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Abstract: Degradation of proteins in cells plays a large role in the dynamics of gene networks.
This degradation is enabled by proteases, which are found in limited quantities in the cell.
Proteins that compete for protease may therefore become coupled by non-explicit interactions,
which are often neglected in mathematical models. In this work, we develop a model for
these non-explicit interactions in gene networks. We examine the effects of protease sharing
on the number of equilibria of a system and on the steady state protein concentrations. As
a consequence of this analysis, we find that protease sharing effects may be used to cancel
undesirable effects due to ribosome sharing.
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1. INTRODUCTION

Proteases are a class of enzymes used in the cell for a
variety of purposes including degradation of misfolded or
aggregated proteins and disassembly of large macromolec-
ular complexes (Sen et al., 2013), (Baker and Sauer, 2006)
(Farrell et al., 2005). In synthetic contexts, proteases may
be used to decrease the response time of circuits with
targeted degradation of specific proteins (Cameron and
Collins, 2014). Because they appear in limited quantities
(Rondelez, 2012), proteases are a limited resource for pro-
tein degradation.

Context dependence, such as arising from resource sharing
effects, in synthetic biology is a major barrier to the pre-
dictability and modular design of synthetic genetic circuits
(Cardinale and Arkin, 2012). Cellular resource limitations
and context dependence can play a large role in the behav-
ior of cellular systems (Del Vecchio et al., 2008) (Gyorgy
et al., 2015). Examples include sharing of transcriptional
or translational resources such as ribosomes (Qian and
Del Vecchio, 2015).

Limitations of proteases may create non-explicit coupling
between different proteins that require the same resource.
It has been previously shown this coupling may have
a significant effect on the function of certain networks
(Genot et al., 2012) (Rondelez, 2012), may be used to tune
some system behavior (Huang et al., 2012) or, may couple
modules together through degradation (Prindle et al.,
2014). Despite the fact that proteases are a finite cellular
resource, traditional models do not usually take this into
account (Del Vecchio and Murray, 2014). Therefore, these
models may not have satisfactory predictive ability when
resources become depleted.
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Previous work that considers proteases as a shared re-
source examines how proteases create coupling in systems
(Cookson et al., 2011) (Mather et al., 2010), how proteases
may change the stability of oscillatory systems (Rondelez,
2012), and how protease sharing may change the time re-
sponse of a system (Yeung et al., 2013). However, previous
work has not considered how coupling due to protease
sharing changes the number of equilibrium points in the
system or considered shared proteases in the context of a
network with shared ribosomes.

In this paper we consider proteases as a limited cellular
resource by explicitly modeling the limited quantity of
protease within a general system. Then we examine how
resource limitations affect various system properties such
as the number and location of equilibrium points. We show
that the addition of a shared protease in a biomolecular
network may change the number of equilibrium points in
the network. Accordingly, we give a theorem providing suf-
ficient conditions on the determinant of the Jacobian of the
system for when the addition of a shared protease does not
affect the number of equilibria. Then, we examine how the
effect of non-explicit interactions due to protease sharing
may compensate undesired effects from ribosome sharing
in a gene network with no transcriptional regulations.

This paper is organized as follows. In Section 2, we ex-
amine a motivating example to illustrate how unexpected
effects may arise due to protease sharing. In Section 3 we
derive a general form for a gene network that contains a
shared protease, and in Section 4, we derive a theorem
that gives conditions under which a system is guaranteed
to preserve the number of equilibrium points with protease
sharing. In Section 5, we show how the equilibrium con-
centrations of multiple proteins may be coupled through
protease sharing, and how this may be used to compensate
for ribosome sharing effects. We discuss our approach and
provide direction for future work in Section 6.



2. MOTIVATION

In this section, we illustrate the counterintuitive effects
that protease sharing may bring about using a motivating
example. In particular, we have chosen a genetic activation
cascade because cascade motifs are some of the most
common motifs in natural and synthetic biomolecular
networks (Hooshangi et al., 2005). Consider the simple
two gene cascade, shown in Fig. 1, where protein, x1

transcriptionally activates the production of protein x2.
For species x, we denote the concentration as x. The set
of deterministic ordinary differential equations (ODEs)
describing this cascade are

dx1
dt

= U − δx1
dx2
dt

=
α(x1/Kdna)n

1 + (x1/Kdna)n
− δx2,

(1)

where U is the induction of x1, δ is the dilution due to

Fig. 1. Simple activation cascade with proteins x1 and x2. U induces
the production of x1, and x1 then activates the production of
x2.

