
MIT Open Access Articles

Resource Competition Shapes the Response of Genetic Circuits

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Qian, Yili et al. “Resource Competition Shapes the Response of Genetic Circuits.” ACS 
Synthetic Biology 6, 7 (April 2017): 1263–1272 © 2017 American Chemical Society

As Published: http://dx.doi.org/10.1021/ACSSYNBIO.6B00361

Publisher: American Chemical Society (ACS)

Persistent URL: http://hdl.handle.net/1721.1/119015

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/119015


Resource Competition Shapes the

Response of Genetic Circuits
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Abstract

A common approach to design genetic circuits is to compose gene expression cassettes together.
While appealing, this modular approach is challenged by the fact that expression of each gene
depends on the availability of transcriptional/translational resources, which is in turn determined
by the presence of other genes in the circuit. This raises the question of how competition for resources
by di�erent genes a�ects a circuit’s behavior. Here, we create a library of genetic activation cascades,
where we explicitly tune the resource demand by each gene. We develop a general Hill-function-based
model that incorporates resource competition e�ects through resource demand coe�cients. These
coe�cients lead to non-regulatory interactions among genes that reshape circuit’s behavior. For
the activation cascade, such interactions result in surprising biphasic or monotonically decreasing
responses. Finally, we use resource demand coe�cients to guide the choice of ribosome binding site
(RBS) and DNA copy number to restore the cascade’s intended monotonically increasing response.
Our results demonstrate how unintended circuit’s behavior arises from resource competition and
provide a model-guided methodology to minimize the resulting e�ects.
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Introduction

Predicting the behavior of genetic circuits in living cells is a recurring challenge in synthetic biology
[1]. Genetic circuits are often viewed as interconnections of gene expression cassettes, which we call
nodes. Each cassette (node) is composed of core gene expression processes, that are, transcription
and translation. Here, we view each node as the input/output system that takes transcription factors
(TFs) as inputs, which regulate the expression of an output TF. Although in an ideal scenario we
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would like to predict the behavior of a circuit from that of its composing nodes characterized in
isolation, in reality, a node’s behavior often depends on its context, including other nodes in the
same circuit and the host cell environment [2]. This fact significantly limits our current ability to
design genetic circuits that behave as intended. There are a number of causes to context dependence,
including unknown structural interactions between adjacent genetic sequences [3], loading of TFs by
target DNA sites (retroactivity) [4, 5, 6], unintended coupling between synthetic genes and host cell
growth (host-circuit interaction) [7, 8, 9], and competition among synthetic genes with each other
for common transcriptional and translational resources [10, 11, 12, 13, 14]. Context dependence
due to structural interactions and retroactivity has been addressed by engineering insulation parts
and devices [15, 16, 6, 17, 18] and that due to host-circuit interaction may be mitigated to some
extent by orthogonal RNA polymerases (RNAPs) and ribosomes [19, 20, 21, 22]. By contrast, the
characterization and mitigation of competition for shared resources among synthetic genes remain
largely unexplored.

Expression of all genes in a genetic circuit relies on a common pool of transcriptional and trans-
lational resources. In particular, the availability of RNAPs and ribosomes has been identified as a
major bottleneck for gene expression in bacteria [23, 24, 25, 26]. When a node is activated, it de-
pletes the pool of free RNAPs and ribosomes, reducing their availability to other nodes in the circuit.
This can potentially a�ect the behavior of a circuit altogether. Recent experimental results have
demonstrated that competition for transcriptional and translational resources, chiefly ribosomes,
can couple the expression of two synthetic genes that are otherwise unconnected [10, 12]. These
works demonstrate that upon induction of a synthetic gene, the expression level of a constitutively
expressed gene on the same plasmid can be reduced by more than 60%. Similar trade-o�s have been
observed in cell-free systems [27] and in computational models [11, 13, 14, 28].

