MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Estimating the value of demand-side
management in low-cost, solar micro-grids

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mehra, Varun, et al. “Estimating the Value of Demand-Side Management in Low-Cost,
Solar Micro-Grids.” Energy, vol. 163, Nov. 2018, pp. 74-87.

As Published: https://doi.org/10.1016/j.energy.2018.07.204
Publisher: Elsevier
Persistent URL: http://hdl.handle.net/1721.1/119258

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International License

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/119258
http://creativecommons.org/licenses/by/4.0/

Energy 163 (2018) 74—87

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy o

Estimating the value of demand-side management in low-cost, solar

micro-grids

Check for
updates

Varun Mehra’, Reja Amatya, Rajeev ]. Ram

Tata Center for Technology and Design, Massachusetts Institute of Technology, United States

ARTICLE INFO

Article history:

Received 3 April 2017
Received in revised form

14 July 2018

Accepted 30 July 2018
Available online 6 August 2018

Keywords:

Micro-grids

Electricity access
Demand-side management
Reliability

Asset selection

ABSTRACT

Demand-side management has the potential to reduce the cost of solar based community micro-grids
and solar home systems for electricity access. This paper presents a methodology for optimal least-
cost sizing of generation assets while meeting explicit reliability constraints in micro-grids that are
capable of active demand management. The battery management model considers kinetic constraints on
battery operation and represents dispatch in the field to regulate the depth of discharge. The model
allows consideration of the trade-off between depth of discharge, cycle life, and calendar lifetime in lead-
acid batteries. Separate reliability targets for disaggregated, residential load profiles at hourly timesteps
are considered to evaluate the performance and cost reduction potential of demand-side management
capabilities — with economic results and sensitivity analyses around key input assumptions subse-
quently presented. We find that demand-side management can reduce the number and cost of requisite
solar panels and batteries with the integration of real-time management and controls — a key result for
justifying next generation micro-grids for electricity access.

Off-grid
Techno-economic model
Cost
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1. Introduction

Over one billion people mostly in developing countries live
without electricity access, and many who have grid-connections
are subject to low levels of reliability and poor quality of service.
In India alone, it is estimated that 300 million people lack basic
electricity access [1]. Access to electricity has been inextricably
linked to human development, as many studies have documented
this over a wide range of development indicators such as life ex-
pectancy at birth, education, literacy etc. [1]. With the immediate
challenges of minimizing greenhouse gas emissions from the po-
wer sector, and at the same time serving increasing population,
affordable and distributed renewable energy sources are required
to achieve the United Nations' Sustainable Development Goal for
universal energy access. Solar-based community micro-grids and
individual home systems have been recognized as key enablers of
electricity provision to many living without access to-date.

Despite significant cost reductions in solar panels in recent
years, both individual solar home systems and micro-grids can still
be cost-prohibitive for people in developing countries. Most solar-
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based off-grid systems in such rural communities either have bat-
teries that are over-sized to ensure reliability and autonomous
operation for 3—5 days or back-up diesel generators — both of
which can add to the overall system costs. In addition, utilization of
smaller panels (which have higher per unit costs) and requirements
for individualized maintenance also increases the cost for solar
home systems [1]. At a much larger scale, micro-grids in rural vil-
lages typically require community buy-in, which forces a flat tariff
on service providers and drives up the cost of customer acquisition
[2]. In regards to micro-grid system operation — load curtailment,
revenue collection, and theft monitoring are major issues that drive
up the cost with conventional micro-grid approaches and in-
stallations [3].

Recent adoption, deployment, and financial sustainability of off-
grid electricity services have been boosted by technologies equip-
ped as a “utility-in-a-box” solution, which seem to help alleviate
issues seen today with conventional off-grid systems [3]. The recent
advent of intelligent devices and low-cost computation have
enabled such “utility-in-a-box” solutions in various ways by
implementing smart demand-side management [4] and network
controls [5]. A key motivating factor for deployment of such tech-
nologies is the ability to build a network from a bottom-up
approach, while also taking advantage of economies of scale seen
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Nomenclature

B Battery capacity (Amp-hours)

C Cash outflows ($)

c Generation asset cost ($)

CD Cumulative electricity demand of critical load profile
(kWh-year)

CL Battery cycle life (number of cycles)

cpP Critical load profile (kW)

CR Reliability of critical load profile (%)

d Yearly discount rate (%)

d Monthly discount rate (%)

ESC Cumulative electricity served of critical load profile
(kWh-year)

EST Cumulative electricity served of total load profile
(kWh-year)

h Number of households
Hour of year index (1 ... 8760)

j Household number index (1 ... h)

k Battery capacity index (1 ... n)

l Solar panel index (1 ... m)

LCOE Levelized cost of electricity ($/kWh)

m Number of solar panels

MDOD Maximum depth of battery discharge (%)

n Number of batteries

NPV Net present value ($)

PV Solar panel capacity (Watts)

qq Available battery capacity (kW)

q2 Bound battery capacity (kW)

Qrotal Total battery capacity (kW)

D Cumulative electricity demand of total load profile
(kWh-year)

TP Total load profile (kW)

TR Reliability of total load profile (%)

% Battery voltage (Volts)

Y System lifetime (years)

y Year index (1 ...Y)

from connecting households to a central solar panel and battery —
potentially overcoming challenges of village-scale customer
acquisition and other issues common in conventional micro-grids
[3]. This approach can also enable new, and innovative business
models for electrification [2]; for example with modular systems
and autonomous operation, individuals in off-grid areas can
monetize investments in their own electricity infrastructure.

