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ABSTRACT

A number of impurity injection experiments has been performed on the Alcator C-Mod
tokamak. A laser ablation impurity injection system has been built and operated success-
fully. In conjunction with a high resolution survey VUV spectrometer and various other
spectroscopic diagnostics, this injector system has been used to measure impurity trans-
port behaviour during a variety of operating conditions. Measurements of the impurity
confinement time have been made for a range of plasma parameters and scaling relation-
ships have been developed. Modelling of the impurity transport has also been conducted
using the MIST code. Substantial improvements have been made to the database of
atomic physics rate coefficients for molybdenum as a result of this thesis. Agreement
between modelled and observed spatial profiles of high charge states of molybdenum is
now good. This modelling has been used to infer intrinsic molybdenum concentrations in
the plasma during a variety of operating conditions including high power RF operation.
Experiments which measure the screening efficiency of the plasma with respect to an
external source of impurities have also been conducted using the laser ablation system
as well as an impurity gas injection system and have shown that more than 90% of the
source impurities are typically kept out of the main plasma during diverted operation.
The impurity modelling developed as part of this thesis has also been extended to the
measurement of neutral hydrogen density profiles by making use of charge exchange re-
actions with injected impurity ions. Strong up-down asymmetries in these profiles have
been observed during diverted operation.

Thesis Supervisor: James L. Terry
Title: Research Scientist, Plasma Fusion Center

Thesis Reader: Ian H. Hutchinson
Title: Professor, Department of Nuclear Engineering
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Chapter 1

Introduction

1.1 Nuclear Fusion and the Tokamak Concept

1.1.1 The Tokamak

The tokamak has long been one of the leading concepts for making nuclear fusion a
viable energy source. The tokamak concept was first introduced in the 1950’s in the
Soviet Union [1]. Since then, dozens of machines of varying complexity have been built
to investigate various aspects of tokamak plasmas. Today the tokamak represents the
dominant effort in the field of magnetic confinement fusion research. A brief overview of

the characteristics which make the tokamak unique is therefore appropriate at this time.

A tokamak relies on a large toroidal magnetic field (usually denoted B, or B;) and
large toroidal plasma current, I,, to confine electrons and ions in a toroidal vacuum
chamber. The plasma current is typically generated by the application of a toroidal loop
voltage induced by a solenoidal winding at the center of the torus. In addition to the
magnetic field applied in the toroidal direction and those generated by the plasma current
itself, various other external magnetic fields are applied in order to ensure a radial force
balance and maintain a plasma which is in a state of magnetohydrodynamic (MHD)

stability. Yet other external fields may be applied to the plasma in order to produce
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specific shapes or transient motions. Numerous additional coils are generally required
to produce these fields. A typical arrangement for these coils for the Alcator C-Mod
tokamak is shown in Figure 1-1 along with a typical highly shaped plasma which they
are capable of producing [2].

1.1.2 The Alcator C-Mod Tokamak

'The Alcator C-Mod tokamak at the Plasma Fusion Center at MIT is the device on which
all of the experimental work for this thesis was performed. This tokamak is the third
n a series of high field, high density, compact tokamaks built at MIT since the 1970s.
The name Alcator derives from the italian Alto Campo Torus meaning ’high field torus’
and is indicative of the philosophical approach taken in the design of all the tokamaks
in the Alcator series. The first such tokamak, Alcator A, went into operation in 1976
and had a major radius of 0.54 m, a minor radius of 0.10 m, and a toroidal field on
axis of 8 Tesla. Discharges in Alcator A typically lasted a few hundred milliseconds,
carried plasma currents of up to 400 kA, and achieved central electron temperatures of
up to 2 keV. Alcator C, the next machine in the series went into operation in 1978 with
a major radius of 0.64 m, a minor radius of 0.16 m, and a toroidal field of 13 Tesla.
‘Discha.rges in Alcator C also were typically a few hundred milliseconds in duration with
plasma currents of up to 800 kA and central electron temperatures of about 2 keV. The
present machine, Alcator C-Mod, saw its first plasmas in 1992. To date it has operated
highly shaped plasmas with major a radius of up to 0.69 m, minor radius of up to 0.23
m, and toroidal field of 5.4 Tesla. Plasma currents of over 1 MA have been achieved in
discharges which last up to 1.5 seconds. Central electron temperatures over 4 keV have
also been observed. These major machine parameters and how they compare with the
previous generations of the Alcator series are summarized in Table 1.1.

Alcator C-Mod represents a major improvement over the previous two machines in the
series both in terms of expected performance and in operational flexibility. The ability

to produce highly elongated plasmas with either single or double null divertor configura-
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Alcator A | Alcator C | Alcator C-Mod
operation period 1976-1981 | 1978-1986 1992-7
major radius (m) 0.54 0.64 0.69
minor radius (m) 0.1 0.16 0.22
toroidal field (T) 8 13 5.3 (9)
plasma current (MA) 0.4 0.8 1.2 (3)
line averaged density (10%*°m=3) 1.0-10 1.0-10 0.8-4.0
central electron temperature (keV) 2 2.5 4 (6)
discharge duration (s) 3 5 1.5 (7)
plasma elongation 1.0 1.0 1.0-1.8
plasma cross-section limited limited diverted

Table 1.1: Comparison of major machine parameters in the Alcator series. Values in
parentheses are expected for future operation.

tions allows for the investigation of entirely new modes of operation which were wholly
unavailable in the previous machines. Divertor studies therefore represent a major area
of emphasis in the C-Mod program. Important questions which need to be addressed in
the area of divertor studies include those related to the impurity behaviour character-
istics. Specifically, any differences in either impurity transport or source rates between
diverted and limited discharges need to be investigated. If the divertor concept is to live
up to expectations, it is necessary that it provide some significant benefit in the area of

impurity particle control and power handling capability.

Another major area of emphasis in the C-Mod program is the use of large amounts of
auxiliary heating power. Specifically, ion cyclotron range-of-frequencies (ICRF') heating
waves in the 80 MHz range are introduced via two antennas at levels of up to 4 MW
at present. Efforts at ICRF heating in Alcator C and A were made at only the few
hundred kilowatt level. Alcator C-Mod offers the possibility of one day investigating
ICRF powers of up to 8 MW. This represents a significant extension of capabilities.
Important questions which need to be addressed at these high auxiliary power densities
include the effects on either impurity transport or impurity source rates. It was observed
on Alcator C that even small amounts of RF power led to serious impurity problems [3].

If the results obtained there were to be extrapolated to the anticipated powers planned
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for C-Mod, the level of impurity radiation expected would be prohibitive.

Underlying all of the major areas of emphasis in the C-Mod program is another very
unique feature found in a tokamak of this size and performance, namely the choice of
material for the plasma facing components (PFCs). While most other tokamaks opt for
PFCs of as low Z material as possible (carbon and beryllium are two common choices),
the Alcator line of tokamaks has experimented with high Z wall materials instead. Al-
cator C-Mod is equipped with PFCs made entirely of molybdenum. The philosophy
behind this selection is related to the compatibility of these high Z materials, or rather,
the suspected incompatibility of more common low Z materials with any fusion reactor
with a high power density. C-Mod in particular presents an opportunity to evaluate one
candidate high Z material under the highest power density conditions of any major toka-
mak operating today. In conjunction with smaller machines around the world, significant
additions to a database of results obtained with high temperature, fusion plasmas are
being made. Some of the reasons why these contributions are necessary and important

can be found in the discussion of plasma impurities below.

1.2 Plasma Impurities

Plasma impurities play an important role in tokamaks for a number of reasons. Their
presence can affect plasma performance in various ways, some of which are detrimental

and some of which are not. A few of these effects are discussed below.

The ultimate goal of a fusion reactor is to provide a net source of energy. To do
this, a state of energy ‘breakeven’ in which the fusion energy produced in the plasma is
equal to the total energy losses it experiences must first be achieved. One of the factors
which limits the realization of this goal is the large amount of energy which is lost from
the plasma via radiation. The principal mechanisms by which energy is radiated from
the plasma include line radiation, bremsstrahlung, and recombination. Each of these

mechanisms scales rather strongly with the amount of impurity present in the plasma
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(see Chapter 6) and with the atomic number, Z, of the impurity species. It can be shown
[4] that for even relatively small concentrations of some impurities in the plasma, sufficient
energy would be lost via radiation to prevent a breakeven condition from being achieved.
This problem is significant enough in machines with only low Z intrinsic impurities such
as carbon or oxygen but is potentially increased many-fold when high Z impurities such

as molybdenum (Z=42) need to be considered.

In addition to enhanced radiative losses, plasma impurities also serve to dilute the
working fuel ions (H isotopes, typically). Given the quasi-neutral requirement of tokamak
plasmas and the operational constraint that the electron density in the tokamak be held
below some maximum value determined by macroscopic parameters such as the plasma
current, machine size, and toroidal field strength [5, 6], and the fact that each impurity
atom contributes many more electrons to the plasma than does each fuel atom poses a

serious limitation on the fuel ion density which is realizable.

One application in which impurities may prove beneficial to tokamak performance
involves control of power deposition in diverted plasmas. The divertor concept, as out-
lined above, seeks to direct the magnetic field lines from the edge of the plasma onto
specially designed target plates in the hopes of reducing impurity influx. Much work has
been done both experimentally and theoretically in recent years with different divertor
geometries and wall materials with the goal of finding an optimum solution compatible

with future reactor-type operational constraints.

It is becoming increasingly clear that in order to deal successfully with the large
power fluxes which are predicted for next generation machines, schemes which are able
to dissipate this power before it actually reaches the divertor target plate must be found.
One such scheme involves creating a highly radiating region around the edge of the
plasma. This radiating region would serve to reduce the flux of power flowing along
the field line to the plate by reducing the ion and electron temperature on the field
lines leading to the target. One effective way of establishing such a radiating region is

believed to be through the introduction of controlled amounts of impurities with radiative
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characteristics tailored to the existing edge plasma parameters. For such a scheme to be
successful, the behaviour of the impurity after its introduction into the plasma must be
understood to ensure that its detrimental effects do not outweigh any advantage it may

provide.

1.3 Standard Tokamak Diagnostics

The diagnostics used to observe tokamak plasmas are many and varied according to
the nature of the quantity being diagnosed. Generally, though, diagnostics can fall into
the categories of measuring either electromagnetic fields, radiation, or particles. For the
purposes of this thesis, most direct observations of the effects of impurities on the tokamak
plasma are obtained via measurements of radiation. The analysis which is required to
interpret properly those observations, however, makes necessary use of a large number
of other diagnostic systems. Some of these are described below. Other key diagnostics,
such as those that measure electron density and temperature are described throughout

the text of this thesis as appropriate.

1.3.1 Magnetic Diagnostics

Central to diagnosing the position and shape of the plasma is an extensive array of
magnetic diagnostics which measure magnetic field, magnetic flux, and plasma current
at a number of discrete locations around the vacuum vessel [7]. The measurements are
then used to reconstruct the shape of the magnetic surfaces both inside and outside the
plasma. This reconstruction is done with the EFIT code [8] and routinely provides a
reliable calculation of the plasma magnetic geometry. The instances where this mag-
netic geometry is important to the interpretation of spectroscopic observations are noted

throughout this thesis.

24



1.3.2 X-Ray Spectroscopy

A crystal x-ray spectrometer array with high energy resolution is used on Alcator C-Mod
for observing line emission in the 2.5-4.0 A region of the spectrum [9]. Each of the five
von Hamos type spectrometers can be independently positioned to give a radial view of
the plasma along chords with an overall coverage of impact parameters at the magnetic
axis which range from about 32 cm below to about 32 cm above the midplane. Note
that this range of possible views extends almost to the lower x-point of typical diverted
discharges. Chapters 4 and 8 describe ways in which this spatial coverage has been
exploited for the purpose of measuring profiles of certain intrinsic plasma impurities
and neutrals respectively. This x-ray spectrometer array is also absolutely calibrated
for sensitivity through a consideration of crystal reflectivity and beamline and detector

geometries.

In addition to the high resolution x-ray spectrometers, there also exist four separate
filtered arrays of 38 p-i-n diodes providing spatial coverage of most of the plasma cross-
section during typical operation [10]. The extent of this coverage vis shown in Figure
1-2. Each chord of these arrays provides a high time resolution line integrated brightness
measurement of soft x-ray emission in the plasma. The spatial resolution of each chord
is about 10 mm at the nominal plasma major radius in the poloidal plane and about
10 mm in the toroidal plane. The diodes are filtered with beryllium foil which serves
to cut off photons with energy less than about 1 keV. This limits the response of the
arrays to photons of wavelength less than about 10 A. The short wavelength limit of the
arrays is determined by the thickness of the diodes themselves. In this case, the diodes
are sensitive to photons of energies up to about 10 keV. Tomographic inversion of the
brightness signals obtained by these arrays is routinely done to yield emissivity profiles

of soft x-ray emission.
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1.3.3 Visible Bremsstrahlung

A quantity which provides a convenient measure of the total contamination of the plasma

by impurities is known as Z.s¢ and can be defined as:

anZf
S niZ, (1.1)

Zegp =

where n; and Z; are the total density and the charge of species ¢ in the plasma. A
pure hydrogen (or deuterium) plasma will therefore have Z.;; = 1. This definition of
Zess arises conveniently from a consideration of the bremsstrahlung radiation emitted
by the plasma. It can be shown (see Chapter 6) that the rate at which bremsstrahlung
radiation is emitted is proportional to Z.s;. This quantity can therefore be thought of
as the factor by which the total bremsstrahlung emission from the plasma exceeds that
of a pure hydrogen (or deuterium) plasma at the same electron density.

The total bremsstrahlung emission profile from the plasma is measured using an
array of 32 absolutely calibrated chordal views of the plasma coupled to an array of
photomultiplier detectors. The array views the plasma through an interference filter
which selectively passes photons in a narrow band about 4600 A [11]. Emission in this
range, which lies in the visible region of the spectrum, is known to contain no strong
line emission from any typical plasma impurity species and is therefore dominated by
bremsstrahlung continuum. An absolute measurement of the bremsstrahlung emission
in this spectral region can therefore be used, along with the local electron density and
temperature, to calculate the local Z.s; of the plasma. In practical terms, the array gives
a bremsstrahlung brightness profile which is then inverted using standard techniques to
yield an emissivity profile.

A note of caution should be given at this time regarding the inversions done using
these bremsstrahlung data. Since the bremsstrahlung emission in the plasma depends on
the electron density squared, Z.;; becomes a quantity which, when measured in this way,
1s highly sensitive to errors in the determination of the electron density profile. It has

been noticed, and will again be pointed out at the relevant places in this thesis, that when
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the line-averaged electron density in the plasma is high (> 2 x 10°m™2), the inferred
value of Z.s; can fall below 1. Clearly this is an unphysical result and has been attributed
to errors in the measurement of the high electron densities. Solutions to compensate for
this uncertainty, which include the use of a more robust, localized measurement of n.

using a Thomson scattering technique, are underway during the writing of this thesis.