cell growth, α is the maximal production rate of x2 when
the gene is fully activated by x1, Kdna is the effective
dissociation constant of x1 binding to the promoter of the
gene of x2, and n is the cooperativity of x1. Let us now
consider the case in which both proteins are tagged by the
same protease, which is found in a limited total amount.
The resulting ODE model now becomes (derived in Section
3)

dx1
dt

= U − Px1/Kp

1 + x1/Kp + x2/Kp
− δx1 (2a)

dx2
dt

=
α(x1/Kdna)n

1 + (x1/Kdna)n
− Px2/Kp

1 + x1/Kp + x2/Kp
− δx2,

(2b)

where P is the maximal degradation rate of x1 and x2 by
the protease and is proportional to the total concentration
of protease and Kp is the binding constant between the

protein and the protease. Note that when P = 0, (2)
becomes (1). Therefore, we simulate (2) for P = 0 and
for P 6= 0 to obtain the plot in Fig. 2. Fig. 2 shows that
the system with the shared protease has hysteresis, which
implies multi-stability for some input, while monostability
for the system without a shared protease can be easily
verified algebraically from (1). This indicates that non-
explicit interactions arise between proteins due to protease
sharing, which can have significant effects on the qualita-
tive behavior of gene networks. In this paper, we seek to
mathematically characterize these effects, to explore the
extent to which protease sharing affects global behavior of
biomolecular systems, and to provide guidelines for how
to predict these interactions.

3. MODELING FRAMEWORK

In this section, we will derive a general form of systems
with a shared protease, which can then be used to model
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Fig. 2. Input–output steady state response of the cascade (2) with
protease sharing (P 6= 0, blue dashed line) and without protease
(P = 0, red solid line) as U is varied. Parameters used here
include α = 136 044 nMh−1, n = 1, P = 54 000 nMh−1,
Kdna = 1000 nM, Kp = 1200 nM, δ = 0.5 h−1. The maximum
production rate of the protein, α, was calculated using the

formula α =
(DNA)k0k1(RNAP )Rtot
δ1(RNAP+K0)(Rtot+K1)

(Gyorgy et al., 2015)

where DNA = 200 nM is the concentration of the plasmid,
k0 = 250 h−1 is the rate of transcription, k1 = 300 h−1

is the rate of translation, RNAP = 2000 nM is the total
concentration of RNA polymerase, Rtot = 6800 nM is the total
concentration of ribosomes, δ1 = 12 h−1 is the dilution rate of
mRNA,K0 = 200 nM is the binding constant of RNAP with the
promoter, and K1 = 50µM is the binding constant of mRNA
with the ribosome binding site. Ranges for each parameter are
given in Table 1.

arbitrary gene networks to perform further analysis. We
use a deterministic model and assume mass action kinetics
(Érdi and Tóth, 1989). We assume that mRNA dynamics
are at quasi-steady state without loss of generality.

Proteins may be tagged for degradation by enzymes,
known as proteases (Baker and Sauer, 2006), using peptide
tags (Keiler et al., 1996), (Farrell et al., 2005) (Farrell
et al., 2007). The proteins bind to the protease, and are
subsequently degraded enzymatically. We now suppose
that, in a well-stirred network of n proteins, all proteins,
xi, are degraded by a single, common protease, P, for each
i = 1, . . . , n. Then, the reactions for modeling the system
are

∅ Hi−−⇀↽−−
δ

xi Ci
δ−→ ∅

∅ α0−⇀↽−
δ

P

xi + P
ai−⇀↽−
di

Ci
ki−→ ∅+ P,

where Hi(x) is the rate of production of the protein xi and
depends on all other protein species, x, α0 is the rate of
production of the protease, ai and di are the association
and dissociation rate constants of proteins binding with
the protease, respectively, Ci is the complex of protein xi
bound to the protease, and ki is the catalytic rate constant
of degradation for each i = 1, . . . , n. We account for the
growth of the cell by assuming that all species dilute with
rate constant δ. Then, the set of ODEs is



dxi
dt

= Hi(x)− aixiP + diCi − δxi (3a)

dCi
dt

= aixiP − (di + ki + δ)Ci (3b)

dP

dt
= α0 −

∑
i

aixiP +
∑
i

diCi − δP, (3c)

We define the total protease concentration as

Ptot := P +

n∑
i=1

Ci, (4)

then the ODE for the total protease concentration is

dPtot
dt

= α0 − δPtot.