Power management strategies in resource-constrained, isolated
solar micro-grids can manage both the real-time availability of
electricity supply and expectation of electricity demand; examples
of advanced algorithms for real-time operation of micro-grids using
recurring load forecasts can be found in Refs. [6] and [7], for
managing varying characteristics of generating sources in Ref. [8],
and for electricity scheduling to guarantee reliability in Ref. [9]. The
key interest of this work is to illustrate that micro-grids with
demand-side management can alleviate some cost challenges with
conventional electrification approaches. The network architecture
in Ref. [10] considers smaller units of 5—10 households as nano-
grids that can build a larger network, and such systems can take
advantage of economies of scale by drawing from the same solar
panel and battery — thus avoiding traditional hurdles in acquiring
customers at once and placement of solar arrays and battery banks
in a conventional micro-grid setup.

The main focus of this paper is to analyze one such concept of
interconnected network — a nano-grid in this case: on the order of
5—10 households, based on the capabilities assumed and described
in a “utility-in-a-box”-type solution designed for electricity access
in Ref. [10]. This paper presents a framework containing both
technical and economical parameters to illustrate the value of po-
wer management devices with demand-side management capa-
bilities in such off-grid systems. The model allows for effective
selection of generation assets based on predefined criteria, such as
target reliability and/or system costs. Basic operational character-
istics of a solar-based off-grid system is incorporated in the model
by taking into account operation of all major components including
solar generation, battery operation, network efficiency losses, and
dispatch decisions that correspond to demand estimates that
reflect real off-grid systems. The latter part of this paper explains
how the technical simulations for a micro-grid with demand-side
management translates to economic viability and financial anal-
ysis based on the optimization of generation asset sizes.

Previous techno-economic modeling approaches for micro-

grids tend to be narrowly focused on specific geographies (for
example in rural Nigeria in Ref. [11] and for a Greek island in
Ref. [12]) and/or with overly-specific choices in generation sources
(for example with a “biogas—diesel—battery hybrid energy system”
in Ref. [13], with a “photovoltaic, wind, diesel and hybrid electri-
fication system” in Ref. [14], and with a “battery/hydrogen” hybrid
power system in Ref. [15]). Such approaches also describe optimal
generation asset sizing techniques using combinations of genera-
tion sources not readily available or relevant in electricity access
contexts, and are designed to provide very high levels of system
reliability by keeping demand fixed.

Other approaches have analyzed the effects of a subset of as-
pects related to micro-grid operations on costs, such as with
modeling various business model operational parameters in
Ref. [16] or discount/interest rates in Ref. [17] — but have not
incorporated them holistically from technical performance to
economic/financial analysis. This also extends to the inclusion of
key operational parameters from a micro-grid company's
perspective, such as equipment operation, replacement costs, in-
vestment parameters, etc. The work presented here uses the state
of Jharkhand, India to ground analyses with realistic parameters,
but the structure of this comprehensive techno-economic
modeling approach can be extrapolated to other contexts given
changes in input assumptions such as solar irradiance, demand
profiles, and generation asset availability.

The remainder of the paper is structured as follows. Section 2
provides an overview and process flow description of the model
constructed — with Section 3 focusing on the reliability metric used,
which is the key decision variable in the model in the selection of
optimal, least-cost generation assets. Section 4 describes the
method for constructing disaggregated critical and non-critical
demand profiles at the household level, while Section 5 describes
the technical details of the micro-grid network architecture (e.g.
DC/DC converter efficiencies, wiring losses, solar module power
output, and lead-acid battery operation), along with the dispatch
heuristic used. Sections 6 and 7 introduce the available state-space
of solar/battery combinations and the optimal selection of gener-
ation asset selection that meet reliability constraints based on
simulations. These results are extrapolated to the cost and financial
analysis of the modeled micro-grid in Section 8, with Section 9
subjecting key input assumptions of the model to sensitivity
analysis for deeper insight. Section 10 compares the generation
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asset size method to conventional systems and evaluates the capital
cost benefit for micro-grids with demand-side management ca-
pabilities based on the use-case presented — with concluding re-
marks shared in Section 11.

2. Model approach & objective

The advent of low-cost computation, power electronics, and
sensors — integrated into power management devices — can enable
the next generation of micro-grids for rural electrification. These
capabilities can allow for a variety of power management strategies
and can be integrated in a distributed, ‘prosumer’ network archi-
tecture, as described in Ref. [10] for example. While typical micro-
grids provide fixed hours of evening electricity services, effective
real-time demand-side management based on load disaggregation
can differentiate critical and non-critical loads, and can regulate the
amount of power consumed during operation to maintain network
reliability.

The motivation for conducting this technical analysis is to
identify the optimal, least-cost, combination of solar and battery
assets that meet reliability constraints given the demand man-
agement capabilities of a system. In order to come up with values
for reliability and assess the performance of various solar and
battery combinations, key components of the network such as
wiring losses, DC/DC converter efficiency, solar module power
production, and battery operating constraints have been modeled
appropriately. As a reference, the process flow of the model con-
structed, from initialization of key parameters/inputs to optimizing
solar and lead-acid battery selections to an economic/financial
analysis is illustrated in Fig. 1, with details on each input and
computational step further discussed in Sections 4—7.

No. consumers,
distances, costs,
available
solar/battery,
reliability thresholds

Initialize
Parameters

RE
Historical
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Fig. 1. Process flow diagram for constructed model.

Operational simulation of power systems is an active field of
research, and numerous software programs and commercial
packages have been introduced in recent years that translate
detailed engineering models to system design and overall eco-
nomics. These software platforms, such as ‘Hybrid Optimization of
Multiple Energy Resources’ (HOMER) and ‘Distributed Energy Re-
sources — Consumer Adoption Model’ (DER-CAM), can be used to
assess the sizing and model the performance of distributed energy
technologies (such as fuel cells, diesel generators, photovoltaics,
batteries, etc.) over a period of time in a specified geographic area.