1.4 Organization of the Thesis

This thesis is structured as follows.

Chapter 1 provides a broad introduction to some of the fundamental concepts and
issues involved in tokamak research today. This introduction sets the context of and
motivation for the experiments described in the remainder of the thesis. Some of the key
diagnostics used to support those experiments are also described in appropriate detail in

this chapter.

Chapters 2 and 3 describe some of the hardware specifically designed to conduct many
of the experiments carried out as part of this thesis. Chapter 2 describes the techniques
used to introduce controlled amounts of impurities into the plasma. Special emphasis
is given to the laser ablation injection system which provides a unique type of impurity
injection not available on all tokamaks. Also discussed are the various methods of in-
jecting gaseous impurities into the machine. Chapter 3 describes in detail the ongoing
development of an absolutely calibrated, time-resolved, high resolution VUV spectrome-
ter which provides the majority of the data used in the analysis of impurities in Alcator
C-Mod. Details of the detector system and the absolute sensitivity calibration are also
given.

Chapter 4 presents the results of trace impurity transport and confinement scaling
measurements made on Alcator C-Mod during the 1993 and 1994 operational campaigns.
Details of the analysis methods used in determining these scalings and the implications

of the results for future operation of the machine are also presented in this chapter.
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Chapter 5 describes the atomic physics and transport model used for much of the
quantitative analysis in this thesis. Included are a description of the numerical code
package used to solve the coupled differential equations as well as the atomic rate coeffi-
cients for the relevant processes used as inputs to the code. Significant modifications to
the database of these coefficients for molybdenum have been made as a direct result of
some of the experiments described in this chapter. The significance of these modifications
1s highlighted here.

Chapter 6 presents a study of intrinsic impurity behaviour in a variety of different
operating regimes. These include plasmas which can be categorized as ohmic, high power
RF, limited, diverted and detached, L-mode, and H-mode. Many of the important impu-
rity related questions outlined earlier are answered by the experiments described in this
chapter. |

Chapter 7 describes measurements made of the efficiency with which the plasma
is able to screen out an external source of injected impurities. A number of different
impurities was injected using the available techniques to provide an extensive database.

Chapter 8 reports on an analysis technique making use of charge exchange reactions
with injected impurities which was used to infer a neutral particle density profile in
Alcator C-Mod. This chapter is included to highlight the diagnostic usefulness of these
impurity injections beyond the obvious. Further applications and extensions of this
analysis technique are also discussed.

The appendices provide more details of the atomic physics rate coefficients and cal-
culations used in much of the analysis. Detailed tables and functional fits of new rates

for molybdenum, in particular, are also provided.
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Figure 1-1: The set of poloidal field coils used on the Alcator C-Mod tokamak. Also shown
are details of the highly shaped divertor and inner wall areas which are surfaced with molyb-

denum plasma facing components. The magnetic geometry of a typical highly shaped plasma
as calculated by the EFIT code is also shown.
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Figure 1-2: X-ray diode arrays on Alcator C-Mod.
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Chapter 2

Laser Ablation Impurity Injection

2.1 Introduction

A proper inveStigation of impurity transport in tokamak plasmas requires the ability to
control the impurity source with some precision. Investigations based solely on intrinsic
plasma impurities suffer from the ambiguity inherent in an impurity source which may
be varying in time and space. There is a number of techniques available which allow
for well defined injections of various impurity species. Each method is best suited to
a particular type of experiment. When quantities of gaseous impurities are desired,
simple calibrated gas puff injections are usually sufficient. These gas injections can be
of trace amounts of impurity or of amounts large enough to have macroscopic effects on
the plasma. Gas injections generally involve recycling impurities (that is, ones which
are not easily adsorbed to the walls of the machine), although certain low recycling
gaseous impurities are also available. This method can inject impurity neutrals with
only relatively low energy [12]. For experiments which require impurities to be deposited
as neutrals deep within the plasma, pellet injection techniques which can fire macroscopic
amounts of impurity at velocities of up to 1 km/s [13] are available. These injections,
however, are invariably highly perturbing to the background plasma. Injections which

can still be considered trace, but which provide impurity neutrals with some finite energy,
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can be achieved using the so-called laser ablation technique [14]. This method uses a high
power laser pulse incident on a target material to create a population of energetic neutral

atoms with a directed velocity toward the plasma.

2.2 The Laser Ablation Injection System

2.2.1 Hardware

The design of the Alcator C-Mod laser ablation injection system meets a number of
operational requirements and constraints. Many of these constraints are related to space
limitations at the diagnostic ports of the machine. Due to the geometry of the vertical
diagnostic ports, no practical access from either above or below the plasma is available.
This means that any laser ablation injections are introduced through a horizontal port.
Similarly, access to the plasma midplane is limited. The ultimate location for the injection
system was chosen to be at a horizontal port about 20 cm above the midplane. Also as
a result of space restraints, the laser ablation targets are placed no nearer than about 1
meter from the plasma.

Each target is a two inch square standard glass slide with a vacuum deposited layer of
the desired impurity material on the plasma facing side. The thickness of the deposited
layer is typically 1 pm, but layers from 0.5-5 pym thick were also used in initial tests.
For increased versatility, the injector is designed to accommodate up to nine different
target slides at any given time. Slides are arranged in rows of three on three faces of a
hexagonal carousel and can be selected and positioned remotely on a between-shot basis
by a combination of rotation and linear motion of the carousel and linear motion of the
laser beam. The carousel is housed in an independent vacuum chamber with a volume of
about 40 liters which is pumped by a 60 £/s turbo pump. A rotary /linear multi-motion
feedthrough with an 8 inch stroke is used for control of the carousel position. The ultimate
base pressure in the injector chamber when fully loaded with slides is 1 x 10~® Torr. A

schematic of the injector chamber is shown in Figure 2-1.
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Figure 2-1: Schematic of the laser ablation impurity injector system as viewed from behind
(ie. looking toward the plasma).

The laser beam used for the ablation is incident normal to the target slide through an
8 inch diameter glass vacuum window. Its source is a Q-switched ruby laser operated at
694 nm with a single 1 inch diameter oscillator rod which can generate a 30 ns pulse of
up to 3 Joules. A HeNe alignment laser, collinear with the ruby laser, is used for visual
monitoring of the beam position. The alignment is sufficiently free of drift that active
position feedback is not required. Good alignment (within 10% of the target spot size)
could be maintained indefinitely. The lasers themselves are housed in a diagnostic lab
outside of the C-Mod cell, about 10 meters away from the target slides. The beams pass
through a penetration hole in the thick concrete neutron shield wall which encloses the
cell and then strike a remotely controlled 4 inch diameter mirror located about 1 meter
above the targets. The beams are then directed down to a 2 inch mirror located about
50 cm from the targets. This mirror can be moved remotely in the vertical direction to
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allow for spot selection on the target slide. The final leg of the beam path is through
a 2 inch diameter lens with a 20 cm focal length. The lens is placed about 10 cm in
front of the vacuum window to the injector chamber with its focal point about 5 cm
in front of the target so that the beam is expanding at the time it actually strikes the
slide. This is done to avoid any tightly focussed reflections from the ta.fget or the window
on the 2 inch mirror or the window itself. Tests had indicated that a tightly focussed
beam from the laser was capable of damaging the ordinary glass vacuum window. The
judicious selection and placement of the lens therefore eliminated the need for either a
quartz window or an anti-reflection coating on a standard window.

A photodiode filtered for the laser wavelength is used to measure the energy of each
pulse. During normal operation, a glass slide is used to reflect about 4% of the beam
energy onto the photodiode which was calibrated with a calorimetric energy monitor.
The response time of the diode is not fast enough to follow the actual 30 ns laser pulse,
but a reproducible signal is nonetheless obtained on a microsecond timescale with the
appropriate selection of amplifier time constants. A typical diode signal from a 2 Joule
laser pulse digitized at 1 MHz is shown in Figure 2-2.  The flash lamp trigger in this
case was at 550.0 ms and the actual Q-switching occurred at 550.625 ms. The large

spike at that time is noise pick-up from the 12 kV charge being switched on the Pockell’s
cell during the Q-switching. The total area under the diode signal curve is assumed to
be proportional to the total energy in the pulse. The calibration curve which relates
that area, in units of Volt-microseconds, to the pulse energy in Joules is shown in Figure

2-3. The calibration was found to be highly linear over the range of expected operating

energies.

2.2.2 Reproducibility of Injections

A series of molybdenum injections was made into a number of identical discharges as part
of an experiment to measure spatial profiles of molybdenum emission (see Chapter 4).

This series of injections also served the purpose of measuring the reproducibility of the
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Figure 2-2: Diode signal from a 2 Joule laser pulse. The net area under the signal is 355 Vus.

injection system. This reproducibility could be monitored in a number of ways. First,
a visual examination of the ablated spots on the target slides was used as a qualitative
evaluation of the injections. The beam size at the target was chosen to give a spot size
of about 4 mm. This visual examination found the spots to be highly reproducible, with
no obvious changes from one spot to the next. A more quantitative comparison could
be had by comparing the relative strength of signals measured on the multi-layer mirror
polychromator (see Chapter 3) when observing high charge states of molybdenum at
the centre of the plasma. Since the discharges all had similar plasma parameters, the

brightness measured in this way should be highly indicative of the reproducibility of the
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Figure 2-3: Calibration curve for laser energy monitor.

source injection. The brightnesses measured over this series of discharges are shown in
Figure 2-4. The variation in the brightnesses is less than about 30% of the nominal value.
Given that the variation of the discharge parameters (especially electron density) was also
about 30% for these discharges it can be concluded that the laser ablation injections are
reproducible to at least within that tolerance.

The energy of the ablated atoms is also a quantity of interest for use in interpreting
the observed effects of an injection made with this technique. If the energy density of
the laser beam at the slide is sufficiently high, the ablated particles may be ions and thus
be swept to the walls of the beamline by the magnetic fields which exist at the target

position. The fields at the target location are estimated to be a few hundred Gauss
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Figure 2-4: Observed brightnesses of a series of laser ablation injections of molybdenum into
identical discharges.

during each discharge. This is sufficient to produce an ion gyroradius of a few to several
tens of millimeters depending on the mass and charge of the ions. This is generally not a
desirable result, since it would mean that very few of the ablated particles would reach the
end of the beamline and actually be incident on the edge of the plasma. Although some
ions will inevitably exist as a result of the ablation process, a more appropriate injection
would be one in which the particle energy was low enough that most of the ablated
particles are neutrals. Several investigations of this issue have been done previously [15]
and have produced various relationships between laser fluence and mean partide energy.

It is generally thought that the cloud of neutral atoms has a thermal distribution of
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energles superposed on a directed energy of somewhere between 1 and 10 €V.

2.3 Other Injection Techniques — Gas Puff Injection

On Alcator C-Mod there exists a number of methods of injecting gaseous quantities of
impurities at various locations around the plasma. Two main systems for performing
these injections include the divertor gas injection system and the main gas fuelling sys-
tem. The divertor gas injection system is capable of introducing calibrated amounts of
impurity or fuel gas at up to 28 specified poloidal locations around the plasma. The gas
is introduced through long capillary tubes (~3 m long, 1 mm diameter) which are fixed
behind the molybdenum plasma facing tiles. The flow of gas is controlled by independent
fast solenoid valves connected to the output of a holding plenum with a volume of about
one liter. By specifying the pressure in this holding plenum and the duty cycle of the
valve, the flow rate of gas into the machine can be controlled over the range from about
0.1 torr-1/s to several hundred torr-1/s. For trace impurity injections, it is only flow rates
at the lowest end of this range which are useful. Due to the long length of capillary
tubing which is required to deliver the gas at the specified location, the time response of
this injection system is relatively slow (~ 200 ms).

The other system capable of providing calibrated gaseous impurity injections is the
main gas fuelling system. This system uses piezo-electric valves to control the flow of gas
from a four liter holding plenum to the plasma. These piezo-electric valves are located
at five positions around the vacuum vessel, all at locations somewhat remote from the
plasma (at least 15 cm away from the separatrix). The advantage of this system is that
it provides a much faster time response than do the capillary tubes, owing to the large
differences in conductance to the plasma. The drawback is that there does not exist the
same spatial flexibility with regard to the injection location.

Shown in Figure 2-5 are the locations of each of these gas injection systems along

with a schematic which shows where the ablated cloud of neutrals from the ablation
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injection system is incident on the plasma. The flexibility of these injection systems will

be discussed and their usefulness demonstrated in the chapters that follow.
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Figure 2-5: Poloidal locations of the divertor gas injection system. Also shown is the region
of the plasma where laser ablation injections are incident.
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Chapter 3

A Time-Resolving, High Resolution
VUV Spectrometer

3.1 Introduction

At typical operating temperatures in Alcator C-Mod, much of the line emission from
impurities in the plasma occurs in the VUV region of the spectrum. It is therefore
important to have spectroscopic diagnostics capable of monitoring and quantifying this
emission. To this end, a number of different spectroscopic diagnostics have been installed
on the machine. This chapter will describe in detail the design, calibration, and operation
of a high resolution, time-resolving, absolutely calibrated, grazing incidence spectrometer
which has been used to monitor the wavelength region from about 50 A to 1100 A. This
device, referred to as the McPherson spectrometer after the company supplying the basic
instrument, is used as the baseline diagnostic for the characterization of impurities in the
tokamak.

The McPherson instrument originally was operated as a monochromator with a fixed
entrance slit and a movable exit slit in a Rowland circle configuration. A single channel
detector was placed at the exit slit, along the 2.2 meter diameter circle, and provided high

time resolution measurements of a given narrow band of the spectrum. The wavelength,
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A, in order n, which is focussed along the Rowland circle is determined by the standard

grating equation:

nA = d(sina — sinf3) (3.1)

where o and 3 are the angles of incidence to and diffraction from the normal of a grating
with line spacing d.

To increase the flexibility of this device, it has been upgraded to a time-resolving spec-
trograph with finite bandwidth through the use of a microchannel plate image intensifier
and a Reticon [16] photodiode array detector. For use on Alcator C-Mod, this detector
was re-designed to provide improved spectral resolution and reliability of operation. The
new system was characterized using the old system as a bench-mark. Quantities such as
instrumental broadening and uniformity of response across the grating and across the de-
tector, and absolute system sensitivity all as functions of wavelength were measured and
compared to the previous system. Schematically, the microchannel plate-based image

intensifier and detector, taken from reference [3], are shown in Figure 3-1.