In this paper, we seek to determine how competition for resources by the genes constituting
a synthetic genetic circuit changes the intended circuit’s behavior. To address this question, we
perform a combined modeling and experimental study. In particular, we develop a general mathe-
matical model that explicitly includes competition for RNAPs and ribosomes in Hill-function models
of gene expression. In our models, resource demand coe�cients quantify the demand for resources
by each node and shape the emergent input/output response of a genetic circuit. We construct a
library of synthetic genetic activation cascades in which we tune the resource demand coe�cients
by changing the RBS strength of the cascade’s genes and DNA copy number. When the resource
demand coe�cients are large, the dose response curve of the cascade can either be biphasic or mono-
tonically decreasing. When we decrease the resource demand coe�cients, we restore the intended
cascade’s monotonically increasing dose response curve. For general circuits, of our model reveals
that due to non-zero resource demand coe�cients, resource competition gives rise to non-regulatory
interactions among nodes. We give a general rule for drawing the e�ective interaction graph of any
genetic circuit that combines both intended and unintended interactions.

Results

Surprising biphasic response results from a cascade of two activators

We built a two-stage activation cascade as follows. Node 1 uses transcriptional activation by the
e�ector N -hexanoyl-L-homoserine lactone (AHL), the LuxR protein and the lux promoter (Figure
1A). The LuxR protein is constitutively expressed by the lac promoter in a LacI-deficient host strain.
To characterize the dose response curve of this node, we placed red fluorescent protein (RFP) under
the control of the lux promoter. An increase in AHL concentration increases the holo-form of
ligand-responsive TF (i.e., LuxR+AHL complex), promoting production of RFP (Figure 1A).

Node 2 employs transcriptional activation by the e�ector salicylate (SAL), the NahR protein, and
the sal promoter to express green fluorescent protein (GFP) as fluorescence output. NahR production
is under the control of the lux promoter. We applied a constant amount of AHL (100 nM) and
expressed LuxR constitutively to produce a constant supply of NahR. By increasing the amount of
SAL, the holo-form of ligand-responsive TF (NahR+SAL complex) increases, activating production
of GFP. We confirmed that GFP concentration increases monotonically with SAL input (Figure
1B).
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Figure 1: Failure of modular composition in a simple two-stage activation cascade. (A) The
first activation stage consists of a node that takes as input the transcription activator LuxR to promote
production of RFP as output in the presence of AHL, resulting in a monotonically increasing dose response
curve. Upward arrows with leftward/rightward tips represent promoters, semicircles represent RBS, and
double hairpins represent terminators. (B) The second activation stage consists of a node that takes as
input the transcription activator NahR to promote production of GFP as output in the presence of SAL,
resulting in a monotonically increasing dose response curve. (C) The two-stage activation cascade CAS 1/30
was built by connecting the two nodes in a cascade topology. Biphasic dose response curve (solid line) of the
cascade was observed instead of the expected monotonically increasing dose response curve (dashed line),
which is the composition of the two increasing Hill functions for the individual nodes according to equation
(3). All experimental data represent mean values and standard deviations of populations in the steady state
analyzed by flow cytometry in three independent experiments. Each plot is normalized to its maximum
fluorescence value (see SI Section A6 for details).
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To build a two-stage activation cascade (CAS 1/30), we connected the two nodes by replacing the
RFP in node 1 by NahR. With a saturating amount of SAL (1 mM), NahR protein can be regarded
as the output of node 1 and the input to node 2. Therefore, increased AHL concentration leads
to increased NahR concentration, and hence to increased concentration of NahR+SAL complex,
resulting in increased production of GFP (cascade output).

