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Anisotropic (2+1)d growth and Gaussian limits of q-Whittaker processes
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Abstract We consider a discrete model for anisotropic (2 + 1)-dimensional growth of an interface height
function. Owing to a connection with q-Whittaker functions, this system enjoys many explicit integral
formulas. By considering certain Gaussian stochastic differential equation limits of the model we are able
to prove a space-time limit of covariances to those of the (2 + 1)-dimensional additive stochastic heat
equation (or Edwards-Wilkinson equation) along characteristic directions. In particular, the bulk height
function converges to the Gaussian free field which evolves according to this stochastic PDE.

Keywords 2+1 growth models · KPZ universality class · q-Whittaker processes · Gaussian Free Field ·
Space-time process
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1 Introduction

A key notion in statistical mechanics and probability is that of universality classes. Roughly, this holds
that the long-time and large-scale behavior of possibly complex stochastic systems group into broad classes
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which all show the same scaling exponents and statistics describing fluctuations. The connection between
microscopic dynamics and the associated universality class is generally facilitated by a few physically
relevant quantities which can be computed on the microscopic side. This article will probe the universality
class associated with two-dimensional interface growth.

1.1 Random growth in (2 + 1)-dimensions

Random growth models have received significant attention recently. In one spatial dimensional, generic
local random growth models with slope dependent growth rates fall into the (1 + 1)-dimensional Kardar-
Parisi-Zhang (KPZ) universality class of which quite a lot is now known – see the reviews and lecture
notes [7, 11, 12, 19, 20, 37, 38]. In two spatial dimensions much less is known. It is predicted (see, for
example, [41]) that generic local random growth models with slope dependent growth rates fall into one of
two (2 + 1)-dimensional KPZ universality classes – the isotropic or the anisotropic class. The archetypical
(2 + 1)-dimensional model is the continuum KPZ stochastic PDE

∂h

∂t
(t, x) =

1

2
∆h(t, x) + (∇h,Q∇h)(t, x) + ξ(t, x).

Here x = (x1, x2) ∈ R2 and t ∈ R≥0 (despite saying “space-time” we put time t before space x). The
function h(t, x) ∈ R is the height above location x at time t, the Laplacian ∆ is on R2 and the noise ξ
is space-time white. The quadratic form in ∇h is defined with respect to a 2 × 2 matrix Q. When the
signature of Q is (+,+) or (−,−), the equation is called “isotropic” while in the mixed case (+,−) or
(−,+) (and the boarder case when one term is 0) it is called “anisotropic”. Presently this equation has
not been shown to be well-posed – the noise is sufficiently rough so that solutions are distribution valued
and hence not regular enough to define the non-linearity by standard means.

The difference between isotropic and anisotropic growth is quite marked. In the isotropic case, all
directions are roughly the same, and there is no theoretical prediction for the scaling exponent or fluc-
tuations. Numerics predict fluctuation growth of order t0.24 (with 0.24 only approximate, but different
from 1/4) – see [23]. The anisotropic case has very different behavior. In particular, it was predicted by
Wolf [41] in 1991 that the anisotropic equation should have fluctuations which grow like

√
ln t and behave

asymptotically like the equation without non-linearity – the (2+1)-dimensional Edwards-Wilkinson (EW)
/ additive stochastic heat equation

∂u

∂t
(t, x) =

1

2
∆u(t, x) + ξ(t, x). (1.1)

This equation is not function valued, but rather takes values in the space of generalized functions. The
Gaussian free field is an invariant measure for the equation.

There are some results in the literature confirming the
√

ln t, and Gaussian free field behavior for certain
discrete growth models. Numerics performed by Halpin-Healy and Assdah [24] support the

√
ln t prediction.

The first rigorous result was in 1997 by Prähofer and Spohn [34] who showed
√

ln t scale fluctuations for
the Gates-Westcott model [21] through exact calculations. The Gaussian free field prediction (in addition
to the

√
ln t scaling) was demonstrated in 2008 by Borodin and Ferrari [6] for a discrete model related to

Schur processes (the q = 0 case of the model we introduce below). Aspects of that result were extended to
a slightly more general model recently by Toninelli [40]. These results (which are essentially the full set of
rigorous results for (2 + 1)-dimensional anisotropic KPZ models) deal only with behavior at a single time,
and it remained an important open problem to demonstrate the non-trivial temporal limit of such models.

To our knowledge, this present paper, along with the work of Borodin, Corwin and Toninelli [5] on
growth models on the torus (initiated near the completion of this present work, though completed prior to
it), is the first work in which a scaling limit to the (2+1)-dimensional EW equation has been established for
a model in the (2+1)-dimensional anisotropic KPZ universality class. The previous work mentioned above
have dealt with only a single time. From the outset, let us be clear about two things. First – we do not prove
convergence as space-time processes, but rather work with covariances (avoiding complications related to
working with generalized function valued solutions). Second – our convergence result is for a system of
SDEs which arise as limits of a particular discrete growth model. We rely on exact covariance formulas for
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Fig. 1: The plot of (λ
(n)
k , n) for 1 ≤ k ≤ n ≤ N = 5 yields an interlacing triangular array.

the SDEs which come from the fact that the discrete growth model is an “integrable probabilistic system”.
Direct analysis of the discrete model is presently beyond our techniques.

This paper is the first instance where bulk asymptotics have been extracted from Macdonald processes
(apart from the free-fermionic Schur case). The exact formulas provided by the structure Macdonald
processes results in a number of nice formulas as we take certain limits. For instance, in Section 3 we
demonstrate simple determinant form solutions to a system of ODEs which arises in describing the law of
large numbers behavior of the bulk as the Macdonald parameter q → 1. Another example is the explicit
covariance formulas given in Section 4 for the SDEs which describe the fluctuations around that bulk law
of large numbers behavior.

1.2 The q-Whittaker particle system

Measures on interlacing partitions or Gelfand-Tsetlin patterns defined in terms of symmetric functions have
played an important role in asymptotic representation theory and probability, especially related to models
of interacting particles, growth, directed polymers, and more broadly the Kardar-Parisi-Zhang universality
class. In particular, special properties of families of symmetric functions, such as those in the Macdonald
hierarchy (including q-Whittaker, Hall-Littlewood, Jack and Schur), enable one to construct interesting
Markov dynamics which preserve these classes of measures, and also obtain exact and concise formulas
for expectations of many observables under these measures. While there have been some clear successes
in this direction (see for example [2, 7, 9, 12] for some surveys and reviews) there remain many directions
untouched and many open problems unresolved. In this present paper we probe the bulk fluctuation
behavior of certain (2 + 1)-dimensional growth models associated with these measures, as well as study
certain SDE and SPDE limits.

Our investigation starts at the level of q-Whittaker processes. These are measures on interlacing se-
quences of partitions, or equivalently Gelfand-Tsetlin patterns, or interlacing triangular arrays of non-
negative integers – see Figure 1 for an illustration and Section 2 for definitions and notations related
to the objects we presently discuss. The measures we consider on such interlacing arrays are called q-
Whittaker processes and are specified by “specializations” ρ of q-Whittaker functions.

The q-Whittaker process under the “Plancherel” specialization ρ which is indexed by a parameter γ > 0
can be realized as the time γ distribution of a fairly simple Markov dynamic on the interlacing triangular

array
{
λ

(n)
k (γ) : 1 ≤ k ≤ n ≤ N

}
. Start with packed initial data λ

(n)
k (0) ≡ 0 for all 1 ≤ k ≤ n ≤ N . At

time γ, associate to each λ
(n)
k (γ) a rate

(
1 − qλ

(n−1)
k−1 (γ)−λ

(n)
k (γ)

)(
1 − qλ

(n)
k (γ)−λ

(n)
k+1(γ)+1

)

1 − qλ
(n)
k (γ)−λ

(n−1)
k (γ)+1

exponential clock (i.e. in time dγ the clock rings with probability given by dγ times the above rate).

When the λ
(n)
k (γ)-clock rings, find the longest string λ

(n)
k (γ) = λ

(n+1)
k (γ) = · · · = λ

(n+ℓ)
k (γ) and increase

all coordinates in this string by one. Observe that if λ
(n)
k (γ) = λ

(n−1)
k−1 (γ) the jump rate automatically
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Fig. 2: An interface associated with the q-Whittaker particle system. The coordinates of the particles

corresponding to λ
(n)
k is (λ

(n)
k − k + n, n).

vanishes, hence the interlacing partitions remain interlacing under these dynamics. This “push-block” q-
Whittaker particle system was introduced in [2] and generalizes the q = 0 dynamics of [6] which relate to
Schur processes (instead of q-Whittaker processes). Section 2.5 describes this and other dynamics which
grow q-Whittaker processes for various specializations.

The q-Whittaker particle system can also be mapped onto an interface growth model as illustrated
in Figure 2. In the q = 0 case, this interface was shown to fluctuate like

√
ln γ and, after a suitable

change of variables, have Gaussian free field statistics at a single long time. The key to that result was the
“determinantal” structure of Schur processes which provides effective means to extract many asymptotic
limits. Presently we do not know how to prove an analogous set of results for the q-Whittaker process
– only for certain Gaussian limits of it which arise as we take q → 1. Given similar results in the two
extremes of q = 0 and q → 1, it is reasonable to expect that the asymptotic behavior remains the same
for the whole range of q ∈ (0, 1).

In place of the determinantal structure of Schur processes, we instead have the following type of exact
formulas which follow from eigenrelations for q-Whittaker functions (see [2] or Proposition 2.1 for the
precise statement of this result along with the contours of integration):

E

[
m∏

i=1

qλ(ni)
ni

(γ)+···+λ
(ni)
ni−ri+1(γ)

]
=

m∏

i=1

1

(2πi)riri!

∮
· · ·
∮ ∏

1≤i<j≤m

ri∏

k=1

rj∏

ℓ=1

q(zi,k − zj,ℓ)

zi,k − qzj,ℓ

×
m∏

i=1

(−1)
ri(ri+1)

2

∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

ri∏
k=1

(zi,k)ri

ri∏

k=1

1

(1 − zi,k)ni
ezi,k(q−1) dzi,k.

While these formulas contain enough information to entirely identify the distribution of the time γ distri-
bution, combining them so as to extract useful asymptotics remains a challenge and has really only been

successful in the study of λ
(n)
n or λ

(n)
1 .

Simulations of the q-Whittaker particle system created soon after its introduction, such as illustrated
in Figure 3, revealed an interesting phenomena as q = e−ε → 1 (i.e. ε → 0). If time is scaled so that
γ = ε−1τ , and the entire picture is centered by γ and scaled by ε−1, then starting from the right, bands
of particles seemed to deterministically peel off. There still seemed to be some randomness, but on a
smaller ε−1/2 scale. Indeed, the first set of results which we prove in this paper are a characterization of
this curious law of large number (LLN) behavior and then a description of the scale ε−1/2 central limit
theorem (CLT) type fluctuations around the LLN. Following from our q-Whittaker dynamics, we can write
down ODEs for the LLN and SDEs for the CLT. Following from our integral formulas, we can also write
down explicit integral and determinant formula solutions to the LLN ODEs, and explicit integral formulas
for the space-time covariance of the SDEs. These LLN results are contained in Section 3 (in particular,
the integral formulas are given in Proposition 3.1 while the ODEs are verified in Corollary 3.5) while the
CLT results are contained in Section 4 (in particular the integral formulas for the covariance is given in
Proposition 4.1 while the SDEs are derived in Proposition 4.6). These explicit solutions / covariances are



Fig. 3: Simulation of q-Whittaker particle system with N = 20 particles, q = e−ε and ε = 0.01. The

centered and diffusively scaled particle process λ
(n)
k (ε−1τ) is plotted for τ = 1 and τ = 10.
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Fig. 4: A characteristic ray (dotted) comes from the origin at time 0 at a constant velocity. The dots
represent the spatial points associated with time S and time T .

quite remarkable and we do not know of a mechanism which would produce them without having had the
prelimiting q-Whittaker analogs. Of course, once written down, it is possible to directly verify them.

Let us briefly note that there is another q → 1 limit which was considered in [2, 3]. In that case,
time is scaled like ε−2. In this longer time scale, the triangular array LLN crystalizes with spacing of
order ε−1 ln ε−1 and fluctuation SDEs of order ε−1 around that given by the Whittaker process and SDEs
introduced in [30].

The system of SDEs derived in this q → 1 limit is given in Proposition 4.6, and exact integral formulas
for the covariance of this system is given in Proposition 4.1. Given this limiting system, it was again our
goal to extract long-time and large-scale (N → ∞) limits and recover the EW equation. The covariance
formulas take the form of random matrix type integrals, and unfortunately they were not yet in a form
amenable to perform the required asymptotic analysis to reach the goal.

In Section 5.1, we take yet another limit to further reduce the complexity of formulas and SDEs, still
keeping the model complex enough to be interesting. We consider the limit of the triangular array for fixed
N , as time goes to infinity and the SDE solutions (which are already centered) are rescaled diffusively.

Calling ζ
(n)
k (T ) the resulting particle system, we show in Proposition 5.5 that the ζ satisfy the system of

SDEs (the W
(n)
k (T ) are independent Brownian motions) indexed by {k, n ∈ Z : 1 ≤ k ≤ n}

dζ
(n)
k (T ) =

(−n+ 1

T
ζ
(n)
k +

k − 1

T
ζ
(n−1)
k−1 (T ) +

n− k

T
ζ
(n−1)
k (T )

)
dT + dW

(n)
k (T )

and in Proposition 5.1 that their fixed time covariance is given by the following formula which holds for
n1 ≥ n2, and any ri ≤ ni for i = 1, 2:

Cov
(
ζ(n1)
n1

(T ) + . . .+ ζ
(n1)
n1−r1+1(T ); ζ(n2)

n2
(T ) + . . .+ ζ

(n2)
n2−r2+1(T )

)

=

∮ ∮ r1∑

k=1

r2∑

ℓ=1

1

zk − wℓ

( ∏

1≤i<j≤r1

(zj − zi)
2

r1∏

m=1

eTzm

(zm)n1
dzm

)( ∏

1≤i<j≤r2

(wj − wi)
2

r2∏

m=1

eTwm

(wm)n2
dwm

)

(∮ ∏

1≤i<j≤r1

(zj − zi)
2

r1∏

m=1

eTzm

(zm)n1
dzm

)( ∮ ∏

1≤i<j≤r2

(wj − wi)
2

r2∏

m=1

eTwm

(wm)n2
dwm

) ,

where the integrals are around 0 and the z-contours contains the w-contours.



The remainder of the paper focuses on studying the large-scale N → ∞ behavior of this system and
its covariance. The SDEs are invariant under diffusive scaling (that is how they arose) so we keep T fixed.
Theorem 5.9 and Proposition 5.28 contain the limiting covariance for ζ. The asymptotics in Theorem 5.9
deal with the fixed time, two-point covariance and are quite involved and take up a considerable length of
the paper. There are essentially three contour integrals and the integrand (in exponential form, centered
around the critical points) has one slow-manifold and two fast-manifolds. We first integrate over the
fast-manifolds and then consider the asymptotic behavior along the slow manifold. The result of this
analysis shows that there are non-trivial fixed time covariances at distances O(N) with an explicit limiting
covariance function. Proposition 5.28 deals with the two-time covariance, and since the temporal dynamics
are at this point rather simple, this analysis is fairly straight-forward. It is also due to these simple temporal
dynamics that we see that fluctuations never fully decorrelate in time.

Having figured out the asymptotic covariance, we then consider the space-time covariance in
√
N -

neighborhoods around rays emanating from the origin at time T = 0. These rays (illustrated in Figure 4) are
sometimes called characteristics. Fluctuations of space-time points not on such characteristics decorrelate
quickly, whereas those on the characteristics display the “slow decorrelation” phenomena. This phenomena
was observed in 1+1 growth models [14,18], conjectured (but never proven) for models in 2+1 dimensions
as well [6]. In particular, Corollary 5.31 shows that for d > 0, a ∈ (0, 1), and T > S > 0 fixed, if we set,

for η = (η1, η2) ∈ R2, ζ(T, η;N) := N1/2ζ
(n)
k (T ) where

n =
(
dN +

(
η1
√

(1 − a)d+ η2
√
ad
)√

N
)
T, k =

(
(1 − a)dN + η1

√
(1 − a)d

√
N
)
T,

then for η, λ, µ, ν ∈ R2,

lim
N→∞

Cov (ζ(T, η;N) − ζ(T, λ;N), ζ(S, µ;N) − ζ(S, ν;N))

=
S

πd
√
a(1 − a)

(
Gτ (|η − µ|) −Gτ (|η − ν|) −Gτ (|λ− µ|) +Gτ (|λ− ν|)

)
.

The limiting covariance is in terms of

τ =
T − S

T
, pτ (σ) =

1

2πτ
e−(σ2

1+σ2
2)/2τ , Γ (s, x) =

∫ ∞

x

ts−1e−tdt,

and, for r ∈ (0,∞),

Gτ (r) = −Γ
(
0, r2

2τ

)
− ln(r2) = −

∫

R2

pτ (σ) ln
(
|σ − ξ|2

)
dσ

where ξ = (ξ1, ξ2), r = |ξ|. The reason we take differences of ζ’s above is that the individual covariances
grow like lnN , and taking differences cancels this divergence.

The covariance for ζ can be matched to that of the EW equation (1.1) in equilibrium, which is given
by (Section 5.7)

Cov
[
u(t, x)− u(t, y), u(t̃, x̃)− u(t̃, ỹ)

]
=

1

4π

(
Gt−t̃(|x− x̃|)−Gt−t̃(|x− ỹ|)−Gt−t̃(|y− x̃|)+Gt−t̃(|y− ỹ|)

)
.

In particular, taking S =
d
√

a(1−a)

4 , t̃ = 0 and t = τ gives an exact matching of the covariances as we hoped
to achieve. It is notable that for S fixed, as T varies from S to infinity, the parameter τ goes from 0 to 1
and hence our ζ process only relates to the EW equation for a fixed time interval t ∈ [0, 1]. We do not have
an explanation for why this occurs in our limit. We suspect that this apparent time dilation may result
from some of the intermediate limits we took of the q-Whittaker particle system. The Wolf prediction
would seem to suggest that had we taken the N → ∞ of the q-Whittaker particle system directly, the EW
equation would arise as the limit with time varying as t ∈ [0,∞). This is certainly a point which warrants
further study.



2 Notation and background

2.1 q-deformed functions

We will assume throughout that q ∈ (0, 1) and generally associate q with ε > 0 via q = e−ε. The q-
Pochhammer symbol is defined as

(a; q)n =

n−1∏

i=0

(1 − qia)

with the obvious extension to the infinite product when n = ∞. We will make use of the following, readily
observed asymptotics that for a fixed, as ε → 0,

ln(a; e−ε)ε−1b ≈ ε−1ga(b) and ln(a; eε)ε−1b ≈ ε−1ga(−b),

where

ga(b) =

∫ b

0

ln(1 − ae−s)ds.

A random variable follows the q-geometric distribution with parameters q, α ∈ (0, 1) if it takes values
in s ∈ {0, 1, . . .} according to probability

P(s) =
αs

(q; q)s
(α; q)∞.

Let c ∈ {0, 1, . . .} ∪ {+∞} and s ∈ {0, 1, . . . , c}. For real parameters q, ξ, η define

ϕq,ξ,η(s|y) = ξs (η/ξ; q)s(ξ; q)c−s

(η; q)c

(q; q)c

(q; q)s(q; q)c−s

with the obvious extension to c = ∞ given by

ϕq,ξ,η(s|∞) = ξs (η/ξ; q)s(ξ; q)∞
(η; q)∞(q; q)s

.

For q ∈ (0, 1) and 0 ≤ η ≤ ξ < 1, this defines a probability distribution on s ∈ {0, 1, . . . , c} called the
q-Hahn distribution [13,33]. We will make use of another set of parameters which also defines a probability
distribution using this function. For q ∈ (0, 1) and a, c ≤ b nonnegative integers,

ϕq−1,qa,qb

(
s|c
)

defines a probability distribution on s ∈ {0, 1, . . . , c}, as observed in [29, Section 6.1].

2.2 Partitions

A partition λ is a non-increasing sequence of non-negative integers λ1 ≥ λ2 ≥ · · · . The length of a partition
(written as ℓ(λ)) is the number of non-zero parts. We define |λ| =

∑
λi. A partition µ interlaces with

λ (written as µ � λ or λ � µ) if for all i, λi ≥ µi ≥ λi+1. We will consider measures on sequences
of interlacing partitions λ̄ = (λ(N) � λ(N−1) � · · · � λ(1)) wherein ℓ

(
λ(n)

)
= n for 1 ≤ n ≤ N . For

notational convenience, we adopt the convention that λ(0) is the empty partition containing only zeros,

and λ
(n)
k ≡ +∞ for k ≤ 0. In general, we will use a bar (e.g. λ̄, µ̄) to denote a sequence of interlacing

partitions such as described above. We call such a sequence λ̄ packed if λ
(n)
k ≡ 0 for all 1 ≤ k ≤ n ≤ N .

For a collection of variables x = (x1, x2, . . .), and any pair of interlacing partitions λ � µ, skew q-
Whittaker symmetric functions Pλ/µ(x) and Qλ/µ(x) are symmetric functions in the x variables with
coefficients which are rational functions of q. They are the same as skew Macdonald symmetric functions
with the parameter t = 0 (we will soon use t to represent a time, having nothing to do with the Macdonald
t parameter). There exist explicit combinatorial formulas for these functions as well as many beautiful
relations and applications. In the present article we quote all necessary results pertaining to these functions.
Those unfamiliar with them and interested in learning more can refer to [2,28] for further information and
background.



