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Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation
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The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A

hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study

quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of

hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially

imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the

ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected

ions. The behavior that we observe in numerical simulations agrees very well with our analytic the-

ory of hole momentum conservation and the effects of “jetting.” Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4959871]

I. INTRODUCTION

An electron hole is a Bernstein-Greene-Kruskal (BGK)

mode1 solitary wave which is a self-consistent solution of

Vlasov-Poisson system. Other important BGK modes include

ion holes and double layers.2 These equilibrium solutions

were initially predicted by theory and have been observed in

space plasmas, laboratory plasma experiments, and computa-

tional simulations.3–7 Debye-scale bipolar electric field struc-

tures typical for electron holes are frequently observed by

space probes in earth’s magnetosphere and auroral zone of the

ionosphere.8–10 It has been postulated that these trapped elec-

trons are created during reconnection of earth’s magnetic field

and play an important role in energization of electrons.11,12

Being a collective mode of plasma, an electron hole exhibits a

particle-like behavior. Efforts have gone into defining an

effective mass, charge, and momentum for these phase-space

holes.13 Numerical simulations of electron phase-space holes

have been an important way to investigate the associated

phenomena. Dawson performed a one-dimensional Particle-

In-Cell (PIC) simulation14 of a water-bag electron distribution

with a hole in it. They observed self-acceleration of the

electron phase-space hole in their simulations. They attribute

this acceleration to the emission of ion-acoustic waves.

Simulations of electron holes in a Vlasov plasma using a con-

tinuum code5 also show strong acceleration of an electron

hole to an important fraction of electron thermal speed after

the ion density has formed a deep enough cavity. The interac-

tion between electron hole and surrounding ions has been

investigated by Saeki and Rasmussen.15 They found by per-

forming particle simulations16 that ion motion can lead to the

disruption of an electron hole into two holes traveling in

opposite directions at several times the ion sound speed.

Electron holes are also present in particle simulation of

the wake of an unmagnetized object in flowing magnetized

plasma. It is found that electron holes can form arising from

unstable electron distribution in the wake.17 Some holes will

stay in the central wake and grow large enough to disrupt

ions while others quickly move out of the wake.18

In order to understand the movement of these phase-

space holes, we use a hole tracking Particle-In-Cell

simulation code which is one-dimensional electrostatic. It

gives a good representation of electron holes in the presence

of a relatively strong magnetic field such as in the earth’s

magnetosphere. We have fully kinetic ions in our simulation,

as the effect of ion dynamics on electron holes is what we

are interested in. Simulation of a single solitary electron hole

is performed in a modest sized box with open boundary con-

ditions rather than periodic. Electrons and ions have fixed

Maxwellian distributions outside the boundaries.

This paper is organized in the following way: the hole

tracking particle simulation implementation is described in

detail in Section II. Section III presents the results from

hole tracking PIC simulation of electron holes in initial tran-

sient and steady state motion. Observations from simulations

are compared with an analytic theory. Section IV is devoted

to numerical experiments where we artificially accelerate

ion streams to push or pull the hole. They show important

momentum coupling between electron hole and ions. Final

summary comments are given in Section V.

II. HOLE TRACKING SIMULATION

Periodic boundary conditions are avoided in this study

because the hole can interact with itself through the periodic

boundaries, masking the phenomena we are studying. Open

boundary conditions for particles are used in our simulation.

Particles are free to leave the computation domain and

new particles are injected at every time step to represent the

Maxwellian distribution of ions and electrons in surrounding

plasma. Boundary conditions for potential / are homoge-

neous with /0ðxÞ ¼ /ðxÞ=kDe and /0ðxÞ ¼ �/ðxÞ=kDe at

the two ends of our simulation domain. These boundary con-

ditions assume that electrostatic potential falls exponentially

to zero on the Debye length scale in surrounding plasma.

Electron holes move at several times the cold ion sound

speed up to electron thermal speed2 relative to bulk species,

while the spatial extent of an electron hole is only a couple

of Debye lengths. The total distance traveled by an electron

hole for a long run is therefore hundreds or thousands of its

own size. A non-periodic simulation of the long term evolu-

tion of an electron hole would require thousands of Debye
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lengths in domain size if a fixed domain is used. An electron

hole is sensitive to the statistical noise level in PIC simula-

tion. For Ns particles per computation cell, the statistical

noise level on charge density scales like 1=
ffiffiffiffiffi
Ns

p
.19 To have a

clear resolution of the hole, we need a large number of par-

ticles per Debye length. The combination of a large simula-

tion domain with the requirement of a high number of

particles per length would demand excessive computational

resources. Simulating a fast moving electron hole using a

fixed domain is not efficient.

Therefore, we adopt a more adaptive approach to this

problem. A 1-D Particle-In-Cell (PIC) code is used which

detects the hole signal and moves the computation domain

accordingly so that the hole always stays inside it. We refer

to this method as “hole tracking.” The major component of

hole tracking is a feedback control mechanism. The hole

position is detected with an automated search algorithm. At

every time step, electric field from the simulation is con-

volved with a bipolar hole electric field signal. The hole

potential in its moving frame is considered to follow approx-

imately the analytic solution20

/ xð Þ ¼ wsech4 x

L

� �
; (1)

which gives rise to a bipolar electric field of the form

EðxÞ ¼ � 4w
L tanh x

L

� �
sech4 x

L

� �
. The typical hole half width

L is taken to be 4kDe. This choice will be justified later in

Section III. However, we observe that the choice of L affects

very little hole tracking results as long as it is in the vicinity

of a few Debye lengths. Position of the filtered signal maxi-

mum is taken to be where the electron hole is. Hole search

algorithm for on board solitary wave detection21 of space

probes is generally more sophisticated than the one presented

here. However, our algorithm achieves good performance

for the purpose of this study and is easy to implement.