The expected behavior of this cascade is a monotonically increasing GFP fluorescence as AHL is
increased. This can be easily predicted by a standard Hill-function model of the circuit. Specifically,
letting u denote LuxR+AHL complex, x

1

the TF NahR, and x
2

the GFP output, and using u,
x

1

and x

2

(italics) to represent their concentrations, we obtain the following ordinary di�erential
equation (ODE) model (see SI Section B1 for details):
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where T
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(i = 1, 2) are lumped parameters describing maximal expression rate of the nodes (defined
in equation (S13) in SI), “
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In equations (2), k

i

are the dissociation constants between the activators, u and x
1

, and their
respective DNA targets. Dimensionless parameters —

i

< 1 characterize basal expressions, and n

i

are Hill coe�cients capturing cooperativities of the TF and promoter bindings. Setting the time
derivatives to zero, we obtain the dose response of the cascade as the composition of two increasing
Hill-functions:
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It is clear from (3), that independent of parameters, the steady state of x

2

(GFP concentration)
always increases with u (AHL concentration). Surprisingly, the experimental results contradict this
rather trivial prediction. In fact, although the input/output response of both composing nodes
are monotonically increasing (Figure 1A-B), their cascade shows a biphasic dose response curve, in
which the GFP fluorescence decreases with increased concentrations of AHL for high AHL concen-
trations (Figure 1C). This fact clearly demonstrates that while the standard model well represents
the activation behavior of each individual node, its predictive ability is lost when the two nodes are
connected and thus are simultaneously activated.

A cascade model taking into account resource competition predicts non-

regulatory interactions

An underlying assumption in the standard Hill-function model (1) is that the concentrations of
free RNAPs and ribosomes can be regarded as constant parameters [29, 30] (refer to SI Section
B1). In reality, because the concentration of these resources is limited [23, 24, 26, 31], their free
concentration should depend on the extent to which di�erent nodes in a circuit demand them.
With reference to Figure 1C, the biphasic response of x

2

can be explained by the following resource
competition mechanism. When we increase u, node 1 sequesters more RNAPs and ribosomes to
produce x

1

, decreasing the amount of free resources, which in turn result in decreased transcription
and translation rates at node 2.

We therefore created a model that explicitly accounts for the limited concentration of RNAPs
and ribosomes and for their competition by the two cascade genes. For a given growth rate, the total
concentrations of RNAPs and ribosomes can be assumed constant parameters [9, 23]. Considering
the conservation law for these resources and solving for their free concentrations (see SI Section B2),
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we obtain the following modified Hill-function model:
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in which F
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(u) and F
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) are defined in equations (2). The lumped dimensionless parameters J

i

(i = 1, 2) can be understood as an indicator of maximal resource demand by node i, and we call
them resource demand coe�cients. They are defined as:
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is the DNA copy number of node i; –
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is its transcription elongation rate constant,
describing the average number of mRNAs transcribed from a single DNA molecule in unit time; ”
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mRNA decay rate constant, and y
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and follow the conservation law (see SI Section B5 for derivation):
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where y

T

(y) and z

T

(z) are the total (free) amount of RNAPs and ribosomes, respectively.
The major di�erence between model (4) and the standard Hill-function model (1) is the common
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to the standard Hill-function model (1). Detailed proof of this result is in SI Section B5. Because
of this common denominator in G
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) in equation (4), the production of each
node depends on all TFs present in the circuit as opposed to depending only on its own TF inputs
as in equation (1). In particular, regardless of parameters, we always have the following e�ective
interactions among the cascade nodes (see SI Section B3.1 for derivation):
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While interactions u æ x
1

and x
1

æ x
2

are due to the intended transcriptional activations, the other
two interactions, u ‰ x

2

and x
1

‰ x
1

are not present in the standard model (1). They can be regarded
as non-regulatory interactions arising from resource competition among nodes. In particular, the
non-regulatory interaction u ‰ x

2

is due to the fact that as u increases, production of x
1

is activated,
depleting the pool of free resources, thus reducing the amount available to initiate transcription and
translation of x

2

. Similarly, increase in x

1

activates production of x
2

, reducing resources available
to its own expression to create the self repression loop x

1

‰ x
1

.
Based on (7), the e�ective interactions among nodes in an activation cascade are shown in Figure

2A, where black solid lines represent intended regulatory interactions and red dashed lines represent
non-regulatory interactions due to resource competition. The non-regulatory interactions change the
topology of this activation cascade into a type 3 incoherent feed-forward loop (IFFL) [29], where x