Here, for simplicity, we let the initial condition of the
protease be at the equilibrium. Then for all time, the total
concentration of protease is constant so we can substitute
P = Ptot −

∑n
i=1 Ci in (3) and eliminate (3c).

We will now reduce the system using the fact that bind-
ing/unbinding reactions are much faster than protein pro-
duction, degradation, and dilution (Del Vecchio and Mur-
ray, 2014). Specifically, because δ � di, we define a small
parameter εi = δ/di � 1 for each node, i, and substitute
the relation Ki = di/ai, into (3) to obtain the system

dxi
dt

= Hi(x)− δ

εi

(
xiP

Ki
− Ci

)
− δxi (5a)

dCi
dt

=
δ

εi

[
xiP

Ki
− Ci

]
− (ki + δ)Ci. (5b)

Observe that Ci is a fast variable, while xi is a mixed
variable since it operates at both fast and slow timescales.
Then, to put the system in standard singular perturbation
form, we use zi = xi + Ci, which is a slow variable.
Substituting and multiplying all terms in (5b) by εi, the
system becomes

dzi
dt

= Hi(x)− kiCi − δzi (6a)

εi
dCi
dt

= δ

[
xiP

Ki
− Ci

]
− εi(ki + δ)Ci, (6b)

which is in standard singular perturbation form (Khalil,
2001). It can be easily verified that the slow manifold is
always exponentially stable. Then, setting each εi = 0 and
solving in (6b), we obtain that the equation for the slow
manifold is

Ci =
xiP

Ki
=: gi(x). (7)

Now, we substitute (7) into the conservation law for the
protease from (4) and solve for the concentration of the
free protease, P , to obtain

P =
Ptot(

1 +
∑n
j=1

xi
Ki

) . (8)

Next, we take the derivative of all terms in the definition
of zi and solve for dxi

dt as

dzi
dt

=
dxi
dt

+
dCi
dt

=
dxi
dt

+
dgi
dxi

dxi
dt

=
dxi
dt

(
1 +

dgi
dxi

)
,

from which we obtain

dxi
dt

=
dzi
dt

1 + dgi
dxi

. (9)

Substituting (6a), (7), and (8) together into (9), we obtain
the set of differential equations

dxi
dt

=

Hi(x)−

(10b)︷ ︸︸ ︷
Ptot(ki + δ) xiKi
1 +

∑n
k=1

xk
Kk

−δxi


︸ ︷︷ ︸

(10a)

·

 1

1 +
Ptot/Ki(1+

∑
j 6=i

xj/Kj)

(1+
∑

k
xk/Kk)2


︸ ︷︷ ︸

(10c)

, (10)

for i = 1, . . . , n. To simplify notation, we can substitute
P i for Ptot(ki + δ). Then P i is the maximal velocity
of degradation by the protease. Term (10a) represents
the dynamics of the protein, term (10b) represents the
degradation of the protein by the protease, and term
(10c) represents the retroactivity to the protein due to
binding with the protease (Del Vecchio et al., 2008). The
term that represents degradation by the protease, (10b),
is dependent on the concentration of every protein in the
network that is degraded by the protease. This results
in non-regulatory coupling among species. Note that if
the protease were not considered as a finite resource, the
denominator of this term would be unity and no non-
regulatory coupling through competition for the protease
would occur.

For the remainder of the paper, we will examine the
effect of protease sharing on the location and number
of equilibrium points. The retroactivity term, (10c), is
always less than 1, so it has the effect of slowing down the
dynamics of the system due to the protein being bound
to the protease. Since (10c) is always positive, it does not
change the location, stability, or number of equilibrium
points. Therefore, we can safely ignore retroactivity for
our purposes.

4. MULTIPLE EQUILIBRIA DUE TO PROTEASE
SHARING

As seen in the Section 2, the presence of a shared protease
may lead to a change in the stability of a system. In this
section, we prove a theorem providing a sufficient condition
on the determinant of the Jacobian when the number
of equilibrium points is invariant with the addition of a
shared protease.

4.1 Preliminaries

We use mathematical tools from degree theory, as pre-
sented by Craciun et al. (2008). We begin with definitions
and two theorems that are essential for the statement of
the theorem we want to prove. The first two theorems
are presented without proof since they come directly from
Craciun et al. (2008) without modification.