Figure 1 shows a block diagram of the code’s major

components. At every time step k, the hole search algorithm

gives the position of electron hole xh½k� relative to the simu-

lation domain. Lab frame hole velocity vh½k� is given by

ðxh½k� � xh½k � 1�Þ=dtþ vb½k�, where dt is the time step size

of simulation and vb½k� is the velocity of simulation domain

from time step k � 1 to k. The hole speed calculated this way

is subject to high frequency noise. There is statistical noise

that is intrinsic to PIC simulation and sampling noise reflect-

ing the fact that hole position can only be evaluated with a

finite precision limited by search algorithm spatial grid step.

The noise is amplified by taking the numerical time deriva-

tive. Consequently, a low-pass filter is required to filter out

high frequency noise in measured hole velocity. We adopt a

causal Butterworth filter of second order in our simulation.

The cutoff frequency is empirically chosen as 0:005 xpe. The

higher the cutoff frequency, the faster the control law will

respond to changes in the hole velocity but it will also make it

more sensitive to noise. The filtered hole velocity ~vh½k� is used

as an input of control law to extrapolate the simulation box

velocity vb½k þ 1� that is required to follow the hole motion.

The control law takes both hole velocity ~vh½k� and relative

position xh½k� as input for robust feedback control on both

velocity and position. The control law can be expressed as

vb k þ 1½ � � vb k½ �
dt

¼ K1xh k½ � þ K2 ~vh k½ � � vb k½ �ð Þ; (2)

where K1 and K2 are, respectively, control coefficients on

position and velocity.

There is a certain freedom in the choice of control coef-

ficients K1 and K2. The control law should respond fast

enough so that the electron hole does not leave the domain

but not induce instability or excessive overshoot. In our sim-

ulation, position is normalized to kDe and velocity is normal-

ized to cs ¼
ffiffiffiffi
Te

mi

q
. The control coefficients we adopt are then

K1 ¼ 0:0025 x2
pe and K2 ¼ 0:75 xpe.

The particle pushing and particle injection parts of the

PIC code need to take into account the fact that the simula-

tion domain is moving relative to the background plasma

and is accelerating. As a consequence of acceleration, the

simulation domain is no more an inertial frame of reference.

In addition to the force due to the electric field, particles feel

an extra acceleration which is the opposite of box accelera-

tion ab. This term is included during particle pushing.

Background plasma particle distribution relative to simula-

tion domain is now a Maxwellian shifted by minus the box

velocity �vb. The velocity distribution of particle fluence

across simulation boundaries can be written as

jvjf vð Þdv ¼ n0jvjffiffiffiffiffiffi
2p
p

vth

exp � vþ vbð Þ2

2v2
th

" #
dv; (3)

where vth ¼
ffiffiffiffiffiffi
Ti=e

mi=e

q
. Eq. (3) can be integrated to obtain the

total number of particles that need to be injected into the

simulation box during a time step of length dt

Ninjection ¼
2n0vthdtffiffiffiffiffiffi

2p
p exp � v2

b

2v2
th

 !
þ n0vbdterf

vbffiffiffi
2
p

vth

� �
: (4)

At each iteration, Ninjection particles are injected following a

distribution given by Eq. (3) for both ions and electrons. The

FIG. 1. Block diagram of hole tracking, qðxÞ and /ðxÞ are charge density

and potential in the simulation, xh and vh are position and velocity of elec-

tron hole, ~vh is the hole velocity after smoothing is applied, vb and ab are

velocity and acceleration of simulation box.
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velocity sign of a particle determines which boundary it will

be injected from. Ninjection and Eq. (3) need to be evaluated at

every iteration as vb is constantly changing as a result of

feedback control. A standard acceptance-rejection method22

is implemented to draw random velocities from a distribution

expressed by Eq. (3). The particle injection is considered to

be uniform in time. Once injected, they will experience a

partial kick and drift. The time duration of this partial parti-

cle push is hdt, where h is a random number uniformly

distributed between 0 and 1. The PIC simulation uses a leap-

frog integration scheme. As a consequence, velocities of par-

ticles are always at half a time step behind their positions.

Injection is made consistent with this leapfrog scheme, other-

wise unphysical density perturbations are excited at the sim-

ulation boundaries. The standard PIC component of the code

is a 1-D electrostatic Particle-In-Cell code, which is referred

to as ESPIC. Charge weighting in the code uses a cloud-in-

cell19 approach and Poisson equation is solved by a direct tri-

diagonal method. A detailed description of ESPIC can be

found in a previous publication18 by Haakonsen et al.
We choose the length of simulation domain to be 48 kDe

across. By virtue of hole tracking, we do not need a very big

domain size to simulate a fast moving hole. However, it should

be large enough so that electron holes stay away from bound-

aries during simulations. In this way, unphysical boundary

effects can be avoided. The longest excursion that a hole

makes from the center of simulation box is around 15kDe

before it is caught up by hole tracking in all of our simulations.

This choice of domain size guarantees a safety margin from

boundaries without being too demanding on computational

resources. In order to seed a phase-space hole, we initialize

the electron distribution with a phase-space perturbation. The

details of this initialization will be discussed in Section III.

Hole tracking can be considered as a technique to simulate an

electron hole in its rest frame. A successful hole tracking simu-

lation should not change the physics we are trying to simulate.