2.3 q-Whittaker processes

A specialization of the algebra of symmetric functions Sym is an algebra homomorphism Sym → C. A
specialization is q-Whittaker non-negative if it takes non-negative values on all skew q-Whittaker P and Q
functions. We will work with two types of q-Whittaker non-negative specializations – the alpha, and the
Plancherel (see [2, Section 2.2.1] for more on specializations). The alpha specialization is parameterized
by a finite collection of positive real α = (α1, . . . , αt) and amounts to substituting xi = αi for 1 ≤ i ≤ t
and xi = 0 for all other i. The Plancherel specialization is parameterized by one positive real γ and
corresponds to the t → ∞ limit of substituting xi = (1−q)γ/t for 1 ≤ i ≤ t and xi = 0 for all other i. These
specializations will be written as Pλ(α) or Pλ(γ) (and likewise for Q). Equivalently, the specializations can
be defined through the values taken by gk = Q(k), the q-analog of the complete homogeneous symmetric
functions hn, the monomials of which form a linear basis of Sym: for a formal parameter u,

Π(u; α) :=
∑

k≥0

gk(α)un =
t∏

j=1

1

(αju; q)∞
, and Π(u; γ) :=

∑

k≥0

gk(γ)un = eγu. (2.1)

We do not consider the beta specialization (see [2, Section 2.2.1]) here since it is unclear whether it admits
a limit under the scaling we focus on soon. The alpha and Plancherel specializations are q-Whittaker non-
negative. Note that it is easy to combine the alpha and Plancherel specializations. We proceed considering
each separately, though all subsequent results can also be stated considering both simultaneously.

We now define the q-Whittaker process under the alpha or Plancherel specializations. Consider a se-
quence of positive reals a = (a1, . . . , aN). For the alpha specialization, let α = (α1, . . . , αt) be positive
reals such that aiαj < 1 for all i, j. For the Plancherel specialization let γ be a positive real. Denote
both of these specialization by the symbol ρ. The ascending q-Whittaker process [2] is a measure Pa;ρ on
interlacing partitions λ̄ defined by

Pa;ρ(λ̄) =
Qλ(N)(ρ)Pλ(N)/λ(N−1)(aN )Pλ(N−1)/λ(N−2)(aN−1) · · ·Pλ(1)(a1)

Π(a; ρ)

where the normalizing constant (i.e. the sum of the numerators over all collections of interlacing partitions)
is given by

Π(a; ρ) =

N∏

i=1

Π(ai; ρ),

with ρ = α or ρ = γ and Π(u; ρ) defined as in (2.1). Likewise define Ea;ρ as the expectation operator with
respect to this probability measure. Figure 1 illustrates how to associate an interlacing triangular array
with a sequence of interlacing partitions λ̄.

2.4 Integral formulas

Utilizing Macdonald difference operators, [2] provided a general approach to computing expectations of
a wide variety of observables with respect to Macdonald measures. This approach was generalized to the
full Macdonald process in [4]. The integral formulas we recall here follow from the Macdonald parameter
t = 0 degeneration of those results. In particular, Proposition 2.1 follows from [4, Theorem 4.5] whereas
Proposition 2.2 follows from [4, Theorem 4.6].

Proposition 2.1. Fix N ≥ 1, positive reals a = (a1, . . . , aN ), m ≥ 1, a sequence of m integers N ≥ n1 ≥
n2 ≥ · · · ≥ nm ≥ 1, and r1, . . . , rm such that 0 ≤ ri ≤ ni for 1 ≤ i ≤ m. Then for an alpha specialization
ρ = α with aiαj < 1 for all i, j, or for a Plancherel specialization ρ = γ > 0,

Ea;ρ

[
m∏

i=1

qλ(ni)
ni

+···+λ
(ni)
ni−ri+1

]
=

m∏

i=1

1

(2πi)riri!

∮
· · ·
∮ ∏

1≤i<j≤m

ri∏

k=1

rj∏

ℓ=1

q(zi,k − zj,ℓ)

zi,k − qzj,ℓ

×
m∏

i=1

(−1)
ri(ri+1)

2

∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

ri∏
k=1

(zi,k)ri

ri∏

k=1

ni∏

ℓ=1

−aℓ

zi,k − aℓ

Π(qzi,k; ρ)

Π(zi,k; ρ)
dzi,k,

(2.2)



zm,k

zm−1,k

z1,k

zi,k

Fig. 5: Contours for Propositions 2.1 (left) and 2.2 (right). Left: the inner contour is for all zm,k, 1 ≤ k ≤ rm.
It encloses a1, . . . , aN (represented as white dots). The next contour contains q times this contour and is
for all zm−1,k, , 1 ≤ k ≤ rm−1. The final contour, which contains q times all previous ones, is for z1,k,
, 1 ≤ k ≤ r1. Right: all contours are chosen to lie on a small circle enclosing the a1, . . . , aN , and not
intersecting the image of the contour times q−1 (the smaller dotted circle) or the origin. For the alpha
specialization we also require the contours be contained in the large dotted circle centered at the origin of
radius qminj α

−1
j .

with Π(u; ρ) as in (2.1). We assume that the parameters have been chosen so that the following choice of
integration contours exist (see the left-hand side of Figure 5 for an illustration of such contours). The zi,k

contour includes all a1, . . . , aN as well as contains the image under multiplication by q of all zj,ℓ contours
for j > i and arbitrary ℓ; no contours include 0.

Proposition 2.2. Fix N ≥ 1, positive a = (a1, . . . , aN ), m ≥ 1, a sequence of m integers N ≥ n1 ≥ n2 ≥
· · · ≥ nm ≥ 1, and r1, . . . , rm such that 0 ≤ ri ≤ ni for 1 ≤ i ≤ m. Then for an alpha specialization ρ = α

with aiαj < qm for all i, j, or for a Plancherel specialization ρ = γ > 0,

Ea;ρ

[
m∏

i=1

q−λ
(ni)
1 −···−λ(ni)

ri

]
=

m∏

i=1

1

(2πi)riri!

∮
· · ·
∮ ∏

1≤i<j≤m

ri∏

k=1

rj∏

ℓ=1

zi,k − zj,ℓ

zi,k − q−1zj,ℓ

×
m∏

i=1

(−1)
ri(ri−1)

2

∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

ri∏
k=1

(zi,k)ri

ri∏

k=1

ni∏

ℓ=1

zi,k

zi,k − aℓ

Π(q−1zi,k; ρ)

Π(zi,k; ρ)
dzi,k,

with Π(u; ρ) as in (2.1). We assume that the parameters have been chosen so that the following choice of
integration contours exist (see the right-hand side of Figure 5 for an illustration of such contours). The zi,k

contour includes all a1, . . . , aN , does not include 0, and is not contained in the image under multiplication
by q−1 of any of the zj,ℓ contours for j > i and arbitrary ℓ. Additionally, for the alpha specialization, we
assume that the contours are contained in the disc centered at the origin of radius qminj α

−1
j .

2.5 Dynamics preserving the q-Whittaker process

Besides having many observables whose expectations admit concise formulas, Macdonald processes (or
in this case, q-Whittaker processes) arise as the fixed time marginals of certain Markov dynamics on
interlacing partitions. We will describe two dynamics – one in discrete time which relates to the alpha
specialization and one in continuous time which relates to the Plancherel specialization. In both cases

we will initialize λ̄(0) to the packed configuration (i.e., λ
(n)
k ≡ 0 for 1 ≤ k ≤ n ≤ N). These two so-

called “push-block” dynamics were introduced in [2]. Their Schur analogs were introduced in [6] based
on a construction related to earlier work of [16]. There are other types of discrete and continuous time



dynamics which preserve the respective alpha and Plancherel specialized q-Whittaker processes, such as
considered in [29, 31, 32]. Appendix B contains a description of some of these dynamics (including some
related to generalizations of the Robinson-Schensted-Knuth or RSK correspondence) as well as some of
the parallel analysis in those cases as we preform for the push-block dynamics below.

2.5.1 Alpha dynamics

We describe the push-block discrete time alpha dynamic which arises as the degeneration of [2, Example
2.3.4 (1)] when the Macdonald parameter t = 0 (not to be confused with the time parameter t we use in
what follows). Here the time parameter t ∈ {0, 1, . . .} and we assume aiαj < 1 for all i, j. Proposition 2.3
shows that these dynamics preserve the q-Whittaker process. For arbitrary n ≥ 1, given partitions µ of
length n and λ of length n− 1 which interlace as µ � λ, define a probability distribution on partitions ν
of length n by

Pa,α

(
ν|λ, µ

)
=

{
const · φν/µψν/λ(aα)|ν| ν � λ and ν � µ,

0 otherwise
. (2.3)

Here const is a constant (with respect to ν, though depending on all other variables) which makes this a
probability distribution on ν and the factors

φλ/µ =

ℓ(λ)∏

i=1

(qλi−µi+1; q)∞(qµi−λi+1+1; q)∞
(q; q)∞(qµi−µi+1+1; q)∞

,

ψλ/µ =

ℓ(λ)∏

i=1

(qλi−µi+1; q)∞(qµi−λi+1+1; q)∞
(q; q)∞(qλi−λi+1+1; q)∞

.

Given a sequence of interlacing partitions (recall the notation and definitions from Section 2.2) λ̄ =(
λ(N) � λ(N−1) � · · · � λ(1) with ℓ(λ(n) = n for all 1 ≤ n ≤ N , we define a Markov transition matrix to

another set of interlacing partitions µ̄ =
(
µ(N) � µ(N−1) � · · · � µ(1) with ℓ(µ(n) = n for all 1 ≤ n ≤ N

(recall the convention that λ(0) and µ(0) equal the partition of all zeros) by

PPB
a;α

(
λ̄ → µ̄

)
=

N∏

n=1

Pan,α

(
µ(n)|µ(n−1), λ(n)

)
,

where Pa,α is defined in (2.3).

Proposition 2.3. Define a Markov process indexed by t on interlacing partitions λ̄(t) with packed initial
data and Markov transition between time t − 1 and t given by PPB

a;αt

(
λ̄(t − 1) → λ̄(t)

)
. Then, for any

t ∈ {0, 1, . . .}, λ̄(t) is marginally distributed according to the q-Whittaker measure P
a;α(t) with α(t) =

(α1, . . . , αt).

Proof. This is a direct consequence of the Macdonald t = 0 degeneration of the results of [2, Section 2.3].

2.5.2 Plancherel dynamics

We define a continuous time push-block dynamic on interlacing partitions λ̄(γ), introduced in [2, Definition
3.3.3] (and called the q-Whittaker growth process therein). In this case, γ > 0 represents time. This
dynamic, in fact, arises as the continuous time limit of the alpha push-block dynamics discussed above.
Proposition 2.4 shows that this dynamic preserve the q-Whittaker process. Given a state λ̄ at time γ, for

1 ≤ k ≤ n ≤ N , each λ
(n)
k has its own independent exponential clock with rate

R
(n)
k = an

(1 − qλ
(n−1)
k−1 −λ

(n)
k )(1 − qλ

(n)
k −λ

(n)
k+1+1)

1 − qλ
(n)
k −λ

(n−1)
k +1

. (2.4)

When the λ
(n)
k -clock rings we find the longest string λ

(n)
k = λ

(n+1)
k = · · · = λ

(n+ℓ)
k and increase all

coordinates in this string by one. Observe that if λ
(n)
k = λ

(n−1)
k−1 the jump rate automatically vanishes,

hence the interlacing partitions remain interlacing under these dynamics.



Proposition 2.4. Define a continuous time Markov processes λ̄(γ) with the above push-block dynamics
started from packed initial data. Then, for any γ > 0, λ̄(γ) is marginally distributed according to the
Plancherel specialized q-Whittaker process Pa;γ .

Proof. This follows from the results of [2, Section 3.3].

3 Law of large numbers for the q-Whittaker particle system

As there are many parameters in play, it is possible to consider a variety of different limits of the q-
Whittaker process and the dynamics which preserve it. In [2, Section 4] one such limit was considered for
the alpha and Plancherel case. That limit involved simultaneously taking q as well as the a’s and α’s to
1 while taking time to infinity in a suitable manner. That limit led to the Whittaker process as well as
certain dynamics preserving it (which turned out to relate to directed polymer models).

Here we consider taking q = e−ε → 1 while fixing the a’s and α’s. In the alpha case, time remains
discrete and is not scaled while in the Plancherel case, time is scaled so that γ = ε−1τ for some new time τ

which stays fixed. In this section we demonstrate how under these scalings, λ
(n)
k (t) (respectively, λ

(n)
k (γ))

behave like ε−1x
(n)
k (t) (respectively, ε−1x

(n)
k (τ)) where the x’s are deterministic functions. In particular,

this explains the curves that are peeling off in Figure 3. We provide integral formulas for exponentials of
sums of these x’s, as well as equivalent determinantal formulas which are useful in our subsequent analysis
of further limits. By appealing to the dynamics described in Section 2.5, we derive certain difference
/ differential equations that the x’s should satisfy. We do not prove these relations directly from the
dynamics, but rather show (for two of them) how one can directly observe that our formulas for the
x’s satisfy them. Appendix B contains derivations of other difference / differential equations relates to
alternative dynamics defined there in. We do not, in those cases, verify that our formulas indeed satisfy
these equations.

In Section 4 we probe beyond the law of large number behavior and study the ε−1/2 scale fluctuations,
deriving a Gaussian limit of the q-Whittaker process as well as certain dynamics which act nicely on this
Gaussian measure.

In this section we work with both the discrete alpha dynamics and the continuous Plancherel dynamics.
In subsequent sections, we only consider limits of the continuous dynamics. We opt to consider the LLN
behavior of the discrete dynamics here since it leads to certain formulas which display greater symmetry.

3.1 Integral formulas

Proposition 3.1 (Law of large number for the q-Whittaker process).
Alpha case: For ε > 0, consider the following scalings

q = e−ε, t, a, α fixed, λ
(n)
k (t) = ε−1x

(n)
k (t; ε). (3.1)

Then the following limit in probability exists

lim
ε→0

x
(n)
k (t; ε) = x

(n)
k (t),

and the limiting x
(n)
k (t) satisfies the following (defining) integral formulas

e−(x(n)
n (t)+···+x

(n)
n−r+1(t)) =

∮
· · ·
∮

F
α(t)(n, r; z1, . . . , zr)dz1 · · · dzr (3.2)

where, for α(t) = (α1, . . . , αt),

F
α(t)(n, r; z1, . . . , zr) =

(−1)
r(r+1)

2

∏
1≤k<ℓ≤r

(zk − zℓ)
2

(2πi)rr!
r∏

k=1

(zk)r

r∏

k=1

( n∏

ℓ=1

aℓ

aℓ − zk

) t∏

i=1

(1 − αizk), (3.3)



and where the integration is along counterclockwise simple loops enclosing a1, . . . , an but not 0.
Plancherel case: For ε > 0, consider the following scalings

q = e−ε, γ = ε−1τ, a, τ fixed, λ
(n)
k = ε−1x

(n)
k (τ ; ε). (3.4)

Then the following limit in distribution (and in probability) exists

lim
ε→0

x
(n)
k (τ ; ε) = x

(n)
k (τ),

and the limiting x
(n)
k (τ) satisfy the same (defining) integral formulas as in (3.2) except with

F
α(t)(n, r; z1, . . . , zr) replaced by Fτ (n, r; z1, . . . , zr) where the only difference is that in (3.3), we replace

the last factor
∏t

i=1(1 − αizk) with e−zkτ .

Proof. The idea of the proof is encapsulated in the following example. Consider a sequence of random
variables xε such that E

[
e−kxε

]
→ e−kx for k = 1, 2 and x deterministic. Then var

(
e−xε

)
→ 0 and thus by

Chebyshev’s inequality, e−xε converges in probability to the determinstic value e−x. This, likewise, implies
that xε converges in probability to xε. We now proceed with the proof.

The proof of both the alpha and Plancherel cases are effectively identical. As such, we will only write
the Plancherel case. Under the scaling (3.4), we have

Ea;ρ

[
m∏

i=1

qλ(ni)
ni

+···+λ
(ni)
ni−ri+1

]
= Ea;ρ

[
m∏

i=1

e
−
(
x(ni)

ni
(τ ;ε)+···+x

(ni)
ni−ri+1(τ ;ε)

)]
,

which by the moment formula (2.2) can be written as a multiple contour integral, where the only ε-
dependence is in the portion of the integrand given by

∏

1≤i<j≤m

ri∏

k=1

rj∏

ℓ=1

q(zi,k − zj,ℓ)

zi,k − qzj,ℓ

m∏

i=1

ri∏

k=1

Π(qzi,k; ρ)

Π(zi,k; ρ)
.

Here, in the Plancherel case, ρ = γ = ε−1τ , whereas in the alpha case ρ = α(t).
Set ε0 > 0, then the integration contours in (2.2) can be chosen to be independent of ε for all ε ∈ [0, ε0]

by taking nested circles enclosing the given poles. Furthermore, on these given contours, we have the
following uniform convergence

lim
ε→0

∏

1≤i<j≤m

ri∏

k=1

rj∏

ℓ=1

q(zi,k − zj,ℓ)

zi,k − qzj,ℓ
= 1, lim

ε→0

m∏

i=1

ri∏

k=1

Π(qzi,k; ρ)

Π(zi,k; ρ)
=

m∏

i=1

ri∏

k=1

e−zkτ .

In the alpha case, the uniform convergence still holds, and the term e−zkτ in the second relation above is
replaced by

∏t
i=1(1 − αizk).

Therefore we have

Ea;ρ

[
m∏

i=1

e
−
(
x(ni)

ni
(τ ;ε)+···+x

(ni)
ni−ri+1(τ ;ε)

)]
=

m∏

i=1

e
−
(
x(ni)

ni
(τ)+···+x

(ni)
ni−ri+1(τ)

)

,

i.e., all the mixed moments of the vector
{
e−
(
x(n)

n (τ ;ε)+···+x
(n)
n−r+1(τ ;ε)

)}
1≤r≤n≤N

converge to the mixed

moments of the constant vector
{
e−
(
x(n)

n (τ)+···+x
(n)
n−r+1(τ)

)}
1≤r≤n≤N

. In other words, this implies that

all of the variances converge to zero. Hence, by Chebyshev’s inequality, we conclude that each ran-

dom variable e−
(
x(n)

n (τ ;ε)+···+x
(n)
n−r+1(τ ;ε)

)
converges in probability to the deterministic limit of its mean

e−
(
x(n)

n (τ)+···+x
(n)
n−r+1(τ)

)
. This proves (3.3) (in the Plancherel case). The convergence of the x

(n)
k (τ ; ε) to

the deterministic limits x
(n)
k (τ) readily follows from this.

Note that the above result was stated for a single time τ . However, it is easily extended to hold for

all τ in an interval. This is because the x
(n)
k (τ ; ε) are weakly increasing with τ and the limiting x

(n)
k (τ) is

continuous in τ . The convergence in probability can be extended to hold for any finite set of τ ’s and in

this way we can show that the L∞ norm of the difference between x
(n)
k (τ ; ε) and x

(n)
k (τ) as τ varies in an

interval must go to zero.



3.2 Determinant formulas

Our integral expressions for the law of large number (3.2) can be rewritten with the help of the Cauchy-
Binet formula as determinants. These formulas will be useful in subsequent asymptotics – in particular the
proof of Proposition 5.5. Appendix B contains a positivity results in the particular case when a1, . . . , aN = 1
which relates these determinants to certain non-intersecting lattice path partition functions.

Lemma 3.2. The alpha case law of large numbers (3.2) can be rewritten as

e−(x(n)
n (t)+···+x

(n)
n−r+1(t)) = det

[
A(i− j)

]r
i,j=1

= (−1)r(r+1)/2 det
[
Ãi,j

]r
i,j=1

(3.5)

via function

A(s) =
−1

2πi

∮
zs

n∏

ℓ=1

aℓ

aℓ − z

t∏

i=1

(1 − αiz)
dz

z
, (3.6)

with the integral along a contour containing the a1, . . . , aN but not 0, and the matrix entries

Ãi,j =
1

2πi

∮
pi−1(z)pj−1(z)

n∏

ℓ=1

aℓ

aℓ − z

t∏

i=1

(1 − αiz)
dz

zr
, (3.7)

where the pj(z)’s are any monic polynomials of degree j, and the contour is the same as above.

In the Plancherel case, the law of large numbers with x
(n)
k (τ) replacing x

(n)
k (t) is given in the same

form, except with the term
∏t

i=1(1 − αiz) in (3.6) and (3.7) replaced by e−τz.

Proof. Since the alpha and Plancherel cases are quite similar, we only treat the alpha case presently. Let
us first prove the equality with the determinant involving the kernel in (3.6). Using the identity

∏

1≤k<ℓ≤r

(
1

zk
− 1

zℓ

)
=

(−1)r(r−1)/2
∏

1≤k<ℓ≤r(zk − zℓ)∏r
k=1(zk)r−1

(3.8)

and setting wn(z) :=
∏t

i=1(1 − αiz)
1
z

∏n
ℓ=1

aℓ

aℓ−z we have

e−(x(n)
n (t)+···+x

(n)
n−r+1(t)) =

(−1)r

(2πi)rr!

∮
· · ·
∮ ∏

1≤k<ℓ≤r

(zk − zℓ)(z
−1
k − z−1

ℓ )

r∏

k=1

wn(zk)dzk

= det

[−1

2πi

∮
wn(z)zi−jdz

]r

i,j=1

where in the second equality we used the Cauchy-Binet identity. The kernel of this determinant matches
that in (3.6). Turning to the second determinant expression, let w̃n(z) =

∏t
i=1(1 − αit)

1
zr

∏n
ℓ=1

aℓ

aℓ−z and

let pj(z) = zj + ... be any polynomial of degree j with leading coefficient zj. Then
∏

1≤k<ℓ≤r(zℓ − zk) =

det
[
pj−1(zi)

]r
i,j=1

. The Cauchy-Binet identity gives

e−(x(n)
n (t)+···+x

(n)
n−r+1(t)) = (−1)r(r+1)/2 det

[
1

2πi

∮
dzw̃n(z)pi−1(z)pj−1(z)

]r

i,j=1

,

completing the proof.

In the case that a1 = · · · = aN = 1, we provide an even more explicit determinant formula. For the
statement of the below corollary, we need one piece of notation. For two vectors b = (b1, . . . , bt) and
c = (c1, . . . , ct), define ei(b; c), for 1 ≤ i ≤ t by the equality

t∏

i=1

(bi + ciz) =

t∑

i=0

ei(b; c)zi.

The ei(b; c) are separately symmetric in both the b and c variables.