3.2 System Operational Characteristics

This VUV spectrometer system now allows for a great deal of operational flexibility.
Custom designed electronics allow for different integration times to be used during dif-
ferent phases of the discharge. Up to four different integration states can be selected
with a variable number of frames in each state. The selected integration times can be as
short as 0.5 milliseconds if a reduced bandwidth is observed, or as long as 4096 millisec-
onds if very weak sources are being observed during calibration. This feature of multiple
integration states is exploited during laser ablation injection experiments, for example,
when it is known that a fast integration time is desired over only the duration of the
injection. Typically integration times of 2 ms for a duration of about 100 ms are used
during such laser ablation injections. This flexibility also proves useful for separating

the start-up phase of the discharge, when most emission is very bright, from the current
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Figure 3-1: Schematic representation of the microchannel plate image intensifier and detector.
Also shown are typical operating voltages of the various components.

flat-top phase of the discharge, when many line intensities drop by as much as an order
of magnitude (see Chapter 6). In such cases, integration times as short as 4 ms are used
during start-up while longer integration times are used during flat-top. This helps to
make use of the maximum dynamic range available at fixed gain on the detector system.

The wavelength range being viewed can also be changed between shots anywhere
within the effective limits of about 50-1100 A. A standard stepper motor is used to move
the entire detector assembly along the Rowland circle for this wavelength selection. The
entire assembly can be positioned to within about 0.0005” with a reproducibility that
keeps known spectral lines centered to better than about 0.05 A.
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Figure 3-2: Range of viewing chords available to the VUV spectrometer. The spatial reso-
lution at the magnetic axis is about 1.0 cm in the poloidal dimension and about 15 cm in the
toroidal dimension.

The most common chord viewed by this spectrometer is typically one through the
center of the plasma. The spectrometer has the capability, however, of viewing chords
well above and below the plasma center. The grating itself is located about 3 meters
away from the plasma radially and about 30 cm above the magnetic axis. Selection of a
particular chordal view is obtained by pivoting the entire rigid grating/detector assembly
about an axis throggh the entrance slit. The entire assembly weighs about 500 kilograms
and is pivoted using an industrial screw jack. This technique allows for reproducible
positioning of the instrument to within about 3 mm at the jack which corresponds to

44



about 1 cm at the plasma. The complete range of chordal views available is shown
in Figure 3-2 where it is superposed on a typical diverted plasma equilibrium. This
positioning feature is demonstrated extensively during the investigation of the spatial

profiles of various molybdenum lines and is outlined in Chapter 4.

3.3 System Calibration

A number of different calibrations was performed on the new spectrometer system. The
instrumental broadening was measured at various points across the detector in order to
optimize the spectral resolution. The uniformity of response across the face of the detector
was also measured to evaluate the effectiveness of the new repeller plate. A wavelength
calibration was made and compared with geometric calculations. An absolute sensitivity
calibration was also performed in different orders over some of the wavelength range of
the instrument. The results of each of these procedures are outlined in the sections that

follow.

3.3.1 Instrumental Broadening

It was hoped that the design of the new detector would allow for improved spectral
resolution by reducing the lateral spread of photons as they travel along the coherent
fiber bundle. To verify this reduction, measurements of the width of a zeroth order
line were made. The source used for these measurements was a commercially available
platinum lamp operated at about 250 volts and about 10 milliamps. This proved to be
a relatively weak source, so long integration times (up to 4096 ms) were used to collect
enough signal. The source was set at an grazing angle of incidence of about 82.5 degrees
and the detector was set to observe specular reflections from the grating (i.e. the zeroth
order line). A typical line observed in this way is shown in Figure 3-3 where the detector
was positioned so as to place the line near the center of the diode array. Also shown in

that figure is a Gaussian fit (dashed line) with FWHM of 7.5 pixels. The Gaussian fit
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Figure 3-3: A zeroth order line from a platinum lamp source captured near the center of the
detector. Also shown is a Gaussian fit to this line.

to this lineshape is good except at the wings of the line, where it underestimated the
strength of the signal. This line shape shows a large improvement over that obtained
using the old detector. In that case, a much larger fraction of the total number of counts

under the peak were contained near the wings of the line.

Since the Rowland circle geometry truly focusses in the dispersion plane along the
Rowland circle, and since the microchannel plate detector is flat, the entire detector
cannot be in ideal focus at all times. As a way of measuring this effect, and of optimizing
the alignment of the detector, the zeroth order platinum lamp line was scanned across
the microchannel plate detector channels to measure the instrumental line broadening as
a function of the position on the plate. This scan was also done using an incident angle
of 82.5°. The result of this scan is shown in Figure 3-4 where the FWHM of the observed

zeroth order platinum lamp line is plotted as a function of position on the microchannel
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Figure 3-4: FWHM of the zeroth order platinum lamp line as a function of position on the
detector for an angle of incidence of 82.5°.

plate. The position (in units of detector channel number) shown is the position of the
center of the platinum lamp line on the detector. Low channel number corresponds to
the short wavelength side of the detector, closest to the grating. The results shown
represent the optimal alignment of the detector which was arrived at after numerous
iterations. The criteria used to determine the best possible alignment included both the
minimization of the broadening at the point along the detector closest to the ideal focus
as well as the avoidance of a large variation in broadening across the entire length of the

detector.
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3.4 Detector Gain

3.4.1 High Voltage Calibration

In order to have a reliable absolute calibration of the device, the gain characteristics of
the system as a whole were determined over the entire range of operating parameters. In
particular, the detector can be operated with variable voltages across the micro-channel
plate, across the phosphor, and across the repeller grid (see Figure 3-1). Experiments
were therefore conducted to measure the gain of the detector assembly over the full range
of these operating voltages. Using the platinum lamp in zeroth order at a fixed position
(nominally centered) on the detector, the voltages on both the input and output faces of
the micro-channel plate and on the repeller grid were systematically varied to map out
the gain characteristics. A typical signal obtained is similar to that shown in Figure 3-3.
The total number of counts measured under the peak of that line after subtraction of a
background pedestal level was considered indicative of the strength of the signal received.

With the repeller held at a fixed value of -2300 V relative to the input side of the
plate and with the voltage across the plate held at 750 V (output side relative to the
input side), the accelerating voltage between the phosphor and the output side of the
plate was varied over the range 3000 to 5000 V. In each case, the total number of counts
under the peak was measured after integration for times ranging from 256 ms to 4096
ms. The number of counts per second measured in this way as a function of the phosphor
voltage (normalized to the number measured at a phosphor voltage of 4900 V) is shown
in Figure 3-5. A best fit polynomial function is also shown in that figure. The best

fit for the normalized gain due to the phosphor voltage, G, was determined to be:
Gph = 5.43 x 1073(V},5, — 3000) + 2.48 x 10~"(V,, — 3000)? (3.2)

In a similar manner, the relative gain due to the plate voltage was measured at
fixed repeller voltage (-2300 V) and fixed phosphor voltage (4500 V). Those results are

summarized in Figure 3-6 and are shown along with a best fit polynomial to the plate
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Figure 3-5: Total counts per second under the zeroth order platinum lamp line as a function
of phosphor voltage with fixed plate voltage (850 V) and repeller voltage (-2300 V) normalized
to a phosphor voltage of 4900 V.

gain, G, as:
Gpi = —24.4 4 0.105V,; — 1.49 x 107V 4 7.05 x 107°V3 (3.3)

Knowing these two functions, G, and Gy, the relative strength of a signal obtained
at any voltage setting within the ranges of validity of the fits can be referred back to
the original voltages used in the absolute calibration discussed in the following sections.
This effectively extends the absolute calibration to virtually the entire practical operating

range of voltages.
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Figure 3-6: Total counts per second under the zeroth order platinum lamp line as a function
of plate voltage with fixed phosphor voltage (4500 V) and repeller voltage (-2300 V) normalized
to a plate voltage of 950 V.

3.4.2 Slit Width

The detector response to changes in slit width was also investigated. Although a linear
response was expected, it was important from the point of view of ensuring the robustness
of the absolute calibration at different detector settings to verify this relationship. Shown
in Figures 3-7 and 3-8 are the total counts per second measured at different slit width
settings for both large and small values of slit width. Each of these calibrations was
obtained with a different source. This accounts for the differences in the count rate

detected in each case. The large slit width data in Figure 3-7 were obtained using the
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Figure 3-7: Total count rates at fixed detector gain as a function of entrance slit width for
large slit widths.

carbon line generated by the Manson soft x-ray source discussed in the following section.
The small slit width data in Figure 3-8 were obtained using the same platinum lamp
line used earlier. Note first that there can be extrapolated from these plots (particularly
Figure 3-8) an offset in the ‘nominal’ slit width as read on the entrance slit micrometer
itself. This offset has been determined to be 23 ym and is consistent with data taken in
both ranges of slit width. Also apparent from the plot is that the linearity of the signal
with slit width is very good. This allows for confident use of calibration measurements
made for large slit widths at the small slit widths typical when viewing the much brighter
tokamak discharges.
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Figure 3-8: Total count rates at fixed detector gain as a function of entrance slit width for
small slit widths.

3.5 Absolute Calibration

3.5.1 Short Wavelength Calibration

A soft x-ray source was used to calibrate absolutely the VUV spectrometer up to 114
A. This source, known as a Manson source [17], utilizes an electron beam incident on
an anode in order to produce x-rays (mostly K-shell) from the desired anode material.
By selecting appropriate anodes, a range of well-defined soft x-ray and XUV lines from
about 10 A to 114 A can be obtained. The x-ray calibration apparatus which uses the
Manson source also allows for a gas-filled proportional counter to be inserted into the
x-ray beamline at any time. With the beam targeted at the spectrometer grating, this
capability allows for an absolute calibration of the entire spectrometer system. Table 3.1

summarizes the anode materials and the resulting lines which were used for this absolute
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anode material | K-shell emission from | wavelength (A)
Mg(OH), solution Mg 9.89
Mg(OH), solution 0 23.6

AIN powder N 31.6
graphite C 44.7
B powder B 67.0

BeO powder Be 114.0

Table 3.1: Anode materials and lines from the Manson source used in the absolute
calibration of the VUV spectrometer.

sensitivity calibration.

Each anode was placed into the source chamber in turn and exposed to the energetic
focussed electron beam. Typical beam voltages were 3-5 kV at currents of 100-500 pamps.
The spot size of the electron beam on the anode target was about 2 mm in diameter. The
beamline between the face of the anode and the entrance slit of the spectrometer was on a
movable two-dimensional pivot which allowed the source to be scanned both parallel and
perpendicular to the lines of the grating. This feature was used to investigate the spatial
uniformity of the grating. For absolute calibration purposes, however, a large entrance
slit was used to both maximize the strength of the signal obtained and to illuminate the
as much of the grating as possible to integrate over any non-uniformities which might
be present. With the chosen source line positioned to strike the center of the detector
at a grazing incidence angle of 88°, the total number of counts collected under the peak
of the line was measured for a number of integration periods at fixed detector gain
characteristics. Having obtained a sufficiently strong signal at the detector, the gas filled
proportional counter was lowered into the beamline so as to collect the flux which was
previously incident on the grating. The output from the proportional counter is routed
through a multi-channel analyzer to yield an energy spectrum of collected photons where
the photons due to the given line to be calibrated are well resolved from any secondary
lines which may be present in the emission. Because the efficiency of the proportional
counter is close to 100% for these photons, it gives the absolute flux of photons which were

emitted by the source. Using the beamline geometry, this source flux can be converted to
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a flux of photons incident on the grating. It is this flux which is incident on the grating

which allows for a measurement of the absolute sensitivity. The system sensitivity as a

function of wavelength at a given set of detector voltages is given by:

sensitivity

Figure 3-9:

source.

s(A)

0.06

0.04

0.02

0.00

number of counts at detector
number of photons incident on grating

30 60 90 120 150
wavelength (A)

(3.4)

Measured first order sensitivity as a function of wavelength using the Manson

Listed in Table 3.2 are the measured sensitivities at different wavelengths in first

order. These values for the system sensitivity, s(\), are also shown graphically in Figure

3-9. This procedure was also carried out for various lines in second order and also in

third order where possible. The sensitivities obtained from those calibrations are shown

in Figures 3-10 and 3-11. Note the general trend seen in all of these sensitivity curves of a

generally increasing sensitivity as wavelengths approach 120 A. This feature is expected

from a consideration of the response characteristics of the Csl photocathode layer which
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Figure 3-10: Measured second order sensitivity as a function of wavelength using the Manson

source.

coats the input side of the microchannel plate image intensifier. This photocathode
material has a peak in its responsiveness at about 120 A [18]. The absolute sensitivity
calibration carried out in this region of the spectrum with the Manson source is therefore

consistent with this material feature. An extension of this calibration to even higher

wavelength (A)

wavelengths is discussed in the following section.

150

anode | wavelength | first order sensitivity (x1072)
0] 31.6 0.38
C 44.7 1.18
B 67.0 1.56
Be 114.0 4.82

Table 3.2: Measured absolute sensitivities in first order.
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Figure 3-11: Measured third order sensitivity as a functiop of wavelength using the Manson
source.

3.5.2 Long Wavelength Calibration

The Manson soft X-Tay source was capable of providing a calibration for wavelengths
shorter than about 114 A in first order. Clearly, for the VUV Spectrometer to realize its
maximum utility, this calibration had to be extended over the entire wavelength range
covered by the instrument. To do this, use was made of a technique [19] which exploits
the known ratio of oscillator strengths between certain pairs of doublet lines of Impurity

ions with only one valence electron (i.e. jons in the lithiumlike, sodiumlike, copperlike,

lines come to exist in the tokamak are listed. The transitions are all An = ¢ from

npg 1 —ns 1 where n = 2, 3,4 for the Li-like, Na-like, and Cu-like ions respectively. It can
27
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element, charge state | wavelengths (A) | method of introduction
Mo 31+ (Na-like) 128, 176 intrinsic, laser ablation
Ni 25+ (Li-like) 165, 234 laser ablation
Fe 23+ (Li-like) 192, 256 laser ablation
Cr 21+ (Li-like) 223, 280 laser ablation
V 20+ (Li-like) 240, 294 laser ablation
Ti 19+ (Li-like) 259, 309 laser ablation
Sc 18+ (Li-like) 279, 326 laser ablation
Fe 15+ (Na-like) 335, 360 laser ablation
Mo 13+ (Cu-like) 373, 423 intrinsic, laser ablation
Ar 15+ (Li-like) 353, 390 gas puff
Cr 13+ (Na-like) 390, 412 laser ablation
Ti 114 (Na-like) 460, 480 laser ablation
Si 11+ (Li-like) 500, 520 laser ablation
Ne 7+ (Li-like) 770, 780 gas puff

Table 3.3: Pairs of doublet impurity lines in the lithiumlike, sodiumlike, and copperlike
configurations available for calibration.

be seen that there is, in general, overlap between the wavelengths spanned by one doublet
and those spanned by the next. This in principle allows for a continuous extension of
the absolute calibration from the last wavelength accessible by the soft x-ray source to
much higher wavelengths. Using the sensitivity measured using the Manson source at
114 A as a tie-down point, the change in sensitivity over the range 128-176 A, say, can
be measured by comparing the observed brightnesses of the Mo 31+ lines.