Figure 2 compares velocity evolution of an electron hole

in an ordinary fixed domain PIC run to what we obtain from

a hole tracking PIC run using the same initialization setting.

The fixed domain run uses a domain which is 192 kDe across

with 2� 108 particles and 4000 spatial cells. The hole track-

ing run uses a standard 48 kDe domain and thus only requires

a quarter as many particles and spatial cells. The agreement

between the two runs demonstrates the strength of hole

tracking, which is able to resolve hole motion to the same

precision with less computational resources. And for longer

time durations, the gain would be even greater.

We use 107 � 109 particles in our simulations depending

on the size of hole we want to simulate. Simulating a shal-

lower hole requires more particles to keep the same signal-

to-noise ratio. The number of cells is chosen to be 103 so that

we have �20 grid-points per Debye length, making sure that

the hole structure is well resolved. The code is fully parallel-

ized to meet the challenge of the large number of particles

and time steps required to resolve the phenomena we are

interested in. It is observed that a choice of time step size

bigger than 0:5=xpe may drive the simulation numerically

unstable. We have explored a range of different time step

sizes in our simulation from 0:01=xpe to 0:4=xpe. The choice

of time step size does not affect simulation results if it is

below the stability threshold. dt ¼ 0:3=xpe is the choice we

adopt in our simulations.

Feature tracking PIC simulation is a very versatile tool

by its nature. A similar approach can be used to investigate

the highly resolved dynamics of a wide class of nonlinear

plasma phenomena, such as the formation and kinematics of

ion holes.

III. INITIAL TRANSIENT TO STEADY STATE

There are different ways to seed a phase-space hole at

the initial stage of a numerical simulation. Schamel derived

an analytic solution for electron hole structure in the absence

of ion response.20 This analytic expression of electron distri-

bution function has been used as initialization of hole simu-

lation by Eliasson and Shukla.5 However, we adopt a

different approach in our simulation which can be divided

into the following steps:

Step 1: For a given electron density n0, each electron is ini-

tialized with a random position which is uniformly distrib-

uted in spatial domain. A Quiet Start19 technique is used for

position initialization to make sure that the number of par-

ticles in each spatial cell is uniform.

Step 2: For a given electron thermal velocity vth;e ¼
ffiffiffiffi
Te

me

q
,

each electron is initialized with a random velocity accord-

ing to a probability distribution which is a Maxwellian

~f e;0 ¼
1ffiffiffiffiffiffi

2p
p

vth;e

exp � v2

2v2
th;e

 !
: (5)

Step 3: For each electron with a position x and a velocity v,

a random number a is drawn uniformly between 0 and 1,

the velocity is rejected if a is smaller than a predefined

value fdðx; vÞ, where

fd x; vð Þ ¼ hd exp
� v� vdð Þ2

2r2
d

 !
exp

�x2

2k2
d

 !
: (6)

FIG. 2. Velocity of an electron hole in two different runs, in the fixed

domain run, the electron hole hits the boundary at xpet ¼ 590 while the hole

tracking run can successfully simulate hole motion for a much longer period

of time. Velocity data shown here are smoothed using a low-pass filter of

cutoff frequency 0:15 xpe.
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This is a bell-shaped function in space and velocity: hd

is the dimple depth which is smaller than 1; rd is the dimple

velocity width; vd is the dimple initial velocity; and kd is the

dimple spatial width.

If a velocity is rejected in step 3, we return to step 2 and

choose a new velocity and then move on to step 3 to go

through another rejection test with this new velocity, iterat-

ing till the velocity is accepted. By this process, we initialize

a dimple in the velocity distribution, localized in position

and velocity, but maintain the initial density uniform by

enhancing the rest of the electron distribution. Since at each

rejection step, the same fraction of velocities (determined

by fd) is rejected, the final distribution is proportional to
~fe0ð1� fdÞ. And since the total density is uniform, the nor-

malization gives

fe;0 ¼ n0

~f e;0 � ~f e;0 fd

1�
ðþ1
�1

~f e;0 fd dv

; (7)

fe;0 is the initial electron distribution in our simulation.

This hole seeding process is simple to implement but not

exactly self-consistent. However, the initial phase-space

perturbation will evolve into a self-consistent hole. We

refer to the process described above as “uniform density

initialization.” The uniform density initialization reduces

the initial plasma oscillations in the simulation due to

charge imbalance.

Figure 3 shows a run with uniform density initialization

and the subsequent transient. The ions are initialized and

injected as a Maxwellian distribution with a temperature Ti

and a drift velocity of �1cs in lab frame. The temperature

ratio Te=Ti is 20, mass ratio mi=me ¼ 1836. The ions are

beam like in this simulation. Initialization parameters for

electron phase-space density deficit are hd ¼ 0:9; vd ¼ 0; rd

¼ 0:15 vth;e; kd ¼ 4 kDe. The number of particles used in this

run is Ne ¼ Ni ¼ 5:12� 107.

