution related to traffic emissions pose an especially significant problem in cities; this 22 

is due to it’s adverse impact on human health and well-being. Previous studies which have 23 

aimed to quantify emissions from the transportation sector have been limited by either 24 

simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of 25 

urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory 26 

data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air 27 

pollution emissions for Singapore. This novel approach enabled the quantification of 28 

instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the 29 

basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), 30 

volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus 31 

estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-32 

temporal precision not possible with previously used methods for estimating emissions. 33 

Relatively higher emissions areas were mainly concentrated in a few districts that were the 34 
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Singapore Downtown Core area, to the north of the central urban region and to the east of it. 35 

Daily emissions quantified for the total motor vehicle population of Singapore were found to 36 

be comparable to another emissions dataset. Results demonstrated that high-resolution spatio-37 

temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly 38 

localized areas of elevated acceleration and air pollution emissions in cities, and may become 39 

a complement to traditional emission estimates, especially in emerging cities and countries 40 

where reliable fine-grained urban air quality data is not easily available. This is the first study 41 

of its kind to investigate measured microscopic vehicle movement in tandem with 42 

microscopic emissions modeling for a substantial study domain.  43 

 44 

Keywords: air quality, transportation, emissions, microscopic emissions model, microscopic 45 

vehicle movement.  46 

  47 
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1. Introduction 48 

 49 

 50 

With mass urbanization happening at an unprecedented scale, urban air quality is becoming 51 

an issue of global concern (WHO, 2014). Growth in populations, traffic, industrialization and 52 

energy usage have led to increased air pollution levels and subsequent public health effects at 53 

the urban, regional and global scale (Akimoto, 2003; Molina et al., 2004; Gurhar et al., 2010) 54 

The World Health Organization estimates that ambient air pollution leads to approximately 55 

3.7 million premature deaths annually worldwide, with South-East Asia and the Western 56 

Pacific Regions having the largest air pollution-related health burden (WHO, 2014).  57 

 58 

The adverse impact of air pollution exposure on human health is well documented in the 59 

literature (WHO, 2014). Epidemiological studies have quantified the relationship between 60 

adverse health effects and both long- and short-term exposure to air pollution (Bell et al., 61 

2004; Jerrett et al., 2005; Laden et al., 2006; Lewtas, 2007; Krewski et al., 2009; Nyhan et al., 62 

2014a; Nyhan et al., 2014b). In assessing the impact of air pollution on mortality in the 63 

United States, Caiazzo et al. (2013) reported that the largest sector contributor of pollutant-64 

related mortalities is road transportation, causing approximately 53,000 PM2.5-related deaths 65 

and approximately 5000 ozone-related deaths per year. These figures corresponded to 66 

premature deaths from cardiovascular diseases and lung cancer due to long-term exposure to 67 

PM2.5 (where PM2.5 refers to the particulate matter fraction which is less than 2.5µm in 68 

aerodynamic diameter).  69 

 70 

Traditional methods for monitoring urban air quality employ discrete measurement stations 71 

which sample atmospheric conditions at specific sites throughout a city. Networks vary both 72 

in size and scale. The London Air Quality Network has over 50 sites classified as roadside, 73 

background, suburban and industrial that are dispersed throughout the whole metropolitan 74 

area (Laxen et al., 2003). Singapore, which is the focus of this study, has 14 high-grade 75 

stations operated by the National Environment Agency, gathering data throughout the island 76 

(NEA, 2015). Traditional approaches to monitoring air quality have several limitations, 77 

including significant investment required to set up and maintain the measurement networks. 78 

Furthermore, as air quality can exhibit large variations over a relatively small scales (Britter 79 

and Hanna, 2003), sampling biases can be introduced which make the assessment of human 80 

exposure and the sources of pollutants difficult (Vardoukalis et al., 2005). As a result of this, 81 
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municipal air quality monitoring is often supplemented by air quality models such as the 82 

AERMOD modeling system (USEPA, 2009) and the ADMS Urban model (CERC, 2015) to 83 

improve the spatial and temporal resolution of air pollution estimates. Sparsely located air 84 

quality monitors are limited in their usefulness for accurately determining the locations of air 85 

pollution sources. Therefore, air quality monitoring using distributed networks of sensors has 86 

gained traction as sensors are becoming smaller, less expensive yet more reliable (Chong et 87 

al., 2003; Burke et al., 2006; Cuff et al., 2008; Paulos et al., 2009; Kumar et al., 2015), 88 

providing a wealth of high spatial resolution air quality information.  89 

 90 

The availability of large transportation and mobility datasets from sensors, Global Positioning 91 

System (GPS)-enabled devices, along with improvements in methods and computational 92 

facilities for analyzing these have led to advancements in the field of urban computing 93 

research in recent times. So-called opportunistic sensing which is the use of data that is 94 

collected for one purpose but can be reused for another one (Campbell et al., 2008), has 95 

proved useful in many research studies. Examples include using various anonymized or 96 

aggregated spatio-temporal datasets created by different aspects of human activity, such as 97 

cell phone data (Gonzales et al, 2008; Sobolevsky et al, 2013; Hoteit et al, 2014; Kung et al, 98 