This modeling approach relies on the formulation of a well-
known Kinetic Battery Model (KiBaM) [18]. The model has been
adapted to include dynamic battery management constraints that
is tied to rates of charge, discharge, and depth of discharge to more
realistically represent a real-time operation. In contrast with pre-
vious use-cases of the KiBaM model [19], the explicit inclusion of
depth of discharge as a model input allows the consideration of
trade-offs between depth of discharge, cycle life, and calendar
lifetime in a lead-acid battery.

The approach taken in this work also differs both in the meth-
odology for constructing demand profiles and the considerations of
meeting reliability thresholds by conducting demand side man-
agement. Previous work considers demand profile construction
based on either data directly gathered from installations (for
example via data collected from a micro-grid with a freezer load in
Mali [20] and off-grid systems in Malawi [21] or based on house-
hold meter data as in Ref. [22]), or synthesized load profiles (for
example using a back-of-the-envelope technique to estimate daily
consumption as in Ref. [16] or Monte Carlo simulations across ap-
pliances’ load profiles in Ref. [23]); in contrast, this work explicitly
disaggregates synthesized load profiles based on separating critical
and non-critical loads. This is coupled with the explicit consider-
ation of separate target reliabilities for these disaggregated load
profiles at hourly timesteps — a capability required to evaluate the
performance and potential of on-site demand-side management. A
version of the MATLAB code developed can be found in Ref. [24].

3. Definition of reliability metric

In the construction of most power system models, service reli-
ability is a critical decision variable and metric. Considering that the
reliability metric is the key determinant in the solar and battery
asset sizes in this model, it is worth discussing and defining this
metric explicitly. In centralized power systems, three common
metrics are used — in SAIFI (system average interruption frequency
index, in units of number of occurrences per customer per year),
SAIDI (system average interruption duration index, in units of
number of hours per customer per year), and ASAI (average service
availability index, in percent of energy unavailable in reference to
expected demand) are used [25]. Assigning values to reliability is
not straight-forward, but can be inferred based on costs of event
outage with an example using logarithmic regressions as in
Ref. [26].

There have been a handful of papers focused on analyzing
reliability in the context of distributed, off-grid systems. In Ref. [22],
different combinations of solar/storage systems for an individual
household are modeled using the HOMER micro-grid simulation
software — with results showing higher costs for serving expected
load (both when inputting deferrable and non-deferrable load
profiles) for 99.99% versus 80%. In Ref. [27], reliability indicators are
assessed for hybrid systems taking into account variability in wind
and solar power generation — such as the loss of load probability
(binary encoding if the entire load was served in a time period,
integrated over all the time periods), which is similar to the energy
supply probability metric used in Ref. [20].
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The reliability metric used in the model presented here is the
same as the ASAI metric; the way the reliability value is calculated
is based on the ratio of the energy not served to the expected de-
mand profile integrated over the entire year. This choice of a reli-
ability metric yields the average reliability over the entire year, in
percent. To provide clarity and insight, subsequently presented
simulation results over an entire year will show the discrepancy
between the average yearly reliability versus hourly reliability.

4. Demand load profile construction methodology

As explained in Ref. [28], understanding the demand profiles as
a function of appliances and other variables, such as time of day and
temperature, is of critical importance. In any power system, the
choice of generation assets and assurance of resource adequacy is a
function of the expected demand — whether aggregated at a feeder
level, household-by-household, or appliance-by-appliance.

The model described here relies on the methods included in the
Reference Electrification Model (REM) [29], which generates a
randomized demand profile at each household given the number of
consumers in the network based on appliance-level input as-
sumptions. The REM takes inputs in from survey results on ex-
pected electricity consumption needs, and creates typical
household energy consumption vectors of desired length in hours.
The model randomly permutes start/end times of appliance activ-
ities drawing from a uniform distribution within predefined time
ranges and also introduces day-to-day variability of amount of
electricity usage. REM also allows for exogenous variables, such
ambient temperature and sunlight levels, to induce fan and light
usage, respectively [30]. The input variables are based on historical
average irradiance and temperature data over a year timeframe —
which can be obtained for a particular longitude and latitude from
the National Renewable Energy Laboratory's (NREL) PVWatts
database and calculator [31]. For the purposes of the use-case of
this model presented herein, the geographical location and coor-
dinate choice is the peri-urban area in the state of Jharkhand, India.
This region has a favorable solar resource — on the order of
~5.0—5.5 kWh/m? per day [31].

The description of the loads (e.g. LED lights, fans, and mobile
charger) per household used in this model are shown in Table 1 —
along with assumptions on hourly usage and exogenous variables
that would induce the appliance's usage (e.g. ambient temperature,
amount of sunlight). The choice of loads is reasonably consistent
with loads available from solar home systems from companies such
as Tata Power Solar and SELCO in India. As part of this effort, a bi-
nary encoding of critical (1) and non-critical (0) loads are additional
inputs into the demand profile construction, representing the
ability to disaggregate individual loads. Each household's demand
profile is separated into two 8760 element vectors (hours in a year),
for critical and total load profiles, and is then integrated across the
number of consumers in the network. Note that the generic nature
of this model can allow for different load priorities and a larger
number/higher diversity of loads to model additional use-cases.

Fig. 2 shows the effect that the ‘enabled when’ criterion has on
the generation of load profiles over simulated hours. The top plot
shows the influence of the ambient temperature on the fan usage —
when above 31°C, while the lower plot shows how low solar
irradiance triggers the light usage — when below 5 W/m?2. Again,
each of the demand profiles are generated one user at a time for
each hour of the year (i = 1...8760), and then a cumulative load
profile for the whole network is generated by recursively adding
each household's (user's) load profile together (j = 1...h). Example
of an individual household's demand profile (TP;;) is shown in
Fig. 3, with the cumulative total load profile (TP;) integrated across
the network for an entire year; note that the equations that follow
also hold for the critical demand profile (CP). Its important to note
that due to the introduction of randomness, the household-level
demand profiles are not deterministic and are also not perfectly
correlated with each other.