The brightness of these lines as observed by the spectrometer can be written as:

B= / e(r) - dl (3.5)
where €(r) is the emissivity of the particular line. If the assumption is made that the
upper levels of these transitions are populated by collisional excitation only, then using
a conventional approximation for the electron impact excitation rates [20] for resonance

transitions, this emissivity can be written as:

oAb ) (3.6)

e
E X Nenp———F—=eXxp
AE\/(T.) T:

where n. and n; are the local electron and impurity ion densities respectively, f is the

absorption oscillator strength, AFE and 7T, are the transition energy and local electron
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temperature. Viewed along identical lines of sight, the brightness ratio of the pair of

doublet lines can therefore be written as:

(3.7)

where subscripts 2 and 3 refer to transitions between that J level and the ground state.
In principle, this brightness ratio is a known number based only on the atomic physics

parameters included in equation 3.7 and on the local electron temperature in the region

where the emissivity of the given line is dominant.

0.06 ] I T |

0.04+ -
in
>
=
C
(<)
wn

0.02

0.00 ‘ | ! | 1

0 100 200 300 400 500

wavelength (A)

Figure 3-12: Spectrometer sensitivity as a function of wavelength in first order including the

results of both the Manson source calibration (closed circles) and the doublet ratio calibration
(open circles).
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Modelling of the fractional abundance of the various impurities listed in Table 3.3
is able to determine the temperature where each of these lines emits most strongly (see
Chapter 4 for more details of this fractional abundance modelling). Small errors in this
determination are, in fact, not terribly important, since the exponential term in equation
3.7 is close to unity anyway as a result of the fact that most temperatures of highest
erhissivity are much larger than the difference in transition energies for the lines. Since
the predicted ratio of the brightnesses of the doublet lines is known, a direct comparison
with the observed ratio can now be made. If the sensitivity of the spectrometer over the
wavelength range covered by the doublet lines is constant, then the observed brightness
ratio should be equal to the predicted ratio. If the sensitivity has changed as a function
of wavelength, however, there will be a difference between the observed and predicted
ratios. This difference can then be used to correct for the sensitivity change over the
relevant wavelength range. If this calibration is done in a stepwise manner beginning
with a known sensitivity, a continuous function relating the sensitivity to the wavelength
can be obtained. This was done on C-Mod using a number of the impurities listed in
Table 3.3 using the sensitivity measured at 114 A as the starting reference point. The

results of this process are summarized by the sensitivity curve shown in Figure 3-12.

Notice that one of the first features which becomes apparent is the strong local max-
imum in the sensitivity at about 120 A. As mentioned earlier, this is consistent with the
shape of the response curve of the Csl photocathode. It can also be noted that from
about 200 A to 500 A the sensitivity does not appear to change very much. Because of
the inherent step-wise nature of this branching ratio technique, the estimated accuracy of
the calibration at these higher wavelengths is decidedly lower than that obtained with the
X-ray soufce directly. It is estimated that the accuracy of the sensitivity calibration up
to about 120 A is about £20% based on the accuracy to which the flux from the Manson
source could be measured. By the time the branching ratio method has extended this
calibration to 500 A it is estimated that the sensitivity is accurate to within about a

factor of two.
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wavelength region (A) | instrumental resolution (FWHM A)
40-60 1.5
60-80 3.0
80-100 4.5
100-140 7.0

Table 3.4: Typical instrumental resolution of the multi-layer mirror.

3.6 Cross-Calibration Using the Multi-Layer Mir-

ror Polychromator

A multi-layer mirror polychromator has also been installed on Alcator C-Mod for viewing
emission in the soft x-ray and XUV region of the spectrum [21]. This device is operated
as a three channel polychromator capable of viewing simultaneously three distinct regions
of the spectrum. During normal operation, the regions monitored are typically around 60
A, 90 A, and 130 A. Of particular interest is the region around 120 A since it contains the
strong 3p-3s sodiumlike and magnesiumlike molybdenum lines. The multi-layer mirror
is inherently a lower resolution device than the VUV spectrometer, and so some care has
to be taken in the interpretation of signals obtained from it. Typical resolution for the
device at different wavelengths is listed in Table 3.4.

The MLM instrument has been independently calibrated [21] at the Johns Hopkins
University using techniques similar to those outlined for the VUV spectrometer. A dif-
ferent Manson soft x-ray source was used to provide several sensitivity points at different
wavelengths of interest. The instrumental response function of the MLM instrument was
also determined by scanning across the known natural width of the source lines.

With an independent calibration for both the VUV spectrometer and the MLM poly-
chromator, a direct comparison of the signals obtained by these two instruments was
made. This comparison is most important at the 128 A region of the spectrum where
the MLM instrument is used to monitor the sodiumlike molybdenum line. It is impor-
tant to determine when this molybdenum line is dominant in the bandpass of the MLM

instrument. When this is true, the signal obtained by the MLM instrument can be used
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to infer molybdenum concentrations in the plasma. Shown in Figure 3-13 is the spectral
region around 128 A. The background continuum level which is subtracted away from the
raw spectrum is also shown. In this region of the spectrum, the continuum is comprised
of a contribution due to a large number of unresolved lines as well as a contribution due

to some scattered light within the transmission system of the VUV spectrometer.

During low density operation (Tig0< 0.8), the molybdenum concentration in the
plasma is typically high. In this case, the sodiumlike molybdenum line is dominant
in the spectrum and agreement between the MLM instrument and the VUV spectrom-
eter is found to be good. The signals typically agree to within about 15%. On the
other hand, during high density operation (Tico0= 1.8), the molybdenum concentration in
the plasma is low and the MLM instrument signal contains sigrﬁﬁcant contribution from
lines other than the sodiumlike molybdenum line. In these cases, agreement between the
instruments is not as good. Discrepancies of up to a factor of two are sometimes found.
These discrepancies at low molybdenum signal levels (brightness < 4 x 10'* ph/s/cm? /st
can be accounted for by subtracting a roughly fixed baseline level from the MLM signal.
This baseline level has been found to be about 2 x 10'* ph/s/cm?/sr. For all of the
subsequent analyses which make use of the MLM signals, this baseline level is already

subtracted away.

3.7 Conclusions

This chapter has described the design and operation of the high resolution, time-resolving
VUV spectrometer used on Alcator C-Mod. Details of the detector alignment and sys-
tem gain characterization were given, along with a description of the techniques used
to calibrate absolutely the sensitivity of the device. This absolute sensitivity calibration
was performed from about 50 A to about 500 A using a combination of an x-ray source
with an absolute detector and a method utilizing the constant emissivity ration between

selected impurity doublet lines. The accuracy of the calibration is about +20% at the
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lower wavelengths and within about a factor of two at the higher wavelengths. Also
demonstrated was good agreement in absolute sensitivity calibration with an indepen-
dently calibrated lower resolution polychromator. The rewards of having performed this
ca,libra.tionl will now be explored in the following chapters, where the use of the spectrom-
eter to monitor and interpret various different impurity phenomena in the plasma will

be discussed.
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Figure 3-13: Spectrum taken with the VUV spectrometer showing the bandpass of the MLM
polychromator channel around the 3s2-3s3p molybdenum line at 127.8 A for a moderate density
discharge. Also shown is the typical background level which is subtracted away from the VUV
spectrum to give the true brightness of the molybdenum line.
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Chapter 4

Atomic Physics Model

4.1 Introduction

A proper interpretation of observed impurity line emission depends on a reliable model
for the atomic and transport processes occurring in the plasma. The brightness of any
given impurity line is a strong function of the charge state distribution of that impu-
rity, dictated by rate coefficients for the relevant ionization and recombination processes
taking place and the local transport conditions in the plasma. These rate coefficients
are generally functions of the electron temperature; the local transport is generally a
function of various plasma parameters. To describe properly the total impurity picture
in the plasma, the influence of all of these factors must be measured, calculated, or ap-
proximated in some way. This chapter will describe the techniques used to model the
charge state distributions of different impurities in the plasma by taking into account

atomic physics rate coefficients and plasma transport coefficients.

4.2 Charge State Balance

In a one-dimensional cylindrical geometry, it is possible to develop a relatively simple

model which describes impurity transport. By solving a set of coupled differential equa-
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tions, the evolution of all charge states of a given impurity can be followed in space and
time. The evolution of the density, n;, of an impurity with atomic number Z of charge
1 <7 < Z is governed by [22]:

on;

7 = VLt ne [naSia 4 nnein —ny () + o)) (4.1)
where n. is the electron density, S; is the total ionization rate out of state 7, a; is the
total recombination rate out of state j, and T'; is the local flux of impurity species j
across a given radial surface. The functional form of the flux is generally found to be

anomalous and is typically modelled as:
I'; =DVn;—Vn . (4.2)

where D and V are the diffusion coefficient and convective velocity respectively (see Chap-
ter 5 for details relating to how these coefficients are determined experimentally). Much
has beén written [23, 24] about various techniques to solve equation 4.1. For the purposes
of thé analysis conducted here, the MIST code [23] was chosen as the preferred tool to
generate charge state balances. The MIST code solves equation 4.1 for a single impurity
in a one-dimensional cylindrical geometry using atomic physics rate coefficients from a
number of sources, depending on the impurity. Where well accepted experimental, the-
oretical, or semi-empirical coeflicients exist for a given impurity, they are used directly.
Examples of impurities which have well established databases of coefficients include car-
bon, oxygen, and other low Z elements which have been investigated at length in previous
tokamak and other plasma physics experiments. For higher Z elements, where no such
well established coefficients exist, generic formulas for the ionization and recombination
rates are used [25]. These formulas are highly approximate and generally only reliable
at predicting rate coefficients for low Z elements. For ionization rates, they include only
contributions from electron impact ionization from the ground state. In higher Z elements
it has been shown that other processes such as electron impact excitation followed by
autoionization can be important [26]. For recombination rates, only a generic treatment

of dielectronic recombination, which is generally the dominant recombination process for
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the intermediate charge states of high 7 elements, is included and is not able to address
the complexity of electronic configurations of higher Z elements.

Where the coefficients used by the MIST code were deemed sufficiently accurate for
application to C-Mod plasmas, they were used in their original form. In a number of
instances, however, it became apparent that some of the rates used in the code were
predicting results clearly contrary to observations. This was particularly true for molyb-
denum, an important intrinsic impurity in C-Mod. The experimental evidence which led
to the conclusion that the molybdenum ionization, recombination, and excitation rate
coefficients that were being used by the MIST code were inaccurate are presented in the
sections that follow. The details of the improvements made to these rate coefficients are
also given, along with the implications of those improvements on interpretations of the
plasma molybdenum content. |

A more general description of the ways in which line integrated spectroscopic measure-
ments are interpreted in the context of impurity charge state and total density profiles is
now presented. The ifnporta.nce of knowing accurately the background electron density
and temperature profiles is also discussed along with a brief description of how these

measurements are made on Alcator C-Mod.

4.3 Electron Density and Temperature Profiles

All of the modelling described in this thesis is dependent to some large extent on the
electron density and temperature profiles used as inputs. The measurement of these
profiles represents a significant effort by the C-Mod group and is of vital importance
to a large number of performance related calculations and other diagnostics. A brief
description of the techniques used to generate these profiles is therefore warranted.
Electron density is currently measured with a 10 channel interferometer system which
operates at two separate wavelengths (10.6 um and 643 nm). Each channel of the system

provides a line-integrated measurement of electron density along a vertical chord through
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the plasma [27]. The chords extend from a major radius of 0.66 m to a major radius
of 0.85 m. The chordal measurements can be inverted using standard matrix inversion
techniques to yield an electron density profile. One short-coming of this measurement
scheme is that the radial coverage of the vertical chords is not sufficient to reach the edge
of a typical plasma centered at R=0.69 m with a minor radius of 0.22 m. Thus, the value
of the edge density determined by the inversion algorithm has a relatively high degree of
uncertainty due to the lack of line-integrated measurements made at the edge. Attempts
have been made to compensate for this by making use of an edge database of electron
densities established on the basis of measurements made with a reciprocating Langmuir
probe [28]. This database relates macroscopic plasma parameters such as plasma current
and line-averaged electron density to corresponding values of edge density. The edge
density values inferred from this database can then be used as inputs to the inversion
algorithm for the electron density profile. This process can be repeated iteratively until
convergence is reached. That is, the profile generated using the value of edge density
from this database should in fact return that same value. The relationship that this

database uses for edge density has been found to be [29]:

= 0.93 (7; — 0.6) + 0.28 (4.3)

neseparatri:

where all of these densities are in units of 10?*m™3. Similarly, the e-folding width of the
density in the scrape-off layer at the midplane (in mm) has been found to be described
by:

A = 7.0 (’Iz - 1.0) +49 (4.4)

D
where the plasma current is given in MA. When used as input to the MIST code, or

other atomic physics models used in this work, the inverted electron density profile is
transferred to a mesh and joined together with the edge profile described by equations
4.3 and 4.4. A typical electron density profile assembled in this way is shown in Figure
4-1 on both linear and log scales.

The electron temperature profiles in Alcator C-Mod are measured with an electron

cyclotron emission diagnostic [30]. This instrument measures the intensity of blackbody
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Figure 4-1: Typical electron density profile (including edge model) used for atomic physics
modelling shown on a linear and a log plot.

emission at various frequencies and uses the known variation of toroidal magnetic field
with major radius in the tokamak to localize the emission in the radial dimension. This
diagnostic is able to measure electron temperatures down to about 200 eV before the
optical depth of the plasma becomes too low for i‘eliable interpretation of the emission
spectra. Although the profiles generated in this way are independent of the edge temper-
ature, an appropriate value of edge temperature is still necessary to provide a complete
profile of the entire plasma since the 200 eV point typically occurs at least a couple
of centimeters inside the separatrix. The edge database is again used to provide these

temperature values at the separatrix and in the SOL. The electron temperature (in eV)
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at the separatrix was found to be well-described by [29]:

ne
T, praeris = —10.7 (E ~ 1.0) +28.5 (4.5)

and the e-folding width in the scrape-off-layer at the midplane by:
Ne
Ar =10.9 (— — 1.0) +2.3 (4.6)
I,

A typical electron temperature profile assembled in this way 1s shown in Figure 4-2 on

both linear and log scales.
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Figure 4-2:  Typical electron temperature profile (including edge model) used for atomic
physics modelling shown on both a linear and a log plot.
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4.4 Interpretation of Chordal Brightness Measure-

ments

All of the observations made with the various spectrometers described in this thesis are
the result of chordal views through an emitting region of plasma. In order to relate
these line-integrated measurements to specific local quantities, it is important to be able
to interpret properly the effects of viewing through a region of varying emissivity. The
procedure used to translate a one dimensional emissivity profile generated by the MIST
code into a line integrated brightness measurement along a specific line of sight is outlined

below.