Definition 1. Let Ω ⊂ Rn be a bounded domain and f a
smooth function f : Ω→ Rn such that f has no degenerate
zeros and has no zeros on the boundary of Ω, then the
topological degree with respect to zero of f equals:



deg(f) = deg(f,Ω) =
∑
x∈Zf

sgn

(
det

(
∂f

∂x
(x)

))
(11)

where Ω is the closure of Ω, sgn : R → {−1, 0, 1} is the
sign function, Zf is the set of zeros of f in Ω, and x∗

is a degenerate point if det
(
∂f
∂x (x∗)

)
= 0, i.e., f has an

equilibrium point where at least one eigenvalue is 0.

Theorem 1. Consider a bounded domain Ω ⊂ Rn and a
continuously varying family of smooth functions fλ : Ω→
Rn for λ ∈ [0, 1], such that fλ does not have any zeros
on the boundary of Ω for all λ ∈ [0, 1]. Then deg(fλ) is
constant for all λ ∈ [0, 1].

Theorem 2. Let Ω, and fλ, λ ∈ [0, 1] be defined as in Theo-

rem 1. Then, for any λ ∈ [0, 1] such that det
(
∂fλ
∂x (x)

)
6= 0

for all x ∈ Ω, the number of zeros of fλ in Ω must equal
the absolute value of the degree of fλ in Ω, which equals
the absolute value of the degree of fλ′ for any λ′ ∈ [0, 1].

Definition 2. A system, dx
dt = g(x) is positive invariant

if it has the property that for each j ∈ {1, . . . , n}, the
jth coordinate of g(x) is non-negative whenever the jth
coordinate of x ∈ Rn≥0 is zero.

Definition 3. A dynamical system dx
dt = g(x) is mass

dissipating if there exists some m ∈ Rn>0 such that m ·
g(x) ≤ 0 for all x ∈ Rn≥0 (using the standard dot product).

Now, consider the system

dx

dt
= h(x)− Λ0x := f0(x) (12)

where h(x) > 0 is a smooth function for all x ∈ Rn≥0, and
Λ0 is a diagonal matrix with strictly positive entries on the
diagonal. We consider the system augmented with g(x):

dx

dt
= h(x) + g(x)− Λ0x =: f(x) (13)

where g(x) is a smooth, mass dissipating function for all
x ∈ Rn≥0. For the systems under consideration, h(x), g(x),
and Λ0 represent protein production, degradation and
dilution, respectively. Then the following theorem gives a
sufficient condition when the number of equilibrium points
of (12) is guaranteed to be the same as the number of
equilibrium points of (13).

Theorem 3. Let Ω = {x ∈ Rn≥0}, and define f0(x) =

h(x)− Λ0x and f(x) = h(x) + g(x)− Λ0x where x ∈ Rn≥0
and g : Ω → Rn is positive invariant on Ω ⊂ Rn.
Additionally, assume that f0, f have no degenerate zeros
or zeros on the boundary of Ω. If g is mass dissipating, h
is bounded and strictly positive on Rn≥0, and

det

(
∂f

∂x
(x)

)
6= 0

for all x ∈ Ω, then the number of equilibria of the system
dx
dt = f0(x) is the same as that of dx

dt = f(x).

Proof. This proof is structured as follows: first, we will
prove that the system in (13) has no zeros on the sides
of the positive orthant and then will prove that (13) has
no equilibrium points on the outer boundary of Ω. Finally,
we will apply Theorems 1 and 2 to show that the number
of equilibrium points of fλ = h(x) − Λ0x + λg(x) is
constant for all λ ∈ [0, 1] and therefore the the number

of equilibrium points of f0 is equal to the number of
equilibrium points of f .

First, select an m ∈ Rn>0 such that m ·g(x) ≤ 0 (which can
be done since g is mass dissipating). Now, let A ∈ R>0 be
a finite upper bound of m·h(x) ≤ A for all x ∈ Rn≥0. Define

fλ(x) = h(x)− Λ0x+ λg(x) for λ ∈ [0, 1] and fix M > A.
Now, define a set ΩM = {x ∈ Rn≥0 : m · (Λ0x) < M}.
Then ΩM is a bounded domain and {fλ : λ ∈ [0, 1]} is a
continuously varying family of smooth functions on ΩM .
We will now prove that fλ has no zeros on the boundary of
ΩM (both the sides and outer boundary). For j = 1, . . . , n,
consider xj ∈ ΩM such that the jth coordinate of x is zero.
Since h(x) > 0, then fλ > 0 since g is positive invariant.
Therefore, fλ has no zeros on the sides of ΩM (ΩM∩∂Rn≥0).
Now we will prove that fλ has no zeros on the outer
boundary of ΩM , i.e., when M = m · (Λ0x). To this end,
consider that

m · fλ = m · h(x)−m · (Λ0x) + λm · g(x)