5. Description of technical aspects of model
5.1. Network architecture & power management devices

The direct current (DC) network architecture was chosen to be
modeled in this effort due to low demand requirement on the
ground, and for explicit reliance on integrating low-cost DC com-
ponents for this application. Each modular unit of 5-10 households
would consist of generation (solar panels), storage (lead-acid bat-
teries), wiring, and power management devices at the network and
household levels. Specifically, there are two types of power
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Fig. 2. Example of fan and lighting load conditioned on ambient temperature and
sunlight.

Table 1
Demand load profile inputs: Residential load scenario.
Parameters Appliance
Light (LED) Fan Cell Phone Charger
Number 2 1 1
Hours per Day 4 4 4
Watts 5 14 25
Critical (Y/N) Y N N
Enabled Irradiance < 0.05 W/m? Temp > 31°C N/A
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Fig. 3. Example of total and critical yearly load profile for one household.

management devices considered here. The generator device (also
referred to as ‘source’) would consist of an MPPT (maximum power
point tracking) charge controller, a boost converter to a 24V DC
network — with multiple outputs to connect either a bus or indi-
vidual households. The generator device includes local memory
and a micro-processor, and bi-directional communication can take
place between the generator device and consumer devices [10]. At
each household, the consumer device (also referred to as the ‘load’
device) consists of a single-input, multi-output buck converter with
current-control capabilities, switches, and sensors at each outlet.
The relevant aspects included in the model are network topology,
DC/DC converters' efficiencies, and wiring losses.

The overall network topology is depicted in Fig. 4, showing the
layout of the source and load units relative to the solar panel,
battery, network, and the end-user appliances. The selection of the
specific DC/DC converter circuit topology, individual components
(e.g. capacitors, transistors, inductors, thermal management, etc.)
and logic embedded within (e.g. duty cycle, switching frequency,
mode of operation) is driven by cost, efficiency, voltage range, and
power levels desired. In the context of such ad-hoc DC micro-grids

Source Unit
Charge
- AN - Caontral Unit
s Source G5M and Line
Converter Communication cell Tower
Network
Load Unit Load Unit
Line Line
{ Communication | Communication |
LI
Sub Control Sub Control
Unit Unit
Load Converter Load Converter
Yy s t Wiy s
TYE 7 8
Loads Loads

Fig. 4. Modelled architecture & proposed network layout [10].

with applications in electricity access, the subject of designing safe,
reliable, and low-cost power electronics is conducted in Ref. [32],
with analysis on transient stability of voltage and power due to load
switching is discussed in Ref. [33].

5.2. Battery model and dispatch constraints

In India, lead-acid still remains the most widely available, well-
understood, and popular battery chemistry across many applica-
tions (e.g. uninterruptable power supplies (UPS), urban power
back-up, etc.) — hence its choice for modeling purposes herein. A
detailed discussion of battery modeling is outside the scope of this
paper, but is the subject of review and detailed analysis in Ref. [28].
The work presented here focuses on the adaptation of the Kinetic
Battery Model (KiBaM), originally conceived of in Ref. [18]. Specif-
ically, the implementation consists of the key operating constraints
to simulate battery management and dispatch in a micro-grid,
given a net current profile of solar irradiance and demand. The
KiBaM effectively represents the charge that is both available and
inaccessible due underlying electrochemical phenomena (e.g. for-
mation of concentration gradients that impact mass transport of
ions to electrodes, where oxidation (discharge) or reduction
(charge) reactions take place). Visually speaking, the KiBaM can be
described in a two-tank model to show that there is only a certain
amount of accessible battery capacity in the battery at each time
step. This value is based on the accessible capacity in the previous
time step and the input/output current desired at each time step,
subject to charge/discharge constraints [18].

To use the KiBaM to simulate the real-time operation of a bat-
tery and a local controller’'s dispatch heuristic, equations need to be
solved to obtain values for available capacity (defined as g;) and
bound capacity (defined as q,) at each time step by feeding in the
net current profile based on a nominal battery voltage, which is
assumed to be 12V for lead-acid batteries. The original KiBaM also
includes input and output current constraints, calculated separately
for charging and discharging, that set maximum limits on how
much current the battery can input or output at each time step [18].
In this case, the current profile is a vector of 8760 elements, which
is equal to the net power profile (total load minus available solar),
divided by the nominal battery voltage. Note that the net incident
solar power is module size and irradiance dependent, and the load
profile construction is dependent on a number of factors described
previously and in Ref. [28].

For illustrative purposes, an example of the solar and load
profiles and the KiBaM variable outputs (qq, g, and qy) are
shown in Fig. 5; these outputs are based on the net current profile
from a 120 W solar panel, a 75 Ah battery, and a residential load
profile across 5 households; note that the assumptions in deter-
mining the solar power output and load profile construction
models that populate these vectors are consistent with the
methods described herein. During roughly the hours 2000—4000
(essentially March—June), the load profile increases due to the in-
crease in fan usage — induced by the ambient temperature — which
affects the available charge in the battery. There is also a period
after hour 4000 where the available solar decreases due to the
monsoon season, but the presence of evening lighting loads is not a
large enough load, in this example, to keep the battery capacity low
during this period of low irradiance. This is further supported by
the outputs in Fig. 6, which indicates the calculated values of each
discharging (top plot) and charging (bottom plot) constraint during
each time step over a simulated year.

In this model, the dispatch heuristic is based on the instanta-
neous availability of solar generation, battery capacity, and demand
— at each time step. Table 2 shows the number of hours each
constraint is reached for both charging and discharging. For
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Fig. 6. Example of charging and discharging KiBaM constraints.

illustrative purposes, this particular instantiation of the model is
with a 120W panel and a 75 Ah battery, serving 5 residential
households; the ‘Net Load’ is either the net solar during charge, or
the net load during discharge.