2

production is jointly a�ected by regulatory activation from x
1

and non-regulatory repression from
u. It is well-known that, depending on parameters, the dose response curve of an IFFL can be
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Figure 2: Activation cascade becomes a type 3 IFFL due to resource competition. (A) E�ective
interactions among nodes in a two-stage activation cascade with resource competition. Black solid lines
are regulatory interactions, and red dashed lines represent non-regulatory interactions due to resource com-
petition. (B) Parameter space illustrating diverse cascade dose response curves obtained from numerical
simulation when the resource demand coe�cient J1 is changed. The horizontal axis shows the DNA copy
number, and the vertical axis shows the RBS strength of node 1. Numerical values on the vertical axis
represent the ratio between a baseline dissociation constant Ÿ0 between RBS and ribosomes (15 µM), and
that of node 1 (Ÿ1). The cascade has monotonically decreasing, biphasic or monotonically increasing dose
response curve depending on whether the parameters fall into the gray, dotted and grid shaded region in the
parameter space, respectively. Chemical reactions are described in SI Section B1 and B2, parameters and
detailed simulation data are in SI Section B10.

monotonically increasing, decreasing or biphasic [32, 33]. If transcriptional activation u æ x
1

æ x
2

is stronger than non-regulatory repression u ‰ x
2

, then the dose response curve is monotonically
increasing. Conversely, if the non-regulatory repression is stronger than transcriptional activation,
the dose response curve becomes monotonically decreasing. Biphasic responses can be observed
when transcriptional activation dominates at lower u level, and resource-competition-induced non-
regulatory repression becomes more significant at higher u. A detailed analytical treatment of this
reasoning is in SI Section B3.1.

The strength of the non-regulatory repression u ‰ x
2

can be reduced by decreasing resource
demand coe�cient of node 1 (J

1

). In particular, as a result, the dose response curve of an activation
cascade is monotonically increasing when J

1

π 1 (see SI Section B3.2). Conversely, we expect
the dose response curve to be monotonically decreasing when J

1

is large, and to be biphasic for
intermediate values of J

1

. Based on the definition of resource demand coe�cient in (5), we can
decrease J

1

by choosing weak node 1 RBS strength and low DNA copy number. We simulated the
dose response curves of activation cascades with di�erent node 1 RBS strengths and DNA copy
numbers, presented in the parameter space in Figure 2B. The lower left corner of the parameter
space corresponds to the cascade with the smallest J

1

, and the upper right corner corresponds to
the largest J

1

. In accordance with these predictions, simulation in Figure 2B confirms that smaller
J

1

(weak x
1

RBS and low DNA copy number) results in monotonically increasing response (grid
shaded region), while larger J

1

(strong x
1

RBS and high DNA copy number) results in monotonically
decreasing response (gray region). The dotted region corresponds to intermediate values of J

1

which
result in biphasic response.

6



AHL NahR GFP

CAS 1/30 CAS 1/60

CAS 0.3/60CAS 0.3/30

log
10

[AHL] (nM)

N
o

rm
a

liz
e

d
 F

lu
o

re
sc

e
n

ce

log
10

[AHL] (nM)

N
o

rm
a

liz
e

d
 F

lu
o

re
sc

e
n

ce

log
10

[AHL] (nM)

log
10

[AHL] (nM)

N
o

rm
a

liz
e

d
 F

lu
o

re
sc

e
n

ce
N

o
rm

a
liz

e
d

 F
lu

o
re

sc
e

n
ce

10 20 30 40 50 60 70 80
10

-1

10
0

10
1

DNA copy number (p
1,T

 = p
2,T
)

N
a

h
R

 R
B

S
 s

tr
e

n
g

th
 (

κ 0
/κ

1
) 

 