The first row of Figure 3 shows the initialization of sim-

ulation, notice the initial dimple shape of deficit in electron

phase-space density. Ion and electron densities are equal and

uniform by virtue of Quiet Start. As a consequence, the

initial potential is zero for our initialization. Once simulation

starts, the 2nd and 3rd rows of column (a) in Figure 3 show

that the initial perturbation in electron phase-space begins

to rotate, following the phase-space flow. Its aspect ratio

changes during this process. The same rows of column (d)

show that a cavity quickly appears in electron density, giving

rise to a positive potential pulse which in turn traps the low

energy electrons inside. Row 4 shows that after ions have

time to respond to this potential (xpet > ðmi=meÞ
1
2), a cavity

of depth ’ 5% forms in ion density at the initial position of

the hole. The initial ion density perturbation is deeper for a

smaller mass ratio (’13% for mi=me ¼ 100). The electron

hole is ejected by this ion density cavity, speeding up during

this process. Ions are initialized with a negative drift velocity

in the lab frame so that the electron hole is ejected in the

FIG. 3. (a) Normalized electron phase-space density contours, (b) potential, (c) ion density, and (d) electron density. Position x and velocity v are relative to

lab frame. The plots shown on the same row are from the same time step in the simulation.
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positive x direction in this run. Once ejected, the electron

hole leaves the ion perturbation and other transient remnants

behind it and moves into uniform background plasma. The

fully formed self-consistent hole has a shorter spatial width

than initialization in this case.

The ion density perturbation eventually moves out of

the simulation domain and our simulation tracks the hole

into background plasma. The x axis labels in Figure 3 give

the absolute position in lab frame. The last row shows that

the electron hole has traveled more than 200kDe but is still

well-centered in our simulation domain, thanks to hole track-

ing. A steady state hole can be observed in its rest frame.

The potential height of the fully formed electron hole ew=Te

is approximately 0.23 for this run, where w is the maximum

of hole potential. The attached ion-acoustic soliton structure

described by Saeki and Genma16 is not very visible in the

steady state hole because the ions are all traveling at ’ 8Cs

in the hole frame. The average ion kinetic energy in the hole

frame is much bigger than ew. The perturbation in the ion

density due to the hole is therefore negligible. The electron

density has a deep cavity with excess of electrons around it

due to shielding, which is typical of an electron hole.2

The lab frame velocity of electron hole and simulation

domain are plotted in Figure 4 for this same run. The feed-

back control law expressed by Eq. (2) has both proportional

and integral terms of velocity error. As a consequence, both

differences in velocity and position between electron hole

and simulation domain eventually vanish. We can observe

the detailed evolution of electron hole dynamics in Figure 4.

At the beginning, there is an initial dwell in the hole velocity.

It corresponds approximately to the growth time of initial

ion density perturbation. Then the electron hole is rapidly

accelerated and its velocity reaches 8:9 cs at xpet ¼ 60, this

corresponds to the time it leaves the initial ion density cavity.

Once moving into uniform background plasma which has a

higher ion density, the electron hole is decelerated and its

velocity finally stabilizes around 6:9 cs at xpet � 130.

An important question arises, what determines the final

steady state velocity of an electron hole? To answer this

question, we have performed a detailed quantitative study of

this transient acceleration. Fifty runs have been carried out

using hole tracking PIC for different ion to electron mass

ratios mi=me, hole depths w, and initial ion drift velocity vi.

We take advantage of the flexibility of our code to explore a

wide range of parameters. Mass ratio can be easily changed

in our simulation. Hole depth is controlled by parameters of

uniform density initialization described at the beginning of

this section. A deeper dimple depth hd combined with a big-

ger dimple velocity width rd will give rise to a deeper and

wider deficit in initial electron phase-space density. It will

then evolve into a deeper self-consistent hole. The dimple

spatial width kd is kept constant at 4kDe. We shall see that

the spatial widths of electron holes in our simulation are

close to 4kDe, despite difference in their depths. A choice of

kd which is too wide can give rise to multiple holes. We also

use vd ¼ 0 for initialization, which means the initial electron

phase-space density deficit has zero average velocity in lab

frame. Electrons are initialized and injected with zero drift

velocity in lab frame, ions are initialized and injected with a

drift velocity vi in lab frame. This initial drift velocity

between ions and electron hole is very important to hole

dynamics. Electron to ion temperature ratio Te=Ti is 20. We

have vi < vth;e for all our runs so that Buneman type of insta-

bility is avoided.23 Ion-electron acoustic type of instability in

principle can be excited for some of these runs but it has a

very weak growth rate24 and is not observed in our simula-

tion. No disruptive plasma instabilities are observed in the

runs presented and hole tracking works properly. Each run

consists of a hole tracking simulation of 10 000 time steps

with a step size of 0:3=xpe. All of the runs except for two

use Ni ¼ Ne ¼ 2:56� 107 as the total number of particles. It

becomes more and more computationally challenging as we

try to push the runs to shallow hole limit. The two shallowest

holes we have explored require 109 particles for successful

hole tracking.

Each run is examined individually to determine when

exactly the hole enters steady state motion. Steady state

quantities such as hole depth and hole velocity are calculated

by taking their average value over 1000 time steps right after

the steady state is reached. Figure 5 gathers the results from

FIG. 4. Lab frame velocity of electron hole and simulation domain, the plot on the right is a close-up examination of the initial transient for the same run, hole

velocity is smoothed using a low-pass filter of cutoff frequency 0:15 xpe:
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these runs we have done using different parameters. U is

the velocity of an electron hole in the initial rest frame of

ions. Therefore, we have U ¼ vh � vi with our initialization

process and its initial value U0 is equal to �vi. vp=cs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ew=Te

p
is the normalized ion passing velocity at hole

center, which is proportional to the square root of hole depth.

Our hole momentum conservation theory25 predicts the

hole kinematics. The theory assumes no specific hole struc-

ture and can be applied to electron holes in our simulation.