Table 2

Example of number of hours KiBaM charge and discharge constraints reached.
Constraint Charge Discharge
Net Load 1159 (77%) 567 (12.6%)
KiBaM Constraint 0 (0%) 2993 (66.6%)
SOC Constraint 2428 (67.7%) 935 (20.8%)

Total Hours 3587 (40.9%) 4495 (51.3%)

In this simulation, the KiBaM charge constraint is never reached
during the hours that the battery is charging. This is due to the fact
that the rate of solar energy charging the battery is never high
enough to force the KiBaM charge constraint to be reached — but
there are numerous hours where the additional SOC constraint is
reached (2,428), indicating the presence of spillage (i.e. excess and
unusable solar generation). However, during discharge, the KiBaM
discharge constraint is the most frequent constraint reached,
indicating that the battery was not able to serve the rate of
discharge required by the load for 2993 h; furthermore, the net load
was only served in its entirety 567 of the 4495 h the battery was
discharging over the year. This is supported by the fact that for this
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configuration, the average yearly reliability is low, calculated to be
56.3%.

5.3. Battery cycle life

For modeling purposes, counting battery cycles is a value
dependent on the incident load and solar profile that is discharging
and charging the battery. The ability to count cycles can allow for a
model to better estimate when a battery has reached its end-of-life
based on the rated cycle life, which impacts the replacement costs
over the system's lifetime (the economic implications of which are
further discussed). To implement such a method, the rainflow
counting algorithm is used to track the number of cycles based on
using the battery's historical SOC over one year [34].

Regardless of the rated cycle life of a battery, how it is operated in
the field can have a significant effect on its lifetime. Some battery
manufacturers provide data relating the cycle life to the depth of
discharge; the depth of allowable discharge directly relates to the
number of cycles that a lead-acid battery can realistically withstand
over the lifetime of its usage. In 12V lead-acid batteries, rule of
thumb is to not discharge beyond 50%—60%; excessive discharge can
increase sulphation of the electrodes, decreasing the available elec-
trode area for reactions to take place and thus the effective capacity.

CL = 5, 8916(—24382><MDOD) (-l)

Examples of lead-acid batteries' cycle life (CL) as a function of its
maximum depth of discharge (MDOD), based on a handful of data
points gathered from lead-acid battery manufacturers in India, is
seen in Fig. 7. The MDOD factor is a key input to the model, with the
cycle life of a battery dictated by the choice of MDOD; the sensitivity
to this input parameter is discussed in more detail subsequently, but
the default value for the purposes of the use-case shared herein
assumes an MDOD of 60%, corresponding to a rounded value of 1400
cycles per exponential fit described in Equation (1).

6. Description of economic aspects of model

6.1. Battery and solar combinations based on distributor availability
& economies of scale

A key oversight of previous modeling approaches is that models
based on strict optimization of battery and solar panel selection
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Fig. 7. Exponential fit of MDOD versus cycle life for available 60 Ah-200 Ah lead-acid
batteries in Jharkhand, India.

might identify a more optimal yet unavailable solution in terms of
field implementation. In contrast, the modeling approach con-
ducted for this analysis is focused on finding a least cost combi-
nation of solar panels and batteries to meet a certain level of
demand reliability — dependent on locally available solar panels
and batteries. Though there are many different sizes of solar panels,
especially when looking across many manufacturers, not all of
those increments (e.g. 10 W or 20 Ah) or combinations may be
available in remote, rural areas. Thus, as an illustrative example,
this modeling approach initializes the available state-space based
on available Su-Kam solar panels (50 W—300 W) and Exide and
Amara Raja battery capacities (60 Ah-200 Ah) from a local distrib-
utor in the city of Jamshedpur, India [28].

Another rationale for building such nano-grids as opposed to
individual solar home systems is to leverage economies of scale. As
aresult, both solar panels and batteries have a lower unit cost ($/W
and $/kWh respectively) with increasing capacities. This model
takes into account these aspects, with cost and availability data
gathered directly from the local distributor. Again, including these
aspects formulates the state space for available solar and battery
combinations subject to reliability constraints, which is the key
decision-making step in the model. As a reference, the two-term
exponential fit equations describing the economies of scale for
both solar panels ($/W) and batteries ($/kWh) are shown in
Equations (2) and (3) below [28]:

$/kWh = 288.8e0-0868x4h | 175 3-00011xAh )
$/W = 0.5689¢~0-0487xW 0 gpgge~0-0001xW 3)

6.2. Additional requisite micro-grid cost inputs

In order to conduct a complete cost analysis, the remaining bill-
of-materials are tabulated in Table 3. The requisite power man-
agement network devices are split into ‘generator’ (source) and
‘consumer’ (load) devices. This nomenclature simply means that
the generator device resides near the solar panel and the battery,
and includes a charge controller along with local computation to
manage the network. Consistent with the costs of the generation
assets, the costs of other aspects required in building a micro-grid
are based off of available prices from local appliance and elec-
trical shops in the city of Jamshedpur, India. As Table 3 shows,
additional cost inputs per household include wiring, power man-
agement devices, and appliances.

6.3. Costs of power management devices

For the generator device and consumer devices, the bill of ma-
terials is based on the analysis conducted in Ref. [32] for designing
safe, reliable, and low-cost power electronic devices in the context
of off-grid electricity access. For the generator device, key costs
include components required for the power stage, micro-controller,

Table 3

Key cost inputs from Jamshedpur, India (June 2015).
Item Cost (Rs.) Cost ($) Value
Electrical Wiring Rs. 3.6/m $0.06/m 40 m/household
Communication Wiring Rs. 1.8/m $0.03/m 40 m/household
LED Cost Rs. 100/unit $1.67/unit 4 units/household
Fan Cost Rs. 600/unit $10/unit 1 unit/household
Mobile Charger Rs. 100/unit $1.67/unit 1 unit/household
Generator Device Rs. 2400/unit $40/unit 1 unit/network
Consumer Device Rs. 900/unit $15/unit 1 unit/household
Pole Rs. 200/unit $3.33/unit 1 unit/household
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sensors, printed circuit board, etc.; furthermore, the cost of the
MPPT charge controller are also included — and the cost for the
generator device at supplier scale (10,000 units) is estimated to be
$40. For the consumer device, the key costs similarly include
components required for the power stage, isolation/safety protec-
tion, sensors, etc. The cost for the consumer device at supplier scale
(10,000 units) is estimated to be $15.