2014; Pei et al, 2014; Grauwin et al, 2014) or vehicle GPS traces (Kang et al, 2013). One 99 

such example of opportunistically utilizing vehicle GPS traces is a recent study by Santi et 100 

al., (2014) where the economic and environmental benefits of vehicle pooling in New York 101 

were quantified based on the analyses of a taxi GPS dataset consisting of 150 million trips.  102 

 103 

Emissions from on-road motor vehicles constitute one of the largest contributions to air 104 

pollutants such as carbon monoxide, nitrogen dioxide, ozone, selected volatile organic 105 

compounds and fine particulates (Molina and Molina, 2004), and also represent a factor in the 106 

spatial variability of air quality in urban areas (Fecht et al., 2016). Vehicle emissions have 107 

typically been estimated with the use of either measured (through loop detectors or similar) or 108 

modeled (using a transport simulator) traffic data. Based on this information, emission factors 109 

are commonly used to convert traffic loads into emissions (NARSTO, 2005). Emission 110 

factors vary from location to location, and depend on the vehicle model and road conditions 111 

(Zhang and Morawska, 2002; North et al., 2006). The application of emission factors to 112 

traffic loads is unable to account for real driving conditions as they happen on the road 113 

(Samuel et al., 2002). Thus, as an alternative, different vehicles models with different load 114 

factors are often used as probes, whose emissions (and eventually the emission of nearby 115 
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vehicles) are measured on the road (Canagaranta et al., 2004; Shorter et al., 2005). The 116 

aforementioned approaches do not allow the high resolution spatiotemporal mapping of 117 

emissions as they do not take into account the ‘drive cycle’ which is the description of a 118 

vehicle’s velocity over time. The drive cycle allows the precise determination of consumption 119 

and hence emissions (Mantazeri et al., 2003; Int Panis et al., 2006). In the widely used 120 

MOBILE Model (USEPA, 2012), only 14 different drive cycles are used; however, these are 121 

only expressed as average speed. Many studies have examined the impact of different vehicle 122 

modes (idling, moving and accelerating) on the release of pollutants. In a study by Frey et al., 123 

(2003) average emissions were observed to be five times greater during periods of 124 

acceleration for hydrocarbons and carbon dioxide, and reached ten times as much for nitric 125 

oxide and carbon monoxide compared with levels found in an idling vehicle. Similarly, 126 

ultrafine particulates released whilst a vehicle is accelerating have also been shown to 127 

increase significantly (Fruin et al., 2008). Hence, there is a need for the use of more detailed 128 

drive cycles, including velocity and acceleration parameters resolved in high spatial and 129 

temporal resolution, in modeling emissions from transportation.  130 

 131 

Many studies have led to the development of models that consider variations in speed and are 132 

appropriate for instantaneous emission modeling. These include the Comprehensive Modal 133 

Emissions Model developed at the University of California (An et al., 1997; Barth et al., 134 

2006) and others (e.g. Rakha et al., 2004; Pelkmans et al., 2004; El-Sgawarby et al., 2005). 135 

Along with this, significant effort has been devoted to the use of micro-simulation methods 136 

for transportation modeling on road networks, for representing real-time, behavior-based 137 

policies (e.g. Ben-Akiva et al., 1997; Hu and Mahmassani, 1997; Liu et al., 2006). Individual 138 

driver behavior and individual vehicle's real-time space-time trajectories are explicitly 139 

represented through traffic micro-simulation models and these produce detailed vehicle 140 

operation, instantaneous speed and acceleration of vehicles that are necessary for microscopic 141 

emissions models. A review by Fontes et al., (2015) examined combining various micro-142 

simulation tools for assessing the impacts of road traffic on the environment, and identified 143 

best practices which would aim to minimize errors in combining these. Int Panis et al., (2006) 144 

presented a methodology for making instantaneous emission modeling compatible with 145 

traffic micro-simulation models. In particular, the emissions caused by acceleration and 146 

deceleration of vehicles were modeled based on microscopic traffic simulation model 147 

integrated with an instantaneous emission model. The functions developed by Int Panis et al., 148 

(2006) were incorporated into a study addressing optimum mitigation strategies for urban 149 
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transportation emissions by Osorio and Nanduri (2015) where a combination of macroscopic 150 

and microscopic traffic simulators and emissions models were employed.  151 

 152 

Recent developments in the field of vehicle emissions have seen the uptake of cell phones 153 

and their built in sensors as on-board diagnostic systems - using the data gathered from the 154 

GPS and accelerometer to monitor the drive cycle and hence consumption and emissions 155 

(Thiagarajan et al., 2009). These approaches have been mostly confined to single or small 156 

numbers of vehicles. In this study, however, it is intended to extend an emissions model to a 157 

large vehicle fleet using GPS data collected. Intelligent Speed Adaption (ISA) systems are 158 

technologies which incorporate GPS navigation to apply speed limits to cars on specific road 159 

areas. Systems for monitoring and controlling vehicle velocities include ISA systems 160 