It is our goal here to compare simulation results with our

analytic theory. For an electron hole generated from uniform

density initialization, the theory provides an explanation for

the initial hole acceleration. The change in ion momentum

due to hole potential growth must be balanced by change in

hole velocity. It can be shown that this initial transient accel-

eration is governed by the following differential equation

derived from hole momentum balance:25

�me

mi
h

1ffiffiffi
2
p vp

cs

� �
_U � 3

4

v4
p

U4
_U þ

v3
p

U3
_vp ¼ 0 ; (8)

where the function h for holes that move slowly compared

with electron thermal speed (vh � vth;e) is

h vð Þ ¼ �
2ffiffiffi
p
p vþ 2v2 � 1

� �
ev2

erfc vð Þ þ 1
h i

: (9)

Function h comes from the expression of electron momen-

tum rate of change when an electron hole is present in elec-

tron distribution function. vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eu=mi

p
the ion passing

velocity is a function of the growing potential uðtÞ. The ini-

tial conditions are Uðt ¼ 0Þ ¼ U0 and uðt ¼ 0Þ ¼ 0. Thus,

we have Uðvp ¼ 0Þ ¼ U0. Eq. (8) can then be solved for

U as a function of vp using a standard Runge-Kutta scheme

for different initial values of U0 and mass ratio mi=me.

Solutions are plotted as solid lines in Figure 5. The theory

predicts that the velocity of an electron hole in ion rest frame

follows UðvpÞ curve when its depth grows. In the lab frame,

this would mean that uniform density initialization with an

ion drift velocity �U0 gives rise to a steady state hole of

velocity UðvpÞ � U0 when its potential grows from 0 to

ew ¼ 1
2

miv2
p. Figure 5 shows quite good agreement between

simulation results and theoretical UðvpÞ solutions. In terms

of change in hole velocity DU ¼ UðvpÞ � U0, the quantita-

tive agreement between theory and simulations is within

20%. The cases where the prediction of analytic theory devi-

ates from simulation results are the ones with small U0. Our

theory assumes a short-transit-time approximation for ions.

The transit time of ions through hole region needs to be

much shorter than the typical acceleration timescale U= _U .25

This approximation is barely adequate when the ion velocity

is slow relative to the hole and important initial acceleration

occurs, which corresponds to the runs with small U0.

The steady state hole we obtain in our simulation is a

very stable coherent structure whose amplitude hardly decays

over thousands of electron plasma periods if the noise level in

the simulation is kept low by using a sufficient number of par-

ticles. Schamel derived an analytic solution20 for the shape of

a slowly moving (vh � vth;e) steady state electron hole in the

limit of small amplitudes (ew=Te � 1). Electron holes in our

simulations generally satisfy these two conditions. The form

of this solution is given in Eq. (1). The hole half width L is

given by the nonlinear dispersion relation2

L ¼ � 32

Z0Reðvh=
ffiffiffi
2
p

vth;eÞ

 !1
2

kDe; (10)

ZRe is the real part of plasma dispersion function.26 For

jxj � 1,

FIG. 5. Steady state hole velocity in initial ion rest frame as a function of mass ratio, steady state hole depth and initial hole velocity, solid curves in each plot

are obtained from hole momentum conservation theory.
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ZRe xð Þ � �2x 1� 2

3
x2 þ 4

15
x4 þ :::

� �
: (11)

These expressions yield L! 4kDe when vh=vth;e ! 0. For

vh ¼ 6:9 cs; L � 4:05kDe by evaluating Eq. (10). Schamel’s

analytic expression and the steady state holes in our simula-

tion are plotted in Figure 6.

Analytic curves are generated with L ¼ 4kDe and the

maximum of potential measured in the simulation is taken as

w. The analytic expression for electron density is derived by

taking the second derivative of Schamel’s expression for hole

potential. The steady state holes in our simulations are slightly

narrower than Schamel’s analytic form and also have a deeper

dip in electron density. Nevertheless, L ’ 4kDe holds for holes

of different depths and using Schamel’s form in hole search

algorithm is an acceptable approximation and yields good

performance. For the hole tracking simulation, we can find the

electron distribution in the rest frame of an electron hole. The

velocity and position of an electron in the simulation domain

are the same as their values in the hole frame when the hole is

in steady-state motion. We compare the distribution from our

simulation with Schamel’s solution. Figure 7 shows the value

of hole-frame electron distribution function fe as a function of

total energy, E ¼ 1
2

mev2 � e/ðxÞ, normalized to its separatrix

value fs ¼ f1;eð0Þ expð�v2
h=2v2

th;eÞ.
Electrons that have negative energy in hole frame are

trapped and those with positive energy are passing.

Schamel’s solution20 is given by

fe x; vð Þ ¼
f1;e 0ð Þexp �meðr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=me

p
þ vhÞ2

2Te

" #
if E > 0

f1;e 0ð Þexp � v2
h

2v2
th;e

 !
exp �bE

Te

� �
if E < 0;

8>>>>><
>>>>>:

(12)

where r ¼ signv and b is the trapped particle parameter. It

can be shown that for a slowly moving shallow hole,2 b is

given by

FIG. 6. Potential and electron density profile for two steady state electron holes of different depths and speed compared with Schamel’s analytic solution,

ew ¼ 0:23Te ; vh ¼ 6:9cs on the left and ew ¼ 0:05Te ; vh ¼ 3:8cs on the right, simulation results are averaged over 100 time steps to reduce fluctuations.

FIG. 7. Electron distribution on constant energy E orbit in hole frame, ew ¼ 0:23Te ; vh ¼ 6:9cs. Dashed line is Schamel’s solution for an electron hole with

the same depth traveling at the same speed relative to bulk electrons.
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b ’ 1� 15

16
p1=2 ew=Teð Þ�1=2 : (13)

For ew ¼ 0:23Te, the value of b is �2.47.