7. Optimal selection of generation asset selection subject to
reliability constraints

The previous sections have discussed the technical representa-
tion of the key components included to model micro-grids of in-
terest. Specifically, the paper thus far has detailed the
representation of demand, network architecture, solar power
generation, and lead-acid battery operational constraints. Before
the cost and financial analysis, the key, final step of the model is to
select the least cost combination of solar module and battery ca-
pacity in order to meet reliability thresholds.

The model computes the reliability over the entire year for both
critical and total load profiles — populating each cell in a matrix for
every available combination of battery (index k) and solar panel
(index I). The discrete combinations of individual solar panels and
battery capacities are based on a particular distributor's availability
in Jamshedpur, India in order to constraint realistic solutions (and
costs) for implementation in off-grid areas in Jharkhand as an
example.

To recall, reliability is defined as the sum of the total load served
divided by the total expected load over the entire year; in this
modeling context, the load profile is assumed to be entirely known
a priori but dispatch decisions are made every time step. Further-
more, the definition of reliability (TR, ; and CRy,, in %) per solar/
battery combination is the total amount of electricity served (EST,
ESC) divided by the total amount of expected electricity demand
(TD, CD), integrated over the entire year (8760 h) — calculated for
both serving critical and total load profiles. Though the high pri-
ority and low priority load profiles are separated, this approach
does not enforce a reliability threshold at sub-yearly scales (e.g.
monthly, weekly, daily, or hourly) or at the individual household
level.

8760 h EST; :

TRkJ = Z Z TDU (4)
i=1 j=1 1
8760 h ESC: :

(5)

CRy; = J
ki ; ]:Z] D,

In order to find viable solutions, the model requires an input of
desired reliability thresholds for both critical and total (critical plus
non-critical) load profiles. This is the key capability represented in
power management devices described to enable micro-grids with
demand-side management: that electricity demand can first be
disaggregated and prioritized — followed by the decision whether
to serve or curtail this demand (at each hour in simulation). As
defined by the consumer, critical loads are high priority loads that
would be served first in any resource-constrained scenario;
remaining, non-critical loads can be considered to have lower
priority.

Given that it is unlikely that there exists one particular solution
that would meet an exact reliability threshold, the model accepts
reliabilities that are at least the input values. Using a two-
dimensional search methodology, the algorithm then identifies
the combination of the solar panel and battery where the system

falls within the range of accepted reliability thresholds for both
serving the critical and total load profiles; the outputs of the reli-
ability values across available solar and battery capacities in the
‘residential load’ scenario are shown in Figs. 8 and 9. The z-axis
represents the average yearly reliability in both graphs, with the x-y
coordinate plane representing discrete values of available solar
panels (in watts) and batteries (in amp-hours). In Fig. 8, the trends
towards increasing reliability seems to be continuous in compari-
son to Fig. 9; the presence of discontinuities in the latter is because
in this example use-case, the critical load profile is not serving any
daytime loads, and is solely based on serving evening loads (in
lights). Thus, for serving the modeled critical loads, the reliabilities
are essentially near zero for smaller batteries.

The set of feasible solutions can be interpreted first by the values
of each matrix that are greater than or equal to the reliability
thresholds, and second by the overlap of those indices across both
matrices. The optimal solution is found by using a two-dimensional
search methodology to come up with these overlapping indices.
The model's algorithm compares where the sets of identified
indices intersect, meaning which combination of solar panel and
battery capacity meets both total and critical reliability thresholds.
To find the optimal solution, the last step is for the algorithm to pick
the combination which has the least cost combination of the solar
and battery assets (c,;) — taking into account the economies of
scale for both solar modules ($/W) and batteries ($/kWh). The
optimization heuristic employed is described in the following
equations; note that ¢, = $/W, and ¢, = $/kWh for respective solar
and battery per unit costs, with the indices k and [ corresponding to
combinations of available solar module size (PV) and battery ca-
pacity (B), with a nominal battery voltage of V = 12 (with the
default values for TR and CR at least 90% and 99%, respectively):

Bxc,xV
1000
S.t. TRk,l > 90%

CRy; > 99%
ke{1..n}
le{1..m}

mcin Crl = +PV x ¢

For the final selected generation asset combination, in a 250 W
solar panel and 100 Ah battery, the calculated reliabilities are
99.45% and 94.26% serving the critical and total load profiles,
respectively; in this use-case of the model, the reliability thresholds
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Fig. 9. Critical Reliability vs. PV and Battery Capacities.

are set to be 99% for the critical load profile, and 90% for the total
profile. Reliability is essentially defined to be the average reliability
served over the entirety of the year. Figs. 10 and 11 illustrate the
calculated hourly reliability and compare the amount of non-served
energy at each hour to the demand profiles (again, for both total
and critical load profiles).

The top scatter plots in both figures show the hourly values for
reliability, and the bottom plots show the comparisons between the
non-served energy and expected demand profiles. For the critical
reliability, the requisite threshold is higher, shown by the fact that
nearly all of the hourly reliability values are near 1 (e.g. 100%) for
serving the evening lighting loads. For the total reliability, the main
hours of the year where reliability is lower is during the simulated
peak periods of higher amounts of fan usage (again, induced in the
demand profile construction by ambient temperatures and unable
to be served by the available solar power). Though there are on the
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Fig. 10. Simulated hourly reliability: Total load profile (94.26%).

order of hundreds of hours where the total reliability is below 90%,
in aggregate, the amount of energy served versus the amount of
energy demanded meets the 90% reliability threshold when
considering the entirety of the year.