(Duynstee et al., 2001; Int Panis et al., 2006). These could also be used for reducing 161 

emissions and fuel consumption on road networks, but require fine-grained emissions 162 

predictions based on real-time GPS data.  163 

 164 

The purpose of this study is to use data routinely captured by existing transportation networks 165 

and vehicle fleets to predict vehicular emissions in high spatial resolution. For this, GPS 166 

measurements gathered by a large taxi fleet in Singapore would be analyzed. Parameters 167 

representative of vehicle drive cycles would then be characterized in high spatial and 168 

temporal resolution at points throughout the road network. A microscopic emissions model 169 

would be implemented to predict the emissions of carbon dioxide (CO2), nitrogen oxide 170 

(NOx), volatile organic compounds (VOCs) and particulate matter (PM) throughout the study 171 

domain, where particulate matter here refers to total suspended particles. Highly localized 172 

areas of elevated emissions would thereby be identified, with a higher spatiotemporal 173 

precision than commonly used methods. This is the first study to implement a microscopic 174 

emissions model using measured microscopic vehicle trajectory data for an entire urban 175 

region.  176 

  177 
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2. Methodology 178 

 179 

 180 

2.1. Overview of methodology 181 

 182 

In order to develop an emissions inventory, GPS trajectory data from 15,236 taxis were 183 

analyzed. From this, the instantaneous parameters of velocity and accelleration were derived 184 

and used as inputs for a microscopic emissions model. Emissions of CO2, NOx, VOCs and 185 

PM were predicted across the road network of Singapore using this model. An analyses was 186 

completed which compares the taxi data used to the overall traffic on the road network in 187 

Singapore. Following this, emissions from the remainder of the total motor vehicle 188 

population of Singapore were also estimated. The results were compared to  emissions 189 

estimates produced to those attained from the National Aeronautical and Space Agency 190 

(Streets and Lu, 2012).  191 

 192 

 193 

2.2. Study domain and GPS data processing 194 

 195 

The study domain included the island of Singapore, which covers approximately 718 km2. 196 

Singapore has a population of 5,469,700 people (Singapore Department of Statistics, 2014), 197 

therefore has an average population density of 7,618 persons per km2.  198 

 199 

Our analysis used vehicle GPS traces collected over a period of one week from 15,236 taxis 200 

in Singapore. The raw data included the following parameters: identification number of the 201 

vehicle, a timestamp of when each location measurement was performed, the corresponding 202 

latitude and longitude defining the position of the vehicle. The data samples were collected at 203 

varying temporal intervals every few seconds. Our data was collected from an undisclosed 204 

vehicle fleet operator, which operates over the majority of the island of Singapore on a 24-205 

hour basis. Each vehicle contained within the fleet transmits information including its 206 

identification number, location and status at various intervals to a central operations base. The 207 

dataset contained over 120 million vehicle-GPS samples measured from the 21st February 208 

2011 to the 27th February 2011.  209 

 210 
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The GPS trace data was utilized to infer both the location of each vehicle, its velocity and its 211 

acceleration. In applying a data cleaning process to the dataset, erroneous GPS points which 212 

fell outside the boundary of Singapore or which have an unreasonable distance from its 213 

previous location at a given time interval (distance/time ≤ 150 km/h) were eliminated. The 214 

instantaneous velocities of vehicles were determined based on the time and distance between 215 

geo-referenced points. The data was filtered so as to only examine changes in velocity that 216 

occurred over short temporal ranges, where two consecutive data points were separated by no 217 

more than 5 seconds as intervals greater than this are unable to depict the microstructure of 218 

the acceleration profile. A secondary filtering process was applied to the data to remove 219 

errors attributed to GPS measurements, as these may be affected by the multi-path effect 220 

within urban canyons (Parkinson, 1996). An outlier filter was used that removed all the 221 

acceleration values that exceeded 10 ms-2 as these values are generally not attainable in an 222 

average car. The normative driving cycle, used to homologate vehicles emissions are 223 

characterized by a maximum acceleration of 1.5 ms-2 for FTP-72 and 4 ms-2 for LA92 224 

(Guzella and Sciarreta, 2005; Metric Mind Corporation, 2012), therefore sampling points 225 

with an acceleration value between 0.5 and 10 m s-2 were used in this study.  226 

 227 

 228 

2.3. Comparison of taxi fleet and total traffic 229 

By applying the above filters, the distribution of the sampling intervals of the 15,236 taxis, 230 

indicate that only 7.71% of the logged data has a sampling interval of less than 5 seconds as 231 

well as a valid acceleration value. This indicates that the majority of vehicles demonstrate 232 

intermittent data logging at intervals greater than 5s. The spatial distribution of the valid 233 

samples was correlated with a co-efficient of determination of 0.75 to the spatial distribution 234 

of the raw vehicle-GPS points. In order to examine the spatial distributions of GPS points, the 235 

city was divided into road links. The valid accelerations of all the vehicles were then 236 

attributed to one of the road links based on their latitude and longitude data, and were 237 

projected onto a map of Singapore.  238 

 239 

Aslam et al., (2012) demonstrated that vehicular GPS taxi network data can be used to infer 240 

general traffic patterns in Singapore. Aslam et al., (2012) used data from the same taxi fleet as 241 

used herein this study. Measured traffic data (i.e. counts of vehicles on road links per time 242 

intervals) were obtained through loop count data from the Land Transport Authority (LTA) of 243 