Schamel’s solution coincides with a Maxwellian distri-

bution shifted by minus the hole velocity �vh for passing

electrons. In the trapped region, Schamel’s solution is

Maxwell-Boltzmann shaped. The distribution obtained

from our simulation agrees with Schamel’s solution for

passing electrons; but the trapped distribution is different.

The deeply trapped orbits in our simulation are less popu-

lated than in Schamel’s solution, which explains why the

electron hole in our simulation is narrower at its center. The

trapped electron distribution in a steady-state hole is deter-

mined by its initialization. We can generate electron holes

with different shapes of ftrapped by changing the shape of

function fd in our initialization. Our analytic kinematic the-

ory is not affected by the exact structure of an electron hole

as it applies to generic electron holes with global charge

neutrality.

Hole tracking simulation enables us to visualize directly

trapped electrons in a steady state hole. As the simulation

domain is moving at the same speed as the electron hole,

electrons that are on passing orbits are quickly exchanged

out of the domain and only the ones on trapped orbits stay

and travel with the solitary wave. Our simulation tracks the

step at which a particle is injected. The middle panel of

Figure 8 shows the phase-space density of electrons from ini-

tialization fe;t¼0 normalized to current electron phase-space

density fe in a steady state hole of potential profile /ðxÞ. The

velocity half-width of densely populated orbits by initial par-

ticles in phase-space is around 28cs at hole center, which is

approximately equal to vp;e ¼
ffiffiffiffiffiffi
2ew
me

q
for ew ¼ 0:23Te as

expected. Trapped orbits are therefore almost entirely popu-

lated by electrons from initialization. These electrons are

trapped from the beginning of the simulation and stay inside

the simulation domain with the hole.

In the run with a relatively high U0 (U0 > 5cs), the

ions are less perturbed by the initial hole potential as a

result of their high relative speed to the hole. This initiali-

zation gives a smaller initial transient speed-up as shown

in Figure 5. In this case, possible formation of more than

one electron hole from our initialization is observed. When

this happens, one principal hole is formed which is much

deeper than all others. The attraction and coalescence

behavior of holes with similar velocity reminiscent of the

previous experimental and numerical investigations3,6,27 is

observed in our simulations. Our hole tracking algorithm

tracks the most significant hole signal which is given by

the deeper hole. Figure 9 shows a case of two electron

holes moving in the same direction with similar speed for

a long period of time (�1000=xpe) until they get close to

one another and subsequently their main bulk parts coa-

lesce to one due to mutual attraction. The smaller hole

experiences “tidal” deformations27 during the interaction

and a part of it eventually escapes. A transient increase of

magnitude �0:5cs is observed in the velocity of the princi-

pal hole when it interacts with the smaller one. The interac-

tion is relatively smooth because of the disparities between

the sizes of two holes.

IV. HOLE PUSHING AND PULLING

One of the significant advantages of the hole tracking

simulation is in which it allows us to study kinematics of

an electron hole with slight deviation from its steady state

without worrying about losing it from the simulation domain.

This feature enables us to probe momentum coupling

between ions and an electron hole in quasi steady state.

FIG. 8. The hole potential (top panel), the relative phase-space density of ini-

tial electrons (middle panel) and the normalized electron phase-space density

(bottom panel) at time xpet ¼ 2100, the hole has a lab frame velocity of 6:9cs,

x and v are relative to lab frame.

FIG. 9. Coalescence of electron holes of different size in our simulation, a

shallow hole is followed by a much deeper one and they eventually partly

coalesce. A piece of the shallower hole is sprayed out. This run is performed

with U0 ¼ 7cs; mi=me ¼ 1836 and the deeper hole at the center of simula-

tion domain has a depth of ew ¼ 0:23Te, the shallower hole has a depth of

ew ¼ 0:03Te.
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In the theory developed by Dupree, the only momentum

exchange13 between electron hole and ions is through ion

reflection by hole potential. This would imply that an elec-

tron hole can only “feel” a change in ion momentum when

ions begin to reflect from hole potential. For beam-like ions

and a shallow electron hole, this only happens when the drift

velocity of ions is within several vth;i in the rest frame of the

electron hole. However, our numerical experiments contra-

dict this conclusion. We clearly see ion influence on electron

hole kinematics even when there are effectively zero

reflected ions.

The way we investigate this problem is through applying

an artificial acceleration to ions. The acceleration is applied

by adding an artificial linear background potential to the elec-

trostatic potential that is used to move ions but not electrons

in the particle mover of PIC code. The linear artificial poten-

tial gives rise to a constant field which accelerates ions at a

constant rate. At the same time, ions are injected from a distri-

bution of background ions which is accelerating at the same

rate. The overall effect is that all ions experience a constant

background field in addition to the field that electrons experi-

ence. When ions are accelerated so that their velocity

approaches the hole velocity, this is called “pushing.” The

opposite case is called “pulling.” We artificially accelerate

ions only after the hole is in steady state. The value of this

artificial acceleration is chosen to be on the order of

csxpe=1000. The velocity of an ion in the rest frame of a

steady state hole is typically a few times sound speed cs in our

simulation. The hole spatial width is generally a few times

kDe the Debye length. The time it takes for an ion to transit

through hole region is therefore on the order of 50=xpe.

During this time, the change in ion velocity due to this artifi-

cial background acceleration is around 0:05cs, which is much

smaller compared to its velocity in hole frame. This choice of

artificial acceleration guarantees that short transit-time

approximation is valid for ions in these runs.