In general, the viewing chord of a given instrument is known in absolute spatial
coordinates (that is, with respect to the vacuum vessel). Details of how these views
are determined for some instruments va,re given in Chapter 3. What needs to be defined
is therefore the position of the plasma with respect to those same coordinates. This
is done using the EFIT equilibrium reconstruction code. As outlined earlier, using as
inputs magnetic measurements from B, coils, flux loops, and Rogowski coils, this code
calculates the magnetic geometry of the plasma as a function of time for each discharge.
This geometry allows a visualization of surfaces of constant flux in the plasma as well as
a clear identification of the separatrix or last closed flux surface. A typical reconstruction
showing nested flux surfaces each is given in Figure 4-3. The separatrix for this diverted
discharge is shown with a heavy line and the magnetic axis of the plasma is marked with
a cross. Superimposed on this reconstruction is a typical line of sight view of the VUV

spectrometer.

One assumption which is crucial in allowing a one-dimensional profile to be applied to
this inherently two-dimensional geometry is that the properties of the one-dimensional
quantity (eg. ni, ne, nr, T, etc...) permit it to be considered a flux function. That
is, the quantity must be such that it is essentially constant on a surface of constant

magnetic flux. This assumption is good for charged particles which have a parallel
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Figure 4-3: EFIT reconstruction of a typical diverted plasma showing surfaces of constant
flux. Also shown is a typical line of sight view of the VUV spectrometer.

transport time which is much faster than their perpendicular transport time. Since
parallel transport is restricted to a given flux surface, meeting this transport condition
ensures that equilibration will occur in the poloidal plane on a given flux surface before
cross-field transport is able to introduce a poloidal asymmetry in the profile. Paralle]
transport 1s generally dominated by the thermal velocity of the charged particles, which
is large even for relatively heavy ions at temperatures of interest in fusion plasmas.
The perpendicular transport, however, is dominated by cross-field diffusion, which is in
general orders of magnitude smaller for both electrons and ions. For all of the analysis

which is to follow, therefore, it is assumed that all charged particle densities as well as
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Figure 4-4: Transformation of the line of sight from Figure 4-3 into midplane coordinates of
the flux surface of closest approach. The major radius of the plasma center is shown with the
dotted line.

the electron temperature are flux functions. This implies that the radiation emissivity
from impurities is also a flux function.

From Figure 4-3, it is possible to refer every point along the spectrometer line of
sight to a flux surface coordinate which can be related to a major radius coordinate at
the plasma magnetic axis. Performing this operation for the geometry and the line of
sight shown in Figure 4-3, a relation between the major radius position of the line of
sight and the minor radius position of the flux surface tangent to the line of sight at
that radius can be obtained. This transformation is shown in Figure 4-4. Using the
transformed line of sight of the spectrometer, a given one-dimensional emissivity profile
can be integrated along that line of sighti to yield a brightness measurement. For various
arbitrary one-dimensional emissivity profiles, the profile actually sampled along the given

line of sight is shown in Figures 4-5. Each of these emissivity profiles is representative
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Figure 4-5: (a) Typical peaked and hollow one dimensional emissivity profiles of unit ampli-
tude. (b) Profiles as sampled along the line of sight shown in Figure 4-3.

of typical centrally peaked and hollow profiles respectively. Following integration along
a line of sight, the result is a single value of brightness observed by the spectrometer for

the given assumed emissivity profile. This value can then be compared directly with an

experimentally observed brightness.

4.5 Molybdenum Charge State Profiles

Observations of brightness profiles from a number of charge states of molybdenum have
been made using x-ray and VUV spectroscopic diagnostics. These profiles have been used
to compare predictions made by the MIST code for a number of ionization/recombination
models. The profiles were determined by conducting a spatial scan of spectrometer chords

during a number of reproducible discharges. To enhance the molybdenum signal during
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Figure 4-6: Plasma parameters during a series of discharges used to measure brightness
profiles of a number of molybdenum lines from different charge states.

these discharges, laser blow-off injections of molybdenum were made early in the shot,
and ICRF power was injected later in the shot in order to raise the temperature and the
overall plasma impurity content. Typical plasma parameters during these reproducible
discharges are shown in Figure 4-6. The McPherson VUV spectrometer with its single
chordal view was scanned over a range of impact parameters from -18 cm to +17 cm.
Lines from sodium (431), magnesium (+30), and like molybdenum were observed at
all of these impact parameters. The HIREX spectrometer array (described in Chapter
1) was also used over a similar range of impact parameters to observe x-ray lines from
fluorine (+33), neon (+32), sodium (+31), and magnesium (+30) like molybdenum. The
transitions observed are listed in Table 4.1. In order to ensure reproducibility from one
shot to the next, the multi-layer mirror based molybdenum monitor with its view fixed

through the center of the plasma was used to normalize the observed signals. Good pro-
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charge state | transition | wavelength (A)
29+ 3p-3d 122.0
30+ 3s-3p 116.0
31+ 3s-3p 127.8
31+ 9p-4d 3.789
32+ 2p-4d 3.740
33+ 2p-4d 3.605

Table 4.1: High and intermediate charge state molybdenum transitions used for profile
comparisons.

files were obtained in the VUV region of the spectrum during the laser blow-off injection
phase of the discharges. Problems with saturated signals during the RF phase of the
discharges prevented profiles from being obtained in the VUV during those times. Good
profiles were obtained in the x-ray during both the injection and the RF phases.

The simultaneous observation of many adjacent charge states provides a very strong
constraint on the predictions of any model used to provide the charge state ionization
balance. Consistency in the widths of the measured and predicted spatial profiles and
intensities of emission from different transitions must be obtained in order for the model
to be considered accurate in its predictive ability. Comparisons were first made with the
original ionization/recombination model as it existed in the MIST code. The code was
run using the anomalous transport coefficients measured with the technique outlined in
Chapter 5 in order to obtain the radial charge state density profiles. For these discharges,
those transport coeflicients were D=0.5 m?/s and S=0.5. For the injection phase of the
discharges, a time-dependent MIST simulation was run. For the RF phase, a simple equi-
librium MIST simulation was run. Once the predicted charge state density profiles were
obtained, the emissivities of the various observed lines were calculated using modelled
excitation rates. For all of the lines considered, the assumption was made that the upper
levels of the transitions were populated by electron impact excitation from the ground
state. This is, in general, a good assumption for lines which are well connected to the
ground state. The relevant parameters which define this excitation rate are also given in

Appendix A for the transitions presented here. The profiles of the predicted brightness of
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Figure 4-7:  Line of sight views used when calculating predicted brightness profiles of the
VUV lines.

these lines was generated by integrating the calculated emissivity profiles over a range of
lines of sight as shown in Figures 4-7 and 4-8 for the VUV spectrometer and the HIREX

spectrometer respectively.

Using the original semi-empirical atomic physics data (ie. ionization/recombination
rates), poor agreement was seen when comparing profiles and absolute intensities from
different charge states. This comparison is shown in Figures 4-9 and 4-10 for the lines in
the VUV and the x-ray regions of the spectrum respectively. The VUV brightness profiles
include the sodiumlike, magnesiumlike, and aluminumlike charge states. The modelled

profiles shown have been normalized to the sodiumlike predictions. Clearly the agreement
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Figure 4-8: Line of sight views used when calculating predicted brightness profiles of the
x-ray lines.

1s poor. Discrepancies of more than a factor of five are seen in the aluminumlike profile.
The x-ray brightness profiles include the fluorinelike, neonlike, and sodiumlike charge
states. The modelled profiles have in this case also been normalized to the sodiumlike
predictions. Again the agreement is seen to be poor. Discrepancies of up to a factor of

five exist in the fluorinelike and neonlike profiles.

An examination of the discrepancies in these comparisons led to the conclusion that
the original atomic physics data being used by the MIST code were underestimating the
degree of ionization which was actually being observed. That is, not enough of the higher

charge states were being predicted by the original model. This is clearly evidenced in
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the much broader observed profiles of the neonlike and the fluorinelike charge states. An
updated model for the ionization/recombination physics which was to be implemented
therefore hé.d to address these shortcomings.

Improved ionization and recombination rates were calculated by the Atomic Physics
Group at Lawrence Livermore National Laboratory (LLNL) as part of an ongoing collab-
oration with the Alcator C-Mod group. A detailed description of these calculations can
be found in [26, 31]. Briefly, though, these calculations undertake an ab initio treatment
of an ion in a given charge state and include processes for electron impact ionization, ex-
citation followed by autoionization,'and radiative and dielectronic recombination which
takes into account the full electronic configuration of each ion. The initial modifications
to the model included updated rates for all charges states from potassiumlike (23+)
through to fluorinelike (33+). These were introduced to the MIST code as parameter-
ized fits to simple functions of electron temperature which approximated the calculated
rates and replaced the existing rates for the charge states mentioned. Where new rates
were not available, the original semi-empirical model rates were used. The functional

form which provided a best fit to the new total ionization rates was:

Siz = agexp (—%) (4.7)

€

The best fit to the new radiative recombination rates was:

b by
Qrr = Te exp ( Te) (48)

The best fit to the new dielectronic rates was:

5]

co
gy = T exp (—ﬁ) (4.9)

where the coefficients a;, b;, and ¢; are determined for each charge state. These coefficients

for each charge state are listed in Appendix A.
The model with the new rates was then used to recalculate the predicted brightness
profiles for each of the lines listed in Table 4.1. These new comparisons are shown in

Figures 4-11 and 4-12. The agreement now is clearly much better. For the VUV lines,
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the agreement is now within about 30% for the three profiles shown. This is a marked
improvement over the nearly factor of five seen previously. The agreement for the x-ray
lines is even better. Consistency to within about 20% is seen as compared with factors
of five seen previously. The predicted profile widths now also agree much better with the

observed profiles.

A clear demonstration of the influence of the improved ionization and recombination
rates can be found by comparing the fractional abundance curves for molybdenum gen-
erated by each model. The fractional abundance of charge states 184 to 40+ is shown in
Figures 4-13 and 4-14 as a function of electron temperature from 500 eV to 5 keV. These
abundances are clearly very different. In particular, notice that the peak of abundance
of most charge states has been shifted to a lower electron temperature. This is why the
higher charge states, which were being underpredicted by the original model, are now
in close agreement with predictions. The major contributing factor to this change in
the fractional abundances has been the inclusion of additional important processes in
the determination of the total ionization rate and the more accurate modelling of the
dielectronic recombination rate. It has been found that the effect of electron excitation
followed by autoionization (EA) can be a dominant process in many of the charge states
investigated. Where this process has been included, the total ionization rate has in-
creased by almost 50% at the temperatures of interest in these plasmas. Improvements
to the dielectronic recombination rates have also led to marked changes in those rates
from the approximate calculations which existed previously. Again, refer to Appendix A
for a graphical representation of the differences in these rates from the original model to

the improved model.

4.6 Conclusions

This section has outlined the techniques used to determine impurity charge state and total

impurity density profiles from spectroscopically observed line brightnesses. The mapping
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from the line of sight of a particular spectroscopic instrument to a one-dimensional mid-
plane grid consistent with the MIST code model has been described and typical'results
have been shown. The importance of electron density and temperature profiles has been
highlighted, and the experimental and analytical techniques used to generate these pro-
files for use by the MIST code have been described. Evidence that the ionization and
recombination rates used by the original version of the MIST code were unable to predict
correctly the experimentally measured molybdenum charge state profiles has been shown.
The improvements made to the ionization and recombination rates have been outlined
and an excellent match between measured and predicted profiles has been demonstrated.
The MIST code and the concomitant post-processing package developed as part of this
thesis are now in a state where they may be used to fullest advantage for the analysis of
a wide variety of impurities. The application of this analysis technique to a number of

tokamak discharges is now presented in the chapters that follow.
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Figure 4-9: Comparison of predicted (solid curve) and measured (circles) profiles for various
charge states of molybdenum based on observation of different VUV lines. The predicted profiles
were generated using rates for ionization and recombination calculated with the approximate
formulas found in the original MIST code and have all been normalized to the sodiumlike profile.
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Figure 4-10: Comparison of predicted (solid curve) and measured (circles) profiles for various
charge states of molybdenum based on observation of different x-ray lines. The predicted profiles
were generated using rates for ionization and recombination calculated with the approximate
formulas found in the original MIST code and have all been normalized to the sodiumlike profile.
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Figure 4-11: Comparison of predicted (solid curve) and measured (circles) profiles for various
charge states of molybdenum based on observation of different VUV lines. The predicted pro-
files were generated using rates for ionization and recombination calculated with the improved
formalism discussed in the text and have all been normalized to the sodiumlike profile.
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Figure 4-12: Comparison of predicted (solid curve) and measured (circles) profiles for various
charge states of molybdenum based on observation of different x-ray lines. The predicted pro-
files were generated using rates for ionization and recombination calculated with the improved
formalism discussed in the text and have all been normalized to the sodiumlike profile.
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Figure 4-13: Fractional abundance of intermediate and high charge states of molybdenum
calculated with the original MIST ionization/recombination rates.
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Chapter 5

Impurity Confinement and

Transport Measurements

5.1 Introduction

In order to understand better the role impurities play in tokamak plasmas, it is necessary
to characterize the transport which governs their behaviour. A systematic study of the
behaviour of these impurities in different operating regimes over a wide range of plasma
parameters is therefore important. Many tokamaks have conducted such systematic
studies with the hope of developing universal scaling relationships for quantities such as
the impurity particle confinement time and the impurity transport coefficients [32]. While
the predictive behaviour of these scaling relationships is generally good for the machine
on which they were derived, fundamental quantitative and even qualitative differences
from one machine to the next have been found.

Such differences are most easily highlighted by considering the scaling of impurity
particle confinement time derived on different machines. Work carried out on the Alca-
tor C tokamak [22] concluded that an impurity confinement time scaling was inversely
proportional to the safety factor, ¢. Similar studies on the TEXT machine [33] concluded

a that the dependence was inversely proportional to the plasma current I,, which is ex-
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actly opposite the Alcator C scaling since g i Other scalings, such as the mass of the
background gas, ms, dependence and the Z.;; dependence, on the other hand, proved
to be similar in both cases. The major dependencies which can be compared directly for

impurity particle confinement time found in each case are below:

Lepm
eff1tbg O(Ze

TAlcatorC X ffmngp (51)

TTEXT X Zﬁ%pbgne ' (5.2)

Various explanations for this qualitative difference in scaling with plasma current have
been proposed [33].

The sections that follow describe experiments conducted to develop an impurity par-

ticle confinement time scaling relationship for Alcator C-Mod and to reconcile the obser-

vations with scaling relationships derived elsewhere.