Singapore. By examining the fraction of road segments the taxi fleet covers during workdays, 244 
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it was concluded that 700 taxis were sufficient to cover 70% of the roads for the majority of 245 

the day’s 1-hour time windows, with the exception of those in the middle of the night when 246 

vehicle numbers are sparse. Further to this, Aslam et al., (2012) also observed that 2000 taxis 247 

were sufficient to cover 90% of the total loop detector locations during a period of 15 minutes 248 

in the morning (from 08:00~08:15) on all workdays. Similarly, we compared our taxi fleet 249 

data to measured traffic data obtained from loop detectors operated by Singapore’s LTA for 250 

the same time period as our study. To achieve this, the taxi data was synchronized with the 251 

loop detector data, which was aggregated every 15 minutes. The time series of GPS points for 252 

taxis were first matched to road links and then segments on the road network of Singapore. 253 

The number of taxis on road segments where loop detectors are located, were counted every 254 

15 minutes. These counts were then compared to the loop counts which were regarded as the 255 

ground truth for traffic conditions. Figure 1 shows the taxi and loop detector count data for 15 256 

randomly selected Singapore road segments. The taxi distribution tended to underestimate the 257 

loop distribution and this underestimation was variable across road segments. On each road 258 

link, a bias was observed which varied throughout the day, however this bias was relatively 259 

consistent across days.  260 

 261 

 262 

Figure 1. Distribution of traffic volumes (i.e. number of vehicles per road segment) on 15 263 

randomly selected road segments for the 23rd February 2011. The x-axis includes 15 road 264 

segments including a point for every 15 minutes during the 24-hour day. The y-axis 265 

represents the percentage of traffic at that location and time. The taxi distribution (in blue) 266 

underestimates the loop distribution (in green) and the underestimation is variable.  267 

 268 
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For inferring general traffic patterns, an artificial neural network model was employed, as has 269 

been used in another study for predicting traffic volumes on road links (Moretti et al., 2015). 270 

The model utilized was a simple corrective model for inferring vehicle distribution as 271 

detected by loop detectors from vehicle distribution as determined by the taxi fleet. A 2-layer 272 

feed-forward network was implemented, with a tan-sigmoid transfer function in the hidden 273 

layer and linear transfer function in the output layer. The model was run for 500 road 274 

segments. In determining the performance of the model, a linear regression between modeled 275 

traffic volume and the corresponding targets of measured traffic volume was conducted. 276 

Figure 2 shows the results of learning for trained model for a sample of data points. As there 277 

is a strong association between the modeled and measured traffic volumes, this demonstrates 278 

that the taxi fleet data may be used to predict general traffic on specific road segments, and 279 

the results were similar across the road network of Singapore.   280 

 281 

 282 

Figure 2. Results of the feed-forward artificial neural network model implementation. 283 

Regression plot of a partial set of modeled traffic volumes versus corresponding measured 284 

traffic volume for the (a) training phase (R2=96%), (b) validation phase (R2=93%), (c) tesing 285 
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phase (R2=92%) and (d) overall model (R2=94%). A sub-sample of points are presented for 286 

clarity.  287 

 288 

2.4. Microscopic emissions model 289 

 290 

A microscopic emissions model was implemented and this computed the instantaneous air 291 

pollution emissions associated with CO2, NOx, VOCs and PM. The emissions model was 292 

based on a model developed by Int Panis et al., (2006), and has been adopted by Osorio and 293 

Nanduri (2015). The model utilizes instantaneous velocity and accelerations derived from the 294 

GPS dataset to compute emissions. The emission rate at a given time-instant � is given in the 295 

following equation:  296 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ���� ��(�) + ���

� ��(�)� + ���� ��(�)��(�)],     (1) 297 

where � is the pollutant type, i.e. �	 ∈ {CO2, NOx, VOC, PM}, ��(�) is the instantaneous 298 

speed of vehicle � at time � (in m/s), ����(�) is the instantaneous emissions rate of pollutant 299 

� (in g/s), ��(�) is the instantaneous acceleration of vehicle � at time � (in m/s2), ���
�  is the 300 

lower limit of emission rate for each pollutant type (in g/s), and ���
� , ���

� , ���
� , ���� , ���

� 	 and 301 

���
� 	are the emission rate constants specific to each vehicle and pollutant type. Equation (1) 302 

holds for CO2 and PM emissions. For NOx and VOC emissions, the emissions rate 303 

coefficients differ depending on whether the vehicle is in acceleration or deceleration mode. 304 

If ��(�) ≥ 	−0.5	
/$, then  305 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ��(�)�

� ��(�) + ��(�)�
� ��(�)� + ��(�)�

� ��(�)��(�)],	(2)	306 

Otherwise, if ��(�) < 	−0.5	
/$, then 307 

���
�(�) = 
��	[���� , ���� � + ���� ��(�) + ���� ��(�)� + ��(�)�

� ��(�) + ��(�)�
� ��(�)� + ��(�)�

� ��(�)��(�)],	(3)	308 

The lower limit of the emissions rate ��	is fixed to zero for all pollutant types and vehicle 309 

types. The emission rate constants (e.g., ��, 	��, etc.) are specified for each pollutant type and 310 

vehicle type, and were determined from emissions measurements of on-road instrumented 311 

vehicles. These were determined for the car, heavy duty vehicle (HDV, diesel) and bus 312 