A

B

C

D

Figure 3: A monotonically increasing dose response curve can be restored by tuning DNA copy

number and NahR RBS strength. The dose response curves of circuits CAS 1/30 (A) and CAS 1/60 (C)
were biphasic and monotonically decreasing, respectively. By reducing the RBS strength of NahR, the dose
response of CAS 0.3/30 (B) became monotonically increasing, and that of CAS 0.3/60 (D) becomes biphasic.
Further decreasing the copy number of CAS 0.3/60 to CAS 0.3/30 restored the monotonically increasing
dose response curve. Experimental results are presented on top of the parameter space created in Figure
2 by simulation. Blue and green arrows represent design actions to restore the monotonically increasing
dose response curves starting from failed cascades CAS 1/30 and CAS 1/60, respectively. Mean values and
standard deviations of fluorescence intensities at the steady state are calculated from three independent
experiments analyzed by flow cytometry and normalized to the maximum value in each plot (see SI Section
A6).

Model-guided design recovers monotonically increasing response of the

cascade

Based on the simulation map in Figure 2 and the mathematical analysis of model (4) described in
the previous section, we created a library of activation cascades in which each cascade should result
into one of the three di�erent behaviors shown in Figure 2. This library is composed of cascades
that di�er in the value of the resource demand coe�cient of NahR (J

1

), with the rationale that we
can mitigate the strength of non-regulatory interaction u ‰ x

2

to recover the intended monotonically
increasing dose response curve of the cascade. In particular, starting from CAS 1/30, whose dose
response curve is biphasic (Figure 3A), we designed circuit CAS 0.3/30 with about 30% RBS strength
[12] of NahR compared to CAS 1/30, theoretically resulting in a reduction of J

1

. We therefore expect
a reduction of the u ‰ x

2

interaction strength, leading to a monotonically increasing dose response
curve, which is confirmed by the experiment (Figure 3B).

Similarly, we constructed another cascade circuit CAS 1/60 in which the DNA copy number is
about twice as that of CAS 1/30 (about 60 vs 30). According to our model, resource demand coe�-
cient of NahR J

1

in CAS 1/60 should double compared to that of circuit CAS 1/30. Therefore, we
expect a possibly monotonically decreasing dose response curve. Experiments confirm this predic-
tion (Figure 3C). A local increase in GFP fluorescence at about 10 nM AHL is due to the two-step
multimerization of NahR proteins [34], which is detailed in SI Section A5. To obtain a monotonically
increasing dose response curve from this circuit, we first reduced NahR resource demand coe�cient
J

1

by designing a circuit CAS 0.3/60, whose NahR RBS strength is 30% compared to that of CAS
1/60. Theoretically, depending on parameters, reduced J

1

can lead to either monotonically increas-
ing or biphasic dose response curves (see Figure 2B). Our experiment show that the response of CAS
0.3/60 is indeed biphasic (Figure 3D). To restore a monotonically increasing dose response curve,
we can further decrease J

1

by reducing DNA copy number to create circuit CAS 0.3/30, whose dose
response curve is monotonically increasing (Figure 3B).
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any genetic circuit. (A) If node x is an activator (repressor), then it is an e�ective repressor (activator)
for all nodes that are not its target. (B) If node x has only one target, then resource competition does not
change the nature of interaction from x to its target. (C) If node x regulates multiple targets, then the
e�ective interaction from x to its targets are undetermined. (D) Applying the rules in A-C, a repression
cascade becomes a type 4 coherent feed-forward loop due to resource competition.

General rules to draw e�ective interactions in genetic circuits

Interaction graphs, which use directed edges to represent regulatory interactions, are a convenient
graphical tool to design and/or analyze the qualitative behavior of a genetic circuit [29]. Here, we
expand the concept of interaction graph to incorporate non-regulatory interactions due to resource
competition. We call the resultant interaction graph an e�ective interaction graph, which includes
both regulatory interactions and non-regulatory interactions due to resource competition. In an
e�ective interaction graph, we draw x æ y (x ‰ y) if increased amount of TF x promotes (inhibits)
production of protein y. We draw x ( y if the e�ect of x on y depends on parameters and/or x
concentration, and is thus undetermined in general.