≤ m · h(x)−m · (Λ0x)

since m·g(x) is mass dissipating. Now, since M = m·(Λ0x)
and M > A = m · h(x), then m · h(x)−m · (Λ0x) < 0. So
it follows that fλ has no zeros on the outer boundary of
ΩM for all λ ∈ [0, 1].

Then by Theorem 2, if det(∂f∂x ) 6= 0 in Ω, the number

of zeros of fλ
∣∣
λ=0

is equal to the absolute value of the

sum of the local degrees of fλ
∣∣
λ=0

, which is equal to

the absolute value of the degree of fλ
∣∣
λ=1

and equal to

the number of zeros of fλ
∣∣
λ=0

. Then by Theorem 1, this

quantity is constant over all Ω. Thus, f(x) = h(x)− Λ0x,
and f(x) = h(x) + g(x) − Λ0x have the same number of
equilibrium points. 2

Observe that the form of the system we derived in Section

3 matches the form of (13), i.e., if gi(x) = −P ixi/Ki
1+
∑

j
xj/Kj

for all i = 1, . . . , n (as derived in Section 3), then g(x) is
positive invariant and mass dissipating for any m ∈ Rn>0.
For the assumptions of the theorem to hold, h(x) must be
strictly positive to ensure that the system does not have
any zeros on the boundary of the positive orthant. This
can be done by assuming that production always has some
small amount of leakiness. So if hi(x) is an activation, it

has the form: α(x/Kdna)
n+α0

1+(x/Kdna)n
, where α0 > 0 is the leakiness.

4.2 Two Protein Cascade

We now consider an example to illustrate the use of this
result. Consider a two node protein cascade, shown in
Fig. 3 where x1 either activates or represses x2 through
transcriptional regulation and one protease degrades both
proteins x1 and x2. Then the set of ODEs is given by

Fig. 3. Two protein cascade with a shared protease, where x1

is inducible, and x2 is either transcriptionally activated or
repressed by x1. The red arrows represent non-explicit inter-
actions through the shared protease.



ẋ1 = U − Px1/K1

1 + x1/K1 + x2/K2
− δx1 (14a)

ẋ2 = H(x1)− Px2/K2

1 + x1/K1 + x2/K2
− δx2 (14b)

where H(x1) is a Hill function, and is equal to either
α(x1/KDNA)n

1+(x1/KDNA)n or α
1+(x1/KDNA)n , and U is a strictly positive

constant. Since U > 0, then H(x1) > 0, so there exists an
Ω ⊂ Rn≥0 such that this system has no zeros on the bound-
ary of Ω and Ω is positively invariant. It has previously
been shown that this system has one equilibrium point
when there is no protease present, i.e. P = 0 (Del Vecchio
and Murray, 2014). Then to show when (14) has the same
number of equilibrium points as when P = 0, we verify
the condition of Theorem 3 by calculating the Jacobian
for this system. This is given as

∂f

∂x
=

 −(P/K1)(1+x2/K2)
(1+x1/K1+x2/K2)2

−δ Px1/(K1K2)
(1+x1/K1+x2/K2)2

H ′(x1)+ Px2/(K1K2)
(1+x1/K1+x2/K2)2

−(P/K2)(1+x1/K1)
(1+x1/K1+x2/K2)2

−δ


(15)

The red arrows in Fig. 3 represent non-explicit interactions
through the sharing of the common protease, which can
be seen from the off-diagonal terms of the Jacobian, (15),
which are always positive. This indicates that protease
sharing creates non-explicit activation between x1 and x2.
Then the determinant of the Jacobian is

det

(
∂f

∂x

)
=δ2+δ

P (K2+x2)+P (K1+x1)

K1K2(1+x1/K1+x2/K2)2

+
P

2
/(K1K2)

(1+x1/K1+x2/K2)3
−H ′(x1)

Px1/(K1K2)

(1+x1/K1+x2/K2)2
.