(diesel) categories. A table describing these emission rate constants are described in Int Panis 313 

et al., (2006).  314 
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For each pollutant, the expected total emissions (in g) in the specified vehicle network during 315 

the simulation period were computed by: 316 

�[(��] = ∑ �[(�*
�]*	∈	+ ,	 	 	 	 	 	 (4)	317 

where - is the set of all road links in the network, and �.(�*
�/	denotes the total emissions (in 318 

g) of pollutant � on link 0. The latter term in Equation (4) is approximated by: 319 

�.(�*
�/ = �[���,*]�[(*]1*∆(,	 	 	 	 	 (5)	320 

where �[���,*] denotes the expected emissions rate (in g/s) for link 0 and pollutant type �, 321 

�[(*] is the travel time on link 0, 1* is the arrival rate of vehicles to link 0 and ∆( is the total 322 

simulation time. For a given link 0 and pollutant type	�, the term 1*∆( approximated the 323 

expected total demand over the time period of interest, while �[���,*]�[(*] approximated the 324 

expected emissions per vehicle. The emissions computed for each road link were projected 325 

onto a map of Singapore.  326 

 327 

Emissions for the total motor vehicle population, represented by general traffic patterns, 328 

across the road network of Singapore were quantified. Emissions were estimated on a daily 329 

basis according to Equation (5). In this scenario however, the arrival rates of vehicles to each 330 

road link, 1*, were predicted using the traffic model described in Section 2.3. Daily emissions 331 

were calculated for each of five days of data available, and the mean of these five days was 332 

then compared to mean daily emissions estimated by Streets and Lu, (2012).  333 

 334 

2.5. Vehicle fleet composition 335 

 336 

The emissions model took into consideration the estimated composition of the vehicle fleet of 337 

Singapore. This was based on information collected by the Land Transport Authority of 338 

Singapore (LTA, 2015). The data-set yielded counts of the various categories of motor 339 

vehicles within the overall transportation fleet i.e. Cars, Taxis, Motorcycles, Goods and Other 340 

Vehicles, and Buses, and these categories were further stratified by type of fuel used i.e. 341 

petrol, diesel, petrol-electric, petrol-CNG, CNG and electric for each of the respective 342 

categories of vehicle type. Data for the year 2011 were used as this corresponded to our 343 

vehicle data-set (see Table 1 for details).  344 

 345 
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Table 1. Motor vehicle population in Singapore by category and type of fuel used for the year 346 

2011. Figures exclude tax exempted vehicles for off-the-road use (RU plates).  347 

Cars Petrol 596,947 
Diesel 346 
Petrol-Electric 3,786 
Petrol-CNG 2,642 
CNG - 
Electric 2 
Total 603,723 

Taxis Petrol 279 
Diesel 23,880 
Petrol-Electric 56 
Petrol-CNG 2,836 
CNG - 
Electric - 
Total 27,051 

Motorcycles Petrol 145,672 
Electric 8 
Total 145,680 

Goods & Other 
Vehicles 

Petrol 9,058 
Diesel 136,076 
Petrol-Electric 1 
Petrol-CNG 14 
CNG 8 
Electric 1 
Diesel-Electric - 
Total 145,158 

Buses Petrol 194 
Diesel 16,433 
Petrol-Electric - 
Petrol-CNG 8 
CNG 14 
Electric 3 
Total 16,652 

  348 
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3. Results 349 

 350 

 351 

3.1. Spatial distribution of accelerations and predicted emissions 352 

 353 

Figure 3 shows counts of all valid acceleration data on each link on the road network. Higher 354 

counts of valid accelerations were concentrated in the Singapore Downtown Core area, at 355 

Changi International Airport and some parts of Jurong, Bishan and Yishun. As demonstrated 356 

in Section 3.3., the taxi data may be used to predict general traffic on road segments, 357 

therefore counts of valid accelerations were proportional to the distribution of vehicles in the 358 

city, and proportional to the number of accelerations of each road link. Valid accelerations on 359 

each road link were utilized for the emissions model. However, areas such as the Singapore 360 

Downtown Core area and the vicinity of Changi International Airport which were 361 

characterized by a relatively higher number of sample points of acceleration than other areas. 362 

This may indicate a bias in the dataset.  363 

 364 

The spatial distributions of vehicle emissions computed for each road link in Singapore are 365 

shown in Figure 4. With regards emissions related to specific parameters, we can see that for 366 

all of CO2, NOx, VOC and PM, elevated levels were identified in a concentrated number of 367 

locations in the Singapore Downtown Core area, south of Newton and in Geylang. Elevated 368 

levels were also identified in the area surrounding Changi International Airport, Bishan and 369 

Jurong West.  370 

 371 

 372 

 373 

 374 

 375 
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 376 

Figure 3. Spatial distribution of the number of valid accelerations in Singapore on the 23rd 377 

February 2011. Locations where relatively higher numbers of valid accelerations are 378 

observed in the vicinity of the Singapore Downtown Core area and the Changi International 379 

Airport in the east.   380 

 381 

 382 

 (a)  383 
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(b)  384 

(c)  385 
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(d)  386 

Figure 4. Spatial distributions of predicted daily emissions from the vehicle fleet for each 387 

road link for the parameters of (a) CO2 (tonnes/day), (b) NOx (tonnes/day), (c) VOC (g/day), 388 

and (d) PM (g/day) in Singapore on the 23rd February 2011. Locations of relatively high-389 

emissions, are observed in the Singapore Downtown Core area in the south-center of 390 