The resource competition model (4) and e�ective interactions identified in Figure 2A for the
activation cascade can be generalized to study genetic circuits with arbitrary topology in resource
limited environments. In SI Section B4, we derive a general model (see equation (S55)) to determine
e�ective interactions in any genetic circuit with resource competition. The essentials of this general
model can be visualized by a set of graphical rules based on known regulatory interactions. These
graphical rules are summarized in Figure 4A-C, in which we use black solid lines to represent
regulatory interactions and red dashed lines to represent non-regulatory interactions arising from
resource competition.

In summary, if a TF x is transcriptionally activating (repressing) a gene, which we call its target,
then x is repressing (activating) all other genes that are not its target in a non-regulatory fashion
(Figure 4A). This behavior stems from the fact that when x is a transcription activator (repressor),
it promotes (inhibits) expression of its target, resulting it to sequester (release) resources, and
consequently reducing (increasing) the amount of resources available to other nodes in the circuit.
When x regulates only one target, while the strength of the e�ective interaction from x to its target
is a�ected by resource competition, its nature (i.e. activation vs. repression) remains the same as
the regulatory interaction (Figure 4B). However, when x has multiple targets, the nature of e�ective
interactions from x to its targets becomes undetermined (see Figure 4C and example in Figure S14).

As an illustrative example of the graphical rules in Figure 4A-C, we show the e�ective interaction
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graph of a two-stage repression cascade in Figure 4D. Both u and x
1

are repressors with only one
target. Therefore, applying the rule in Figure 4B, we have u ‰ x

1

, and x
1

‰ x
2

. Since x
2

is not a
target of repressor u, applying the rule in Figure 4A, we have u æ x

2

. By the same token, x
1

is
e�ectively activating itself. Since x

2

does not transcriptionally activate or repress a target, there
is no e�ective interaction initiated from x

2

. The resultant e�ective interaction graph in Figure 4D
is a type 4 coherent feed-forward loop [29], whose dose response curve is monotonically increasing
regardless of parameters (SI Section B7). Since a two-stage repression cascade and a two-stage
activation cascade have interchangeable functions [29], our model suggests that a repression cascade
is a more preferable topology in terms of robustness to resource competition.

Discussion

Gene expression relies on transcriptional and translational resources, chiefly RNAPs and ribosomes.
As all genes in a circuit compete for these limited resources, unintended non-regulatory interactions
among genes arise. These interactions can dramatically change the intended behavior of a genetic
circuit. In this paper, through a combined modeling and experimental study, we have characterized
the extent to which resource competition a�ects a genetic circuit’s behavior. We have incorporated
resource competition into standard Hill-function models through resource demand coe�cients, which
can be readily tuned by key circuit parameters such as RBS strength and DNA copy number. These
coe�cients dictate the strengths of non-regulatory interactions and can be e�ectively used to guide
the design of a genetic circuit toward the intended behavior. Our mathematical model further
provides a simple graphical tool to identify the nature of non-regulatory interactions (i.e. activation
vs. repression) and to create the e�ective interaction graph of the circuit. Under the guidance of
the model, we created a library of genetic activation cascades and demonstrated that, by tuning the
resource demand coe�cients of the cascade’s nodes, the strengths of non-regulatory interactions can
be predictably controlled and intended cascade’s response can be restored.

Previous theoretical studies have analyzed how competition for common resources a�ects gene
expression. Using a stochastic model [13], Mather et al. found a strong anti-correlation of the
proteins produced by ribosome-competing mRNAs. Rondelez [28] developed a general model to
describe substrates competing for a limited pool of enzymes. De Vos et al. [11] analyzed the
response of network flux toward changes in total competitors and common targets. More recently,
Raveh et al. [14] developed a ribosome flow model to capture simultaneous mRNA translation and
competition for a common pool of ribosomes. In [12], Gyorgy et al. developed a mechanistic resource
competition model that gives rise to “isocost lines” describing tradeo�s in gene expression, which
were experimentally validated. All these models, with the exception of [28], are restricted to circuits
without regulatory links among competing nodes. In contrast, our general model explicitly accounts
for regulatory interactions among nodes and reproduce the “isocost lines” of [12] as a special case
(see SI Section B4.2). Furthermore, di�erently from [28], our model couples the resources’ enzymatic
reactions with the slower gene expression reactions to obtain a model for resource-limited genetic
circuits.