5.2 Experiment

5.2.1 Hardware

The laser ablation impurity injection system (see Chapter 2) was used to investigate
impurity particle transport in Alcator C-Mod. A series of injections of various impurity
species was made into plasmas with different background parameters in order to study
the dependence of impurity particle confinement time on these parameters. Injections of
a given impurity (scandium) were made into ohmic and ICRF heated limited and diverted
discharges with varying plasma current in the range 0.4 < I, < 1.0M A at roughly fixed
electron density. Further injections of scandium were then made as the electron density
was varied in the range 0.8 < Tigyo < 2.0m ™2 at a fixed plasma current of 0.8 MA. Similar
injections were also made into hydrogen and helium discharges to investigate any isotopic
dependence which might be present. The injected species was also varied during a series
of discharges at fixed plasma parameters over the range of Z=13 (aluminum) to Z=42

(molybdenum). The injections were typically made during the quiescent phase of the
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discharge when neither the plasma density, temperature, current nor magnetic geometry
were changing. The injections were kept sufficiently small that typically no perturbation
to electron density or temperature was noticed. The time evolution of central charge
states of the impurity was monitored and used to characterize the particle confinement

time for the given impurity.

5.2.2 Analysis

plasma current MA) 931019011

0'2 ...................... 0’4 ...................... 0.. 6
: central electron density

Figure 5-1: Typical time evolution of a high charge state of scandium viewed along a central
chord. Also shown is the evolution of background plasma parameters during the injection.

A typical time evolution of a central charge state of injected scandium observed with
the HIREX spectrometer viewing along a central chord is shown in Figure 5-1 along
with the evolution of background plasma parameters. This evolution is typical of most
laser blow-off injections. The brightness of the observed line is seen to peak rapidly

(in a few milliseconds) following the injection as the impurity is transported radially
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across field lines to the center of the plasma. There then follows an exponential decay
of the brightness on a longer timescale (tens of milliseconds) as the impurity diffuses
outward and is lost from the plasma. It is this exponential decay which is indicative of
the impurity particle confinement time. This time is measured by fitting the decay of the
observed time evolution of a single line brightness or multiple line brightnesses to a curve
of the form Agq+ A; exp (— ﬁ) where 7., is the impurity particle confinement time and
Ao is the background pre-injection signal level which is typically zero for non-intrinsic

impurities on all except the broadband soft x-ray diode observations. This background

level is subtracted away from the signal before the fitting routine is applied.
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Figure 5-2: Comparison of impurity particle confinement time measured with different spec-
troscopic diagnostics for a laser ablation scandium injection at t=0.55 s.
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instrument | charge state | transition | wavelength (A)
HIREX x-ray spectrometer 19* 1s® — 1s2p 3.0
soft x-ray diodes | 197,207 many <10
VUV spectrometer 18* 25 — 2p 259.0

Table 5.1: Observed transitions for impurity confinement experiments using laser ablation
scandium injections.

The evolution of a central or near-central state of an injected impurity is typically
observed using a number of spectroscopic diagnostics, each of which may be measuring
different atomic transitions. For the case of scandium injections, a number of central
charge states are observed using the HIREX x-ray spectrometer array, the soft x-ray
diode arrays, and the VUV spectrometer. A summary of the transitions observable by
these instruments is given in Table 5.1. As a check on the robustness of the measurement
of the impurity particle confinement time, the exponential decay observed by all of these
diagnostics should be the same within the experimental error. For the injection shown
in Figure 5-2, it is demonstrated that this is in fact the case. The inferred particle
confinement time is found to be consistent to within about 5% using the three different

diagnostics with similar chordal views through the center of the plasma.

5.3 Confinement Time Scaling

A database of 50 injections of a number of different species into various types of dis-
charges has been established. It is useful to perform non-linear regression analyses on
this database to identify the plasma parameters which have the greatest influence on the
impurity particle confinement time. A study of impurity confinement times on Alcator
C [22] discovered a scaling relation for Tim, (in seconds) of the form:

Zef f Mg

L= .75
Timp = 0.75aR° Z 4

(5.3)

where the minor radius, a, and the major radius, R, are given in meters, and the mass

of the background gas, ms, is given in amu. Z, refers to the atomic number of the
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background gas. This relation successfully predicted the observed confinement times
on Alcator C such that about 90% of the measurements fell within +20% of the pre-
dicted values. To the extent possible, this scaling was compared with the Alcator C-Mod

database. The results of this comparison are shown in Figure 5-3. In general the pre-
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Figure 5-3: Alcator C impurity particle confinement time scaling (equation 5.3) compared
with Alcator C-Mod measurements.

dictive ability of the Alcator C scaling is fairly good, although a systematic overestimate
of the confinement time is noticed. This predictive ability has been pointed out in com-
parisons with data taken from other machines as well. Reference [22] has demonstrated
that 5.3 is capable of fitting confinement time measurements from machines of greatly

different size reasonably well.
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Figure 5-4: Linear logarithmic regression of the impurity particle confinement data showing
dependences on plasma current, electron density, and mass of the background gas.

A number of linear logarithmic regressions was performed on the C-Mod injection
database. The independent variables used in each regression were chosen from a group
which included the plasma current, the mass of the background gas, the line-averaged
electron density, Z.ss, and the total input power. When all of these variables are included
at once, it is clear that colinearities in the data lead to confusion in interpreting the
results. For example, since all of the discharges in the databasé were ohmically heated
only, the input power and the plasma current are strongly correlated and lead to confusing
results when included with a number of other variables. The results of a regression which

includes plasma current, mass of the background gas, and electron density are shown in
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Figure 5-5: Linear logarithmic regression of the impurity particle confinement data showing
dependences on plasma current and total input power.

Figure 5-4. The best fit equation determined in this way is:

— —0.110.05,_0.23+0.12 70.80+0.11
Tfit = 0.02071320 mbg Ip (54)

Clearly the most dominant plasma parameter affecting the confinement time in this case
is the plasma current. It shows a dependence roughly similar to the linear dependence
observed on Alcator C. The results of a regression which includes plasma current and
total input power (P,,) only are shown in Figure 5-5. The best fit equation determined
in this way is :

Trie = 0-0271;'34i0'17B;0'36i0'13 (55)
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This result may be significant in that it bears a similarity to the conventionally accepted

scaling for the energy confinement time known as the ITER-89P scaling [34].
g = 0.04812.85R1.2a0.3’€0.5n2.IBO.ngéSP—O.S (56)

where the plasma current is given in MA, the electron density in units of 102°m =3, the
mass of the background gas in amu, and the total input power in MW. Note that this
scaling also shows an almost linear dependence on plasma current and an inverse scaling
with the total input power. Other features present in the ITER-89P scaling which have
also been observed in the C-Mod impurity particle confinement time scaling are the
roughly square root dependence on the mass of the background gas and the very weak
dependence on the electron density. The energy confinement time scaling on Alcator

C-Mod has also been observed to be in good agreement with the ITER-89P scaling [35].

5.3.1 ICRF Heated Discharges

It has been shown that the addition of auxiliary heating tends to degrade the energy con-
finement time of the plasma according to the ITER-8IP scaling of equation 5.6. Clearly
the addition of more power to the plasma has a detrimental effect on the energy confine-
ment time according to this scaling. Using the laser ablation injector, an investigation
was made into the effects of ICRF heating on the impurity particle confinement time in
Alcator C-Mod. Injections of iron were made into a series of four discharges with identi-
cal background plasma parameters (I, = 0.8 M A,Rigoo = 1.5, T = 1.8keV). Two of the
discharges had 0.8 MW of ICRF power injected for a 0.2 second duration while the other
two did not. The iron injections were made at the same time in each of the discharges
(t=0.55 seconds). The time histories of some key plasma parameters are shown in Figure
5-6. Sufficient ICRF power was injected in these shots to increase the electron tempera-
ture by a few hundred eV. The ion temperature was also observed to increase during the
ICRF heating. The VUV spectrometer was used to provide high time resolution mea-

surements of the brightness of the 2s-2p line of lithiumlike iron (Fe?**) along a central
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Figure 5-6: Key plasma parameters for the series of injections into RF heated and ohmic
discharges. The injection time was 0.55 seconds.

chord during the injection. Both of the lines in the doublet (the j=2 at 192.0 A and the
j=3 at 256.0 A) were observed on successive shots. The time evolution of these lines
for all four discharges is shown in Figure 5-7 along with the inferred impurity particle
confinement time. The observed confinement times are not demonstrably different
during these ICRF discharges. On the basis of this series of injections, therefore, it can
be noted that the addition of 0.8 MW of ICRF power which led to some electron and
ion heating taking place did not significantly change the impurity particle confinement
time in the plasma. The linear regression derived in equation 5.5 would have predicted
an expected decrease in the impurity particle confinement time based on the change of
total input power of about 15%. This change was not observed. The fact that no high
power ICRF discharges are included in the injection database used to derive equation 5.5

may be an explanation for this.
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Figure 5-7: Time histories of the 192 A line (a) and the 255 A line (b) of lithiumlike iron for
the 4 injections into similar RF (dashed line) and ohmic (solid line) discharges.

5.3.2 Divertor Detachment

Another operating regime routinely observed in Alcator C-Mod is divertor detachment
[36]. This regime is characterized by a strong decrease in electron temperature at the
divertor target plate and observations of loss of conservation of electron pressure along
field lines leading to the target. Also observed during divertor detachment is an abrupt
increase in central electron density. It is important to determine whether this increase is
due to a change in core particle transport or merely a change in fuelling efficiency brought
on by changing edge plasma conditions. A series of injections into similar detached
and attached divertor discharges was made. The background plasma parameters for
these injections were (I, = 0.8MA,Tieyo = 1.5,Te0 = 1.8keV). The evolution of these
background parameters is shown in Figure 5-8. The injection time is highlighted there as

well. The injected impurity in this case was scandium, and the 2s-2p lithiumlike transition
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Figure 5-8: Background plasma parameters for scandium injections into detached divertor
plasmas. The detachment occurs at time 0.78 seconds. The injection was made at 0.82 seconds.

at 259 A (Sc'®t) was observed with the VUV spectrograph. The confinement time
measured during these injections into detached divertor discharges was not significantly
different from that measured during ordinary ohmic divertor operation. Furthermore,
the x-ray emissivity profiles measured during the injection into the detached divertor
discharges did not differ appreciably from those measured without detachment. Their
similarity is indicative of the fact that not only did the macroscopic impurity particle
confinement time not change, neither did the transport coefficients. These comparisons,
therefore, lead one to conclude that there is no change in core impurity particle transport
during detached divertor operation. A similar analysis of core electron transport [37]
supports this conclusion. Despite the sharp rise in electron density following detachment,
electron transport coeflicients were not seen to change measurably during detachment.

The explanation for the density increase must therefore lie in a change in fuelling efficiency
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brought on by the detached condition.

5.4 Transport Coefficients

In addition to measuring impurity particle confinement times, laser ablation injections
can also be used to infer Impurity transport coefficients. To demonstrate this, consider
first a simplified case of transport governed by a single, spatially constant diffusion co.
efficient without any convection velocity. Although somewhat 1dealized, this case is rep-
resentative of anomalous transport with coefficients whose magnitudes are much larger

than neoclassical predictions. In such a case, the impurity particle flux is described by:
P] = -—DVHI (5.7)

and the transport €quation governing the evolution of a total Impurity density n; is:

%TziJrV-PI:o (5.8)

with the boundary condition that n; = 0 at the edge of the plasma. In 2 1-dimensional
cylindrical geometry, the spatial solution to this equation is a zeroth order Bessel function
and the temporal solution is decaying exponential with time constant [22]:

a® 1

2.4052 D

(5.9)

where 2.405 is identified as the first zero of the zeroth order Bessel function and ¢ is
the radius of the cylindrical system. Equation 5.9 relates a diffusion coefficient to a
macroscopically observed exponential decay time. If the impurity flux is really as simple
as equation 5.7, then this expression for the diffusion coefficient 1s sufficient and can be
computed directly.

A more complete form of the impurity flux, however, includes the effects of a finite

convection velocity term as well. This form of the flux can be written as:

P[ = —DVTLI - VTL[ (5.10)
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The simplest form of the convection velocity consistent with the boundary conditions n

a cylindrical geometry is:
V=£% (5.11)

where Vp, the value at the edge, is positive for an inward pinch velocity. It then becomes
convenient to define a dimensionless parameter which reflects the relative importance of
the convective term to the diffusive term:

aVp

=22 (5.12)

It has been shown [38] that, in such a formalism, the exponential decay of the total

impurity density is described by an e-folding time of:

T_77+525—5—1l
T 56+52 452 D

(5.13)

For a given fixed value of the confinement time, 7, increasing values of the dimen-
sionless parameter, S, lead to total impurity density profiles which are more and more
peaked. Examples of this are shown in Figure 5-9 where the total impurity density profile
as calculated by the MIST code for a scandium injection is plotted for a number of differ-
ent values of S, all with a fixed exponential decay time of 0.020 seconds. The variation in
peakedness ranges from the zeroth order Bessel function (S=0) to highly peaked (5=5).
In order to infer the actual peakedness factor observed on Alcator C-Mod during these
injections, use was made of the emissivity profiles obtained by both the soft x-ray diode
arrays and the bolometer arrays. In particular, the high resolution profiles measured us-
ing the soft x-ray diode arrays were particularly useful for this determination. Modelling
which takes into account the dominant contributions to the soft x-ray signals was carried
out and used to predict an observed profile on the basis of a calculated total impurity
density profile obtained from the MIST code. Keeping the impurity particle confinement
time fixed to the values measured in the experiment, the values of D and S were varied

until a best fit to the observed x-ray emissivity profiles were obtained. The results of this
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Figure 5-9: Calculated total impurity density profiles using the MIST code for a range of
peaking factors, S. The profiles shown are for scandium with an assumed particle confinement
time of 0.020 seconds.

iterative process indicate that a peaking factor of about 0.5 provides the best agreement

with the observed data.

The modelling used to compare Xx-ray emissivity profiles was also used to compare
directly the observations made with the high resolution x-ray crystal spectrometer array
during controlled scandium injections. Shown in Figure 5-10 are the lines of sight of
three chords of the HIREX array used for observing these injections. The evolution of a
number of lines emitted by the heliumlike charge state of scandium was measured during

each injection. A typical spectrum of these lines is shown in Figure 5-11. By modelling
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Figure 5-10: Viewing geometry of three chords of the HIREX spectrometer array used for
viewing scandium injections.

the emissivity of each of the lines in that spectrum (see Appendix b for details) using time
dependent charge state density profiles obtained with the MIST code, the time history
of the observed spectrum was predicted. Shown in Figure 5-12 are the observed and
predicted time histories of all lines contained in the spectrum shown in Figure 5-11 along
the three lines of sight shown in Figure 5-10. For each chord, the code predictions agree
well with the observations. Notice in particular the difference in the time for the signals
to reach their peak in each case. The chord which has its view closest to the edge of
the plasma (c) is actually observed to take the longest time to peak. While it is perhaps

not intuitively obvious that this should be so, recall that emission into these lines of the
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Figure 5-11: Typical heliumlike scandium spectrum obtained during the decay phase of a laser
ablation scandium injection. The transitions observed are the same as those observed when
viewing the heliumlike argon spectrum. Details of these transitions are found in Appendix B.

spectrum requires that the impurity be ionized to at least the heliumlike state (or the
hydrogenlike state for those lines attributable to recombination). The outermost chord
in these experiments was looking at a region of the plasma cold enough that impurities
diffusing inwards would not yet have been ionized through to the heliumlike state. It
is only as those impurities were diffusing from the hotter central region of the plasma
that they were sufficiently ionized to produce significant emission in those heliumlike
transitions. Since the recombination time of these impurities is long compared with the

transport time, the peaking of the outermost chord is delayed relative to the more central
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Figure 5-12: Observed time histories and code predictions of the entire spectrum of Figure
5-11 along the lines of sight shown in Figure 5-10. Notice the differences in time-to-peak for
each chord.

ones. The significance of the good agreement seen between these observed results and the
model predictions is that added confidence is given to the parameters used in the models.
Such good agreement would not have been possible for modelled transport coefficients

which were very different from the actual coefficients.
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5.5 Conclusions

A variety of impurities has been injected into Alcator C-Mod for the purpose of charac-
terizing impurity transport. The impurity particle confinement time has been determined
over a wide range of operating parameters and has been found to have a nearly linear
dependence on plasma current. An isotopic mass scaling was also observed as was an
inverse dependence on total input power. Many of these features are similar, but not
identical, to those observed on the Alcator C tokamak.