(16)

It can be seen that (16) is never 0 whenever H ′(x1) < 0
since all terms are then strictly positive. This satisfies the
conditions of Theorem 3, and thus, (14) is guaranteed
to have one equilibrium point for all x ∈ R2

≥0. This
corresponds to the case where x1 represses x2. Therefore,
in a two-protein repression cascade, it is not possible
to have bistability due to protease sharing. If, instead
x1 activates x2, then H ′(x1) > 0 and the determinant
may change sign for some parameter values. Then the
system fails the sufficient condition in Theorem 3, so the
number of equilibrium points for the system with a shared
protease is not guaranteed to be the same as the number
of equilibrium points without a shared protease. Indeed,
we have seen that the activation cascade in (2) has three
equilibrium points–two stable and one unstable.

5. EXPLOITING PROTEASE SHARING AS A
COMPENSATION MECHANISM

We now consider a system of non-transcriptionally linked
genes with limited amounts of both production and degra-
dation resources, e.g. ribosomes and proteases, to inves-
tigate whether the effects of competition for these two
resources balance each other. Gyorgy et al. (2015) showed
that two non-transcriptionally linked proteins show linear,
negative correlation with each other due to ribosome shar-
ing, e.g., as the concentration of one protein increases, the
concentration of the other protein decreases. Additionally,
it was shown by Gyorgy et al. (2015) that in protein

production in E. coli, ribosomes are likely the limiting
resource while competition for RNA polymerase can be
neglected. Therefore, we consider a system with ribosomes
and proteases as finite resources and investigate if includ-
ing proteases mitigates the negative correlation observed
between gene products due to ribosome competition. The
chemical reactions for this system with no transcriptional
links between proteins are

mi
δ1−⇀↽−
βi
∅ C1i

δ1−→ ∅

mi + R
a1i−−⇀↽−−
d1i

C1i
k1i−−→ mi + R + xi C2i

δ2−→ ∅

xi + P
a2i−−⇀↽−−
d2i

C2i
k2i−−→ P + ∅ P

δ2−⇀↽−
α0

∅

xi
δ2−→ ∅

(17)

for i = 1, 2, . . . , n. Here, mi is mRNA, R is the free
ribosomes, C1i is the complex formed by the mRNA and
ribosomes, xi is the protein, P is the protease, and C2i

is the complex formed by the protease bound to the
protein. Here βi is the production rate of protein xi,
δ1 is the dilution or mRNA, a1i is the association rate
constant and d1i is the dissociation rate constant between
mi and ribosomes, k1i is the rate of translation, a2i is
the association rate constant and d2i is the dissociation
rate constant between protein xi and protease, k2i is the
catalytic rate of degradation by the protease, δ2 is the
dilution of proteins, and α0 is the production rate of the
protease, which is assumed to be independent of the free
amount of ribosomes. This system is illustrated in Fig. 4.
Then, using mass-action kinetics, this system leads to the

Fig. 4. Visual representation of (17) for the case with two proteins.
Shared production resources, R, create non-explicit repression
shown with red dashed arrows, while shared degradation re-
sources, P, create non-explicit activation of x1 and x2, shown
with green dashed arrows.

set of ODEs
dmi

dt
= βi − a1imiR+ (d1i + k1i)C1i − δ1mi

dC1i

dt
= a1imiR− (d1i + k1i + δ1)C1i

dxi
dt

= k1iC1i − a2ixiP + d2iC2i − δ2xi
dC2i

dt
= a2ixiP − (d2i + k2i + δ2)C2i

Rtot = R+

n∑
k=1

C1k

dP

dt
= α0 −

n∑
k=1

[a2kxkP + (d2k + k2k)C2k]− δ2P.

(18)



We reduce (18) by using singular perturbation and follow-
ing a similar process as previously outlined in Section 3.
Then the mRNA dynamics are given as

dmi

dt
= βi − δ1mi

(
1 +

R

K1i

)
(19)

where K1i = d1i/a1i is the the binding constant between
mi and ribosomes. To simplify the system, we wish to
set the mRNA to the steady state; however, the mRNA
steady state depends on the concentration of free ribo-
somes, which, in turn, depends on the concentration of
other mRNA in the network. The algebraic derivation can
be simplified by considering that the total concentration
of ribosomes is much smaller than the mRNA–ribosome
binding constant, Rtot � K1i (Gyorgy et al., 2015). Then
the steady state of mRNA is mi = βi/δ1. We assume that
mRNA is at the steady state since mRNA dynamics are
faster than protein dynamics. Then, neglecting retroac-
tivity since we are only interested in the steady state
response, the system becomes

dxi
dt

= k1iR
βi

δ1K1i
− (k2i + δ2)P

xi
K2i
− δ2xi (20)

for i = 1, . . . , n. Here, K2i = d2i/a2i is the binding
constant between the protein xi and the protease. Then,
solving for the equilibrium point of the system at steady
state gives

xeqi =
k1iRβi/(δ1K1i)