Previous experimental studies have provided evidence that transcriptional and translational re-
sources may be limited in the cell by showing that DNA copy number, mRNA concentration, and
protein concentration do not always linearly correlate with each other [24, 26]. Accordingly, there
has been extensive experimental evidence that synthetic genes’ over-expression inhibits host cell
growth [7, 35, 8, 9]. However, the e�ects of competition for shared resources on genetic circuits have
only been recently addressed, mostly focusing on the single-gene e�ects as opposed to investigating
the emergent e�ects on network level [10, 12, 22, 36]. In this paper, we have theoretically predicted
and experimentally demonstrated that significant network-level e�ects arise due to non-regulatory
interactions dictated by resource competition. These interactions need to be accounted for in circuit
design and optimization. Accordingly, we have provided a model-based approach to guide genetic
circuit design to mitigate the e�ects of unintended interactions.

As a form of host-circuit interaction, previous studies have shown that change in host cell growth
rate a�ects gene expression [7, 8, 9, 37]. In our experiments of CAS 0.3/30 and CAS 0.3/60, we
observed very modest change in growth rates for all AHL concentrations. In experiments of CAS
1/60 and CAS 1/30, appreciable decrease in growth rates were observed at high AHL concentrations
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(see Figure S6). While growth rate change could potentially a�ect GFP expression, it is insu�cient
to explain the biphasic or monotonically decreasing dose response curves in Figure 3. Firstly, unin-
tended e�ects of resource competition can already be observed in the dose response curve of CAS
0.3/60 for all AHL concentrations and those of CAS 1/30 and CAS 1/60 for low AHL concentrations.
In these situations, growth rates were essentially unchanged (see Figure 3 and Figure S6). Secondly,
according to the experimental results and the mathematical model in [9], expression of an activated
gene increases as growth rate decreases. Therefore, in principle, slower growth rate at high AHL
concentrations should result in higher GFP concentration, rather than in lower GFP concentration,
as we observed in Figure 3 (see SI Section A4 for more details).

As circuits grow in size and complexity, a “resource-aware” design approach needs to be adopted
by synthetic biologists. While resource competition can be exploited in certain situations to our
advantage [38, 39, 40], its global and nonlinear features largely hamper our capability to carry out
predictive design. To alleviate the e�ects of resource competition, metabolic engineers down-regulate
undesired gene expression to re-direct resources to the pathway of interest, thus increasing its yield
[41, 42]. Similarly, in a genetic circuit, we can tune the resource demand coe�cients of nodes by
selecting appropriate RBS and DNA copy numbers to diminish the resource demand by certain nodes
and hence make more resource available to other nodes. This tuning should be performed by keeping
in mind other design specifications that the circuit may have, such as maximal output or sensitivity
of the dose response curve [1]. A simulation example of how to relate easily tunable parameters,
such as RBS strength and DNA copy number, to circuit’s output is given in SI Section B3.3 for
the genetic activation cascade. At the higher abstraction level of circuit topology, our model helps
to identify topologies whose behavior is less sensitive to the e�ects of non-regulatory interactions.
We provided an example of this with the two-stage activation and repression cascades. While the
dose response curve of the former can be completely reshaped by non-regulatory interactions due to
resource competition, the dose response curve of the latter maintains its monotonically increasing
behavior independent of resource competition.

Characterization of resource competition has deep implications in the field of systems biology, in
which a major task is to reconstruct networks from data. In this case, it is critical to distinguish direct
regulatory interactions from indirect ones [43], which may arise from non-regulatory interactions
due to resource competition. In this sense, our model may provide deeper insights to guide the
identification of natural networks from perturbation data.

Associated content

Methods and materials, detailed experimental data and mathematical models are described in Sup-
porting Information.
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