Corollary 3.3. For the alpha case, define (recall (x)n = x(x+ 1) · · · (x+ n− 1) for n > 0, (x)0 ≡ 1, and
1

(n−1)! = 0 for n ≤ 0)

Gr,t(m) :=

t∑

i=0

ei(1 − α; α)(r)m−i−1

(m− i− 1)!
,

which is 0 if m ≤ 0. Then it holds

e−(x(n)
n (t)+···+x

(n)
n−r+1(t)) = det

[
Gr,t(n+ 1 − r + j − i)

]r
i,j=1

. (3.9)

In the Plancherel case, define

Gr,τ (m) :=
∑

i≥0

τ i(r)m−i−1

i!(m− i− 1)!
.

Then it holds

e−(x(n)
n (τ)+···+x

(n)
n−r+1(τ)) = e−τr det

[
Gr,τ (n+ 1 − r + j − i)

]r
i,j=1

. (3.10)

Proof. Let us describe how to derive the alpha case result (3.9). With a1 = . . . = aN = 1, let us choose
pk(z) = (z − 1)k in (3.7). By the change of variables w = 1 − z and setting m = n + 2 − i − j we then
obtain

Ãi,j =
(−1)i+j−1

2πi

∮ ∏t
ℓ=1(1 − αℓ + αℓw)

(1 − w)r

dw

wm+1
=

t∑

ℓ=0

∑

b≥0

eℓ(1 − α; α)
(r)b

b!

(−1)i+j−1

2πi

∮
dw

wm+1−ℓ−b

= (−1)i+j−1
t∑

ℓ=0

eℓ(1 − α; α)(r)m−ℓ−1

(m− ℓ− 1)!
,

where the contour integrals in the first line are along small circles enclosing 0. Plugging this into (3.6),
taking out the (−1)i factor and reshuffling the columns with j → r+ 1 − j we get (3.9). The derivation of
(3.10) follows similarly.

3.3 Derivation of ODEs satisfied by the law of large numbers

In Section 3.1 we determined the law of large numbers for the alpha and Plancherel q-Whittaker processes
under certain specified scalings. In Section 2.5 we recalled various types of Markov dynamics which preserve
these classes of q-Whittaker processes. Therefore, it is natural to hope that taking a suitable limit of the
Markov dynamics will lead us to certain deterministic ODEs which the law of large numbers satisfy. (Later
in Section 4 we will push this further to consider fluctuations as well.) We presently provide heuristic (i.e.
without proof) derivations of the ODEs that we expect the law of large numbers satisfies. In Section 3.4,
in the case of the push-block ODEs, we provide direct verification that the formulas from Section 3.1 do
satisfy these equations. We do not pursue verifying the other cases.

3.3.1 Alpha ODEs

We consider the limiting difference equations which follow from the alpha dynamics introduced earlier in

Section 2.5.1. First consider how the dynamics observed by λ
(1)
1 behaves as ε → 0 and with the scalings

given in (3.1). In a single time step, the change λ
(1)
1 (t)−λ(1)

1 (t−1) is distributed according to a q-geometric
distribution with parameter αta1. Thus, it suffices to consider how such a distribution behaves under our
scalings. Let us call b ∈ (0, 1) the fixed q-geometric parameter. Then, for q = e−ε and x such that ε−1x is
a non-negative integer, we have

P(X = ε−1x) =
bε

−1x(b; e−ε)∞
(e−ε; e−ε)ε−1x

.

The right-hand side will be maximal for x such that

x ln b− ln(e−ε; e−ε)ε−1x



is maximal. As observed in Section 2.1, as ε → 0, ln(e−ε; e−ε)ε−1x ≈ ε−1g1(x). Thus, P(X = ε−1x) should
be maximal around the x which maximizes x ln b− g1(x). Using the fact that d

dxga(x) = ln(1 − ae−x) we
readily deduce that the maximizing x is the solution to

ln b = ln(1 − e−x),

or in other words x = − ln(1 − b). From this reasoning we expect the difference equation

x
(1)
1 (t) − x

(1)
1 (t− 1) = − ln(1 − αta1). (3.11)

Proving the above law of large numbers for the q-geometric distribution should be quite doable, moreover
one expects that looking to higher order Taylor approximation terms, we should see a Gaussian fluctuations
of order ε−1/2. This would be relevant to the fluctuations of the alpha dynamics (though we do not pursue
these any further herein).

Let us turn to the general case of λ
(n)
k (t). Given x(n−1)(t) and x(n)(t − 1) we seek to maximize over

all x(n)(t) the log of the transition probability (recall the relation between x’s and λ’s from (3.1) and the
definition of the probability distribution used below which is given in (2.3))

lnPan,αt(λ
(n)(t)|λ(n−1)(t), λ(n)(t− 1)),

as ε → 0. In fact, we really only need to identify the argmax of this quantity. In the same spirit as
above, we can express the maximization problem as equivalent to finding the ε → 0 limiting argmax over

{x(n)
k (t)}n

k=1 of

n∑

k=1

[
g1
(
x

(n)
k (t− 1) − x

(n)
k+1(t− 1)

)
− g1

(
x

(n)
k (t) − x

(n)
k (t− 1)

)
− g1

(
x

(n)
k (t− 1) − x

(n)
k+1(t)

)]

+

n−1∑

k=1

[
g1
(
x

(n)
k (t) − x

(n)
k+1(t)

)
− g1

(
x

(n)
k (t) − x

(n−1)
k (t)

)
− g1

(
x

(n−1)
k (t) − x

(n)
k+1(t)

)]
+ ln(αtan)

n∑

k=1

x
(n)
k (t).

Differentiating in each x
(n)
k (t) as 1 ≤ k ≤ n varies yields a collection of critical point equations which,

after introducing the notation

y
(n)
k (t) = e−x

(n)
k (t)

(we assume the convention that y
(n)
k (t) ≡ 1 if k > n, and y

(n)
k (t) ≡ 0 if k ≤ 0) becomes

an

(
1 − y

(n−1)
k−1 (t)

y
(n)
k (t)

)(
1 − y

(n)
k (t)

y
(n)
k+1(t)

)

1 − y
(n)
k (t)

y
(n−1)
k (t)

=
1

αt

(
1 − y

(n)
k (t)

y
(n)
k (t−1)

)(
1 − y

(n)
k−1(t)

y
(n)
k (t)

)

1 − y
(n)
k−1(t−1)

y
(n)
k (t)

. (3.12)

In Section 3.4 we provide a direct verification and proof that the integral formulas from Section 3.1
satisfy the above equation. Notice that when n = 1 this reduces to

a1αt = 1 − y
(1)
1 (t)

y
(1)
1 (t− 1)

,

which is equivalent to (3.11) derived above.



3.3.2 Plancherel ODEs

We consider the limiting ODE which follow from the push-block Plancherel dynamic introduced earlier

in Section 2.5.2. Recall the scalings given in (3.4) and consider any particle λ
(n)
k (t). The rate at which it

increases by one is given by R
(n)
k in (2.4). Substituting the scalings from (3.4) we get a rate of (recall that

λ
(n)
k (ε−1τ) = ε−1x

(n)
k (τ ; ε))

an
(1 − ex

(n)
k (τ ;ε)−x

(n−1)
k−1 (τ ;ε))(1 − qex

(n)
k+1(τ ;ε)−x

(n)
k (τ ;ε))

1 − qex
(n−1)
k (τ ;ε)−x

(n)
k (τ ;ε)

. (3.13)

If we assume that all x
(n)
k (τ ; ε) vary only on a time scale of order one in τ , then in time of order ε−1, this

rate will remain essentially unchanged over a time interval of length ε−1δτ for some small δτ . Hence the

law of large numbers for Poisson random variables suggests that the change in x
(n)
k (τ ; ε) over that ε−1δτ

time interval is exactly given by (3.13). As ε → 0 this suggests the limiting system of ODEs (with the

conventions x
(n)
k (τ) ≡ 0 if k > n, and x

(n)
k (τ) ≡ +∞ if k ≤ 0)

dx
(n)
k (τ)

dτ
= an

(
1 − ex

(n)
k (τ)−x

(n−1)
k−1 (τ)

)(
1 − ex

(n)
k+1(τ)−x

(n)
k (τ)

)

1 − ex
(n−1)
k (τ)−x

(n)
k (τ)

. (3.14)

In Section 3.4 we provide a direct verification and proof that the integral formulas from Section 3.1 satisfies
the above equation.

3.4 Direct verification of the push-block ODEs

In this section we give a direct verification that the integral formulas from Section 3.1 satisfy the push-block

ODEs heuristically derived above in the alpha and Plancherel cases. From (3.5) we have that e−x
(n)
n−r+1(t) is

a ratio of two Toeplitz determinants with same symbol but different sizes. The following result is a general
identity concerning such ratios of specific types of Toeplitz determinants.

Proposition 3.4. For a function ϕ(z) of a complex variable, denote by

Dr(ϕ) = det [ϕi−j ]
r
i,j=1 , ϕk =

1

2πi

∮

Γ

ϕ(z)
dz

zk+1
,

where Γ is any fixed contour. For a function F (z) of a complex variable, define

y
(n)
k (t) = −

Dn+1−k

(∏n
ℓ=1

aℓ

aℓ−z

∏t
i=1(1 − αiz)F (z)

)

Dn−k

(∏n
ℓ=1

aℓ

aℓ−z

∏t
i=1(1 − αiz)F (z)

) .

Then, (3.12) holds with the above redefinition of the a, α, and y parameters / functions.

We delay the proof of this result for a moment and record a corollary which shows that the limiting

law of large numbers x
(n)
k (t) computed in Proposition 3.1 satisfy the heuristically derived ODEs from

Section 3.3. We do not speculate here on whether these are the unique solutions to these ODEs, or if some
addition conditions are required to ensure uniqueness.

Corollary 3.5. Recalling the respective Plancherel and alpha limiting law of large numbers x
(n)
k (t) and

x
(n)
k (τ) from Proposition 3.1, and defining

y
(n)
k (t) = e−x

(n)
k (t), y

(n)
k (τ) = e−x

(n)
k (τ),

we have that y
(n)
k (t) satisfies (3.12), and that y

(n)
k (τ) satisfies (3.14). Recall the conventions that x

(n)
k = 0

for k > n and x
(n)
k = +∞ for k ≤ 0.



Proof. The fact that y
(n)
k (t) satisfies (3.12) follows immediately in light of Lemma 3.2 and Proposition 3.4.

The fact that y
(n)
k (τ) satisfies (3.14) follows from a simple limiting procedure. Let αn = ε → 0. Then

1− y
(n)
k−1(t−1)

y
(n)
k (t−1)

on the right-hand side of (3.12) cancels with the corresponding time t term (still on the right-

hand side). The remaining right-hand side term 1 − y
(n)
k (t)

y
(n)
k (t−1)

limits to minus the logarithmic derivative of

y
(n)
k (t) in time, thus yielding the resulting left-hand side of (3.14). The left-hand side of (3.12) does not

change and becomes the right-hand side of (3.14).

To prove Proposition 3.4 we need two identities for Toeplitz matrices. These are derived by the following
linear algebraic identities. The proof will be presented in Appendix C.

Proposition 3.6. Let B and C be two matrices of sizes at least (M + 2) × (M + 2) and assume that B
and C are related by

Ci,j = Bi,j + γBi,j+1, 1 ≤ i, j ≤ M + 1. (3.15)

Then
det[Bi,j ]

M+1
i,j=1 det[Ci+1,j+1]

M
i,j=1 − det[Ci,j ]

M+1
i,j=1 det[Bi+1,j+1]

M
i,j=1

+γ det[Bi,j+1]
M+1
i,j=1 det[Ci+1,j ]

M
i,j=1 = 0,

(3.16)

and
det[Bi,j ]

M+1
i,j=1 det[Ci+1,j+1]

M−1
i,j=1 − det[Ci,j ]

M
i,j=1 det[Bi+1,j+1]

M
i,j=1

+ det[Bi,j+1]
M
i,j=1 det[Ci+1,j ]

M
i,j=1 = 0.

(3.17)

Examples of matrices satisfying (3.15) are Toeplitz matrices with symbols ϕ(z) for B and (1+γz)ϕ(z)
for C. Then (3.16) and (3.17) become the following identities.

Lemma 3.7. It holds

DM+1

(
ϕ(z)

)
DM

(
(1 + γz)ϕ(z)

)
−DM+1

(
(1 + γz)ϕ(z)

)
DM

(
ϕ(z)

)

+γDM+1

(
zϕ(z)

)
DM

(
(1 + γz)z−1ϕ(z)

)
= 0,

(3.18)

and
DM+1

(
ϕ(z)

)
DM−1

(
(1 + γz)ϕ(z)

)
−DM

(
(1 + γz)ϕ(z)

)
DM

(
ϕ(z)

)

+γDM

(
zϕ(z)

)
DM

(
(1 + γz)z−1ϕ(z)

)
= 0.

(3.19)

Proof of Proposition 3.4. Let us use the notations

f(z) =
n∏

ℓ=1

aℓ

aℓ − z

t−1∏

i=1

(1 − αiz)F (z), g(z) = (1 − αtz)f(z),

h(z) =

(
an

an − z

)−1

, g(z) =

(
an

an − z

)−1

(1 − αtz)f(z).

We factorize the 6 terms in (3.12) using either (3.18) or (3.19). The terms in the lhs. of (3.12) are

an

(
1 −

y
(n−1)
k−1 (t)

y
(n)
k (t)

)
= an

Dn−k(h)Dn+1−k(g) −Dn+1−k(h)Dn−k(g)

Dn−k(h)Dn+1−k(g)

(3.18)
=

Dn+1−k(zg)Dn−k(z−1h)

Dn+1−k(g)Dn−k(h)

and

1 − y
(n)
k (t)

y
(n)
k+1(t)

=
(Dn−k(g))2 −Dn+1−k(g)Dn−1−k(g)

(Dn−k(g))2
(3.17)

=
Dn−k(zg)Dn−k(z−1g)

(Dn−k(g))2

and
1

1 − y
(n)
k (t)

y
(n−1)
k (t)

=
Dn−k(g)Dn−k(h)

Dn−k(g)Dn−k(h) −Dn+1−k(g)Dn−1−k(h)

(3.19)
=

Dn−k(g)Dn−k(h)

Dn−k(zg)Dn−k(z−1h)
.



The terms in the rhs. of (3.12) are

α−1
t

(
1 − y

(n)
k (t)

y
(n)
k (t− 1)

)
= α−1

t

Dn−k(g)Dn+1−k(f) −Dn+1−k(g)Dn−k(f)

Dn−k(g)Dn+1−k(f)

(3.18)
=

Dn+1−k(zf)Dn−k(z−1g)

Dn−k(g)Dn+1−k(f)

and

1 −
y
(n)
k−1(t)

y
(n)
k (t)

=
(Dn+1−k(g)2 −Dn+2−k(g)Dn−k(g)

(Dn+1−k(g))2
(3.17)

=
Dn+1−k(zg)Dn+1−k(z−1g)

(Dn+1−k(g))2

and

1

1 − y
(n)
k−1(t−1)

y
(n)
k (t)

=
Dn+1−k(f)Dn+1−k(g)

Dn+1−k(f)Dn+1−k(g) −Dn+2−k(f)Dn−k(g)

(3.19)
=

Dn+1−k(f)Dn+1−k(g)

Dn+1−k(zf)Dn+1−k(z−1g)
.

Multiplying the above expressions one immediately gets (3.12).

4 Stochastic differential equation limit for the fluctuations

From this point on we focus entirely on the Plancherel push-block dynamics. In Sections 3.3 and 3.4 we
derived (based on these dynamics) and then directly verified ODEs satisfied by the law of large numbers
for our q-Whittaker processes under certain prescribed scaling. In this section we probe the fluctuations
around the law of large number behavior. We start by determining the Gaussian fluctuation limit for the
q-Whittaker process and then describe the system of SDEs which come from the Plancherel push-block
dynamics and which preserves the covariance structure of this Gaussian fluctuation limit.

Let us start by fixing the scalings considered hereafter to be

q = e−ε, t = ε−1τ, a fixed, λ
(n)
k = ε−1x

(n)
k (τ) + ε−1/2ξ

(n)
k (τ ; ε) (4.1)

with x
(n)
k (τ) given by the results of Proposition 3.1. In other words, x

(n)
k (τ) is the law of large numbers

(on the ε−1 scale) and ξ
(n)
k (τ ; ε) is the fluctuation around it (on the ε−1/2 scale).

4.1 Fixed time Gaussian limit

We start by proving a Gaussian limit to the q-Whittaker process under the scaling (4.1) for τ > 0 fixed.
Let us first explain the strategy of the proof. Using the scaling (4.1) one has

Ea;ρ

[
m∏

i=1

(
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1 − Ea;ρ

[
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1

])]

=

m∏

i=1

e−(x(ni)
ni

+···+x
(ni)
ni−ri+1)Ea;ρ

[
m∏

i=1

(
e−√

ε(ξ(ni)
ni

+···+ξ
(ni)
ni−ri+1) − Ea;ρ

[
e−√

ε(ξ(ni)
ni

+···+ξ
(ni)
ni−ri+1)

])]
.

(4.2)

As ε → 0, the r.h.s. of (4.2) behaves as

m∏

i=1

e−(x(ni)
ni

+···+x
(ni)
ni−ri+1)εm/2

Ea;ρ

[
m∏

i=1

(
(ξ(ni)

ni
+ · · · + ξ

(ni)
ni−ri+1) − Ea;ρ

[
(ξ(ni)

ni
+ · · · + ξ

(ni)
ni−ri+1)

])]
. (4.3)

Using the moment formula (2.2) we can analyze the ε → 0 behavior of the integral and obtain that
{
ξ(ni)
ni

+ · · · + ξ
(ni)
ni−ri+1 − Ea;ρ

[
ξ(ni)
ni

+ · · · + ξ
(ni)
ni−ri+1

]}

1≤i≤m

have centered Gaussian moments. One can then easily extend this to
{
ξ
(ni)
ki

− Ea;ρ

[
ξ
(ni)
ki

]}

1≤i≤m

by linear combination, see Remark 4.2.



Proposition 4.1. Consider the Plancherel specialization. Fix N ≥ 1, positive a = (a1, . . . , aN ), m ≥ 1, a
sequence of m integers N ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1, and r1, . . . , rm such that 0 ≤ ri ≤ ni for 1 ≤ i ≤ m.

Then, under the scaling (4.1) the following limit exists in distribution

ξ(ni)
ni

(τ) := lim
ε→0

ξ(ni)
ni

(τ ; ε),

and the vector
{
ξ
(n)
k (τ)

}
1≤k≤n≤N

is a centered Gaussian (i.e. E(ξ
(n)
k (τ)) = 0) with covariance determined

by the following formula. For ni ≥ nj,

C(ni, ri;nj , rj) := Cov
(
ξ(ni)
ni

(τ) + . . .+ ξ
(ni)
ni−ri+1(τ); ξ

(nj)
nj

(τ) + . . .+ ξ
(nj)
nj−rj+1(τ)

)

=

∮ ∮
Cr(ri, zi; rj , zj)F(ni, ri, zi)F(nj , rj , zj)dzidzj

∮
F(ni, ri, zi)dzi

∮
F(nj , rj , zj)dzj

(4.4)

where zi := (zi,k)ri

k=1, dzi :=
∏ri

k=1 dzi,k, and

Cr(ri, zi; rj , zj) = −
ri∑

k=1

rj∑

ℓ=1

zi,k

zi,k − zj,ℓ
,

F(ni, ri, zi) =

(−1)
ri(ri+1)

2

∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

(2πi)riri!
ri∏

k=1

(zi,k)ri

ri∏

k=1

( ni∏

ℓ=1

aℓ

aℓ − zi,k

)
e−zi,kτ .

Here the integrals are counterclockwise oriented simple loops including the following poles: the contour for
zi,k includes a1, . . . , ani as well as all zj,ℓ for i < j – see Figure 5 for an illustration of such contours.

Remark 4.2. By linearity we immediately get that the vector ξ = (ξ
(n)
k )1≤k≤n≤N is also centered Gaussian

with covariance matrix given by

Cov(ξ
(n)
n−r+1(τ); ξ

(n′)
n′−r′+1(τ)) = C(n, r;n′, r′)−C(n, r−1;n′, r′)−C(n, r;n′, r′ −1)+C(n, r−1;n′, r′ −1).

Also, notice that for a given i, the collection of variables zi comes into the integrand (4.4) symmetrically,
and that the contours for these variable can be taken to be the same. This means that we can replace
Cr(ri, zi; rj , zj) with −rirj zi,1

zi,1−zj,1
.

Remark 4.3. The alpha specialization version of Proposition 4.1 is proved identically to the Plancherel
case (in fact, since the proof is written using the notation Π(z; ρ) there is essentially no change needed). In

the alpha case, we employ the scaling (3.1) except refine it by setting λ
(n)
k (t) = ε−1x

(n)
k (t)+ ε−1/2ξ

(n)
k (t; ε).

All that changes in the above proposition is that the term e−zi,kτ is replaced by
∏t

s=1(1 − αszi,k) in
F(ni, ri, zi).

In order to prove Proposition 4.1 we will use the following lemma.

Lemma 4.4. Consider the setting of Proposition 4.1 and define

Y ε
i =

1 − e−√
ε
(
ξ(ni)

ni
(τ ;ε)+···+ξ

(ni)
ni−ri+1(τ ;ε)

)

√
ε

. (4.5)

Then (using the same contours as in Proposition 4.1)

lim
ε→0

Ea;ρ

[
m∏

i=1

(Y ε
i − Ea;ρ [Y ε

i ])

]
=

m∏

i=1

ex(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ)

×
∑

B perfect
matching of

{1,...,m}

∮
· · ·
∮ ∏

(j1,j2)∈B

Cr(rj1 , zj1 ; rj2 , zj2 )

m∏

i=1

F(ni, ri, zi)dzi,
(4.6)



if m is even and 0 if m is odd. When we write perfect matching of {1, . . . ,m} we mean a set of m/2
ordered pairs of {1, . . . ,m} which contains all elements of {1, . . . ,m}, i.e.,

{{
(i1, j1), . . . , (im/2, jm/2)

}
⊂ {1, . . . ,m}2 | ik < jk, for all k, {i1, j1, . . . , im/2, jm/2} = {1, . . .m}

}
.

Further, for all i = 1, . . . ,m,

lim
ε→0

Ea;ρ [Y ε
i ] = 0.

Consequently, the
{
Y ε

i

}
1≤i≤m

converge as ε → 0 in distribution to the Gaussian vector with limiting

covariance between limε→0 Y
ε
i and limε→0 Y

ε
j given by (4.4).