Singapore and in other locations throughout the island.  391 

 392 

 393 

The locations where predicted emissions were relatively higher across Singapore can be 394 

identified for the four pollution parameters of CO2, NOx, VOC and PM. In terms of CO2 395 

emissions, the areas which were identified as having relatively higher CO2 output from the 396 

vehicle fleet. Marina South and Raffles Place in the Downtown Core area, the Harbour Front 397 

area, Jurong East, Clementi, Sin Ming and an area close to the Seletar Reservoir in Yishun 398 

were identified. In the east of Singapore, the area between Tampines and Changi International 399 

Airport was identified as having relatively higher CO2 emissions than other areas. The Bukit 400 

Timah Road - Whitley Road Intersection was selected as having relatively higher CO2 401 

emissions as were the busy areas Novena, Newton, Somerset, Dhoby Ghaut (north) and 402 

Farrer Park which are located north of the central region of Singapore.  403 

 404 

Relatively higher levels of NOx emissions were predicted in the Downtown Core Area such 405 

as in Chinatown, Outram Park, Clarke Quay and Raffles Place. The Chin Swee Tunnel - 406 

Havelock Road intersection area was also identified. North of Dhoby Ghaut, City Hall, on the 407 
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Central Expressway side of Fort Canning Park and Little India were areas where relatively 408 

higher NOx emissions were predicted. Connected to these, Somerset and Orchard were areas 409 

with relatively higher NOx emissions. The Moulmein Flyover, the Jalan Bukit Merah - Lower 410 

Delta Road Intersection (located west of the Downtown Core area), the Kallang-Paya Lebar 411 

Expressway (KPE) - Nicoll Highway Intersection (located east of the Downtown Core area), 412 

and further east, an area in the vicinity of Changi International Airport was also identified. 413 

For VOC emissions, the areas of elevated emissions were observed to be centrally located 414 

with a few areas scattered in other parts of Singapore. Located centrally were Orchard Road, 415 

the River Valley Road - Zion Road Intersection, Outram Park, Marina South, Suntec City and 416 

Little India. Moving east from the urban central region - Selegie, Lavender, Kallang, 417 

Geylang, and further east, the Layang Avenue - Pasir Ris Drive 1 Intersection and the Pan 418 

Island Expressway (PIE) - Tampines Expressway (TPE) Intersection near Changi 419 

International Airport were identified as hotspots for VOC emissions. North-east of the central 420 

region was Tao Payoh and further north was Sin Ming (Yishun area). Westwards from the 421 

Downtown Core areas were Bukit Merah, the Hollande Road - Farrer Road Intersection. 422 

Further west was Clementi, Jurong East and Bukit Batok. In the north-west of Singapore, 423 

Choa Chu Kang was observed to have relatively higher levels of VOC.  424 

 425 

For PM emissions, all the areas of relatively highest predicted emissions were concentrated in 426 

the Downtown Core area with some areas identified to the east of it. The areas identified 427 

included the areas of Outram Park, Chinatown, Raffles Place and Clarke Quay. South of these 428 

the Tajang Pagar area near Keppel Road was chosen and slightly north of these, the Havelock 429 

Road - Outram Road Intersection. River Place near the Chin Swee Tunnel and the Central 430 

Expressway side of Fort Canning Park were identified. On the east of the Downtown Core 431 

area were Bugis, Beach Road and Geylang. On the west side of the Downtown Core area; the 432 

Jalan Bukit Merah - Lower Delta Road Intersection was included in the selection of areas 433 

determined to have increased PM emissions relative to the rest of the island. Other areas were 434 

the extent of Orchard Road, Farrer Park and Balestier.  435 

 436 

 437 

3.2. Comparison of predicted emissions for the total motor vehicle population 438 

 439 

Total emissions of each pollutant parameter for the vehicle fleet studied were computed for 440 

each day and the means determined are presented in Table 2. The mean daily CO2 and NOx 441 
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emissions determined were respectively representative of 7.9% (±3%)  and 7.6% (±1.4%) of 442 

emissions estimates for the total motor vehicle population of Singapore (including the 443 

previously calculated vehicle fleet emissions). For VOC and PM, the proportions were 444 

smaller, whereas the total daily emissions computed were approximately 3.2% (±1.7%) and 445 

3.5% (±1.6%) (respectively) of total motor vehicle population emissions (see Table 2 for 446 

details).  447 

 448 

Daily emissions from the total motor vehicle population were then computed for one week 449 

and compared to other transportation emissions estimated by Streets and Lu (2012) (see Table 450 

3). The overall emissions levels computed for the entire fleet were comparable to those 451 

attained from Streets and Lu (2012). Whereas our analyses predicted mean daily emissions 452 

from the entire motor vehicle population to be 27656 (±3049) tonnes for CO2, Streets and Lu 453 

computed 24417 tonnes/day. Therefore, the relative difference in emissions was found to be 454 