(k2i + δ2)P/K2i + δ2
. (21)

Using the conservation laws for both protease and ribo-
somes, we obtain

Rtot = R

(
1 +

n∑
i=1

βi
δ1K1i

)
(22)

Ptot = P

(
1 +

n∑
i=1

xi
K2i

)

= P

[
1 +R

n∑
i=1

k1iβi/(δ1K1i)

k2iP +K2iδ

]
. (23)

Now, we are interested to observe how the coupling be-
tween xi and xj is affected by protease and ribosome
sharing. We induce the transcription of protein xj by
increasing βj from 0 to some positive induction level. We
define the coupling coefficient between protein xi and xj
as

M i
j =

xeqi − x
eq
i |βj=0

xeqj − x
eq
j |βj=0

(24)

for any i 6= j. Solving (21)–(23) simultaneously for the
concentration of each protein and substituting into (24).
By assuming that δ2 � k2iP/K2i for each i = 1, . . . , n,
we obtain that M i

j is constant for all levels of induction
of xj , βj . This assumption is valid when protein decay is
dominated by degradation. We will examine the range of
applicability of this assumption in Section 5.1. Then, the
coupling coefficient is given by

M i
j=

k1ik2jK2i

k1jk2iK2j

βi
δ1K1i

 k1jRtot
k2jPtot

−1

(1+
∑
k 6=j

βk
δ1K1k

)−RtotPtot

∑
k 6=j

k1kβk
k2kδ1K1k

.
(25)

Note from (25) that the coupling coefficient of protein xi
with respect to protein xj , M

i
j , is 0 whenever

k1iRtot = k2jPtot. (26)

This means that the maximal speeds of production and
degradation are exactly the same.

Now, we compare this to the system with shared ribo-
somes, but without a shared protease (i.e. Ptot = 0). In this
case, the assumption that δ2 � k2iP/K2i no longer holds.
Therefore, we must repeat the analysis setting Ptot = 0
and using (21)–(22). Then, we obtain the coupling coeffi-
cient between xi and xj to be

M
i

j =
−k1iβi
k1jδ1K1i

 1

1 +
∑
k 6=j

1
δ1

βk
K1k

 . (27)

Observe that M
i

j is always strictly negative, while M i
j

in (25) may be positive, negative, or zero. Additionally,
observe from (25) and (27) that for systems with more
species (i.e. larger networks), the magnitude of the cou-

pling coefficient, |M i
j | and |M i

j |, becomes smaller in both
cases since the terms from any additional proteins appear
only in the denominator of (25) and (27). Finally, to
examine the asymptotic behavior as we let Ptot become
large in (25) and set K2i = K2j and k2i = k2j , then we
recover (27), which shows that the coupling coefficient in
(25) approaches the coupling coefficient in (27) as Ptot
becomes large. In summary, (25) and (27) indicate that
competition for a shared protease may compensate for
the effects of competition for ribosomes by decreasing the
magnitude of the coupling coefficient.

5.1 Nonlinear Simulations

Here we explore how the coupling coefficient varies when
we change the total protease concentration over a wide
range through numerical simulation of (18). In this case,
the assumption that δ2 � k2iP/K2i may not hold. We
now assume that there are two proteins, x1 and x2, in the
system. We induce the transcription of x2 and calculate the
steady state of x1 and x2 for different levels of induction of
x2, β2. Fig. 5 shows example curves for the case with only
ribosome competition and both protease and ribosome
competition. The curve corresponding to the case with
only ribosome competition, (27), has a constant, negative
coupling coefficient for all levels of induction. For the curve
corresponding to the case with both protease and ribosome
competition, the assumption that the dilution is small for
the coupling coefficient in (25) does not hold, so the curve
is not a line in this case.