Investigations of core transport during detached divertor operation have shown that
no changes in either confinement time or transport coeflicients were observed, lending
support to the claim that any macroscopic changes in plasma behaviour following divertor
detachment are a result of edge phenomena only. Similar investigations conducted during
ICRF heating experiments have shown that no discernable change in impurity particle
confinement time was observed. With the addition of increased heating capacity, these
investigations can now be extended to an even larger range of operating parameters.

Added confidence in the transport and atomic physics model used for this analysis
was given by the good agreement which was found between modelled and observed time

histories of laser ablation injections as viewed along a number of differnet spatial chords.
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Chapter 6

Intrinsic Impurity Concentrations

6.1 Introduction

The intrinsic impurity level in the plasma is a quantity of great importance to tokamak
operation. Intrinsic impurities can have deleterious effects on plasma performance as
outlined in the introductory chapter of this thesis. A measurement of the concentration
of various impurities and the effects they have on radiative losses from the plasma is
therefore desirable. One important jmpurity in Alcator C-Mod is obviously molybdenum.
C-Mod provides a unique opportunity to observe the behaviour of molybdenum as an
intrinsic impurity. The typical concentration of molybdenum in the plasma during a
variety of discharges was therefore investigated extensively. Another important iﬁtrinsic
impurity is carbon. Even though there are no actual carbon plasma facing components in
C-Mod, small amounts of carbon contamination on the molybdenum tiles from in-vessel
activities can prove to be a significant source of plasma contamination. A third impurity
which can have important effects on the plasma is argon. While not an intrinsic impurity,
argon 1s routinely injected into the plasma in small amounts in order to allow for the
measurement of ion temperatures from the doppler broadening of the heliumlike argon
resonance line [39]. The amount of argon injected, while small, can still have noticeable

effects on the plasma. Because of this, argon has also been selected a one of the intrinsic
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impurities to be analyzed in this chapter.

Intrinsic impurity levels are generally determined by three important factors. One is
the strength of the source of the particular impurity species. This source is understood
to be the flux of neutral atoms leaving all of the plasma facing components surrounding
the plasma. It is fully expected that this source term can change greatly during different
types of tokamak discharges, dependent largely on the magnetic geometry, density, and
temperature of the plasma in the immediate vicinity of the plasma facing components.
A second important factor which determines intrinsic impurity concentrations is the
penetration of these source impurities through the edge of the plasma and into the core.
For a given source of impurities, it is possible that different plasma conditions will lead
to different penetration characteristics. This question of penetration is more thoroughly
discussed in Chapter 7. A third factor influencing the impurity concentration in the
plasma is the transport in the plasma core. The impurity particle confinement time is
the quantity which describes how long an impurity introduced into the plasma remains in
the plasma core. As outlined in Chapter 5, this confinement time can vary as a function

of various plasma parameters.

To construct an accurate description of intrinsic impurities, measurements from a
number of spectroscopic diagnostic systems were used. Line emission was monitored
using the VUV spectrometer, the HIREX spectrometer, and the MLM polychromator.
Continuum emission attributable to bremsstrahlung was monitored using the multi-chord
Z-meter array. The total radiated power emitted by the plasma was monitored with
an array of bolometer detectors. The MIST code was used to interpret observed line
brightnesses in terms of absolute number density of impurity atoms and their contribution
to the total radiated power and the measured Z.f¢. Consistency among these deduced

quantities from all available diagnostics was checked whenever possible.
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6.2 Radiated Power

In addition to measuring the concentration of a, given impurity in the plasma, it is also
important to know what contribution that impurity makes to the total radiated power
losses from the plasma. Radiative losses from Impurities arise mainly from line radiation,
radiative recombination, and enhanced bremsstrahlung. Each of these mechanisms is
described briefly below. A description of a key diagnostic used to measure the net effect

of these contributions is also presented.

6.2.1 Sources of Radiated Power Losses

Line radiation, radiative recombination, and bremsstrahlung are the dominant mecha-
nisms for radiation loss from tokamak plasmas.

Line radiation losses arise from the sum of contributions from a large number of dis-
crete lines emitted by transitions from each charge state of a given impurity. Each charge
state with density n, can be thought of as radiating photons from electron transitions

between levels j and 7 with power F;; according to:
Pij = nenszEijB.;j (61)

where S; is the rate coefficient for population of the upper level, J, and E;; is the energy
of the photon emitted as the excited electron decays back to its initial state, z. B;;is a
branching ratio which accounts for transitions which do not return to the intial state ¢
directly. In tokamak plasmas, the dominant mechanism for populating the upper levels
of these transitions is electron impact excitation. This is typically followed by direct and
rapid radiative decay to a lower level. In such a case, an appropriate rate coefficient
for this process would be used for Si; in equation 6.1. Typical functional forms for
electron impact excitation rate coefficients can be found in Appendix B. More elaborate
processes for populating and de-populating upper levels may also be taken into account.

Calculations which attempt to predict the total radiative losses from all charge states of
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a given impurity generally do so by simplifying the complex atomic processes with some
sort of an average ion model for the impurity under consideration [40].

While line emission emits photons of discrete energy, radiative recombination results
in a continuum of emission. When a free electron is captured into a bound state of an
impurity ion, a photon with energy equal to the initial kinetic energy of the electron plus
the binding energy of its final state is emitted. The minimum energy available for such
a photon is therefore equal to the ionization potential of the capture level of the given
ion. The emission continuum can therefore be expected to contain discrete recombination
edges in the spectrum as a result of this mechanism (see Chapter 8 for an experimentally
observed recombination edge in the heliumlike argon spectrum). This contribution to
radiated power has a functional dependence on the atomic structure of the particular
impurity ion [25]. It is also known that the contribution to total radiated power from
radiative recombination is most important at low electron temperatures (low, relative to
the ionization potential of the impurity ion).

Bremsstrahlung radiation also results in a continuum of emission as free electrons are
accelerated on impurity (and hydrogen) ions. The power spectrum radiated in this way

as the result of an impurity of charge Z; present with a density n; has a dependence as

[41]):
dP —hw

7 & nen_rZIze(T)Te 2 (6.2)

This contribution to total radiated power is also straightforward to incorporate into an

1

average-ion model for a given impurity.

6.2.2 Measurement of Total Radiated Power

Total radiated power is measured in Alcator C-Mod using arrays of bolometer detectors.
These bolometers are of the conventional gold foil type [42] and are sensitive to photons
over a wide range of energies (infra-red to hard x-ray) as well as to particles which are
incident on their collection area. These detectors in C-Mod have been arranged to view

24 chords through the plasma at the horizontal midplane. The field of view ranges from
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Figure 6-1: Viewing geometry of the 24 chord midplane bolometer array.

chords which are tangent to the inner wall to chords which are tangent to major radii
well outside the separatrix of typical plasmas. This viewing geometry is shown in Figure
6-1. Each chord provides an absolutely calibrated line integrated brightness signal with
a time resolution of about 10 ms. The calibration was performed by depositing known
amounts of energy on the detectors with either a laser pulse or a resistive heating element

and measuring the system response. The calibration is accurate to within about £15 %.

The brightness profile obtained with this array can be Abel inverted to yield an
emissivity profile [43]. A typical brightness profile which includes chords passing through
the outer midplane of the plasma and the resulting emissivity profile is shown in Figure
6-2.

There is a number of important features to note in this emissivity profile, which

is typical of most obtained during normal plasma operation. The first is that there
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Figure 6-2: Typical brightness profile measured with the 24 chord bolometer array (a), and
the emissivity profile obtained after inversion (b) for a plasma centered at 0.68 m with a minor

radius of 0.22 m.

are two distinctive local maxima at major radii of around 0.79 m and 0.88 m. The

second is that the emissivity profile is definitely not peaked at the magnetic axis. In the

course of modelling the total radiated power from the plasma, a consistent explanation

of these phenomena must be obtained. In the sections that follow, individual radiated

power emissivity profiles modelled for different key intrinsic impurities will be presented

and compared with these experimental profiles. Consistency in both the shape of the

predicted profiles and their magnitude was investigated.
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6.2.3 Modelled Emissivity Profiles

0.40

0.30

0.20

emissivity (MW m™3)

o
o
|
|

0.00 | | ] |

0.00 0.05 0.10 0.15 0.20
minor radius (m)

Figure 6-3: A comparison of the radiated power emissivity profiles for the original MIST
average-ion model (dashed) and the improved rates model (solid) described in Chapter 4.

The radiated power emissivity profile for a given impurity can be modelled by including
contributions from the dominant mechanisms mentioned in Section 6.2.1. This has been
incorporated into various applications by Post & Jensen [40] and Hulse (MIST code)
[23] on the basis of different assumptions for the impurity charge state distribution. The
simplest form of these so-called ‘cooling rates’ are found 1n [40] and assume a coronal
equilibrium distribution of charges state of the given impurity. The rate of power loss

per impurity ion per electron is then available directly from standard curves as functions
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of electron temperature. A local emissivity can therefore be produced from these curves
with knowledge of the electron density, temperature, and the total local impurity density
alone. A more sophisticated treatment of the problem has been incorporated into the
MIST code. Rather than assume a coronal distribution of impurity charge states, the
distribution is calculated explicitly including all of the effects of transport (see Chapter
5). The dominant radiative loss mechanisms are then calculated on a per-charge-state
basis and summed to produce the total emissivity profile for that impurity. This approach
is clearly superior in that it accounts for changes in the charge state distribution from
coronal equilibrium which are brought about by local transport in the plasma. It has the
added advantage of allowing for more flexibility in the atomic physics rates which are used
in the calculation. This has already been demonstrated to be extremely important in the
case of molybdenum. Shown in Figure 6-3 is a comparison of the modelled radiated power
emissivity profile obtained for molybdenum using the Post & Jensen cooling rates and
the best available MIST rates with the same total impurity density profile and the same
background electron density and temperature profile. The differences are noticeable,
particularly in the vicinity of the peak in the profile at a minor radius around 0.16
m. These differences are due largely to the differences in charge state balance used in
the two models which result from the changes made to the MIST code as described in
Chapter 4. This serves as yet another example of the importance of these modifications.
Ongoing modifications to account for different mechanisms which influence the charge
state balance in some cases (autoionization, for example) are still being made. Other
(especially lower Z) impurities are considered to be well modelled at the present time by

the Post & Jensen formalism.

The emissivity profiles measured with the bolometer array can also be used to make
~ estimates of the total radiated power in the main plasma. If the assumption is made that
the radiation emissivity in the main plasma is a flux function (i.e. constant on a flux
surface), then it is possible to use the magnetic geometry calculated by EFIT to integrate

the emissivity profile over the plasma volume. The value obtained by this integration
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Figure 6-4: Spectrum taken with the VUV spectrometer showing the 1s-2p carbon line in
second order at 67.4 A. Also shown is the typical background level which is subtracted away to
give the true brightness of the carbon line.

is the total radiative loss from the main plasma excluding the divertor region and the

scape-off layer.

Modelling of the plasma impurities was carried out to try and reach consistent agree-
ment with the measurements made using the bolometer array. Specifically, independent
spectroscopic determination of the concentrations of various major plasma impurities was
used to predict both the radiation emissivity profiles due to each impurity element as
well as its individual contribution to the total radiated power. The impurities considered

for this analysis were molybdenum, carbon, and argon.

117



5000 T T T T

4000

3000

2000

Brightness (arb scale)

1000

poev v b v v v v v bveg s s v s bov v v s by s v s s aay

‘IrlllllIIIIIIIIIIIIlllllrflllllllllll'll[ll[lllll

AL

3940 3960 3980 4000
Wavelength (mA)

Figure 6-5: Spectrum taken with the HIREX spectrometer showing the 1s-1s2p argon line
at 3949.2 mA.

The first important quantity which was determined was the concentration of each of
these impurities in the plasma. For each impurity, there exist certain lines which were
considered most convenient for this determination, either because of their brightness,
charge state, or because of the ease with which they could be viewed by a particular
diagnostic. The lines which were selected are listed in Table 6.1 along with the instrument
with which they were observed. Typical spectra which show the carbon and argon lines as
well as the spectral region observed by the MLM polychromator during these experiments
are depicted in Figures 3-13, 6-4, and 6-5. Also shown in these figures is the typical

background continuum signal level which is subtracted away from each spectrum before
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element charge state | transition | wavelength (A) instrument
molybdenum 31+ 3s2-3s3p 127.8 MLM polychromator
carbon 5+ 1s-2p 33.7 VUV spectrometer
argon 164 1s2-1s2p 3.949 HIREX spectrometer

Table 6.1: Transitions used for the determination of intrinsic impurity concentrations.

actual line brightnesses are calculated. In the case of the HIREX signals, this continuum
is always essentially zero. For the VUV spectrometer, the background signal level varies
as a function of wavelength (see Chapter 3).

The results of observations based on the lines specified here for different ohmic and

ICRF heated discharges are presented in the following two sections.

6.3 Ohmic Discharges

During normal ohmic operation, spectra are routinely obtained with the VUV spectrom-
eter which allow for the simultaneous measurement of many impurity lines. Regions of
the spectrum important for the measurement of intrinsic impurities are the region around
115-130 A in which are included many strong lines from central charge states of molyb-
denum (Mo29+ to Mo31+), and the region around 60-90 A in which are included high
charge state lines from carbon and oxygen along with a large number of intermediate
charge state lines of molybdenum. Simultaneous measurement of both these regions is
not possible with the VUV spectrometer alone, but shot-to-shot measurements are made
routinely during repeatable discharge operation. In addition, the MLM polychromator
is used to monitor the 128 A region of the spectrum. The cross calibration discussed in
Chapter 3 allows this instrument to be used with a high degree of confidence for absolute
measurements of known lines at these wavelengths.