Figure 10 shows the electron hole velocity evolution in

our hole pushing and pulling runs. In the pushing run, con-

stant artificial ion acceleration is applied from xpet ¼ 1500

to xpet ¼ 3600 (phase ‹), which accelerates the drift veloc-

ity of ions from 0 to 5cs in its initial rest frame. Then acceler-

ation of the same magnitude but opposite sign is applied

from xpet ¼ 4500 until xpet ¼ 6600 (phase ›) to bring the

ions back to their initial velocity. The pulling run is the same

except that we exchange the order of the two acceleration

phases (fi fl instead of ‹ ›). Contrary to what Dupree’s

theory would predict, the velocity of the electron hole

changes instantaneously when the artificial acceleration is

applied to ions before ions are reflected by the hole potential.

Moreover, the change in hole velocity is always in the same

direction as ion acceleration. Results in Figure 10 also show

a strong asymmetry in pushing and pulling. For the same ini-

tial velocity of the electron hole in ion rest frame, pushing

gives larger hole velocity response than pulling. Both pulling

and pushing are reversible.

We need the newer theory25 of hole momentum conser-

vation to understand the phenomena we see in our simula-

tions. The theory can be generally applied to cases where

FIG. 10. Hole velocity response to artificial ion acceleration, Te=Ti ¼ 20 ; ew ¼ 0:1Te. Solid line is the “pushing” run and dashed line is the “pulling” run.

Dashed dotted line is a reference run where no artificial acceleration is applied.
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one or both species in plasma are subjected to a uniform

background force. Hole pushing and pulling can be described

by an equation25 relating initial and final states A and B dur-

ing the process of pushing or pulling,

DU

cs
¼ UB � UA

cs
¼ M4

ie

3

1

jv1;B=csj3
� 1

jv1;A=csj3

 !
; (14)

where Mie is the Mach number of hole velocity at which

electron momentum rate magnitude is equal to ion momen-

tum rate magnitude. M4
ie=3 is given by

M4
ie

3
¼ mi

me

ðx2

x1

e/ xð Þ
Te

� �2

dx

	ðx2

x1

h

ffiffiffiffiffiffiffiffiffiffiffiffi
e/ xð Þ

Te

s0@
1
A dx

2
4

3
5 ; (15)

/ðxÞ is the electron hole potential profile with x1 and x2

denoting its spatial extent (theory assumes that / and its

derivative vanish at x1 and x2). The special function h is

defined by Eq. (9). The definitions of UA; UB; v1;A; v1;B are

illustrated by arrows in Figure 10 for a pushing run. U is the

velocity of an electron hole in the initial rest frame of ions

and v1 is the drift velocity of ions in the hole frame.

The theory assumes that the hole does not change its

shape during pushing or pulling, so Mie is a constant for a

hole of given potential. Eq. (14) can give us some important

insight on how pushing and pulling would behave according

to the theory. First, the influence of artificial ion acceleration

on hole velocity U is instantaneous. Any finite change in v1

will result in change in hole velocity. Second, pushing and

pulling are asymmetric. There is no limit on how much a

hole can be pushed in its velocity, while pulling is limited by

�M4
ie=3jv1;A=csj3. Third, pushing and pulling are indepen-

dent of path and thus reversible. These properties agree qual-

itatively with what we see in our simulations.

A quantitative comparison between the theory and our

simulations is shown in Figure 11. The theoretical curves of

DUðv1;BÞ shown in solid lines are calculated from Eqs. (14)

and (15). The reference velocity v1;A is chosen as the velocity

of ions in the hole frame right before the artificial acceleration

is applied to ions. Its value is determined by the initialization

that generates the steady state hole. The calculation of

multiplication factor M4
ie=3 depends on the exact hole poten-

tial profile /ðxÞ. Since hðvÞ ! v2 as v! 0,25 the value of

M4
ie=3 is �ðmi=meÞðew=TeÞ for the holes in our simulations

which are relatively shallow. We use the potential output

from our simulation to calculate a more precise value. The

interval ½x1; x2� over which the integrals are performed in Eq.

(15) is determined with the electric field. The theory assumes

that hole electric field vanishes at its boundaries. Thus, we can

practically consider x1 and x2 to be the two positions where

the electric field in our simulation first changes its sign outside

the hole center. Once the electric field begins to oscillate on

its thermal level, we are in background plasma. The values of

integrals in Eq. (15) are evaluated numerically at each time

step of acceleration and its average value is used in Eq. (14).

The theory is compared with simulation results in

Figure 11. The simulation velocity is just the hole velocity

obtained from the hole tracking algorithm. The hole velocity

is filtered by a low-pass filter of cutoff frequency 0:005xpe.

The ions are beam-like and their drift velocity is considered

to follow the constant acceleration that is artificially applied.

This assumption is adequate as the momentum imparted by

ions to electrons is a fraction25 smaller than �me=mi of the

total momentum injected by the background artificial field.

Numerical experiments show good agreement with the

theory. The agreement is further improved by including ion

density variation due to hole potential in the theory. This

modified solution is plotted in dashed lines in Figure 11. The

original theory assumes no ion density perturbation in the

derivation of trapped electron density from charge balance.