Additionally, we observe how the system behaves as the
total amount of protease changes numerically. We calcu-
late the coupling coefficient using (18) and (24) for various
levels of the total amount of protease, Ptot, and for three
different levels of induction of the promoter of x2: 20%,
50%, and 100% compared to the induction of x1, shown
in Fig. 6. For small concentrations of total protease, the
coupling coefficient for all levels of induction is less than
zero. This corresponds to regions where the protease is not
degrading enough protein to have a significant effect. For
moderate concentrations of total protease, the coupling
coefficient is positive which implies that the effects from
the shared protease over-compensate for the effects of
ribosome sharing. Additionally, for large concentrations of
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Fig. 5. The steady state of (18) with only ribosome competition
(Ptot = 0), shown by the red dashed line, and both protease
and ribosome competition, shown with the blue solid line
for different levels of induction of x2. The parameters were
used here and are k1i = 300 h−1, Rtot = 6800 nM, K1i =
20µM, k2i = 270 h−1, Ptot = 200 nM, K2i = 1200 nM,
δ1 = 12 h−1, δ2 = 0.5 h−1. The maximum production rate
of the mRNA, βi, was calculated using the formula βi =
(DNA)k0i(RNAP )

RNAP+K0i
(Gyorgy et al., 2015) where DNA = 70 nM

is the concentration of the plasmid, k0i = 200 h−1 is the rate of
transcription, RNAP = 2000 nM is the total concentration of
RNA polymerase, and K0i = 200 nM is the binding constant of
RNAP with the promoter. Ranges for each parameter are given
in Table 1.

protease, the coupling coefficient becomes negative, which
corresponds to the case when total protease is abundant,
so protease competition effects are not significant. This
implies that there are two points where the coupling co-
efficient is 0 by continuity. Indeed, zero crossing of the
coupling coefficient occurs when Ptot ≈ 10 nM and when
Ptot ≈ 7400 nM. At these concentrations, ribosomes shar-
ing effects perfectly balance protease sharing effects. Thus,
when designing a genetic circuit, a shared protease may
perfectly balance the effects of ribosome competition at
either a small or a large concentration of protease.

Note that the range of validity of the assumption that
dilution is small compared to degradation can be seen
from Fig. 6 where all three simulated curves collapse
onto the curve calculated with (25). This occurs for total
protease concentrations Ptot > 300 nM, which is feasible
in synthetic systems but is on the upper range for the
concentrations typically present in natural systems (Farrell
et al., 2005).

6. CONCLUSIONS

In this paper, we examined how a shared protease may
affect the behavior of a genetic network. In particular, we
showed that coupling between proteins due to a shared
protease may change the number of equilibria of the sys-
tem as well as balancing the effect of ribosome competition
on a network with no transcriptional regulations. In our
analysis, we assumed that the protease does not require
ribosomes to be produced; however, the results are similar
if this assumption is not made. The coupling coefficient is
zero at a small concentration of protease as well as at a
large concentration of protease.
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Fig. 6. The coupling coefficient of (18) for different concentrations of
total protease. The purple dashed line is the coupling coefficient
predicted by (25) and the green dashed line is the coupling
coefficient predicted by (27). The parameters used here are
k1i = 300 h−1, Rtot = 6800 nM, K1i = 63µM, k2i = 270 h−1,
K2i = 1200 nM, δ1 = 12 h−1, δ2 = 0.5 h−1. The maximum
production rate of the mRNA, βi, was calculated using the

formula βi =
(DNA)k0i(RNAP )

RNAP+K0i
(Gyorgy et al., 2015) where

DNA = 70 nM is the concentration of the plasmid, k0i =
200 h−1 is the rate of transcription, RNAP = 2000 nM is
the total concentration of RNA polymerase, K0i = 200 nM
is the binding constant of RNAP with the promoter. α0

was calculated as Ptotδ2 to give the desired total protease
concentration at steady state. Ranges for each parameter are
given in Table 1.

Cells may use this phenomenon to couple the concentra-
tions of proteins together, cause multistability in gene
networks, or mitigate effects of ribosome sharing. Since
protein degradation by protease is faster than protein pro-
duction, this pathway provides a faster response than tran-
scriptional regulation. Additionally, these effects are im-
portant for consideration in the design synthetic biomolec-
ular circuits with a protease. Unmodeled protease dy-
namics may cause unexpected behavior to occur if not
considered in the design of the circuit. In future work,
we will examine the extent to which these systems can be
designed to be robust to resource sharing effects and apply
these results to give simple tools for the design of synthetic
circuits.
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