Discharges heated exclusively with ohmic power were the most common type of dis-
charge run in Alcator C-Mod during its first two major operational campaigns. Data
from a wide range of operational parameters are therefore available for this type of dis-

charge. Plasma currents have been obtained in the range of 0.4-1.0 MA with line averaged
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electron densities ranging from 0.5-2.5 x10%° m~3 and central electron temperatures from
1.0-2.2 keV in both limited and diverted magnetic geometries. As an overview of find-
ings made during ohmic operation, presented in this section are scalings of important
impurity-related quantities such as total radiated power and Z.;; with plasma density
for similar diverted plasmas. A comparison of these findings with observations made

during limited discharge operation is presented in the following section.

‘].O T 1 1 T T 1T T 7T |||||||||ITI||||r[
0.8 -
ot o “O ]
2 o6t ® o PY i
o i o i
o] ° _
N o © -
S 041 ® -
S e & :
o 1 ]
o | i
@]
0.2F il
- -
O-O L||lll|llIllllLl'lllllIllllll
0 1 2 3

A, (10%° m™)

Figure 6-6: Total radiated power from the main plasma as measured by the midplane bolome-
ter array over a range of electron densities showing a roughly linear dependence.

Shown in Figures 6-6 and 6-7 are the total radiated power and the Z.s; of typical
diverted plasmas over a range of density. The trend displayed by each of these figures gives

insight into the levels of contamination of the plasma by impurities over the density range
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Figure 6-7:  Zs; at the center of the plasma as measured by the visible bremsstrahlung array
over a range of electron densities showing a roughly inverse dependence. (See Chapter 1 for
details on why Z.r; measured in this way sometimes falls below unity.)

available in these experiments. The total radiated power can be seen to have an almost
linear dependence on the line-averaged density of the plasma. Recall that, in general,
P,oq4 x neny. If the number of impurities in the plasma can be expressed as some fractional
concentration of the electron density, f; = L, then, for a fixed fractional concentration,
the radiated power would be expected to depend on the electron density squared. In
that this effect is not observed, it can be argued that the concentration of impurities is
decreasing as the electron density is increased. This finding is also borne out by the trend

in the measured Z.;; data. As (Z.ss-1)ox f1(Z)(Z — 1), for some average f; and Z based
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on all impurity species present, this provides rather direct evidence that this fractional
concentration of impurities is dropping as the electron density is increased. In fact, the
evidence from both measurements presented here shows that the dependence is roughly
fr x nl—e Insofar as the increase in electron density tends to decrease the edge electron
temperature which is the dominant factor in defining the sputtering rate of impurities
from the plasma facing components, this trend is understandable. In addition, since a
higher edge electron density would tend to ionize a given source of impurities outside
the last closed flux surface at a higher rate than would a lower density (see Chapter 7
for more details about this screening mechanism), the behaviours observed in the P..4
and Zess data are consistent. Over the density range included in this investigation, the
implied reduction in the impurity concentration is more than a factor of ten. A more

quantitative analysis which verifies this effect is presented in the next section.

The dominant impurities monitored during ohmic operation include molybdenum
and carbon. They are thought to be the two largest contributors to the total radiated
power in the main plasma. The direct contribution due to argon radiation is found to
be small for the trace injections used for ion temperature measurements. The indirect
effects of increased sputtering are accounted for through observations of the other intrinsic
impurities. Using the analysis method discussed in Chapter 4, estimates of the fractional
concentration of each dominant impurity can be made for any particular discharge. From
this fractional concentration, estimates of the contribution each impurity makes to the
total radiated power in the plasma can also be made. As a check on the validity of
these estimates, comparisons between the predicted radiated power emissivity profiles
and those measured with the bolometer array were made. Shown in Figure 6-8 is an
experimentally measured emissivity profile from a moderate density (7. = 1.3 x 10°m~3)
based on the inversion of bolometer brightness measurements. Also shown are the profiles
predicted by the MIST code for molybdenum and carbon. The magnitude of these
predicted profiles has been adjusted to be consistent with fractional concentrations for

each impurity calculated on the basis of spectroscopic measurements of the sodiumlike
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Figure 6-8: Measured radiated power emissivity profile for a moderate density diverted
discharge (solid). Also shown are predicted profiles for molybdenum (dashed) and carbon
(dotted).

molybdenum and the Lyman-a carbon lines respectively. Qualitatively, the predictions
show local maxima at radii which agree well with the measured profile. Quantitatively,
the predicted profile is able to determine a total radiated power which only overestimates
by about 30% the power measured with the bolometers. This type of good agreement
is typical for discharges with low to moderate densities. At higher electron densities
(more specifically, at lower electron temperatures) the model for molybdenum is less
effective at predicting the total radiated power. In most high density cases, the model

greatly overpredicts the molybdenum contribution to total radiated power. This points
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density regime | 7.(10%°m=3) | Too (keV)
low 0.8 2.0
moderate 1.3 1.7
high 2.2 1.4

Table 6.2: Plasma parameters used for experiments to compare intrinsic impurity con-

centrations during limited and diverted operation. The plasma current for all discharges
was 0.8 MA.

to inadequacies in the way this contribution to total radiated power is handled for the
intermediate charge states of molybdenum in particular. Work is ongoing via the LLNL

collaboration to improve this model.

6.3.1 Comparison of Diverted and Limited Operation

To answer one of the key questions regarding the efficacy of diverted operation, a series
of experiments was performed to compare impurity levels in similar limited and diverted
discharges. Plasmas carrying 0.8 MA of current were established in both limited and
diverted configurations over a range of densifies. The important plasma parameters for
each of the discharges used in this experiment are listed in Table 6.2. A number of
limited and diverted shots was run in each of the density regimes listed. =~ The magnetic
geometry for each configuration is shown in Figure 6-9. The important intrinsic impurities
discussed above were monitored in each case along with the total radiated power and the
Zes; of the plasma. The results of these experiments are summarized and discussed
below.

Figure 6-10 shows the Z.s; of the plasmas for all the discharges used in this experi-
ment. As has already been noted, there is a typical inverse relationship between Z.; and
the plasma electron density. This trend is also well demonstrated in the data presented
here. For both the limited and the diverted discharges, Z.ss is seen to fall strongly as
the line-averaged density increases. A direct comparison, however, shows that at low
and moderate densities, Z.;; is also clearly lower for the diverted discharges than it is

for the limited discharges. This difference is more pronounced at lower density than it
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Figure 6-9: Magnetic geometry for the limited (a) and diverted (b) discharges used in these
experiments.

is at higher density, but is nonetheless present there as well. In terms of the overall
impurity content in these plasmas as is indicated by the quantity Z.;-1, the 1ow density
limited plasmas are clearly highly contaminated with impurities. This is consistent with
results obtained previously on limited machines with metal walls such as Alcator A and
C [44]. Tt is encouraging, however, to see that this level of contamination for limited
plasmas only exists at low to moderate density. At the highest densities investigated
in these experiments, the Z.s; during limited operation was almost as low as that seen
during diverted operation at those densities (recall the caveats to Z.s; falling below 1.0

discussed in Chapter 3).
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Figure 6-10: Comparison of measured Z.ss for limited and diverted discharges over a range
of densities.

Additional evidence which demonstrates that the limited discharges are more highly
contaminated with impurities can be found by examining the radiated power coming from
the main plasma during these discharges. Shown in Figure 6-11 is the total radiated power
from the main plasma as measured with the midplane bolometer array as a function of
the line averaged electron density in the three regimes investigated for both the limited
and the diverted discharges. Again the difference between the limited and the diverted
shots is readily apparent, especially at low and moderate density, where the total radiated
power is observed to be at least a factor of two higher for the limited shots. At high
density, this difference is not as large, consistent with the convergence of Z.;; in that
density regime as well. Note also that the total radiated power for the diverted discharges
tends to rise steadily with increasing electron density. This, of course, is more evidence

of the general trend of a linear dependence of radiated power on density that has been
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Figure 6-11:  Comparison of measured total core radiated power for limited and diverted
discharges over a range of densities.

observed in C-Mod during diverted discharge operation. It is indicative of an impurity

concentration which varies inversely as the electron density.

More specific spectroscopic data also exist which serve to verify these findings. Shown
in Figure 6-12 are the brightnesses of the sodiumlike molybdenum line observed by the
MLM polychromator for the discharges in question. In Figure 6-13 are shown the bright-
nesses of the carbon Lyman-a line observed by the VUV spectrometer for those same
discharges. Again the differences between the limited and the diverted discharges are
readily apparent in all density regimes. For molybdenum, the difference in brightness
between the limited low density and high density case is as large as a factor of ten. The
change in the diverted shots over that density range in not nearly as dramatic, probably
owing to the fact that the molybdenum concentration was very low to begin with. For

the low and moderate density regimes, the difference in brightness between the limited
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quantity geometry | low | moderate | high
fractional concentration lim 10 3.6 4.6
(10~%) div 0.92 1.9 1.4

total number of atoms lim 7.9 4.0 8.2
(10%6) div. |055] 1.9 2.3
contribution to P..4 lim 1.3 1.0 4.6
(MW) div 0.08 0.45 1.1
contribution to Z.ss lim 1.0 0.35 0.45
div 0.09 0.19 0.14

Table 6.3: Effects of molybdenum in limited and diverted shots over a range of densities
as calculated by the model.

quantity geometry | low | moderate | high
fractional concentration Iim 280 120 55
(104 div 86 45 25
total number of atoms lim 210 130 99
(10%) div 52 44 41
contribution to Pr.q lim 0.13 0.09 0.10
(MW) div 0.03 0.03 0.04
contribution to Z. lim 0.84 0.35 0.17
div 026 | 0.13 0.08

Table 6.4: Effects of carbon in limited and diverted shots over a range of densities as
calculated by the model.

128



T T ]

@)

O O limited

@ diverted

Mo31+ (128A) brightness

Figure 6-12: Comparison of observed Mo 31+ brightness along a central chord for limited
and diverted discharges over a range of densities. Units are 10'* ph/s/cm?/sr.

and diverted cases is at least a factor of five to ten. The difference at high density is not
large, again consistent with the convergence of the Z.;; and the radiated power mea-
surements. The carbon behaviour, on the other hand, is qualitatively very different. The
diverted discharges show the carbon brightness rising steadily as a function of density.
The limited discharges show an initial decrease on transition from the low to the moder-
ate density regime, followed by an increase in the high density regime. This trend is also
mimicked somewhat in the radiated power trend for the limited discharges. Rather than
draw conclusions on the basis of these brightness measurements alone, analysis was per-
formed to convert the brightnesses to actual impurity densities in the plasma according
to the methods outlined in Chapter 4. An average of the results from discharges in each
density regime was chosen for both the diverted and limited case. Calculated quantities

included the fractional concentration of each impurity in the plasma, the total number of
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Figure 6-13: Comparison of observed C VI brightness along a central chord for limited and
diverted discharges over a range of densities. Units are 10! ph/s/cm?/sr.

impurity atoms in the plasma, the contribution to the total core radiated power, and the
contribution to Z.ss. These results are summarized in Tables 6.3 and 6.4. The quantities
which can be compared with measured results (Z.s; and P,.4) agree well for most of the
low and moderate density cases. The totals predicted by the carbon and molybdenum
contributions are consistent with those observed. For the high density case, a strong
discrepancy is noticed in the prediction of total molybdenum radiated power for the lim-
ited discharge case. This is related to inaccuracies in the model discussed earlier which
become pronounced at lower electron temperatures. The effects of these inaccuracies are
mitigated somewhat at higher electron temperatures due to the inclusion of higher charge
states of molybdenum which are believed to be better modelled, thereby making the low

and moderate density cases more reliable.
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6.4 ICRF Heated Discharges

Alcator C-Mod has operated during the 1993, 1994, and 1995 campaigns with the capabil-
ity of injecting up to 3.5 MW of ICRF heating power at 80 MHz using either a monopole
or a dipole antenna configuration. The 1993 campaign saw one monopole antenna on a
movable stage to allow it to be set at different major radii installed and operational. The
1994 and 1995 campaigns saw two fixed dipole antennas installed and operational. A
discussion of the design and operational differences between these antennas can be found
in [45]. Generally, though, the differences lie in the way the 80 MHz current is driven in
the current straps of each antenna. In the case of the monopole, there exists only one
current strap (hence this antenna is sometimes referred to as a ‘single-strap’), whereas
in the dipole case, there exist two current straps which can be driven with a variable
relative phase shift. Operationally, these differences are thought to produce very differ-
ent plasma sheaths on the surface of the antennas and in the vicinity of other plasma
facing components. Differences such as this will be kept in mind when trying to account
for observed differences in plasma behaviour using the two antenna. Another design dif-
ference between the monopole and dipole antennas is in the materials used to coat the
Faraday shield in each case. The Faraday shield serves as an electrostatic screen which
is responsible for shorting out the toroidal component of the electric field generated by
the antenna. This is done to avoid exciting undesirable waves components in the plasma
edge which could lead to greatly enhanced sputtering and impurity production from the
antenna itself as has been demonstrated in the past [46]. The shield itself consists of a
conducting cover over the current strap with slots running in the direction of the main
toroidal field in order to allow the field induced by the current strap to penetrate through
to the plasma. The single strap antenna was outfitted with a Faraday shield coated with
titanium carbide (TiC). One of the two strap antenna shields was also coated with TiC
while the second two strap shield was coated with boron carbide (B4C).  Typical ICRF
heating pulses lasted up to several hundred milliseconds at powers ranging from 0.1-3.5

MW (0.1-1.0 MW for the single strap). This variation allowed for a thorough set of
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Figure 6-14: Plasma parameters during the application of 0.4 MW of ICRF power with the
monopole antenna in 1993.

experiments comparing the effectiveness of each antenna as regards the impurity gener-
ation issue. Intrinsic impurity levels were measured during ICRF heating experiments
in the same way that they were during ohmic operation. The same dominant intrinsic
impurities (Mo, C) were again observed. The results of that comparison are presented

below.

6.4.1 Comparison of Monopole and Dipole Antenna Configu-
rations

Shown in Figures 6-14 and 6-15 are typical plasma parameters during the application

of ICRF with the monopole and the dipole antennas respectively during similar high

current, moderate density discharges. A few observations can be made immediately

upon inspection of these parameters. One is that, in both cases, the application of the
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Figure 6-15: Plasma parameters during the application of 0.9 MW of ICRF power with the
dipole antenna in 1994.

ICRF has dramatic effects on the density, temperature, and total radiated power in the
discharges. These effecté, however, are dramatically different for the different antennas.
The electron temperature during the dipole application of ICRF was seen to rise by about
300 eV from its initial value of 1500 eV, a clear indication that heating was taking place.
The radiated power was seen to rise by about 0.5 MW, an amount less than the net
increase in input power to the plasma due to the ICRF source. During the monopole
applicati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>