Proof. First note that the Gaussian convergence result stated at the end of the lemma follows immediately
from the method of moments (i.e. if all moments converge to those of a Gaussian, this implies convergence
in distribution to that Gaussian). Wick’s theorem shows that the limiting moments in (4.6) are those of
a Gaussian vector, and noting that

e−(x(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ)) =

∮
F(ni, ri, zi)dzi,

as obtained in Proposition 3.1 (see (3.2)), we readily identify this limiting Gaussian with the covariance
given in (4.4).

The proof of the limiting moment formulas follows the general approach of [8, Lemma 4.2]. We present
this in some detail for completeness. We start from (2.2) and rewrite it as

Ea;ρ

[
m∏

i=1

qλ(ni)
ni

+···+λ
(ni)
ni−ri+1

]
=

∮
· · ·
∮ ∏

1≤i<j≤m

Crε(ri, zi; rj , zj)

m∏

i=1

Fε(ni, ri, zi)dzi, (4.7)

where

Crε(ri, zi; rj , zj) =

ri∏

k=1

rj∏

ℓ=1

q(zi,k − zj,ℓ)

zi,k − qzj,ℓ
,

and

Fε(ni, ri, zi) =

(−1)
ri(ri+1)

2

∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

(2πi)riri!
ri∏

k=1

(zi,k)ri

ri∏

k=1

( ni∏

ℓ=1

−aℓ

zi,k − aℓ

)
Π(qzi,k; ρ)

Π(zi,k; ρ)
.

Observe that by expanding the product on the left-hand side,

Ea;ρ

[
m∏

i=1

(
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1 − Ea;ρ

[
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1

])]

=
∑

A⊂{1,...,m}
(−1)m−|A|

Ea;ρ

[
∏

i∈A

qλ(ni)
ni

+···+λ
(ni)
ni−ri+1

]
∏

j 6∈A

Ea;ρ

[
q

λ
(nj)
nj

+···+λ
(nj)

nj−rj+1

]
.

(4.8)

For a set A, we denote A(2) := {(i, j) | i < j, i, j ∈ A}. Since the term Cr is not present when m = 1, using
(4.7) we find that

(4.8) =

∮
· · ·
∮ ∑

A⊂{1,...,m}
(−1)m−|A|

∏

(j1,j2)∈A(2)

Crε(rj1 , zj1 ; rj2 , zj2)

m∏

i=1

Fε(ni, ri, zi)dzi. (4.9)

In the ε → 0 limit, Crε → 1 linearly in ε. With this in mind, define Crε by

Crε(rj1 , zj1 ; rj2 , zj2) = 1 + εCrε(rj1 , zj1 ; rj2 , zj2).



Using this expansion we can rewrite (4.9) to show that

(4.8) =

∮
· · ·
∮ ∑

B⊂{1,...,m}(2)

ε|B|
∏

(j1,j2)∈B

Crε(rj1 , zj1 ; rj2 , zj2)

×
m∏

i=1

Fε(ni, ri, zi)dzi

∑

A⊂{1,...,m},
Supp(B)⊂A

(−1)m−|A|
(4.10)

where Supp is the set of all elements of {1, . . . ,m} which show up in B.
Next, using ∑

A:I1⊂A⊂I2

(−1)|I2|−|A| = 1I2=I1 ,

we obtain

(4.8) =

∮
· · ·
∮ ∑

B⊂{1,...,m}(2),
Supp(B)={1,...,m}

ε|B|
∏

(j1,j2)∈B

Crε(rj1 , zj1 ; rj2 , zj2)

m∏

i=1

Fε(ni, ri, zi)dzi. (4.11)

We now seek to study the limit limε→0 ε
−m/2 · (4.8). Note that B is a set of pairs and the condition

Supp(B) = {1, . . . ,m} implies that |B| ≥ ⌈m/2⌉. If m is odd, then ε−m/2ε|B| → 0 as ε → 0 for all B,
while if m is even, the only non-vanishing terms in the ε → 0 limit are the perfect matchings of {1, . . . ,m}
(with the second entries in the pairing to be larger than the first entries). We also have the following
uniform convergence to continuous functions (the contours are fixed)

lim
ε→0

Crε(rj1 , zj1 ; rj2 , zj2) = Cr(rj1 , zj1 ; rj2 , zj2)

lim
ε→0

Fε(ni, ri, zi) = F(ni, ri, zi).
(4.12)

Thus we can take the ε → 0 limit inside the integrals with the result

lim
ε→0

ε−m/2(4.8) = lim
ε→0

ε−m/2
Ea;ρ

[
m∏

i=1

(
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1 − Ea;ρ

[
qλ(ni)

ni
+···+λ

(ni)
ni−ri+1

])]

=
∑

B perfect
matching of

{1,...,m}

∮
· · ·
∮ ∏

(j1,j2)∈B

Cr(rj1 , zj1 ; rj2 , zj2)

m∏

i=1

F(ni, ri, zi)dzi.

Recalling the scalings of (4.1) we have that

lim
ε→0

ε−m/2(4.8) = (−1)m
m∏

i=1

e−(x(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ)) lim

ε→0
Ea;ρ

[
m∏

i=1

(Y ε
i − Ea;ρ [Y ε

i ])

]
. (4.13)

Thus we have proven that

lim
ε→0

Ea;ρ

[
m∏

i=1

(Y ε
i − Ea;ρ [Y ε

i ])

]
= (−1)m

m∏

i=1

ex(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ)

×
∑

B perfect
matching of

{1,...,m}

∮
· · ·
∮ ∏

(j1,j2)∈B

Cr(rj1 , zj1 ; rj2 , zj2)

m∏

i=1

F(ni, ri, zi)dzi,

which by Wick’s theorem it is the mth moment of a Gaussian process with covariance given by (4.4).
Finally let us show that the average of Y ε

i goes to zero. We have

e−(x(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ))

Ea;ρ [Y ε
i ] =

e−(x(ni)
ni

(τ)+···+x
(ni)
ni−ri+1(τ)) − Ea;ρ

[
qλ(ni)

ni
+···λ(ni)

ni−ri+1
]

√
ε

(4.14)



and using (4.7) for m = 1 we have

(4.14) =
(−1)

ri(ri+1)
2

(2πi)riri!

∮ ∏
1≤k<ℓ≤ri

(zi,k − zi,ℓ)
2

∏ri

k=1(zi,k)ri

ri∏

k=1

( ni∏

ℓ=1

−aℓ

zi,k − aℓ

) Π(qzi,k;ρ)
Π(zi,k;ρ) − 1

√
ε

dzi.

Since

Π(qzi,k ;ρ)

Π(zi,k ;ρ) −1
√

ε
→ 0 as ε → 0 uniformly in the z’s on the chosen contours, we can take the limit ε → 0

inside and obtain that limε→0 Ea;ρ [Y ε
i ] = 0.

Proof of Proposition 4.1. From Lemma 4.4 we have that each Y ε
i , for 1 ≤ i ≤ m, is tight as ε → 0 (joint

tightness of these random variables together follows immediately as well). This means that for all δ > 0
there exists large M(δ) > 0 and small ε(δ) > 0 such that for all ε < ε(δ),

Pa;ρ

(
|Y ε

i | > M(δ)
)
< δ.

Now fix any constant c ∈ (0, 1) and observe that there exist constants c′, c′′ > 0 depending on c such
that for all x ∈ [0, c]

− ln(1 − x) < c′x, − ln(1 + x) > −c′′x.

Define ε̃(δ) = min
(
ε(δ), (c/M(δ))2

)
and M̃(δ) = M(δ)max(c′, c′′). Set Ỹ ε

i := ξ
(ni)
ni (τ ; ε) + · · · +

ξ
(ni)
ni−ri+1(τ ; ε). Then, it follows from the above inequalities and the fact that Ỹ ε

i = −ε−1/2 ln(1 − ε1/2Y ε
i )

that for all δ > 0 there exists large M̃(δ) > 0 (as given above) and ε̃(δ) > 0 (as given above) such that for
all ε < ε̃(δ),

Pa;ρ

(
|Ỹ ε

i | > M̃(δ)
)
< δ.

It follows from this and Prokhorov’s theorem that every sequence in ε of
{
Ỹ ε

i

}
1≤i≤m

has a convergent

subsequence. On such a convergent subsequence of ε’s, Taylor expansion shows that the differences Y ε
i −Ỹ ε

i

converge to zero in probability. Therefore, in light of the final statement of Lemma 4.4, on said subsequences
the

{
Ỹ ε

i

}
1≤i≤m

converge in distribution to the centered Gaussian with covariance given in (4.4). Since

every subsequential limit point is the same, this implies convergence as ε → 0 of
{
Ỹ ε

i

}
1≤i≤m

to this

Gaussian as well, completing the proof of the proposition.

Remark 4.5. Given the explicit form of the q-Whittaker process, one might hope to observe the Gaussian
limit from asymptotics of that formula. We did not see how to do this, which is why we pursued this
alternative route using the moment method.

4.2 Derivation of SDEs satisfied by Gaussian fluctuations

In Proposition 4.1 we have shown that at fixed time τ the limit process ξ is Gaussian. Here we consider
the SDE induced by the Plancherel push-block dynamics started with packed initial conditions and with
all a1 = . . . = aN = 1. We do not consider the limits of the various other q-Whittaker preserving dynamics
considered earlier.

Proposition 4.6. Let us denote by y
(n)
k (τ) := e−x

(n)
k (τ) for 1 ≤ k ≤ n ≤ N . Then, the evolution of

the vector ξ(τ) =
(
ξ
(n)
k (τ)

)
1≤k≤n≤N

starting from ξ(0) = 0 satisfies the system of SDE’s (all terms

y, ξ, σ, a, b, c,W are functions of time τ , though we suppress them to shorten expressions)

dξ
(n)
k = −a(n)

k (ξ
(n)
k − ξ

(n−1)
k−1 )dτ + b

(n)
k (ξ

(n)
k − ξ

(n)
k+1)dt− c

(n)
k (ξ

(n)
k − ξ

(n−1)
k )dτ + σ

(n)
k dW

(n)
k , (4.15)

where W
(n)
k (τ), 1 ≤ k ≤ n ≤ N , are independent standard Brownian motions,

σ
(n)
k =

√√√√√√√

(
1 − y

(n−1)
k−1

y
(n)
k

)(
1 − y

(n)
k

y
(n)
k+1

)

1 − y
(n)
k

y
(n−1)
k

, (4.16)



and

a
(n)
k =

y
(n−1)
k−1

y
(n)
k

1 − y
(n)
k

y
(n)
k+1

1 − y
(n)
k

y
(n−1)
k

, b
(n)
k =

y
(n)
k

y
(n)
k+1

1 − y
(n−1)
k−1

y
(n)
k

1 − y
(n)
k

y
(n−1)
k

, c
(n)
k =

y
(n)
k

y
(n−1)
k

(
1 − y

(n−1)
k−1

y
(n)
k

)(
1 − y

(n)
k

y
(n)
k+1

)

(
1 − y

(n)
k

y
(n−1)
k

)2 . (4.17)

This proposition can be proved via the argument of [5, Theorem 1]. Instead of reproducing that proof,
let us informally derive this result. First, however, note that this above SDE almost surely has a unique
continuous solution. To see this, note that the σ, a, b, c variables are all bounded as τ varies in a compact
interval. The drift for the SDE is uniformly (as τ varies in a compact interval) Lipschitz in the ξ variables,
and the covariance is independent of the ξ variables. Thus, standard uniqueness results for SDE apply.

Under the Plancherel push-block dynamics, each particle jumps rate according to independent Poisson
clocks whose intensity depends on the distances of (up to) three neighboring particles, see (2.4). Under

the scaling (4.1), we expect to obtain a diffusion process where the ξ
(n)
k (τ) are driven by independent

Brownian motions. What remains is to determine the diffusion coefficients as well as the drifts.
To determine the drift, we need to determine, as ε → 0, the O(dτ) term in

E

[
ξ
(n)
k (τ + dτ ; ε) − ξ

(n)
k (τ ; ε)

]
= −x

(n)
k (τ + dτ) − x

(n)
k (τ)√

ε
+

√
εE
[
λ

(n)
k (ε−1τ + ε−1dτ) − λ

(n)
k (ε−1τ)

]
.

The jump rate for λ
(n)
k is given by (2.4) (with an = 1), i.e.,

R
(n)
k =

(1 − c1e
−√

εb1)(1 − c2e
−√

εb2)

1 − c3e−√
εb3

(4.18)

with the short-hand notations

c1 = ex
(n)
k (τ)−x

(n−1)
k−1 (τ), c2 = ex

(n)
k+1(τ)−x

(n)
k (τ), c3 = ex

(n−1)
k (τ)−x

(n)
k (τ)

and

b1 = ξ
(n−1)
k−1 (τ ; ε) − ξ

(n)
k (τ ; ε), b2 = ξ

(n)
k (τ ; ε) − ξ

(n)
k+1(τ ; ε), b3 = ξ

(n)
k (τ ; ε) − ξ

(n−1)
k (τ ; ε).

By (2.4) we have

− x
(n)
k (τ + dτ) − x

(n)
k (τ)√

ε
= − dτ√

ε

(1 − c1)(1 − c2)

1 − c3
+ O(dτ2) (4.19)

and by (4.18) we have

√
εE
[
λ

(n)
k (ε−1τ + ε−1dτ) − λ

(n)
k (ε−1τ)

]

=
√
ε
dτ

ε

(1 − c1)(1 − c2)

1 − c3

(
1 +

√
ε
c1b1

1 − c1
+

√
ε
c2b2

1 − c2
−

√
ε
c3b3

1 − c3

)
+ O(dτ2).

(4.20)

Combining (4.19) and (4.20) we see that the O(dτ) term has a limit as ε → 0, which is the drift term in
(4.15).

To determine the diffusion coefficient, we need to compute the O(dτ) term in

E

[
ξ
(n)
k (τ + dτ ; ε) − ξ

(n)
k (τ ; ε)

]2
−
(

E

[
ξ
(n)
k (τ + dτ ; ε) − ξ

(n)
k (τ ; ε)

])2

. (4.21)

We have

(4.21) = εE

[
λ

(n)
k (ε−1τ + ε−1dτ) − λ

(n)
k (ε−1τ)

]2
+ O(dτ2) = ε

dτ

ε
R

(n)
k + O(dτ2).

As ε → 0, R
(n)
k → (1−c1)(1−c2)

1−c3
, which is the square of σ

(n)
k in (4.15) as stated in (4.16).



5 Slow decorrelation and Edwards-Wilkinson asymptotics

In Proposition 4.1 we have obtained the covariance of the process for sums of random variables counted
from the edges. In this section we consider the limit when n1, n2 → ∞ simultaneously but also r1, r2 → ∞
with the same speed, i.e., we would like to concentrate in the bulk of the macroscopic picture. For that
purpose we need to have manageable expressions (not (r1, r2)-fold integrals) for the covariance of the single
random variables. This is possible if we first consider the large time limit.

In this section we consider the Plancherel case with all ai = 1. Also, as it will be used often below, we
introduce the following notation: given a set S, 1

2πi

∮
ΓS
dzf(z) means that the integral path goes around

the poles of S only, i.e., the integral is the sum of the residues of f at the elements of the set S.

5.1 Large time simplification

Since ξ
(1)
1 is a standard Brownian motion, at times τ = TL we need to consider the scaling L−1/2ξ

(1)
1 (τ =

LT ) as L → ∞ in order to still see a Brownian motion. This suggest that we consider the same scaling

for the set {ξ(n)
k , 1 ≤ k ≤ n ≤ N}. Propositions 5.1 and 5.5, show how in the L → ∞ limit our Gaussian

process simplifies considerably.

Proposition 5.1. For any fixed T > 0, the limit

ζ
(n)
k (T ) = lim

L→∞
L−1/2ξ

(n)
k (LT )

exists and ζ = {ζ(n)
k (T ), 1 ≤ k ≤ n ≤ N} is a centered Gaussian process with covariance given through the

following formula. For n1 ≥ n2,

Cov
(
ζ(n1)
n1

(T ) + . . .+ ζ
(n1)
n1−r1+1(T ); ζ(n2)

n2
(T ) + . . .+ ζ

(n2)
n2−r2+1(T )

)

=

∮ ∮ r1∑

k=1

r2∑

ℓ=1

1

zk − wℓ

( ∏

1≤i<j≤r1

(zj − zi)
2

r1∏

m=1

eTzm

(zm)n1
dzm

)( ∏

1≤i<j≤r2

(wj − wi)
2

r2∏

m=1

eTwm

(wm)n2
dwm

)

( ∮ ∏

1≤i<j≤r1

(zj − zi)
2

r1∏

m=1

eTzm

(zm)n1
dzm

)(∮ ∏

1≤i<j≤r2

(wj − wi)
2

r2∏

m=1

eTwm

(wm)n2
dwm

) ,

(5.1)
where the integrals are around 0 and the z-contours contain the w-contours.

Proof. Consider (4.4) in which we set i = 1, j = 2, and we do the change of variables z1,k → 1 − L−1zk,
1 ≤ k ≤ r1 and z2,ℓ → 1 − L−1wℓ, 1 ≤ ℓ ≤ r2. Now let us fix the integration contours for wℓ to be circles
centered at 0 of a given radius and the ones for zk to be circles centered at 0 of a larger radius. Then

lim
L→∞

L−1Cr(r1, z1; r2, z2) =

r1∑

k=1

r2∑

ℓ=1

1

zk − wℓ

and

lim
L→∞

(−1)r1(r1+1)/2eLTr1Lr1(r1−1)L−n1r1F(n1, r1, z1) =

∏
1≤i<j≤r1

(zi − zj)
2

r1∏
m=1

eTzmz−n1
m

(2πi)r1r1!
, (5.2)

where the limits are uniform in the integration paths. The L-dependent prefactors in (5.2) cancel out with
the denominator in (4.4), leading to the statement of Proposition 5.1.

From (5.1) it is possible to considerably simplify the covariance for the single random variables ζ
(n)
n−r+1

by using random-matrix type technology. Indeed, first notice that since all the z-contours can be chosen to
be the same (as well as all the w-contours are the same), we can by symmetry replace

∑r1

k=1

∑r2

ℓ=1
1

zk−wℓ



with just r1r2
1

z1−w1
. Then only z1 and w1 interact and we can put together the integration over z2, . . . , zr1

into the notation

ρr1,n1(z1) =

1
(2πi)r1

∮
Γ0
dz2 . . . dzr1

∏
1≤i<j≤r1

(zj − zi)
2
∏r1

m=1
eT zm

(zm)n1

1
(2πi)r1

∮
Γ0
dz1dz2 . . . dzr1

∏
1≤i<j≤r1

(zj − zi)2
∏r1

m=1
eT zm

(zm)n1

.

Then, one recognizes that ρr1,n1(z1) is the first correlation function of the determinantal measure (orthog-

onal polynomial ensemble)
∏

1≤i<j≤r1
(zj − zi)

2
∏r1

m=1
eT zm

(zm)n1
normalized to 1. Therefore, if we find the

orthogonal polynomials with respect to the dot product

〈f, g〉n =
1

2πi

∮

Γ0

f(z)g(z)
eTz

zn
dz

we can readily get ρr,n(z). Indeed, let pn
k (z) be the orthogonal polynomial of degree k, then (see e.g. [15,27])

ρr,n(z) =
eTz

zn

r−1∑

k=0

(pn
k (z))2

〈pn
k , p

n
k 〉n

. (5.3)

By similar reasoning, we also have, for n1 ≥ n2,

Cov
(
ζ(n1)
n1

(T ) + . . .+ ζ
(n1)
n1−r1+1(T ); ζ(n2)

n2
(T ) + . . .+ ζ

(n2)
n2−r2+1(T )

)

=

∮

Γ0

dw

2πi

∮

Γ0,w

dz

2πi

1

z − w
ρr1,n1(z)ρr2,n2(w).

(5.4)

Further, due to linearity of the covariance, using the sum formula in (5.3) we directly get

Cov
(
ζ
(n1)
n1−r1+1(T ), ζ

(n2)
n2−r2+1(T )

)
=

∮

Γ0

dw

2πi

∮

Γ0,w

dz

2πi

1

z − w

eTzeTw

zn1wn2

(pn1
r1−1(z))

2

〈pn1
r1−1, p

n1
r1−1〉n1

(pn2
r2−1(w))2

〈pn2
r2−1, p

n2
r2−1〉n2

.

(5.5)

Remark 5.2. The random matrix methods could be used also on the formula of Proposition 4.1 (i.e., with
finite L) to get ρr,n(z). However, the weight for the orthogonalization depends on r as well and therefore
the step from (5.4) to (5.5) does not work. This is the reason why in the L → ∞ limit the system is simpler
(although still quite nontrivial).

The orthogonal polynomials from (5.3) can be explicitly computed as follows. Note that we are free to
choose the norm of each polynomial.

Lemma 5.3. The functions

pn
k (z) =

k!

(n− k − 1)!

k∑

ℓ=0

(n− 1 − ℓ)!

(k − ℓ)! ℓ!
(−Tz)ℓ

are orthogonal under 〈·, ·〉n (as k varies in {0, 1, . . . , N − 1}) with norm squared

〈pn
k , p

n
k 〉n = (−1)k k!

(n− 1 − k)!
T n−1.

Further, the following integral representations hold:

pn
k(z) =

T n(−z)k

(n− 1 − k)!

∫ ∞

0

(
1 − y

z

)k

yn−1−ke−Tydy

= −e−Tzzn−1−kk!
1

2πi

∮

Γz

(
1 − v

z

)−k−1

vk−neTvdv

from which

(pn
k (z))2

〈pn
k , p

n
k〉n

= −zn−1T

eTz

∫ ∞

0

(
1 − y

z

)k

yn−1−ke−Tydy
1

2πi

∮

Γz

(
1 − v

z

)−k−1

vk−neTvdv.



Proof. We establish the desired results by comparing to the monic Laguerre polynomials (see e.g. [26])

p̃(a)
n (x) = (−1)nΓ (n+ a+ 1)

Γ (a+ 1)
1F1

(
−n
a+ 1

;x

)
.