Furthermore, though there may be many hours of the year when
reliability is low, the magnitude of those values (in terms of watts)
may be small — and thus not have a significant effect. Given that
behavioral and real-time peak shifting effects are not taken into
account in simulation, one way to view this metric is as a lower
bound for the reliability provision; again, algorithms for real-time
implementation of varied demand-side strategies in micro-grids
is outside of the scope of the work presented here.

8. Economic and financial analysis of greenfield micro-grid

The feasible set is determined by the set of i and j indices that
meet both critical and total load profile reliability thresholds, and
the final step of the algorithm chooses the least cost combination of
the solar panel and battery asset; note that each of values in each of
the cells is calculated based on the objective function that relies on
an exponential relationship of the per unit costs of batteries and
solar panels. With five residential household demand profiles
(including network losses associated with hardware), the avail-
ability of solar and battery combinations, and the set reliability
thresholds of 99% for critical loads and 90% for total loads, the least
cost selection of solar and battery assets comes out to be a 250W
panel and 100Ah battery — a combined cost of
$196.49 + $134.47 — $330.96. The selection of high levels of reli-
ability for micro-grids with real-time demand-side management
show that reliability is not being sacrificed in order to be cost-
competitive with conventional micro-grid approaches, as further
discussed in the subsequent sections.

8.1. Additional micro-grid capital costs

The state-space matrices represent the available solar and
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battery combinations and are populated with average yearly re-
liabilities serving critical and total load profiles. The combination of
the solar and battery, plus the costs included in Table 3 consist of
the capital costs for the system.

Fig. 12 shows the distribution of capital costs in the nano-grid
described. Total initial capital costs, comes out to be $542.06 —
coming to a $2.17/W installed and a $108.41 per household for a five
household installation (see Fig. 13).

8.2. Replacement costs based on equipment lifetime

In addition to the initial capital investment, the economic model
takes into account replacement costs of the key assets in the
network based on the lifetime of each asset (as shown in Table 4. In
this case, the battery replacements are taken into account by taking
the expected number of cycles in a particular year (based on the
implementation of the rainflow counting algorithm previously
described), and dividing that by the cycle lifetime; this gives the
expected number of years that the battery will last given how it is
cycled in the particular year simulated.

8.3. Financial model overview & results

The key financial inputs as shown in Table 5 are used in net
present value (NPV) and levelized cost of electricity (LCOE) calcu-
lations. Over the lifetime of the system, the LCOE calculates all the
recurring annual costs (such as maintenance, replacement, and
initial capital costs) and is divided by the total amount of energy (in
kWh) that the network served; note that a key assumption here is
that the denominator value is assumed to be static, not taking into
account demand growth and incrementally adding generation as-
sets to meet increasing demand.

The model takes into account the capital costs, replacement
costs, and maintenance costs for a micro-grid. Furthermore, there is
assumed to be no capital (or operational) subsidy taken into ac-
count. In this use-case of the model, for the residential load profile
scenario with respective total and critical load profile reliability
thresholds at 90% and 99% serving five households, the LCOE is
calculated to be $0.32/kWh (see Equation (15)). The numerator is
based on the NPV of the cash outflows or costs (C), and the de-
nominator is the sum of the entirety of the energy served (EST) in
the micro-grid in each year, y (and not energy generated, which is
typical for stand-alone photovoltaic systems). Note that the yearly
discount rate used is 12% which is a considered to be reasonable

Network Devices: 18%
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Appliances: 12%

Installation: 2%
./ Poles: 3%
Ethernet: <1%
Wiring: 2%

Battery: 25%

Fig. 12. Distribution of capital costs of micro-grid with optimized generation asset
sizes.
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Fig. 13. Tradeoff between MDOD and cycle life with battery selection and replacement
costs.

value for renewable energy projects in India as evaluated in
Ref. [35]; further sensitivity analyses pertaining to varying financial
parameters, such as monthly payments, discount rate, and payback
period, can be found in Ref. [28].

Y Cy
NPV = —_—
y; (1+dy

NPV
LCOE = 8760
7’1 EST;
Zy:l Zz:l iy
Table 4
Lifetime of equipment assets.
Asset Lifetime
Solar Module 15 years
Battery [60% MDOD] 1400 cycles [Fig. 7]
Poles 5 years
Appliances 2 years
Network Devices 5 years
Table 5
Key financial inputs.
Parameter Value
Yearly Discount Rate (d) 12% [35]
Monthly Discount Rate (d’) 0.95%
Payback Period (P) 5 years
System Lifetime (Y) 20 years
Maintenance Rate 2.5%[year of Cy
Exchange Rate Rs. 66/ $

(6)

(7)
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9. Sensitivity analysis to key model inputs

The previous sections have described the series of computa-
tional steps and initial results for a particular use-case in assessing
the design selection of generation assets in micro-grids with
demand-side management capabilities; as a reference, these steps
are depicted in the process flow diagram in Fig. 1. This model is
based on a variety of inputs — the selection of which have under-
lying inter-dependencies that impact results of the model. To
summarize, the use-case of the model presented assumes following
key inputs:

e Demand Inputs: Five customers/households’ aggregated resi-
dential load profiles taken for a representative year (see
Table 1);

o Solar Resource: Historical solar irradiance in Jharkhand, India
[31];

o Solar/Battery Choices: Available solar panels and lead-acid
batteries per distributor availability, and associated costs;

o Battery Operation: Default value for maximum depth of
discharge (MDOD) for lead-acid battery of 60%, corresponding to
1400 cycles (see Fig. 7);

o Reliability Thresholds: Baseline average yearly reliability
thresholds for serving total (90%) and critical (99%) load profiles
(see Figs. 8 and 9);

o Cost Inputs: Values for appliances, power management devices,
network, etc. based on prices gathered from local shops in
Jamshedpur, India (see Table 3);

e Equipment Lifetime: Lifetime of equipment assets, in years,
that dictates replacement costs (see Table 4);

o Financial Inputs: Discount rate, payback period, and system
lifetime which impact business model viability (see Table 5).