15% (±1.7%). For NOx we determined total daily emissions to be 155 (±33.1) tonnes/day 455 

while Streets and Lu computed 121 tonnes/day, and this corresponded to a relative difference 456 

of 24% (±4.9%). A larger disparity was observed in the case of VOC. We predicted total 457 

emissions to be 9.7 (±2.6) tonnes/day whereas Streets and Lu determined a value of 21.6 458 

tonnes/day. This is equivalent to a relative difference of -49% (±12.3%). Finally, for PM we 459 

computed 8.5 (±3.4) tonnes/day while Streets and Lu predicted 14.1 tonnes/day. Similar to 460 

VOC, we calculated a relatively lower value to Streets and Lu by 39% (±15.5%), but 461 

exhibiting a larger uncertainty.  462 

 463 

 464 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 20

Table 2. Modeled emissions for the taxi fleet and the proportion of modeled taxi emissions in 465 

the estimated total motor vehicle population emissions, for each of four air pollutant 466 

parameters.  467 

 Modeled Emissions  
Taxi Fleet  

Proportion of Modeled Taxi 
Emissions in the Total Motor 
Vehicle Population Emissions 

 (tonnes/day) %  

 Mean (SD) Mean (SD) 

CO2 2176.6 (1023.5) 7.9 (3.0) 

NOx 11.9 (2.8) 7.6 (1.4) 

VOC 0.3 (0.2) 3.2 (1.7) 

PM 0.3 (0.2) 3.5 (1.6) 

 468 

 469 

Table 3. Comparison of the mean daily emissions predicted for the total motor vehicle 470 

population of Singapore to estimated ground transportation emissions attained from Streets 471 

and Lu (2012).  472 

 Predicted Total Motor Vehicle 
Population Emissions 

Streets and Lu 
(2012) 

  

 (tonnes/day) (tonnes/day)   

 Mean (SD) Mean Range of Ratios Average difference 
(SD) (%) 

CO2 27656 (3049) 24417 (1.1-1.3) 15.1 (1.7) 

NOx 155.2 (33.1) 121 (1.0-1.6) 24.1 (4.9) 

VOC 9.7 (2.6) 21.6 (0.4-0.7) -49.3 (12.3) 

PM 8.5 (3.4) 14.1 (0.4-0.8) -38.7 (15.5) 

 473 

 474 

 475 

  476 
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4. Discussion  477 

 478 

 479 

Recent advances in urban computing and the availability of large transportation GPS datasets 480 

have presented new opportunities for real-time transportation and emissions modeling. 481 

Transportation and emissions modeling conducted in previous studies have been limited by 482 

coarsely resolved predicted or measured traffic information. In this study, we analyzed GPS 483 

traces from a fleet of over 15,000 vehicles in Singapore with the aim of using this 484 

information to make predictions of emissions in high spatial resolution throughout the study 485 

domain. The instantaneous velocities and accelerations of vehicles, which were extracted in 486 

high spatial and temporal resolution, were inputted into a microscopic emissions model. The 487 

air pollution emissions of CO2, NOx, VOC and PM were thus quantified. The spatial 488 

distributions of the emissions were examined and this enabled highly localized areas of 489 

elevated emission levels to be identified. The study demonstrated how instantaneous drive 490 

cycles can be used to predict vehicular pollutant emissions and this forms an important 491 

component of the urban emissions inventory.  492 

 493 

An analyses demonstrated that the taxi data could be used to predict overall traffic volumes 494 

on road segments throughout the road network. Emissions from the taxi fleet and then the 495 

total motor vehicle population were therefore predicted for the study domain of Singapore. 496 

The subsequent emissions levels computed for the entire motor vehicle population was 497 

comparable to those attained from Streets and Lu (2012). Whereas the modeled values are in 498 

the same order of magnitude for each pollutant parameter, the results likely varied due to the 499 

different emissions modeling methods employed. Further to this, in the case of Streets and Lu 500 

(2012) estimates of emissions from the transportation sector are from the year 2012, while 501 

our data are representative of one week of data for the year 2011. Predicted emissions 502 

computed for CO2 and NOx were higher than VOC and PM. The reason for this is that the 503 

emissions function parameters used are higher for CO2 and NOx. CO2 and PM emission 504 

estimates are more sensitive to vehicle velocities than VOC and NOx which are more 505 

sensitive to accellerations (Int Panis et al., 2006).  506 

 507 

This paper presents a novel methodology for making instantaneous emission modeling 508 

compatible with microscopic traffic patterns (measured on a second by second basis). 509 

Previous studies have focused on the microscopic traffic simulation coupled with 510 
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microscopic emissions modeling (Int Panis et al., 2006) or a combination of macroscopic and 511 

microscopic traffic simulation combined with microscopic emissions modeling (Osorio and 512 

Nanduri, 2015). However, to the authors knowledge, a study investigating measured 513 

microscopic vehicle movement (measured on a second by second basis using GPS) in tandem 514 

with microscopic emissions modeling has not been completed successfully for a substantially 515 

sized vehicle fleet and study domain, rather have been limited to small ad hoc deployments.  516 