These are orthogonal with respect to the dot product (f, g)a =
∫∞
0
dxf(x)g(x)xae−x/Γ (a+ 1) on [0,∞)

with norm squared (p̃
(a)
k , p̃

(a)
k )a = k!Γ (k+a+1)

Γ (a+1) . This holds (by analytic continuation in a) for all a. We

may easily compute the pairing of the constant function 1 and the power xk under both 〈·, ·〉n and (·, ·)a,
finding

〈1, xk〉n =
T n−k−1

(n− k − 1)!
, (1, xk)a =

Γ (k + a+ 1)

Γ (a+ 1)
.

Considering (1, xk)a, if we replace a by −n, x by −Tx, and multiply the result by an overall factor of
T n−1/(n − 1)!, we arrive at the above expression for 〈1, xk〉n. From this consideration and the explicit

form of p̃
(a)
n (x), we conclude the pn

k (z) are orthogonal with the above specified norm-squared. The integral
representations are proved by employing the Binomial theorem and then performing the explicit integration
of each resulting term.

Using Lemma 5.3 we finally get the formula for the covariance that we are going to use in the asymptotic
analysis as well.

Corollary 5.4. The covariance at T = 1 is given by

Cov
(
ζ
(n1)
n1−r1+1(T = 1), ζ

(n2)
n2−r2+1(T = 1)

)

=
1

(2πi)2

∮

Γ0

dw

∮

Γ0,w

dz
1

z − w

(∫ ∞

0

dx(w − x)r2−1xn2−r2e−x 1

2πi

∮

Γw

du
eu

(w − u)r2un2−r2+1

)

×
(∫ ∞

0

dy(z − y)r1−1yn1−r1e−y 1

2πi

∮

Γz

dv
ev

(z − v)r1vn1−r1+1

)
. (5.6)

We turn now to time dynamics. By Proposition 4.6 the vector ξ(T ) = {ξ(n)
k (T ), 1 ≤ k ≤ n ≤ N} satisfies

a system of linear SDEs. Therefore, one expects that the limit vector ζ(T ) = {ζ(n)
k (T ), 1 ≤ k ≤ n ≤ N}

likewise satisfies such a (perhaps simplied) system of linear SDEs.

Proposition 5.5. For any 0 < T0 < T1, the limit

ζ
(n)
k (T ) = lim

L→∞
L−1/2ξ

(n)
k (LT )

exists in the topology C
(
[T0, T1], C(R)

)
(i.e., continuous space-time processes on [T0, T1] × R) and ζ(T ) =

{ζ(n)
k (T ), 1 ≤ k ≤ n ≤ N} satisfies the system of SDEs

dζ
(n)
k (T ) =

∑

(k′,n′)

A(T )(k,n),(k′,n′)ζ
(n′)
k′ (T )dT + dW

(n)
k (T ), (5.7)

where W
(n)
k (T ), 1 ≤ k ≤ n ≤ N , are independent standard Brownian motions and the matrix A(T ) has as

its only non-zero entries

A(T )(k,n),(k,n) =
−n+ 1

T
, A(T )(k,n),(k−1,n−1) =

k − 1

T
, A(T )(k,n),(k,n−1) =

n− k

T
.

Remark 5.6. As one sees from the form of A(T ), as T → 0 the matrix entries diverge. While it may be
possible (using a logarithmic time change) to prove convergence for all T ≥ 0, we opt to deal only with
T ∈ [T0, T1]. After all, in light of Proposition 5.1 we know the Gaussian process limit at time T0, and thus
do not need to start the SDEs above at T = 0.



Proof. From Corollary 3.3 we know that for large τ we have (setting r = n+ 1 − k)

y
(n)
k (τ) = e−x

(n)
k (τ) = e−τ

det
(

τn+j−r−i

(n+j−r−i)!

)r

i,j=1

det
(

τn+j−r−i+1

(n+j−r−i+1)!

)r−1

i,j=1

(1 + O(τ−1)).

This is obvious from the intersecting path interpretation since in (B.1) the leading term for large τ is the
one with c = i. We claim that

det
(

τn−r+j−i

(n−r+j−i)!

)r

i,j=1

det
(

τn−r+1+j−i

(n−r+1+j−i)!

)r−1

i,j=1

= τn+1−2r (r − 1)!

(n− r)!
. (5.8)

It is easy to see that τ factors out of the determinants and gives the right power. What remains is to show
the following evaluation formula (from which the desired ratio M(n, r)/M(n, r − 1) = (r − 1)!/(n− r)! is
clear) for the remaining Toeplitz determinant

M(n, r) = det

(
1

(n− r + j − i)!

)r

i,j=1

=

r−1∏

k=0

(r − 1 − k)!

(n− r + k)!
.

To prove this it suffices to check (as is readily done after some cancelations) that it satisfies the Desnanot–
Jacobi identity, which is equivalent to

M(n, r)M(n− 2, r − 2) = M(n,−1, r − 1)2 −M(n, r − 1)M(n− 2, r − 1).

With the identity (5.8) we have

y
(n)
k (τ) = e−ττ2k−n−1 (n− k)!

(k − 1)!
(1 + O(τ−1)).

Inserting this into the diffusion coefficient (4.16) and into the drift coefficients in (4.17) we get

σn
k = 1 + O(τ−1), an

k = τ−1(k − 1)(1 + O(τ−1)), bnk = O(τ−2), cnk = τ−1(n− k)(1 + O(τ−1)).

Taking L → ∞ and remembering that dτ = LdT we arrive at the linear system of SDEs given in (5.7).
It remains to deduce that the convergence of the drift and standard deviation matrices implies conver-

gence of the full space-time process. To put this in a more general context, consider matrices Aǫ(T ) and
Bǫ(T ) with entries uniformly bounded over all ǫ ∈ (0, 1) and T ∈ [T0, T1] and which have likewise bounded
limits A(T ) and B(T ). Also, consider Gaussian initial data (at time T0) given by Xǫ(T0) and assume it
has a limit in distribution to some Gaussian vector X(T0). Let Xε(T ) denote the solution to the system
of SDEs dXǫ(T ) = Aǫ(T )Xǫ(T )dT +Bǫ(T )dWǫ(T ) with initial data Xǫ(T0). Then, we claim, Xǫ → X in
the topology on C

(
[T0, T1], C(R)

)
where X(T ) solves the SDEs with matrices A(T ) and B(T ) with initial

data X(T0). This result is not hard to prove. For instance, one can use the results from Appendix A to
write down the multi-time covariance of Xǫ. Given the hypotheses, this clearly has a limit as ǫ → 0, from
which follows convergence of finite-dimensional-distributions to those of X . Tightness of Xǫ is quite readily
checked (for instance, also from the multi-time covariance).

In order to determine the covariance of ξ′s at different times, we need to determine the propagator
(see (A.1)), i.e., the solution Y (T ) of

dY (T )

dT
= A(T )Y (T ), Y (0) = 1.

Since A(T ) depends on T only by multiplication of 1/T , let us write A(T ) = ÂT−1. Then, taking S = ln(T )
we obtain T d

dT = d
dS , from which

dY

dS
= ÂY. (5.9)

In what follows we will determine the covariance at a fixed time T0 and then propagate from T0, so that
the T−1 singularity of A does not pose a problem. Notice that setting S = ln(T/T0) we have still to find
a solution of (5.9) if we propagate from T0.



Lemma 5.7. For any 1 ≤ k ≤ n, 1 ≤ k′ ≤ n′, we have

[exp(SÂ)](k,n),(k′,n′) = eS(1−n)(eS − 1)n′−n

(
k − 1

k′ − 1

)(
n− k

n′ − k′

)
.

Proof. First make the change variables n − k = x, n′ − k′ = x′ and likewise k − 1 = y, k′ − 1 = y′. The
Markov chain on n, k with generator Â turns into the Markov chain on x, y which, in fact, factorizes into
two independent Markov chains where x transitions to x − 1 at rate x and y transitions to y − 1 at rate
y. Call the generator of one of these two chains (as they have the same generator) L. Then our lemma
reduces (through the change of variables) to showing that

[exp(SL)]x,x′ =

(
x

x′

)
e−Sx(eS − 1)x−x′

.

First note that for S = 0, the above expression equals the indicator function for x = x′ (if x′ > x the
binomial coefficient is zero, and if x′ < x the term (eS − 1)x−x′

is zero). We must then show that for any
function f , we have

d

dS

(
exp(SL)f

)
(x) =

(
L exp(SL)f

)
(x).

Checking this is elementary. Let g(x) =
(
exp(SL)f

)
(x) =

∑
x′≤x

(
x
x′

)
e−Sx(eS − 1)x−x′

f(x′) and compute

d

dS
g(x) =

∑

x′≤x

(
x

x′

)
e−Sx(eS − 1)x−x′

f(x′)

(
x− x′eS

eS − 1

)

and likewise

Lg(x) = x
∑

x′≤x−1

(
x− 1

x′

)
e−S(x−1)(eS − 1)x−1−x′

f(x′) −
∑

x′≤x

(
x

x′

)
e−Sx(eS − 1)x−x′

f(x′).

It is now easy to show, for each x′, the equality of the summands in d
dS g(x) and Lg(x), thus completing

the proof.

As a consequence of Lemma 5.7 we readily have the propagator from time T0.

Corollary 5.8. The propagator matrix from time T0 > 0 is given by

[
Y T0(T )

]
(k,n),(k′,n′)

=

(
T0

T

)n−1(
T − T0

T0

)n−n′ (
k − 1

k′ − 1

)(
n− k

n′ − k′

)
, (5.10)

for 1 ≤ k ≤ n ≤ N and 1 ≤ k′ ≤ n′ ≤ N , and it solves

dY T0

dT
= A(T )Y T0(T ), Y (T0) = 1.

According to the general theory of Gaussian processes (see Appendix A), if we denote by Cov(T0) the
covariance matrix at time T0, then

Y T0(T )Cov(T0) (5.11)

is the matrix of covariances between time moments T0 and T ≥ T0.
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Fig. 6: Illustration of the integration contours of the limiting covariance (5.12).

5.2 Bulk scaling limit at fixed time

Now we want to determine the N → ∞ limit of the covariance at a fixed time. Without loss of generality
we can first consider T = 1 and by scaling one can get the covariance for any fixed time T > 0. Indeed,

ζ
(n)
k (T )

(d)
=

√
Tζ

(n)
k (T ) since it is the scaling limit as L → ∞, see Proposition 5.5. Our result is the following.

Theorem 5.9. Let us denote

Ω(c, b) = c(1 − 2b+ 2i
√
b(1 − b)).

Take any a, b ∈ (0, 1), d > 0 and c ∈ (0, d] such that Ω(c, b) 6= Ω(d, a). Then, the large N limit of the
covariance is given by

lim
N→∞

NCov
(
ζ
(dN)
(1−a)dN (T = 1), ζ

(cN)
(1−b)cN (T = 1)

)

=
16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(d,a)

Ω(d,a)

dZ
1

Z −W

1√
(W −Ω(c, b))(W −Ω(c, b))

√
(Z −Ω(d, a))(Z −Ω(d, a))

,

(5.12)
where the path Z stays to the right of W (see Figure 6 for an illustration).

Surprisingly, there is a concise way of expressing the limiting covariance in terms of a complete elliptic
integral.

Proposition 5.10. It holds

16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(d,a)

Ω(d,a)

dZ
1

Z −W

1√
(W −Ω(c, b))(W −Ω(c, b))

√
(Z −Ω(d, a))(Z −Ω(d, a))

=
4κ

π
√

ImΩ(d, a) ImΩ(c, b)
K(κ),

(5.13)

with κ =
2
√

Re Ω(d,a)Re Ω(c,b)√
(Re Ω(d,a)−Re Ω(c,b))2+(Im Ω(d,a)+Im Ω(c,b))2

and K is the complete elliptic integral of the first kind,

namely

K(κ) =

∫ 1

0

dx√
(1 − x2)(1 − κ2x2)

.



Proof. Let us first consider the case ReΩ(d, a) > ReΩ(c, b). We use the notations Ω(d, a) = R1 + iI1 and
Ω(c, b) = R2 + iI2. Doing the change of variables Z = R1 + iY and W = R2 + iX we get

(5.37) =
4

π2

∫ I2

−I2

dX

∫ I1

−I1

dY
1

R1 −R2 + i(Y −X)

1√
I2
1 − Y 2

√
I2
2 −X2

=
4

π2

∫ ∞

0

dλe−λ(R1−R2)

∫ I2

−I2

dX
eiλX

√
I2
2 −X2

∫ I1

−I1

dY
e−iλY

√
I2
1 − Y 2

= 4

∫ ∞

0

dλe−λ(R1−R2)J0(I1λ)J0(I2λ),

(5.14)

with the Bessel function J0 (see e.g. Eq. 2.5.3.3 of [35]). Using the identity (see Eq. 2.12.38.1 of [36]) we
get

(5.14) =
4κ

π
√
I1I2

K(κ), κ =
2
√
I1I2√

(R1 −R2)2 + (I1 + I2)2
.

For ReΩ(d, a) ≤ ReΩ(b, c), notice that for fixed Ω(d, a), both sides of the equations are analytic as
a functions of ReΩ(b, c) and ImΩ(b, c) > 0 away from Ω(b, c) = Ω(d, a). Thus the identity holds also for
the general case by analytic continuation.

5.3 Proof of Theorem 5.9

By simple rescaling, it is enough to consider the case d = 1, and clearly a shift by 1 in the ri has no
influence in the limiting result. Let us denote M = cN . We do the change of variables w = NW , x = NX ,
u = N(U +W ), and z = NZ, y = NY , v = N(V + Z) in (5.6) with the result

Cov
(
ζ
(N)
N−aN+1(1), ζ

(M)
M−bM+1(1)

)
=

N

(2πi)2

∮

Γ0

dW

∮

Γ0,W

dZ
1

Z −W

×
(∫ ∞

0

dX
eNF (c,b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(c,b,W,U)

W + U

)(∫ ∞

0

dY
eNF (1,a,Z,Y )

Y − Z

1

2πi

∮

Γ0

dV
eNG(1,a,Z,V )

Z + V

)
,

(5.15)

where
F (c, b,W,X) = bc ln(X −W ) + (1 − b)c ln(X) −X,

G(c, b,W,U) = −bc ln(U) − (1 − b)c ln(W + U) + U +W.

5.3.1 Analysis of the slow manifold

In order to analyze the N → ∞ limit of the covariance, we need to understand the properties of the
functions F and G. Notice that

F (c, b,W,X) = cF (1, b,W/c,X/c) − c ln(c), G(c, b,W,U) = cG(1, b,W/c, U/c) + c ln(c). (5.16)

Therefore if we analyze the situation for c = 1, the case for c < 1 is obtained by scaling linearly with c all
the variables W,X,U . Therefore, below we consider first c = 1 and we write F (b,W,X) for F (1, b,W,X)
(and similarly for G).

Lemma 5.11 (Critical points). For given W , the critical points of F and G are given by

X± =
1 +W ±∆

2
, and U± = X± −W =

1 −W ±∆

2
,

where ∆ =
√

(1 −W )2 + 4bW .

Proof. It is an elementary computation.

The critical points are double critical point only for two values of W .



Corollary 5.12 (Double critical points). We have U+ = U− (and X+ = X−) if and only if
W ∈ {Wc,W c}, where

Wc = Ω(1, b) ≡ 1 − 2b+ 2i
√
b(1 − b).

Further, |Wc| = 1 and we define ϕc = arg(Wc), and

Uc = U±(Wc) = b− i
√
b(1 − b),

Xc = X±(Wc) = 1 − b+ i
√
b(1 − b).

Proof. It is an elementary computation as well.

We have an integral over (W,X,U) of the function eM(F (b,W,X)+G(b,W,U)) times M -independent terms.
If we compute the eigenvalues of the Jacobi matrix of Φ(W,X,U) := F (b,W,X)+G(b,W,U) one sees that
there is a zero eigenvalue. This means that for the steep descent analysis there is a slow mode and two
fast modes. Thus we have to study the submanifold where ReΦ(W,X,U) = 0, that we call slow manifold.
We will then take W on this submanifold and integrate with respect to U,X (which will be essentially
Gaussian integrals) and only after that we integrate over W . The next goal is thus to say something about
the slow manifold.

Lemma 5.13. We have the following identities. First of all,

F (b,W,X±) +G(b,W,U±) = 0. (5.17)

Denoting H(W ) := F (b,W,X+) +G(b,W,U−) and H̃(W ) := F (b,W,X−) +G(b,W,U+) we have

H(W ) + H̃(W ) = 0. (5.18)

Proof. It is simple to verify the identity (5.17) and then (5.18) follows directly from (5.17).

The next goal is to see that W on the slow manifold (W,X±(W ), U±(W )) can be parameterized as a
function in polar coordinates and it takes values inside the circle of radius one.

Lemma 5.14. Let W = reiϕ. Then ∆2 = α+ iβ = ρeiθ, with

α = 2r cos(ϕ)(r cos(ϕ) − 1 + 2b) + 1 − r2,

β = 2r sin(ϕ)(r cos(ϕ) − 1 + 2b),

ρ =
√
α2 + β2, θ = 2 arctan

(
ρ− α

β

)
.

Further, it holds

Re∆ =

√
ρ√

1 +
(

ρ−α
β

)2
, Im∆ =

ρ− α

β

√
ρ√

1 +
(

ρ−α
β

)2
.

Proof. An elementary computation gives the values of α and β. Then, using cos(arctan(x)) = 1/
√

1 + x2

and sin(arctan(x)) = x/
√

1 + x2 we get the formulas for ∆ =
√
ρeiθ/2.

To understand where ReH(W ) = 0, first notice that

H(W ) = b ln

(
1 −W +∆

1 −W −∆

)
+ (1 − b) ln

(
1 +W +∆

1 +W −∆

)
−∆.

Thus at least for the two critical points W ∈ {Wc,W c} we have H(W ) = 0. Further,

dH

dW
= −∆

W
.

By Corollary 5.12 we thus know that dH
dW = 0 if and only if W ∈ {Wc,W c}, i.e., where ∆ = 0.

Lemma 5.15. We have
Re∆ = 0 if and only if β = 0 and α ≤ 0.



Proof. If α = β = 0, then ρ = 0 and ∆ = 0. Otherwise assume α 6= 0. Then Re∆ = 0 possibly only if
β ↓ 0.
First case: α > 0. Then as β ↓ 0, Re∆ ≃ √

α+O(β2), thus Re∆ 6→ 0,
Second case: α < 0. Then as β ↓ 0, Re∆ ≃ β/(2

√
|α|) and Im∆ ≃ β/(2

√
|α|), which gives the result.

From this it follows that

Corollary 5.16. It holds

Re∆ = 0 if and only if r cosϕ = 1 − 2b and r > 1.

Proof. β = 0 if and only if r cosϕ = 1 − 2b. Setting this into α leads to α = 1 − r2, which is negative if
and only if r > 1.

Next we consider the derivative of ReH with respect to r and ϕ.

Lemma 5.17. We have
dReH

dr
= −Re∆

r
≤ 0 and

dReH

dϕ
= Im∆.

In particular, on the circle of radius one, W = eiϕ, d Re H
dϕ > 0 on ϕ ∈ (0, ϕc) and d Re H

dϕ < 0 on ϕ ∈ (ϕc, π).

This implies that on the circle of radius one, ReH < 0 except at the two critical points {Wc,W c}.

Proof. The identities follow from

dReH

dr
+ i

d ImH

dr
=
dH

dr
=
dH

dW

dW

dr
= −∆

r
= −Re∆

r
− i

Im∆

r
,

and
dReH

dϕ
+ i

d ImH

dϕ
=
dH

dϕ
=
dH

dW

dW

dϕ
= −i∆ = −i Re∆+ Im∆.

Using the formula for Im∆ in Lemma 5.14 we get Im∆ > 0 if and only if β > 0, i.e., if and only if
r cosϕ > 1 − 2b, and for r = 1, cosϕ > 1 − 2b if and only if ϕ ∈ (0, ϕc) (it suffices to consider ϕ ∈ [0, π]
only by symmetry).

Lemma 5.18. We have limr→0 ReH = ∞.

Proof. As r → 0, U+ → 1, U− → −breiϕ, X+ → 1, X− → (1 − b)reiϕ. Thus, as r → 0, ReH ∼
−b ln(b) − (1 − b) ln(1 − b) − ln(r) → ∞.

The above lemmas imply the following.

Proposition 5.19. There exists a simple path Π = Π(b) around 0 such that for W ∈ Π

1. ReH(W ) = 0,
2. W = r(ϕ)eiϕ: where r(ϕ) is a unique solution of ReH(W ) = 0 in [0, 1],
3. r(ϕc)e

iϕc = Wc,

see Figure 7 for an illustration. We denote by Π+(b) the part of Π(b) with ϕ ∈ [−ϕc, ϕc] and Π−(b) the
remaining part.

Proof. By Lemma 5.17 we know that ReH(reiϕ) is monotonically decreasing as r increases, and goes from
∞ at r = 0 (Lemma 5.18) to ReH(W ) ≤ 0 for W on a circle of radius 1 (with equality if and only if
{Wc,W c}) (Lemma 5.18), thus it has to cross 0 at some values r = r(ϕ) ∈ (0, 1] (with r(ϕ) = 1 if and
only if ϕ = ±ϕc).

Along the path Π of Proposition 5.19, the real part of H is equal to zero and the imaginary part is
not constant.

Lemma 5.20. Along the path Π of Proposition 5.19,

d ImH

dϕ
= − |∆|2

Re∆
≤ 0,

with equality if and only if ∆ = 0.
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Fig. 7: The thick blue curve is the path Π of Proposition 5.19. On the solid black lines ReH = 0 as well.
The dashed black lines are the discontinuities of ReH , which correspond to Re∆ = 0. The gray regions
are the ones with positive real part of H .

Proof. Let r = r(ϕ) and W = r(ϕ)eiϕ. Then,

dReH

dϕ
+ i

d ImH

dϕ
=
dH

dϕ
=
dH

dW

dW

dϕ
=

(
Im∆− Re∆

d ln r(ϕ)

dϕ

)
− i

(
Re∆+ Im∆

d ln r(ϕ)

dϕ

)
.

Since the real part is by definition of r(ϕ) equal to 0, we have d ln r(ϕ)
dϕ = Im ∆

Re ∆ . Thus

d ImH

dϕ
= − |∆|2

Re∆
.