However, when an electron hole is pushed, the relative

velocity of ions in the hole frame decreases. The ion density

accumulation inside the hole, which is an ion-acoustic soli-

ton attached to the hole in terminology of Saeki and

Genma,16 becomes more important as ions are slowed down

by hole potential. If we account for ion density variation to

order ðcs=v1Þ2ðe/=TeÞ, then hðvÞ is replaced by hðvÞ �
ðcs=v1Þ2ðe/=TeÞ in the derivation of Eq. (14). This leads to

the modified solution

U

cs

� �B

A

¼ M4
ie

1

K2 v1=csð Þ þ
1

2K3
ln





 v1=cs � K

v1=cs þ K






" #B

A

; (16)

FIG. 11. Hole pushing and pulling runs

for holes of different depths using two

different mass ratios. The value of w is

the average value during acceleration.

Te=Ti ¼ 20 ; Ni ¼ Ne ¼ 2:56� 107.
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where K ¼
Ð x2

x1
ðe/ðxÞ=TeÞdx=

Ð x2

x1
hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe/ðxÞ=Te

p
Þdx is a con-

stant. K is evaluated in the same way as M4
ie=3 by performing

numerical integration over ½x1; x2�. For shallow holes, we

have K ’ 1 as ew=Te � 1. This correction is more important

for small jv1j.
In deriving function h, we assume an electron hole situ-

ated near the top of the electron distribution. This approxi-

mation is no longer adequate when a hole is pushed to an

important fraction of vth;e. It is also observed in our simula-

tions that the depth and shape of an electron hole changes

slightly (<5%) during pushing and pulling. This can have

several important implications. The derivation of Eq. (14)

assumes no change25 in the hole potential. Hole growth and

shrinkage will induce hole velocity change as we see in the

initial transient. This effect is ignored in our analysis. The

change and fluctuations of hole potential in our simulations

also make it difficult to evaluate accurately M4
ie=3. We

observe 5%–10% fluctuations in its value at different time

steps. It is the average value that is used in Figure 11.

In hole pushing and pulling experiments, we are trying to

resolve small changes in hole velocity to the extent that statis-

tical noise in our simulation needs to be treated carefully. We

observe slow spontaneous decay in the velocity of a steady-

state hole during long time hole tracking simulation. This

effect is shown in Figure 12. The three runs in plot (a) corre-

spond to the pushing-pulling-back run (‹ ›), the pulling-

pushing-back run (fi fl) and the reference run with no artifi-

cial ion acceleration presented in Figure 10. Notice the decay

in hole velocity even when there is no ion acceleration at all.

The change is in diagonal direction for the run with no ion

acceleration because U ¼ �v1 when ion drift velocity stays

constant. The same effect in pushing and pulling runs leads to

hysteresis, which can also be seen in plot (a). This slow hole

velocity decay is reduced by using more particles in the simu-

lation. The runs shown in the plot (b) of Figure 12 exhibit less

velocity decay by virtue of using more particles. Pushing-

pulling process is also more reversible, which agrees better

with our theory predictions. This effect can be explained by

detrapping of trapped electrons in an electron hole due to sta-

tistical fluctuations in the PIC simulation. The depth of an

electron hole ew slowly shrinks when the marginally trapped

orbits are intermittently connected to background plasma by

fluctuating electric fields. Its velocity U decreases as a conse-

quence of its shrinking size. Eq. (8) relates the depth of an

electron hole to its velocity. For the run with no ion accelera-

tion shown in plot (a), the hole depth ew decreases from

0:1025Te at xpet ¼ 1500 to 0:098Te at xpet ¼ 7500. The

decrease in hole velocity calculated from Eq. (8) for the

amount of depth shrinkage is DUDecay ’ �0:1cs. The actual

decay in velocity observed in our simulation is DUDecay

’ �0:2cs. Though small in magnitude, this effect is important

for pulling runs as DUDecay can be an important fraction of

the predicted DU. By taking into account this correction, the

agreement between our theory and simulation in high jv1j
limit is within 610%.

Eq. (14) gives no lower limit on how small jv1j can get

by pushing the hole. This is unphysical as ions will be

reflected by hole potential if jv1j < vp;i. The modified solu-

tion given in Eq. (16) shows that ions cannot approach the

hole velocity closer than jv1j ¼ Kcs with K> 1. In our simu-

lations, we observe that instability occurs before jv1j can get

close to this limit. Ion density is perturbed in the case of

instability and the electron hole can be disrupted if pushed

further. The exact nature of this instability is beyond the

scope of this paper.

V. SUMMARY

This paper introduces a new way of simulating a moving

electron hole by tracking its motion. The full dynamics of

electron hole interacting with ions are studied quantitatively

FIG. 12. Illustration of reversibility and hysteresis in pushing and pulling. (a) Pushing, pulling, and no ion acceleration runs showing spontaneous hole velocity

decay and hysteresis. (b) The same runs as (a) with eight times as many particles, the spontaneous velocity decay and hysteresis are reduced by using more par-

ticles. The number of computation cells is 1000 in these runs and the domain length is 48kDe across. Te=Ti ¼ 20 ; ew ¼ 0:1Te.
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using this computer simulation technique in both transient

and steady-state regimes. We find that an electron hole gen-

erated using a uniform density initialization approach can be

accelerated to several times the ion sound speed by initial

ion density perturbation. The final steady-state velocity

reached by electron hole depends on ion-to-electron mass

ratio, hole depth, and the initial hole velocity in the ion

frame. Dynamical coupling of a steady-state hole and ions is

investigated by applying a slow artificial acceleration to

ions. The velocity of an electron hole reacts instantaneously

to changes in ion momentum. An electron hole can be

pushed or pulled in velocity by artificially imposed ion accel-

eration. Pulling and pushing are asymmetric. Simulations are

compared with the newly developed analytic theory of hole

momentum conservation. Good qualitative and quantitative

agreement is presented in this study.
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