 517 

The methodology described in this study has the potential to inform environmental policy 518 

related to transportation in urban areas. With the framework proposed, where appropriate data 519 

is available, responsive and adaptive strategies could be implemented should the emissions 520 

model be applied using real-time GPS data. The methodology described demonstrated the 521 

potential for linking GPS measured vehicle movements directly with microscopic emissions 522 

models (based on the instantaneous driving speed and acceleration) for quantifying traffic 523 

emissions. Although the computation of emissions is clearly a useful application, it is in the 524 

implementation and evaluation of real-time, technology-based environmental policies related 525 

to transportation where its application would be most beneficial. Technologies for monitoring 526 

and controlling vehicle velocities include Intelligent Speed Adaption (ISA) systems 527 

(Duynstee et al., 2001; Int Panis et al., 2006). ISA systems are electronic systems installed in 528 

vehicles, which utilize GPS navigation to evaluate the vehicle location and apply appropriate 529 

speed limits on specific road segments ISA systems combined with an appropriate real-time 530 

emissions model could be utilized for minimizing emissions and fuel consumption in urban 531 

road networks in the future.   532 

 533 

Environment related transportation policies such as restricting vehicles in a city-center zone 534 

or restricting odd/even number plates in urban regions have been adopted in a number of 535 

cities in recent years (Fensterer et al., 2014; Holman et al., 2015). Whereas these have helped 536 

in the reduction of congestion and pollution levels in urban centers, more beneficial 537 

approaches may be based on the detection of the specific, fixed positions where emissions 538 

take place, rather than in substantial urban regions. With the dynamic fine grain emissions 539 

inventory presented in this study, it may become feasible to target air pollution emissions 540 

mitigation efforts in a far more direct manner. The health and economic benefits of reducing 541 

air pollution emissions across various sectors including transportation, thereby improving air 542 

quality, has been quantified in many reports. For example, the US EPA computed the costs 543 

for the implementation of the 1990 Clean Air Act to be about 65 million dollars, with a 544 
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potential benefit reaching 2 trillion dollars from 1990 to 2020, potentially avoiding 545 

approximately 230,000 premature deaths in 2020 (USEPA, 2011).  546 

 547 

For the first time, the data collected allow us to see an emission inventory not as something 548 

static which only changes from one road segment to the other, but which has more detailed 549 

characteristics with spatiotemporal variation. This enables a better estimate of the impact of 550 

pollution on the urban population which also exhibits variable spatial and temporal 551 

distribution profiles over the course of the day (Nyhan et al., forthcoming). The advantage of 552 

the proposed method is that by interrogating and interpreting easily accessible data from 553 

existing fleets (such as vehicle or bus services), considerable information regarding air 554 

pollution emissions can be obtained at a low cost and minimal effort in cities. Such a system 555 

can be applied in other cities, perhaps through government encouragement to make 556 

transportation GPS data available. This information may be of considerable value in 557 

determining the most appropriate locations of where to take action to reducing emissions and 558 

subsequently air pollution concentration levels in cities. This type of data could also be used 559 

to compute fine-grained fuel consumption patterns from the transportation sector.  560 

 561 

This approach we adopted for predicting emissions has some limitations. In the development 562 

of the emissions model functions, Int Panis et al., (2006) primarily used measurements made 563 

in urban traffic (with low speeds) for determining functional forms and the variables in the 564 

emissions equations used in this study. This is considered sufficient for the purposes of 565 

evaluating the effects of speed management in urban networks. It is possible that the emission 566 

functions for highway traffic (at higher speeds) differ for those of urban traffic and the traffic 567 

on highways was insufficiently represented in the functions used. The emissions model did 568 

not allow for the specific model or age of the vehicles to be considered in computations 569 

either. Some additional measures would also be needed to verify the quality of the 570 

acceleration data obtained from GPS traces. There are inherent inaccuracies associated with 571 

GPS measurements, which however are compensated by the large volume of data collected. 572 

There is a necessity to connect the movements of the subset of vehicles with the movement of 573 

all the vehicles in the city. For this, calibrations parameters could be applied based on the 574 

sampling of the available vehicles versus the total number of vehicles. Finally, additional 575 

work would be needed to link the emissions predicted for various parameters to local 576 

measured air pollution concentration levels. A future study by these authors will therefore 577 
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examine the relationship between predicted emissions using the methodology described 578 

herein this study, and measured or modeled values of air pollution concentrations.  579 

 580 

This methodology described in this paper may be replicated in a number of cities worldwide, 581 

as GPS traces from vehicles become increasingly available. Vehicle fleet operators can do a 582 

major public service by providing GPS data for research, in particular for predicting 583 

emissions and other information relevant to environmental health from it. This information 584 

may be used for designing air pollution intervention strategies (long-term, short-term, 585 

responsive and adaptive) for the protection of human health and well-being.  586 

 587 

 588 

5. Conclusions  589 

 590 

Through analyzing GPS data from a large transportation fleet in Singapore, fine grained 591 

emissions were estimated in high spatial resolution. The emissions model was based on the 592 

inputs of velocity and acceleration parameters extracted from the data. Air pollution 593 

emissions related to CO2, NOx, VOC and PM were thereby quantified. The spatial 594 

distributions of the emissions were investigated thereby enabling highly localized areas of 595 

relatively higher emissions levels to be identified. This study also shows how the 596 

instantaneous drive cycles can be applied in the estimation of the overall emissions from the 597 

transportation sector within the study area.  598 

  599 
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