Finally, as a simple corollary we have:

Corollary 5.21. Along the path Π of Proposition 5.19,

ReF (b,W,X+) = − ReG(b,W,U−) = ReF (b,W,X−) = − ReG(b,W,U+).

As we shall see, when integrating over W and Z, we will have to choose in some situations contours
which do not satisfy the original constraints (Z encloses cW ). In these cases we will have to control the
residue term as well. For that purpose we need to see where the paths Π for different values of a, b, c
intersects. Since in the following the path Π as well as Wc and related quantities depends on b, we will
write b explicitly when needed.

Lemma 5.22. Fix 0 < a < b < 1, from which we know that ϕc(a) < ϕc(b). We have:

(a) For ϕ ∈ [0, ϕc(a)], ra(ϕ) > rb(ϕ).
(b) There exists a unique ϕ ∈ (ϕc(a), ϕc(b)) such that ra(ϕ) = rb(ϕ).
(c) For ϕ ∈ [ϕc(b), π], ra(ϕ) < rb(ϕ).

See Figure 8 for an illustration.

Proof. By Lemma 5.17 and Lemma 5.14 we get

dr

dϕ
= r

Im∆

Re∆
= r

√
α2 + β2 − α

β
.

Let ϕ ∈ (0, ϕc(b)). Then β > 0 and

dr

dϕ
= r

(√
(α/β)2 + 1 − α/β

)
> 0, (5.19)
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Fig. 8: An illustration of Lemma 5.22. For a = 0.2 (blue) and b = 0.4 (red) we plot the lines where
ReH(W ) = 0. Inside the closed contours ReH(W ) > 0. Along the dashed contours, the ReH(W ) = 0 as
well.

where
α

β
=

1

tanϕ
+

1 − r2

2r sin(ϕ)(r cos(ϕ) − 1 + 2b)
.

From (5.19) together with the fact that r(ϕ) = 1 only at ϕ = ϕc, we have that 1 = ra(ϕc(a)) > rb(ϕc(a)).
Similarly, for ϕ ∈ (ϕc(b), π), β < 0 and

dr

dϕ
= −r

(√
(α/|β|)2 + 1 − α/|β|

)
< 0, (5.20)

where
α

β
=

1

tanϕ
− 1 − r2

2r sin(ϕ)(r cos(ϕ) − 1 + 2b)
.

From (5.19) together with the fact that r(ϕ) = 1 only at ϕ = ϕc, we have that 1 = rb(ϕc(b)) > ra(ϕc(b)).
Case (b): (5.19) and (5.20) imply that for ϕ ∈ (ϕc(a), ϕc(b)), ra is (strictly) decreasing starting from 1

and rb is (strictly) increasing ending at 1. Thus, by continuity of r(ϕ), there is a unique intersection point
of ra(ϕ) and rb(ϕ).

Case (a): At (r, ϕ) ∈ [0, 1] × (0, ϕc(a)), b 7→ r cos(ϕ) − 1 + 2b is increasing in b. Thus b 7→ α/β is

decreasing, but since x 7→
√
x2 + 1 − x is also decreasing, this implies that b 7→ r

√
α2+β2−α

β is increasing

in b. Thus, if there is an intersection of the paths Πa and Πb for this range of angle, say at (r0, ϕ0), then
at this point

0 <
dra
dϕ

<
drb
dϕ

.

This would then imply that ra(ϕc(a)) < rb(ϕc(a)), which is false. Therefore by contradiction we have
shown part (a).

Case (c): It is similar to case (a). At (r, ϕ) ∈ [0, 1] × (ϕc(b), π), b 7→ r cos(ϕ) − 1 + 2b is increasing in
b. Thus b 7→ α/β is increasing as well. The map x 7→ −(

√
x2 + 1 − x) is increasing, which implies that

b 7→ r

√
α2+β2−α

β is increasing in b. Thus, if there is an intersection of the paths Πa and Πb for this range

of angle, say at (r0, ϕ0), then at this point

dra
dϕ

<
drb
dϕ

< 0.

This would then imply that rb(ϕc(b)) < ra(ϕc(b)), which is false. Therefore by contradiction we have
shown part (c) as well.

Here is a corollary.

Corollary 5.23. If Π+(a) ∩ cΠ(b) 6= ∅, then Π−(a) ∩ cΠ(b) = ∅.



Proof. There are a few cases to be considered:
(a) Π+(a) ∩ cΠ+(b) 6= ∅ and b > a can not occur together. Otherwise, by continuity Π+(a) ∩Π+(b) 6= ∅

as well, which contradicts Lemma 5.22(a).
(b) Π+(a) ∩ cΠ+(b) 6= ∅ and b < a. In this case by Lemma 5.22 there is no intersection of Π−(a) and
Π(b), which implies that Π−(a) ∩ cΠ(b) = ∅ as well.
(c) Π+(a) ∩ cΠ+(b) = ∅ but Π+(a) ∩ cΠ−(b) 6= ∅. In this case also Π+(a) ∩ Π−(b) 6= ∅, meaning by
Lemma 5.22 that b < a, which in turns implies Π−(a) ∩Π(b) = ∅, thus also Π−(a) ∩ cΠ(b) = ∅.

5.3.2 Analysis of the fast manifolds

For a given W on Π , we deform the integration paths for X and U so that they pass through some critical
points X±(W ) and U±(W ). Through which critical points the paths must pass is determined by the fact
that X needs to start at 0 and end at ∞ and U is closed loop around 0 not including −W . There is a
difference on whether W is in the part of Π between W c and Wc or not. As we shall see, in the first
case, the paths needs to pass through both critical points, while in the second case X passes only through
X+(W ) and U through U−(W ).

Proposition 5.24. Let us denote by ΓX := {X ∈ C | ReF (b,W,X) = ReF (b,W,X±(W ))} and similarly
ΓU := {U ∈ C | ReG(b,W,U) = ReG(b,W,U±(W ))}. Parameterize W = r(ϕ)eiϕ on Π as in Proposi-
tion 5.19. Let γX ⊂ C be any deformation of the path from 0 to ∞ of the real line and γU ⊂ C any simple
counterclockwise oriented loop around 0 but not including the point U = −W .

1. For ϕ ∈ [0, ϕc], any path γX which satisfies ReF (b,W,X) ≤ ReF (b,W,X±(W )) need to pass through
both critical points X+(W ) and X−(W ).

2. For ϕ ∈ [ϕc, π], any path γX which satisfies ReF (b,W,X) ≤ ReF (b,W,X±(W )) need to pass through
critical points X+(W ) but not through X−(W ).

3. For ϕ ∈ [0, ϕc], any path γU which satisfies ReG(b,W,U) ≤ ReG(b,W,U±(W )) need to pass through
both critical points U+(W ) and U−(W ).

4. For ϕ ∈ [ϕc, π], any path γU which satisfies ReG(b,W,U) ≤ ReG(b,W,U±(W )) need to pass through
critical points U−(W ) but not through U+(W ).

Proof. First we consider the extreme cases, ϕ = 0 and ϕ = π.
Case 1: ϕ = π. In this case W = −r ∈ R− and thus ∆ =

√
(1 + r)2 − 4br > 1 − r = 1 + W (since

b ≤ 1), but also ∆ =
√

(1 − r)2 + 4(1 − b)r < 1 + r = 1 −W . Thus X− = (1 +W −∆)/2 ∈ (W, 0) and
X+ = (1 +W +∆)/2 > 0. Thus we have obtained

W < X− < 0 < X+.

We know that the function ReF (b,W,X) = −∞ at X = W, 0,∞ and it goes to ∞ when going to infinity
in the directions with negative real part. For W real ΓX is symmetric with respect to complex conjugation.
Further there are only two points where branches of ΓX comes together, namely at X = X±. Thus two
of the branches that leave the point X− need to close on the left of W , the other two have to go around
0 and meet at X+, from which point they open up asymptotically in the vertical direction. See Figure 9
(left) for an illustration of ΓX .

Case 2: ϕ = 0. In this case W = r ∈ R+ and thus ∆ =
√

(1 + r)2 − 4(1 − b)r < 1 + r = 1 +W , but
also ∆ > 1 − W . Thus X− = (1 + W − ∆)/2 ∈ (0,W ) and X+ = (1 + W + ∆)/2 > W . Thus we have
obtained

0 < W < X− < X+.

The same argument as in Case 1, but with the roles of W and 0 interchanged leads to ΓX as in Figure 9
(right).

Case 3: ϕ = ϕc. In this case W = Wc and thus ∆ = 0. It is the situation where the two critical points
comes together, see Figure 10.

By continuity, to go from the topological situation of Case 1 to the one of Case 2, there is only one
possibility, namely when X+ and X− comes together. But this happens only at the value of ϕ of Case 3.
Statements (1) and (2) then follows from these observations.

(3) and (4) are proved similarly to (1) and (2).



W 0 X+X−

ΓX

0 W X+X−

ΓX

Fig. 9: Illustration of the path ΓX for the case W ∈ R− (left) and W ∈ R+ (right). In the shaded regions
ReF (X) < ReF (X±).

W

0

X±

ΓX

Fig. 10: Illustration of the path ΓX for the case W = Wc, for which X+ = X−. In the shaded regions
ReF (X) < ReF (X±).

Remark 5.25. The paths ΓX and ΓU are just a shift by W of each other. Further, at X± the branches of
ΓX form a cross with π/2 degrees, except for the case when X+ = X− where the angles are π/3 between
each branch.

Proof of Theorem 5.9. Let us recall the formula for the covariance that we want to compute, namely
(5.15):

Cov
(
ζ
(N)
N−aN+1(1), ζ

(M)
M−bM+1(1)

)
=

N

(2πi)2

∮

Γ0

dW

∮

Γ0,W

dZ
1

Z −W

×
(∫ ∞

0

dX
eNF (c,b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(c,b,W,U)

W + U

)(∫ ∞

0

dY
eNF (1,a,Z,Y )

Y − Z

1

2πi

∮

Γ0

dV
eNG(1,a,Z,V )

Z + V

)
.

(5.21)

First case: Π+(a)∩cΠ(b) = ∅. First we consider the case where the path Π+(a) for Z does not cross
the path for W (Π±(b) are defined in Proposition 5.19).

We divide the integrations in four terms:

∮

Γ0

dW

∮

Γ0,W

dZ =

∫ W c

Wc

dW

∫ Zc

Zc

dZ +

∫ Wc

W c

dW

∫ Zc

Zc

dZ +

∫ W c

Wc

dW

∫ Zc

Zc

dZ +

∫ Wc

W c

dW

∫ Zc

Zc

dZ (5.22)

where Wc = Ω(c, b) and Zc = Ω(1, a). Here the integration path from W c to Wc passes to the right of the
origin, while from Wc to W c to the left of the origin (similarly for Z).

By Proposition 5.19 we can choose the path for Z from Zc to Zc satisfying ReH(Z) < 0 and staying
outside cΠ(b) (the initial choice of the path for W ). Thus in this case we do not have to deal with potential
residue terms arising from the factor 1/(Z −W ) in the integrand.

Now we discuss which contributions remain in the N → ∞ limit from the integration over W . The
same argument goes through for the contributions for the integration over Z. For simplicity we consider
c = 1, as in the generic case one has just to replace W → cW in the final expression.



W

−W

0

0

X+

X−

γX U+
U−

γU

Fig. 11: Illustration of the integration paths γX and γU for the case ϕ ∈ (ϕc, π].

(a) Contributions for W ∈ Π−(b) and Z ∈ Π−(a) (or a deformation of them). As discussed in
Proposition 5.24, the paths for X and U can be chosen to pass by only one of the critical points, namely
X+ and U−, see Figure 11 for an illustration.

Then there are paths γX (resp. γU ) such that ReF (b,W,X) reaches its maximum at X = X+ (resp.
ReG(b,W,U) reaches its maximum at U = U−). Further, due to the linear term in X , when X → ∞
along γX , ReF (b,W,X) decreases linearly in the real part of X . Thus γX and γU can be taken to be steep
descent paths and the leading contribution to the integrals comes from a δ-neighborhood of X+ and U−;
the contribution from the remainder is O(e−Nc(δ)) for some c(δ) > 0 (with c(δ) ∼ δ2 as δ → 0 away from
the critical points and c(δ) ∼ δ3 as δ → 0 at the critical point). This does not change if we deform the

path for W to a path Π̃−(p) to stay outside Π−(p) (and to the left of the critical points, i.e., to the left
of the dashed lines in Figure 7).

It remains to determine the contribution coming from the neighborhood of (X+, U−) (as outside a
δ-neighborhood the contribution is exponentially small in N). As X+ and U− are (simple) critical points
of F (b,W,X) and G(b,W,U) respectively, they are determined by the Gaussian integrals up to smaller
order in N . We have

F (b,W,X) ≃ F (b,W,X+) − 1

2
σ+(X −X+)2, G(b,W,U) ≃ G(b,W,U−) +

1

2
σ−(U − U−)2, (5.23)

where σ± is defined by

σ±(W ) = − ∂2

∂X2
F (b,W,X)

∣∣
X=X±

=
1 − b

X2
±

+
b

U2
±
. (5.24)

Thus, the integrals over γX and γU will be dominated by the Gaussian integrals around the critical points,
with the result

1

N

eN Re F (b,W,X+)

(X+ −W )
√
σ+(W )

eN Re G(b,W,U−)

(W + U−)
√
σ−(W )

(1 + O(N−1/2)). (5.25)

The error term O(N−1/2) is the correction to the Gaussian integrals coming from the higher order non-zero
terms. The term in the exponential is NH(W ), where H(W ) was defined in Lemma 5.13.

Let Π̃ε
−(b) the region of Π̃−(b) at distance ε from Wc = Ω(1, b). For W at distance ε from the critical

points, by Lemma 5.17 we get ReH(W ) ≤ −C(ε) < 0 with C(ε) ∼ ε3/2 as ε → 0 (the reason being that

∆2 ≃ 4i
√
b(1 − b)(W − Wc) as W → Wc). Thus the contribution of the integral over Π̃−(b) \ Π̃ε

−(b) is

exponentially small in N , bounded by O(e−cε3/2

) for some c > 0.

To estimate the integral over Π̃ε
−(b), we use that

σ±(W ) ≃ 2
√

−i(1 − b)3/4b−1/4

X+(Wc)4

√
W −Wc (5.26)

as W → Wc. Since
∫ ε

0
e−Nx3/2

x−1/2dx = O(N−1/3), the contribution of the integral over W ∈ Π̃ε
−(b) of

(5.25) is of order N−1N−1/3. We shall see that the leading terms as N → ∞ is of order N−1. Thus this
contribution is at least N−1/3 times smaller and it becomes irrelevant as N → ∞.
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X− γX

U+

U−

γU

Fig. 12: Illustration of the integration paths γX and γU for the case ϕ ∈ [0, ϕc).

(b) Contributions for W ∈ Π+(b). As discussed in Proposition 5.24, the paths for X and U have
to be chosen to pass by both critical points, see Figure 12 for an illustration.

We split the integrand over X into two pieces: the first going from 0 to W and the second from W to
∞. We thus have

∫ ∞

0

dX
eNF (b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(b,W,U)

W + U
=

∫ W

0

dX
eNF (b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(b,W,U)

W + U

+

∫ ∞

W

dX
eNF (b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(b,W,U)

W + U
.

(5.27)

At this point we can deform the integration path for W , namely Π+(b), in different ways depending on
whether we want to estimate the first or the second term in (5.27).

(b.1) Contribution of the first term of (5.27). The integration path for X passes by X−, while the
integration path for U passes by both U+ and U−. The leading term of the integrand comes from the inte-
grals around the critical points. At (X−, U−) the term in the exponent is NF (b,W,X−)+NG(b,W,U−) =
0, while the term in the exponent at (X−, U+) is NF (b,W,X−) + NG(b,W,U+) = −NH(W ). Thus we

deform the path Π+(b) into Π̃+(b) such that H(W ) > 0 along Π̃+(b). To do this is enough to deform
Π+(b) slightly in the interior of Π(b). Then, the contribution of the integral coming from the neighbor-
hoods of (U+, X−) can be estimated exactly as we did for the previous case (i.e., for (a) Contributions
for W ∈ Π−(b)) and in the N → ∞ limit will become irrelevant.

It remains to determine the contribution coming from the neighborhood of (X−, U−) (as outside a
δ-neighborhood the contribution is exponentially small in N). As X− and U− are (simple) critical points
of F (b,W,X) and G(b,W,U) respectively, they are determined by the Gaussian integrals up to smaller
order in N . We have

F (b,W,X) ≃ F (b,W,X−) − 1

2
σ−(X −X−)2, G(b,W,U) ≃ G(b,W,U−) +

1

2
σ−(U − U−)2, (5.28)

where σ− is defined in (5.24). Thus
∫

|X−X−|≤δ

dX
eNF (b,W,X)

X −W

1

2πi

∫

|U−U−|≤δ

dU
eNG(b,W,U)

W + U
=

1

2πi

√
2π

(X− −W )
√
σ−N

−i
√

2π

(U− +W )
√
σ−N

(5.29)
up to smaller terms in N (of order N−3/2 instead of N−1).

(b.2) Contribution of the second term of (5.27). This case is analogous to the previous one,
except that now the integration over X passes by X+. This time the term in the exponent at (X+, U−)
is NF (b,W,X+) +NG(b,W,U−) = NH(W ) and therefore we deform the contour for W to stay slightly
outside Π+(b) (without crossing the dashed lines in Figure 7). The leading contribution is then

∫

|X−X+|≤δ

dX
eNF (b,W,X)

X −W

1

2πi

∫

|U−U+|≤δ

dU
eNG(b,W,U)

W + U
=

1

2πi

√
2π

(X+ −W )
√
σ+N

i
√

2π

(U+ +W )
√
σ+N

(5.30)



Ω(c, b)

Ω(1, a)

Θ

Fig. 13: An illustration of the case where Π−(a)∩cΠ(b) 6= ∅. The closed paths are Π(a) (blue) and cΠ(b)
(red). Here the parameters are a = 0.6, b = 0.2 and c = 0.8. The intersection in the upper half plane is
denoted by Θ.

up to smaller terms in N .
Summing up, we have obtained that, up to smaller order terms in N , the leading contribution of (5.27)

is given by (5.29) plus (5.30). An explicit computation gives

r.h.s. (5.29) + r.h.s. (5.30) =
4

N
√

(W −Wc)(W −W c)
≡ 4

N
√

(W −Ω(1, b))(W −Ω(1, b))
. (5.31)

To resume, the integral over W becomes in the N → ∞ limit the integral over W from Ω(1, b) to
Ω(1, b) (passing to the right of the origin).

The analysis of the integral over Z is almost verbatim as the one for W and thus we are not going
to repeat it. The result is that the integral over Z becomes the integral over Z from Ω(1, a) to Ω(1, a)
passing to the right of the origin and to the right of W , namely we get

lim
N→∞

NCov
(
ζ
(N)
N−aN+1(1), ζ

(M)
M−bM+1(1)

)

=
16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(1,a)

Ω(1,a)

1

Z −W

1√
(W −Ω(c, b))(W −Ω(c, b))

√
(Z −Ω(1, a))(Z −Ω(1, a))

,

(5.32)
which is what we had to prove for d = 1, see (5.12).

Second case: Π−(a) ∩ cΠ(b) 6= ∅. This situation is illustrated in Figure 13.
The same argument as for the first case can be applied for most of the contributions. However, it remains

to deal with the residue obtained for Z = W for the portion of W from Θ → Ω(c, b) → Ω(c, b) → Θ.
What we are going to show below is that the mixed terms (i.e., the ones involving H(W ) or H̃(W )) all
give vanishing contributions in the N → ∞ limit.

Assuming that this is shown and using the fact that for the portion of the integration from Θ → Ω(c, b)
and as well from Ω(c, b) → Θ only mixed terms are present, the final result will be (5.32) with the path
Z passing to the left of W plus the residue at Z = W . Deforming the contours back to have Z passing to
the right of W leads to the claimed result.

Thus now let us verify that the mixed terms in the residue at Z = W for the integration from Θ to Θ
all asymptotically vanish. We have the following four possible mixed terms (we write only the exponential
part, of course for each term with an H there are also the denominators as in (5.25)):

eN(Hb,c(W )+Ha,1(W )), eN(Hb,c(W )−Ha,1(W )), eN(−Hb,c(W )+Ha,1(W )), eN(−Hb,c(W )−Ha,1(W )),

where Hb,c(W ) := cHb,1(W/c) with Hb,1(W ) = H(W ) of Lemma 5.13.
(1) The contribution containing eN(Hb,c(W )+Ha,1(W )) vanishes because from Θ to Θ we can choose a

path satisfying Re(Hb,c(W ) + Ha,1(W )) < 0. Indeed, we could just use W ∈ cΠ+(b) as on this path



Fig. 14: Illustrations with the same parameters as in Figure 13. (Left) The shaded region is where
Re(Hb,c(W ) +Ha,1(W )) < 0. (Right) The shaded region is where Re(Hb,c(W ) −Ha,1(W )) < 0.

ReHb,c(W ) = 0 and ReHa,1(W ) < 0, or any other path in the shaded region of Figure 14(left) passing to
the right of the origin. Then, the integration over W gives a term of order N−1 smaller than the leading
term (in total O(N−2)).

(2) The contribution with eN(−Hb,c(W )−Ha,1(W )) vanishes as well. Indeed, by Corollary 5.23, we can
choose a path from Θ to Θ in the intersection of the interiors of Π(a) and cΠ(b), where both terms are
negative.

(3) The contribution including eN(Hb,c(W )−Ha,1(W )) also vanishes. First notice that W = 0 is not a
pole of eN(Hb,c(W )−Ha,1(W )). Indeed, by looking at the asymptotic behavior at W = 0, we have that
Hb,c(W )−Ha,1(W ) ∼ (1− c) ln(W )+O(1), thus eN(Hb,c(W )−Ha,1(W )) ∼ W (1−c)N . We have Re(Hb,c(W )−
Ha,1(W )) = 0 for W ∈ {Θ,Θ}, Re(Hb,c(W ) − Ha,1(W )) < 0 on W ∈ cΠ(b)

∣∣
(Θ,Θ)

since it is in the

interior of the region with ReHa,1(W ) ≥ 0 (by Corollary 5.23), and Re(−Hb,c(W ) + Ha,1(W )) < 0 on
W ∈ Π(a)

∣∣
Θ,Θ

. Taking this as integration path we get that the contribution of this term is also vanishing.

See Figure 14 for an illustration.
(4) The contributions with eN(−Hb,c(W )+Ha,1(W )). It is similar to case (3), except that now

Re(−Hb,c(W ) +Ha,1(W )) < 0 on W ∈ Π(a)
∣∣
(Θ,Θ)

.

Summing up, as soon as |Ω(1, a) −Ω(c, b)| are bounded away from zero (which implies that the same
holds for |Ω(1, a) − Θ| as well), all the mixed terms (i.e., the ones containing H(W )) are exponentially
small in N and thus they become irrelevant in the N → ∞ limit. This completes the proof of the result.

For what we are going to do later, it is important to understand when, in the proof of Theorem 5.9,
the hypothesis that |Ω(1, a)−Ω(c, b)| bounded away from zero is used. The hypothesis was not used when
determining the leading contribution coming from integrating out the X,U (resp. Y, V ) variables as those
depend only on Ω(c, b) (resp. Ω(1, a)). We obtained

∫ ∞

0

dX
eNF (c,b,W,X)

X −W

1

2πi

∮

Γ0

dU
eNG(c,b,W,U)

W + U
=

4(1 + O(N−1/2))1W∈cΠ+(b)

N
√

(W −Ω(c, b))(W −Ω(c, b))
+
1W∈cΠ−(b)

N1+1/3
, (5.33)

and similarly for the integration over Z.

As a consequence, the integrals over W,Z in Cov(ζ
(dN)
(1−a)dN (1), ζ

(cN)
(1−b)cN (1)) in which we do not consider

the residue terms give

1

N

1

(2πi)2

∮

cΠ(b)

dW

∮

Π(a)

dZ
1

Z −W

(
4(1 + O(N−1/2))1W∈cΠ+(b)√
(W −Ω(c, b))(W −Ω(c, b))

+
1W∈cΠ−(b)

N1/3

)

×
(

4(1 + O(N−1/2))1Z∈Π+(a)√
(Z −Ω(1, a))(Z −Ω(1, a))

+
1Z∈Π−(a)

N1/3

)
.

(5.34)



For the residue terms, as mentioned above, only between Ω(c, b) and Ω(c, b) there are terms which are
not mixed. These give a contribution to the covariance equal to

1

N

1

2πi

∫ Ω(c,b)

Ω̄(c,b)

dW
4(1 + O(N−1/2))√

(W −Ω(c, b))(W −Ω(c, b))

4(1 + O(N−1/2))√
(W −Ω(1, a))(W −Ω(1, a))

. (5.35)

Finally, let us consider the mixed residue terms. When the two critical points are close to each other
(of distance going to 0 as N → ∞), the statements mentioned above are still true, but the exponential
decay in N when integrating over W is less strong. Indeed, by Lemma 5.17 and the fact used already
just above (5.26), if we move in a steep descent direction of H(W ) starting from W = Θ (which is of
distance O(N−1/2) from the double critical point), then 0 ≥ ReHb,c(W ) ≃ (W −Θ)3/2 for small W −Θ.
Moreover, since Θ is close to the double critical point, we have to be a little bit careful with the term
in the denominator of (5.25), but by (5.26) we know that σ+(W ) ≃

√
W −Ω(b, c). Since we have the

contribution from W and the one from the residue at Z = W , overall the denominator is just of order

N−1/|Ω(1, a)−Ω(c, b)|. Further, since for γ > 0,
∫∞
0
dxe−γNx3/2

= O(N−2/3), the full contribution for each

of the possible four cases for the mixed terms will be O(N−1−2/3/|Ω(1, a) − Ω(c, b)|). As a consequence,
if we consider |Ω(1, a) −Ω(c, b)| → 0 as N → ∞, we get

Cov
(
ζ
(dN)
(1−a)dN (1), ζ

(cN)
(1−b)cN (1)

)
=

1

N
O
( 1

N2/3|Ω(1, a) − Ω(c, b)|
)

+ (5.34) + (5.35). (5.36)

In particular, if |Ω(1, a) − Ω(c, b)| = O(N−1/2), the error terms from the mixed terms in the residue are
O(N−1/6). Moreover, as we will see below, in this case the leading contribution to the integrals comes
actually from the two neighborhoods of the double critical points only, i.e., from the regions where Z−W
is small.

5.4 Logarithmic correlations at short distances

In Theorem 5.9 we have obtained the limiting covariance. Here we consider the limiting covariance and
investigate its behavior at short distances, i.e., in the limit when |Ω(d, a) −Ω(c, b)| = δ → 0. We obtain a
logarithmic divergence as δ → 0.

Proposition 5.26. Let a ∈ (0, 1) and d > 0 be fixed. Then

16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(d,a)

Ω(d,a)

dZ
1

Z −W

1√
(W −Ω(c, b))(W −Ω(c, b))

√
(Z −Ω(d, a))(Z −Ω(d, a))

=
−4

π

ln(|Ω(d, a) −Ω(c, b)|)√
ImΩ(d, a)

√
ImΩ(c, b)

+ O(1)

(5.37)

as |Ω(d, a) −Ω(c, b)| → 0.

Proof. Let us set δ = |Ω(d, a) − Ω(c, b)|. Let us denote Ω1 = Ω(d, a), Ω2 = Ω(c, b) and the unit vector
e = |Ω1 − Ω2|−1(Ω1 − Ω2). Because of the assumptions, c0 := ImΩ1 = 2

√
a(1 − a) > 0 and thus for δ

small enough, ImΩ2 > c0/2 as well. Then in (5.37) we choose the paths for W,Z as follows:
(1) Z has a first straight piece of length c0/4 in the direction e,
(2) W has a first straight piece of length c0/4 in the direction −e,
(3) for the rest, on {z ∈ C, Im z ≤ 0}, the contours stay at a distance at least c0/4 of each other and from
Ω1, Ω2,
(4) the contours are chosen symmetric with respect to complex conjugation.

Pick a small positive ε < c0/2. We divide the integral in (5.37) into Iε := {|Z −Ω1| + |W −Ω2| ≤ ε},
Ĩε = {|Z − Ω1| + |W − Ω2| ≤ ε} and Jε = (Iε ∪ Ĩε)

c. The integral over Jε is bounded by O(1/ε), since
x 7→ 1/

√
x is integrable around 0. For the integral over Iε, we consider the parametrization: Z = Ω1 + ye

and W = Ω2 − xe, where x+ y ≤ ε. Plugging in these we get, for the integral over Iε,

16

(2πi)2

∫
dZ

∫
dW (· · · ) =

16

(2π)2i
√

(Ω1 −Ω1)(Ω2 −Ω2)

∫
dx

∫
dy

1√
x
√
y(δ + x+ y)

+ O(1), (5.38)



where the integral is over {x, y ≥ 0|x+y ≤ ε}. The O(1) error term comes from replacing 1/
√
Z −Ω1 = (1+

O(Z−Ω1))/
√
Ω1 −Ω1 and 1/

√
W −Ω1 = (1+O(W−Ω2))/

√
Ω2 −Ω2. Indeed, doing these replacements,

due to the fact that |W −Ω2| < |W −Z| and similarly |Z −Ω1| < |Z −W | on Iε, the integrals with these
error terms are bounded. Doing the change of variables u = x− y, v = x+ y we get

∫
dx

∫
dy

1√
x
√
y(δ + x+ y)

=

∫ ε

0

dv
1

δ + v

∫ v

−v

du
1√

v2 − u2
= π ln(δ + ε) − π ln(δ).

Therefore the integral over Iε leads to

2

π
√

ImΩ1 ImΩ2

ln(1/δ) + O(1),

since we can take ε small but fixed, the statement to be proven holds. The contribution of the integral
over Ĩε is the same. This finishes the proof.

Remark that the logarithmic correlations at small distances follow also from the expression in Propo-
sition 5.10 together with the asymptotic behavior (see Eq. 13.8(10) in [1])

K(κ) = ln(4/
√

1 − κ2) + O((1 − κ2) ln(1 − κ2)), as κ → 1. (5.39)

5.5 Two-time covariance in the bulk scaling limit (and slow decorrelation)

We have seen that the covariance of N1/2ζ
(cN)
(1−b)cN (T = 1) has a non-trivial limit as N → ∞. Now we

argue that if we consider the covariance of the process at different times, we effectively see the covariance
observed at fixed time. Recall that the covariance at two times is obtained by applying the propagator
(5.10) to the fixed time covariance (see (5.11)), namely

Y T0(T )Cov(T0).

Thus, to study the space-time covariance we have to understand which regions at time T0 are correlated
with a given point at time T . This is done by studying the propagator (5.10). In Lemma 5.27 we show that
the correlated region is around the characteristic and it is of order

√
N (linear scale) only, independently of

T > T0. By Theorem 5.9 we know that the limiting covariance changes over O(N) only. Thus, as stated in
Proposition 5.28, the two-time covariance is asymptotically the same as the fixed time covariance between
points scaled linearly in T . The reason is that along the ray of fixed direction (characteristic lines for our
system) the correlation persists forever, which is at first unexpected.

Lemma 5.27. Consider the propagator (5.10), namely,

[
Y T0(T )

]
(k,n),(k′,n′)

=

(
T0

T

)n−1(
T − T0

T0

)n−n′ (
k − 1

k′ − 1

)(
n− k

n′ − k′

)
.

For T > 1 = T0, we set

k = (1 − a)dTN, k′ = (1 − a)dN + σ1

√
(1 − a)dN,

n = dTN, n′ = dN + σ1

√
(1 − a)dN + σ2

√
adN.

(5.40)

Then, as N → ∞,

[
Y T0(T )

]
(k,n),(k′,n′)

=
1

2π(T − 1)/T

1√
a(1 − a)dN

exp

(
− σ2

1 + σ2
2

2(T − 1)/T

)
(1 + o(1)). (5.41)

The result still holds if T goes to infinity with N at any speed, in which case (T − 1)/T is replaced by 1.



Proof. Using Stirling formula we have

(
k

k′

)
=

√
k

2πk′(k − k′)
eB(k,k′)(1 + o(1)), B(k, k′) = k ln(k) − k′ ln(k′) − (k − k′) ln(k − k′).

Also,
(

k−1
k′−1

)
k′

k =
(

k
k′

)
. Thus

[
Y T0(T )

]
(k,n),(k′,n′)

= C(k, k′, n, n′, T )e−n ln(T )e(n−n′) ln(T−1)eB(k,k′)eB(n−k,n′−k′)(1 + o(1)),

where

C(k, k′, n, n′, T ) = T

√
k′

2πk(k − k′)

√
n− k

2π(n′ − k′)(n− n′ − k + k′)
.

A computation gives

−n ln(T ) + (n− n′) ln(T − 1) + B(k, k′) +B(n− k, n′ − k′) = −T (σ2
1 + σ2

2)

2(T − 1)
+ O(N−1/2),

and

C(k, k′, n, n′, T ) =
T

2π
√
a(1 − a)d(T − 1)N

+ O(N−3/2).

This gives the result for T independent of N . However, inspecting the computations one realizes that if
T → ∞ as N → ∞, then the same result holds, where of course one replaces T/(T − 1) by its limit, which
is 1.

As a consequence of this result we have

Proposition 5.28. Take any a, b ∈ (0, 1), d > 0 and c ∈ (0, d]. Then for any T > 1,

lim
N→∞

NCov
(
ζ
(dNT )
(1−a)dNT (T ), ζ

(cN)
(1−b)cN (T = 1)

)

=
16

(2πi)2

∫ Ω(c,b)

Ω(c,b)

dW

∫ Ω(d,a)

Ω(d,a)

dZ
1

Z −W

1√
(W −Ω(c, b))(W −Ω(c, b))

√
(Z −Ω(d, a))(Z −Ω(d, a))

,

(5.42)
where the path Z stays to the right of W . Here T can even go to infinity as N → ∞.

Proof. First of all, notice that the prefactor 1√
a(1−a)dN

in (5.41) is the volume element of the change of

variables (k′, n′) → (σ1, σ2), necessary to turn the sum in
∑

k′,n′

[
Y T0(T )

]
(k,n),(k′,n′)

Cov(T0)(k′,n′),(k′′,n′′)

into an integral over (σ1, σ2). We can write (using (k′, n′) as in (5.40))

NCov
(
ζdNT
(1−a)dNT (T ), ζcN

(1−b)cN (1)
)

=

∫
dσ1dσ2

√
a(1 − a)dN

[
Y 1(T )

]
((1−a)dNT,dNT ),(k′,n′)

NCov
(
ζn′

n−k′(1), ζcN
(1−b)cN (1)

)
,

(5.43)

where the integrand is thought to be piece-wise constant so as to coincide with the sum (i.e., we just have
rescaled (k′, n′) but not taken any limit).

For any R > 0, consider the integral of (5.43) restricted to {|σ1|, |σ2| ≤ R}. From Lemma 5.27, it is

a convolution of a Gaussian kernel (with variance
√

(T − 1)/T ) and of NCov
(
ζn′

n−k′ (1), ζcN
(1−b)cN (1)

)
. By

Theorem 5.9 the latter is independent of σ1 and σ2 in the N → ∞ limit. Thus the contribution of (5.43)

restricted to {|σ1|, |σ2| ≤ R} is given by (5.42) times MR =
(
Erf(R/

√
2 − 2/T )

)2

as R → ∞ (which

is the mass of the Gaussian in the integration domain). Since MR → 1 as R → ∞, this will be the full
contribution to the two-times covariance in the large-N limit.



The contribution of (5.43) outside {|σ1|, |σ2| ≤ R} is of order O(1)(1 −MR) → 0 as R → ∞. To see
this, first observe that the limiting covariance (multiplied by N) is uniformly bounded as soon as (a) the
Ω’s for (k′, n′) and for (bcN, cN) away from each other or (b) away from ImΩ = 0. Case (a) is violated
only for some σ1, σ2 of order

√
N , the region where anyway the propagator vanishes as exponentially in

σ1, σ2 (on top of it, from Proposition 5.26, when two points (k, n) and (k′, n′) are at distance δN with
small δ, then their covariance is only diverging like ln(δ), which can still be integrated.). Case (b) is also
not a problem, since this breaks down as well for σ1, σ2 of order

√
N and when ImΩ → 0, the covariance

might diverge but only polynomially in N , which is dominated by the Gaussian decay of the propagator.
Thus taking N → ∞ and then R → ∞ one establishes the result.

5.6 Correlations close to the characteristic lines

In Proposition 5.28 we showed that there is slow-decorrelation and the time correlations equal at first
order the correlations at fixed time. This holds in the case when the projections along the characteristic at
fixed time of the space-time points under focus are at distance of order O(N) of each other. Now we want
to consider the correlations close to the characteristic lines. (5.41) suggests that non-trivial correlation are
present when we consider space-time points at distance O(

√
N) from a given characteristic line. This is

what we show in the next proposition.

Proposition 5.29. Let d > 0, a ∈ (0, 1), and T > 1 be fixed. For any given ξ1, ξ2 ∈ R, consider the
scaling

k = (1 − b)cN = (1 − a)dN + ξ1
√

(1 − a)dN, n = cN = dN + ξ1
√

(1 − a)dN + ξ2
√
adN.

Then,

lim
N→∞

NCov
(
ζ
(dNT )
(1−a)dNT (T ), ζ

(cN)
(1−b)cN(T = 1)

)
− ln(N/d)

πd
√
a(1 − a)

=

+
−1

πd
√
a(1 − a)

1

2π(T − 1)/T

∫

R2

dσ1dσ2e
−(σ2

1+σ2
2)/(2(T−1)/T ) ln[(σ1 − ξ1)

2 + (σ2 − ξ2)
2].

(5.44)

Remark 5.30. In particular, at equal time T = 1, setting c = 1 + ξ1
√

(1 − a)/N + ξ2
√
a/N , and b =

a+ (ξ2
√

1 − a− ξ1
√
a)
√
a(1 − a)/N , then we have

lim
N→∞

NCov
(
ζ
(N)
(1−a)N (1), ζ

(cN)
(1−b)cN (1)

)
− ln(N)

π
√
a(1 − a)

=
−1

π
√
a(1 − a)

ln[ξ21 + ξ22 ]. (5.45)

Proof of Proposition 5.29. The covariance to be computed is given explicitly by (5.43) with

k′ = (1 − a′)d′N = (1 − a)dN + σ1

√
(1 − a)dN, n′ = d′N = dN + σ1

√
(1 − a)dN + σ2

√
adN, (5.46)

in which we can insert the asymptotics of the propagator (5.41) (the control for large σ1, σ2 is as in the proof
of Proposition 5.28 and thus we do not repeat the details). The difference with respect to Proposition 5.28
is that the distance between the double critical points Ω(d, a) and Ω(d′, a′) scales as N−1/2 and therefore
we need to be a bit more careful and use (5.36) which holds in that regime. An explicit computation gives

|Ω(c, b) −Ω(d′, a′)| =
√

(ξ1 − σ1)2 + (ξ2 − σ2)2
√
d/N(1 + O(N−1/2)). (5.47)

Let us verify that the error terms are all negligible in the N → ∞ limit. The O(N−1/2) error terms in
(5.34) are all neglibible: (a) when W ∈ cΠ+(b) and Z ∈ Π+(a), then we can do the approximation of the
integrals used to prove Proposition 5.26 and the O(1) in (5.37) is multiplied by O(N−1/2); (b) when either
W ∈ cΠ+(b) or Z ∈ Π+(a), then with the same strategy of the proof of Proposition 5.26 we get that the
double integral is bounded times O(N−1/3). The reason is that in this case, see (5.34), one of the inverse
square root term is not present, which means that in (5.38) either 1/

√
y or 1/

√
x is absent; (c) when

W ∈ cΠ−(b) and Z ∈ Π−(a), then the term is O(N−2/3) since 1/(Z−W ) is integrable in two-dimensions.
The same holds for the error terms in (5.35). Finally, the error term in (5.36) is clearly integrable in two
dimensions and it goes to 0 as N → ∞.



What remains to be done is to determine the asymptotics of (5.43) in which we consider only the
non-error terms in (5.36), namely the l.h.s. of (5.37). However, Proposition 5.26 is not good enough, since
we want to prove the limiting covariance up to O(1). Instead, for the l.h.s. of (5.37) we can as well use the
exact expression contained in Proposition 5.10. The asymptotics (5.39) of the complete elliptic integral

gives us o(1) instead of O(1) in (5.37). Thus, up to o(1) terms, NCov(ζ
(dNT )
(1−a)dNT (T ), ζ

(cN)
(1−b)cN(T = 1)) is

given by
−1

2π(T − 1)/T

∫

R2

dσ1dσ2e
−(σ2

1+σ2
2)/(2(T−1)/T ) 4

π

ln[|Ω(c, b) −Ω(d′, a′)|]√
Im(Ω(c, b))

√
Im(Ω(d′, a′))

. (5.48)

Using Im(Ω(c, b)) = 2d
√
a(1 − a) + O(N−1/2), Im(Ω(d′, a′)) = 2d

√
a(1 − a) + O(N−1/2), and (5.47) we

obtain the claimed result.

5.7 Identifying the additive stochastic heat equation

One might ask what is the behaviour of the limiting double integral in Proposition 5.29. We use τ =
(T − 1)/T and use polar coordinates, ξ1 = R

√
τ cos(φ) and ξ2 = R

√
τ sin(φ), the change of variables

σ1 = ξ1 + λ
√
τ cos(θ + φ) and σ2 = ξ2 + λ

√
τ sin(θ + φ) leads to

1

2π

∫

R2

dσ1dσ2e
−(σ2

1+σ2
2)/2 ln[(σ1 − ξ1)

2 + (σ2 − ξ2)
2] = ln(τ) + C(R) (5.49)

with

C(R) =
1

π

∫

R+

dλλ ln(λ)e−(λ2+R2)/2

∫ π

−π

dθeλR cos(θ) = 2e−R2/2

∫

R+

dλλ ln(λ)e−λ2/2I0(λR). (5.50)

This is a function that goes from C(0) = ln(2) − γEuler to C(R) ≃ 2 ln(R) as R → ∞. It can be expressed
in terms of incomplete Gamma function,

Γ (s, x) =

∫ ∞

x

ts−1e−tdt,

as follows
C(R) = Γ (0, R2/2) + ln(R2).

This can be readily proved by subsisting the series expansion for I0(2z) =
∑∞

k=0 z
2k/(k!)2 into the last

integral in (5.50), interchanging the integral in λ with the sum in k (easily justified) and then evaluating
the resulting λ integrals

∫ ∞

0

dλλ2k+1 log(λ)e−λ2/2e−λ2/2 = 2k−1k!
(
log 2 + ψ(1 + k)

)
,

where ψ is the digamma function. The resulting sum can be identified with a series expansion [17, Equation
(8.19.9)] for the incomplete Gamma function (equivalently the exponential integral E1).

For the general statement below, we define a parameter τ depending on T > S > 0, and we will work
with the following function for r ∈ (0,∞):

Gτ (r) = −Γ
(
0, r2

2τ

)
− ln(r2),

where ξ = (ξ1, ξ2), r = |ξ|.
Corollary 5.31. Fix d > 0, a ∈ (0, 1), T > S > 0. For η = (η1, η2) let ζ(T, η;N) = N1/2ζ

(n)
k (T )

where n =
(
dN +

(
η1
√

(1 − a)d+ η2
√
ad
)√

N
)
T, k =

(
(1 − a)dN + η1

√
(1 − a)d

√
N
)
T.

Then for η, λ, µ, ν ∈ R2 (all different),

lim
N→∞

Cov (ζ(T, η;N) − ζ(T, λ;N), ζ(S, µ;N) − ζ(S, ν;N))

=
S

πd
√
a(1 − a)

(
Gτ (|η − µ|) −Gτ (|η − ν|) −Gτ (|λ − µ|) +Gτ (|λ− ν|)

)
.



Proof. Due to the scaling in Proposition 5.5,

Cov
(
ζ
(
T, η;N

)
, ζ
(
S, ν;N

))
= S Cov

(
ζ
(
T/S, η;N

)
, ζ
(
1, ν;N

))
.

By this and linearity, it suffices to show that

lim
N→∞

Cov
(
ζ
(
T, η;N

)
, ζ
(
1, ν;N

))
− ln(N/d)

πd
√
a(1 − a)

=
1

πd
√
a(1 − a)

Gτ

(
|η − ν|

)
,

where τ is defined with S = 1 (i.e. τ = (T − 1)/T ). This follows from the result of Proposition 5.29. In
that result, replace for the moment the notation a, d by ã, d̃. Then, there are four free variables ã, d̃, ξ1, ξ2.
If we make the following substitutions

ã = a+
η1 − aη1 − η2

dT
N−1/2, d̃ = d+

η1
T
N−1/2, ξ1 =

ν2 − η2/T√
d(1 − a)

, ξ2 =
−η1 + η2 + T (ν1 − ν2)

T
√
ad

.

then up to negligible error, we turn the expression in Proposition 5.29 into the desired left-hand side
formula above.

The following calculations are formal. Consider the (2 + 1)-dimensional EW equation (1.1). We will
calculate the covariance formally, ignoring the fact that u is not function valued (see, for example, [22]). We
start by computing the invariant measure which turns out to be a Gaussian free field. Assuming ergodicity,
the invariant solution can be written as

u(t, x) =

∫ t

−∞

∫

R2

pt−s(x− y) ξ(ds, dy)

where the heat kernel is as above. From this, and the delta covariance of ξ we find that

Cov
[
u(t, x), u(t̃, x̃)

]
=

∫ t

−∞

∫ t̃

−∞

∫

R2

∫

R2

pt−s(x− y) pt̃−s̃(x̃− ỹ)Cov
[
ξ(ds, dy), ξ(ds̃, dỹ)

]

=

∫ min(t,t̃)

−∞
ds

∫

R2

dy pt−s(x− y) pt̃−s(x̃− y).

From this we can calculate the full space-time covariance structure. First assume t = t̃ in which case the
above integral evaluates to

Cov
[
u(t, x), u(t, x̃)

]
= (4π)−1Γ

(
0,

|x− x̃|2
4s

) ∣∣∣∣∣

s=∞

s=0

.

Notice that for s near infinity,

(4π)−1Γ

(
0,

|x− x̃|2
4s

)
≈ (4π)−1

(
ln s− ln |x− x̃| + c

)

for some constant c, whereas for s near zero, the expression goes to 0. Therefore, if we look at the covariance
of differences, we can remove the ln s divergence and the constant c. This implies that

Cov
[
u(t, x) − u(t, y), u(t, x̃) − u(t, ỹ)

]
= −(2π)−1

(
ln |x− x̃| − ln |x− ỹ| − ln |y − x̃| + ln |y − ỹ|

)
,

which shows that for any fixed time t, u(t, x) is a Gaussian free field in x ∈ R [6, 39].
To compute the space-time covariance, we can use the above formulas. Alternatively, by the Duhamel

principle we can write for t > 0,

u(t;x) =

∫

R2

dy pt(x − y)u0(y) +

∫ t

0

∫

R2

pt−s(x− y) ξ(ds, dy).



For initial data u0(x) given by the Gaussian free field with the above covariance, using the independence
of the noise ξ with u0 we compute

Cov
(
u(t, x), u(0, 0)) =

∫

R2

dy pt(x− y)Cov[u0(y), u0(0)] =
−1

2π

∫

R2

dy pt(x− y) ln(|y|) =
Gt(|x|)

4π
.

By translation invariance we thus conclude that for t > t̃

Cov
[
u(t, x)−u(t, y), u(t̃, x̃)−u(t̃, ỹ)

]
= (4π)−1

(
Gt−t̃(|x−x̃|)−Gt−t̃(|x− ỹ|)−Gt−t̃(|y−x̃|)+Gt−t̃(|y− ỹ|)

)
.

A Generalities of Gaussian processes

Here we recall some basics of Gaussian processes as we will use them (see e.g. [25, Section VIII.6]) An n-dimensional diffusion
process Xt with linear drift, say drift µ = AXt for a given matrix A (possibly time-dependent), and space-independent
dispersion matrix σ is a solution of a system of SDE’s

dXk
t = A(t)Xtdt + σ(t)dWt

with Wt being a standard n-dimensional Brownian motion. Then, the probability density P (x, t) that the process X is at x
at time t satisfies the Fokker-Planck equation

dP (x, t)

dt
= −

∑

i,j

Ai,j
d

dxi
(xjP (x, t)) +

1

2

∑

i,j

Bi,j
d2P (x, t)

dxidxj
,

where B = σTσ is the diffusion matrix.
In particular, if one starts with δ-initial condition at x(0), i.e., P (x, 0) =

∏r
i=1 δ(xi − xi(0)), then

E(X(t)) = Y (t)X(0),

where Y (t) is the evolution matrix satisfying

dY (t)

dt
= A(t)Y (t), Y (0) = 1. (A.1)

Further, the solution of the Fokker-Plank equation is given by

P (x, t) =
1

[(2π)n det(Ξ)]1/2
exp

(
−

1

2
(x − E(X(t))TΞ−1(x − E(X(t))

)

where Ξ(t) is the covariance matrix given by

Ξ(t) =

∫ t

0
dsY (t)Y −1(s)B(s)Y −T(s)Y T(t).

Further, Ξ can be characterized as the solution of the equation

dΞ

dt
= AΞ + ΞAT + B, Ξ(0) = 0.

We compute the two-time distribution when such a Gaussian transition probability is applied to a Gaussian distribution

with covariance matrix C1 := Ξ(t1), i.e., with density given by const · e− 1
2

xTC
−1
1 x. Denote as well C1,2 = Ξ(t2, t1) and

t = t2 − t1. Then,

P(x(t1) ∈ dx, x(t2) ∈ dy) = const exp

(
−

1

2

[
xTC−1

1 x + (y − Y (t))TC−1
1,2(y − Y (t)x)

])
dxdy.

The quadratic form in the parenthesis can be written as

(xT, yT)

(
C−1

1 + Y (t)TC−1
1,2Y (t) −Y T(t)

−C−1
1,2Y (t) C−1

1,2

)(
x
y

)
.

We use the block matrix inversion formula
(

a b
c d

)−1

=

(
−m−1 m−1bd−1

d−1cm−1 d−1 − d−1cm−1bd−1

)

with m = bd−1c − a and obtain
(

C−1
1 + Y (t)TC−1

1,2Y (t) −Y T(t)

−C−1
1,2Y (t) C−1

1,2

)−1

=

(
C1 C1Y T(t)

Y (t)C1 C1,2 + Y (t)C1Y T(t).

)

Thus this is the covariance matrix for the two-time distribution. In particular, the covariance between a site x(t1) and y(t2)
is given by the application of the propagator Y (t2 − t1) to the covariance C1 at time t1.



B Additional q-Whittaker dynamics

B.1 Alpha dynamics

In addition to the push-block alpha dynamics, there is also an RSK type dynamic (see [29, Section 6.2], or [32]). Considering
interlacing partitions λ̄, we define a Markov transition matrix PRSK

a;α

(
λ̄ → ν̄

)
to a new set of interlacing partition ν̄ according

to the following update procedure. For k = 1, . . . , N choose independent random variables vk distributed according to the

q-geometric law with parameter αak (see Section 2.1). For 1 ≤ k ≤ n − 1, let ck = ν
(n−1)
k − λ

(n−1)
k . Choose w1, . . . , wn−1

independently so that wk ∈ {0, 1, . . . , ck} is distributed according to

P(wk = s) = ϕ
q−1,q

λ
(n)
k

−λ
(n−1)
k ,q

λ
(n−1)
k−1

−λ
(n−1)
k

(
s|ck

)
,

where we recall the convention that λ
(n)
0 = +∞ for all n.

Now update

ν
(n)
1 = λ

(n)
1 + w1 + vn, and for k ≥ 2 ν

(n)
k = λ

(n)
k + wk + ck−1 − wk−1.

Proposition B.1. Define a Markov process indexed by t on interlacing partitions λ̄(t) with packed initial data and Markov

transition between time t − 1 and t given by PRSK
a;αt

(
λ̄(t − 1) → λ̄(t)

)
. Then, for any t ∈ {0, 1, . . .}, λ̄(t) is marginally

distributed according to the q-Whittaker measure P
a;α(t) with α(t) = (α1, . . . , αt).

Proof. This follows from [29, Theorem 6.4].

In Section 3.3.1 we probe the limiting difference equation which arises from the push-block dynamics as q → 1. There
should be difference equations for the RSK type dynamics above, though we do not pursue this here. We also do not pursue
any fluctuation limits.

B.2 Plancherel dynamics

We consider two additional dynamics besides the push-block Plancherel dynamics.

The “right-pushing dynamics” were introduced as [10, Dynamics 9]. For 2 ≤ k ≤ n ≤ N , each λ
(n)
k evolves according

to the push-block dynamics. The only difference is in the behavior of λ
(n)
1 . For 1 ≤ n ≤ N , each λ

(n)
1 jumps (i.e., increases

value by one) at rate anqλ
(n−1)
1 −λ

(n)
2 . When λ

(n)
1 jumps it deterministically forces λ

(n+1)
1 , . . . , λ

(N)
1 to likewise increase by

one. It is clear that these dynamics preserve the interlacing structure of λ̄.

The “RSK type dynamics” were introduced as [10, Dynamics 8] (see also [32]). For 1 ≤ n ≤ N , each λ
(n)
1 has its own

independent exponential clock with rate an. When the clock rings, the particle λ
(n)
1 jumps (i.e., increases value by one).

These are all of the independent jumps, however there are certain triggered moves. When a particle λ
(n−1)
k jumps, it triggers

a single jump from some coordinate of λ(n). Let ξ(k) represent the maximal index less than k for which increasing λ
(n)
ξ(k)

by

one does not violate the interlacing rules between the new λ(n) and λ(n−1). With probability

qλ
(n)
k −λ

(n−1)
k

1 − q
λ
(n−1)
k−1 −λ

(n)
k

1 − qλ
(n−1)
k−1 −λ

(n−1)
k

(recall the convention that λ
(n)
0 ≡ +∞) λ

(n)
ξ(k)

jumps; and with complementary probability λ
(n)
k+1 jumps. It is clear that these

dynamics maintain the interlacing structure of λ̄.

Proposition B.2. For each of the right-pushing and RSK type dynamics described above, define continuous time Markov

processes, all denoted by λ̄(γ), started from packed initial data. Then, for any γ > 0, λ̄(γ) is marginally distributed according

to the Plancherel specialized q-Whittaker process Pa;γ .

Proof. This follows from a combination of [10, Proposition 8.2 and Theorem 6.13].

In the same manner as in Section 3.3.2, we can derive ODEs for the LLN from the above continuous time dynamics. In

the right-pushing case, the dynamics are the same as in the push-block case aside from λ
(n)
1 . Hence by the same reasoning

that for k ≥ 2, (3.14) still holds. From the right-pushing rule, we similarly deduce that the following should hold

dx
(n)
1 (τ)

dτ
= ane−x

(n−1)
1 (τ)+x

(n)
2 (τ) +

n−1∑

ℓ=1

dx
(ℓ)
1 (τ)

dτ
.

For the RSK type dynamics, let us assume that all particles are well-spaced (as they surely will be after a short amount
of time). Then we need not worry about transferring jumps in the RSK type dynamics. Thus, by similar reasoning as in the
push-block case we find that

d

dτ
x
(1)
1 (τ) = a1,

d

dτ
x
(n)
1 (τ) = an +

d

dτ
x
(n−1)
1 (τ) · e−x

(n)
1 (τ)+x

(n−1)
1 (τ)
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Fig. 15: Karlin-McGregor interpretation of the determinant in (3.9) and (3.10).

and for k ≥ 2,

d

dτ
x
(n)
k (τ) =

d

dτ
x
(n−1)
k (τ)e−x

(n)
k (τ)+x

(n−1)
k (τ) 1 − e−x

(n−1)
k−1 (τ)+x

(n)
k (τ)

1 − e
−x

(n−1)
k−1 (τ)+x

(n−1)
k (τ)

+
d

dτ
x
(n−1)
k−1 (τ)

(
1 − e−x

(n)
k−1(τ)+x

(n−1)
k−1 (τ) 1 − e

−x
(n−1)
k−2 (τ)+x

(n)
k−1(τ)

1 − e−x
(n−1)
k−2 (τ)+x

(n−1)
k−1 (τ)

)
.

In these equations, on the right-hand side the differential term d/dτ gives the rate of jumps from below whereas the terms

multiplying that correspond to the proportion of this jump rate which is transferred to x
(n)
k .

We do not pursue these alternative dynamics any further, though note that they may yield different fluctuation SDEs
than in the push-block case (though they will all have the same marginals).

B.3 Positivity in determinantal expressions

Recall that in Corollary 3.3, equation (3.10) provides the determinantal formula

e−(x(n)
n (τ)+···+x

(n)
n−r+1(τ)) = e−τr det

[
Gr,τ (n + 1 − r + j − i)

]r
i,j=1

.

We show below that
e−τr det

[
Gr,τ (n + 1 − r + j − i)

]r
i,j=1

= e−τrpn
r (τ),

where pn
r (τ) is a polynomial in τ with positive coefficients. This positivity is surprising and its origins warrants further

investigation.
The above representation is shown by realizing the determinant as a partition function for a certain system of non-

intersecting paths with positive weights. We explain this for the above determinant, equation (3.10) in the main text, as well
as the alpha version, equation (3.9) in the main text.

It is possible to represent the determinant in (3.9) in terms of the partition function for a collection of r non-intersecting
paths on a certain weighted lattice. Consider the lattice on the left of Figure 15 which has width n and height r + t. The
bottom r portion of the lattice is the standard square lattice, and every edge (horizontal and vertical) has a weight of 1.
The top t portion of the lattice is composed of vertical edges and diagonal up-right edges. Each diagonal edge between level
r + ℓ and r + ℓ + 1 has weight 1 − αℓ and each vertical edge between those levels has weight αℓ. The weight of a directed
path (only taking up or right edges for the first r levels and then up or up-right edge for the remaining levels) from level 1,
position i to level r + t, position j (1 ≤ i ≤ j ≤ n) is the product of the weights along the path. The partition function is the
sum of these weights over all such paths and is readily computed as

j∑

c=i

( r

c − i

)
ej−c(1 − α;α) =

j−i∑

ℓ=0

eℓ(1 − α;α)
(r)j−i−ℓ

(j − i − ℓ)!
= Gr,j−i(j − i + 1). (B.1)

The Lindström-Gessel-Viennot theorem implies that the partition function for a collection of r non-intersecting paths is
written as an r-by-r determinant. In particular, taking the starting points on level one of the r paths to be (1, . . . , r) and the
ending points on level r+t to be (n+1−r, . . . , n) we find that this partition function is exactly det[Gr,t(n+1−r+j−i)]ri,j=1.

Similarly, in the Plancherel case of (3.10) (see the right part of Figure 15) we consider r non-intersecting paths from
positions (1, . . . , r) to (n + 1 − r, . . . , n) such that in the first part they either go up or to the right until reaching level
r − 1, in the second part they perform one-sided continuous simple random walk with jump rate τ during a time span of
1. A combination of the Lindström-Gessel-Viennot and Karlin-McGregor theorems imply that the probability that these r



paths do not intersect is proportional to e−τr det[Gr,τ (n + 1 − r + j − i)]ri,j=1. On the other hand, for a single path, the

probability of going from a fixed starting point to fixed ending point is proportional to e−τ times a polynomial in τ with
positive coefficients. Therefore the probability of the r non-intersecting paths also takes the form e−τr times a polynomial
in τ with positive coefficients, which shows the positivity of the polynomial pn

r (τ).

C Proof of Proposition 3.6

Let us first prove (3.16). Doing linear combinations of columns and using the relation (3.15), the determinants in (3.16) can
be rewritten as follow:

Q1 := det[Bi,j ]1≤i,j≤M+1 =

∣∣∣∣∣∣∣




C1,1 · · · C1,M B1,M+1

...
. . .

...
...

CM+1,1 · · · CM+1,M BM+1,M+1




∣∣∣∣∣∣∣
,

Q2 := det[Ci+1,j+1]Mi,j=1,

(C.1)

and
Q3 := det[Ci,j ]

M+1
i,j=1,

Q4 := det[Bi+1,j+1]
M
i,j=1 =

∣∣∣∣∣∣∣




C2,2 · · · C2,M B2,M+1

...
. . .

...
...

CM+1,1 · · · CM+1,M BM+1,M+1




∣∣∣∣∣∣∣
,

(C.2)

and finally

Q5 := γ det[Bi,j+1]M+1
i,j=1 = −

∣∣∣∣∣∣∣




C1,2 · · · C1,M+1 B1,M+1

..

.
. . .

..

.
..
.

CM+1,2 · · · CM+1,M+1 BM+1,M+1




∣∣∣∣∣∣∣
,

Q6 := det[Ci+1,j ]
M
i,j=1.

(C.3)

With these notations we have (3.16) = Q1Q2 − Q3Q4 + Q5Q6.
Let us define the following (2M + 1) × (2M + 1) matrix,

Q =




C1,2 · · · C1,M C1,M+1 B1,M+1 C1,1 0 · · · 0
.
..

. . .
.
..

.

..
.
..

.

..
.
..

. . .
.
..

CM+1,2 · · · CM+1,M CM+1,M+1 BM+1,M+1 CM+1,1 0 · · · 0
0 · · · 0 C2,M+1 B2,M+1 C2,1 C2,2 · · · C2,M

.

..
. . .

.

..
.
..

.

..
.
..

.

..
. . .

.

..
0 · · · 0 CM+1,M+1 BM+1,M+1 CM+1,1 CM+1,2 · · · CM+1,M




. (C.4)

Next, notice that for a square block matrix of the form

(
α 0
0 β

)
, its determinant is always zero unless α (and thus β) are

square matrices. Adding the block of the last M − 1 columns to the first M − 1 columns and then subtracting rows 1 + j
from M + 1 + j, j = 1, . . . , M , we obtain a matrix block matrix with zeroes but with α of size (M + 2) × (M + 1). Thus
det(Q) = 0.

In Q there are three columns without zero entries. Call the first block with C’s above the zeroes as A1 and the last block
below the zeroes as A2. Then we can write Q in the following form

Q =

(
A1 U1 U2 U3 0
0 L1 L2 L3 A2

)
, (C.5)

where Ui are (M + 1)-vectors and Li are M -vectors. By multi-linearity of the determinant, we have that det(Q) equals the
sum of the determinants of the matrices obtained by replacing for each pair (Ui, Li), i = 1, 2, 3, one of the elements by the
vector of zeroes. Thus obtained matrices are of the block matrix form with zero corners as described above but, except if one
sets exactly one of the Ui = 0, the α matrix is not square. Thus we have

0 = det(Q) = det

(
A1 0 U2 U3 0
0 L1 0 0 A2

)
+ det

(
A1 U1 0 U3 0
0 0 L2 0 A2

)

+ det

(
A1 U1 U2 0 0
0 0 0 L3 A2

)
= −Q1Q2 + Q3Q4 − Q5Q6 = −(3.16).

(C.6)

Next we prove (3.17). In the first step, using linear combinations of columns, we can replace in the determinants of (3.17),
the Bi,j ’s with Ci,j ’s except for the last column. This gives

P1 := γ det[Bi,j ]
M+1
i,j=1 = Q1, P2 := det[Ci+1,j+1]

M−1
i,j=1,

P3 := det[Ci,j ]Mi,j=1, P4 := det[Bi+1,j+1]Mi,j=1 = Q4,
(C.7)



and finally

P5 := det[Bi,j+1]
M
i,j=1 =

∣∣∣∣∣∣∣




C1,2 · · · C1,M B1,M+1

...
. . .

...
...

CM,2 · · · CM,M BM,M+1




∣∣∣∣∣∣∣
,

P6 := det[Ci+1,j ]
M
i,j=1.

(C.8)

We have to prove (3.17) = P1P2 − P3P4 + P5P6 = 0. Now we have written all the Pi’s in terms of Ci,j ’s and sometimes one
single column of Bk,M+1’s. Let us show that the factor multiplying Bk,M+1 equals zero for all k = 1, . . . , M + 1. First, for
k = 1 (resp. k = M + 1), it is immediate to see that the factors are zero, since there are only two contributing terms: one
from P1 and the other one from P4 (resp. P5). Now take a fixed k ∈ {2, . . . , M}. Then, the factor in (3.17) which multiplies
Bk,M+1 is given by the sum of these three terms:

A1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




C2,2 · · · C2,M

.

..
. . .

.

.. 0
CM+1,2 · · · CM+1,M

C1,1 · · · C1,M

0
.
.. No Ck,·

CM,2 · · · CM,M




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (C.9)

where No Ck,· means that the row with the Ck,j ’s is missing,

A2 = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




C1,1 · · · C1,M

...
. . .

... 0
CM,1 · · · CM,M

C2,2 · · · C2,M

0
... No Ck,·

CM+1,2 · · · CM+1,M




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (C.10)

and

A3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




C2,1 · · · C2,M

...
. . .

... 0
CM+1,1 · · · CM+1,M

C1,2 · · · C1,M

0
... No Ck,·

CM,2 · · · CM,M




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (C.11)

We need to show that A1 + A2 + A3 = 0. Define the matrix

P =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




C1,1 · · · C1,M C1,2 · · · C1,M

...
. . .

... 0
Ck,1 · · · Ck,M Ck,2 · · · Ck,M

...
. . .

... 0
CM+1,1 · · · CM+1,M CM+1,2 · · · CM+1,M

C2,2 · · · C2,M

0
... No Ck,·

CM,2 · · · CM,M




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (C.12)

where the top-right (M + 1) × (M − 1) block contains only three non-zero rows. It is easy to verify that det(P ) = 0, since by
linear combinations of rows and columns we can delete the three lines in the just mentioned block. Expanding the determinant
by multi-linearity, for each of the three rows of P without zeroes, we can decide whether to keep the first M terms or the
last M − 1. Only when we replace with zeroes exactly one set of the M terms and the other two sets of M − 1 terms we
get a non-zero determinant by the same argument with block matrices with zero corners as used above. Up to reordering
the columns, we have a block diagonal determinant, leading (up to a (−1)M factor) to A1 when we keep (Ck,2, · · · , Ck,M ),
to A2 when we keep (CM+1,2, · · · , CM+1,M ) and A3 when we keep (C1,2, · · · , C1,M ). This finishes the proof of the identity
(3.17).
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