The purpose of this section is to illustrate some of the complex
underlying relationships between variables to get a better sense of
what of these aforementioned inputs — and why — impact both the
technical and economic outputs.

9.1. Effect of maximum depth of discharge and cycle life on levelized
cost of electricity

Not only is the selection and operation of a battery important,
so is the allowable depth of discharge and its relationship to cycle
life. Therefore, the key tradeoff to consider is that deeper depths
of discharge can allow for a smaller battery size, but requires
replacing the battery more frequently in turn. The two plots in
Fig. 14 aim to capture this relationship based on the model
constructed. The top plot shows that for an increasing depth of
discharge (corresponding to a decrease cycle life), the choice of
battery capacity decreases. However, the levelized cost of elec-
tricity forms a discontinuous parabolic-like shape (given that
only discrete values for battery capacities are made available in
the construction of the model), capturing the fact that increasing
the depth of discharge requires more frequent replacements and
negatively affects costs. This is a good indicator on the fact that
many lead-acid battery installations aim to take into account
some notion of the depth of discharge and cycle life effects. The
bottom plot shows precisely the increasing number of re-
placements over a 20 year system lifetime based on the
decreasing calendar life of a battery. Note that the assumptions
on the choice of MDOD and cycle counting are implemented in
the form of the MDOD-constraint and the rainflow counting al-
gorithm with battery's lifetime in years rounded based on the
expected cycle life and the number of cycles expected for one
year.
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Fig. 14. Effects of reliability thresholds on cost metrics.

9.2. Effect of reliability thresholds on costs and generation asset
selection

Thus far, the use-case presented herein has shown that for
meeting total and critical reliability thresholds of 90% and 99% for
five households' residential load profiles, a least-cost combination
of a 250 W panel and 100 Ah battery can meet those requirements.

Fig. 16 shows two contour plots assessing the relevant cost pa-
rameters as a function of varying the total and critical reliability
thresholds from 80% to 99%. For the most part, the top plot shows
that the LCOE and capital costs (both per unit and combined total of
generation assets) do increase with increasing reliabilities. The first
interesting point is that the critical reliability only starts to affect
the costs towards the end of the reliability spectrum; recall that the
definition of critical loads are evening lights, showing that there is a
minimum battery requirement for even unacceptably low levels of
reliability. Second, this top plot shows that the costs are not entirely
monotonically increasing as the reliability thresholds increase.
Again, the model is optimizing for the least cost combination of
both the solar panel and the battery subject to meeting reliability
thresholds — and there may be multiple combinations that are
feasible solutions. Thus, the ‘lumpiness’ of having only discrete
combinations (and thus costs) of available solar panels and batte-
ries as reliability thresholds are incrementally increased is the most
plausible explanation for this. Fig. 15 aims to illustrate this argu-
ment, showing that for the 80 available pairs of solar panels and
lead-acid batteries based on the initialized state-space, the varying
proportion of the solar costs in relation to the combined solar
module and battery capacity costs.

Fig. 16 explicitly shows the selection of the solar panel (top plot)
and battery capacity (bottom plot) that correspond to total and
critical reliability thresholds. These plots support the previous ar-
guments in that though there may be multiple solutions, in some
instances the model selects a larger solar panel and a smaller bat-
tery as total reliability (which includes the key daytime load of the
fan) increases. However, to get to the high levels of critical reli-
ability, both the battery and solar panel capacities have to be
increased.

Note that the common $/W metric used in evaluating costs of
power systems is intentionally omitted in this context, as it takes
into account the rated power of the solar panel but not the battery



V. Mehra et al. / Energy 163 (2018) 74—87 85

| [ Proportion of Solar of Generation Asset Costs (%) |

300
0.7
0.65
250 06
0.55
0.5
0.45
04
0.35
03
100 025
0.2
50

120 140
Battery Capacity (Ah)

8
S

Solar Module (W)
@
o

Fig. 15. Proportion of solar costs across available solar/battery state-space.

in the denominator. Thus, for various combinations that may meet
the same reliability thresholds, there are combinations present that
may increase the solar panel while decreasing (or keeping the
same) battery capacity — which may have a net effect of decreasing
the $/W. Though this per unit metric is commonly used when
assessing standalone, grid-connected, photovoltaic systems, it may
not be an appropriate metric in micro-grids where the storage re-
quirements represent a significant amount of the costs in the
numerator.

10. Generation asset sizing results & comparison
As discussed as part of the motivation for this work, one of the

main drawbacks of conventional electricity access approaches is
the tendency — due to a lack of demand-side management and
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Fig. 16. Solar module and battery capacity choice based on reliability.

network control capabilities — to over-size generation assets. In
discussions with solar home system equipment manufacturers and
micro-grid operators, the reasons for over-sizing systems (which
drives costs) include to maintain brand reputation and to ensure
autonomous operation of a micro-grid during periods of low solar
irradiance throughout worst case scenarios. Many such companies
operating in off-grid, rural areas rely on integrating available
equipment/components in nearby urban or peri-urban areas.
However, access to the specific methods, data on in-field perfor-
mance, and assumptions (e.g. local solar resource, daily load, vari-
ability, etc.) equipment manufacturers used for generation asset
sizing are not available — thus making proper comparisons to
benchmark the accuracy and costs of this model difficult.

Typical micro-grids in India are on the order of 30 households
and provide 4—5 h of evening electricity service with basic loads
such as LED's and mobile phone — constituting as the ‘peak’ load
per household [16]. To benchmark the results from the model, the
output of the least-cost generation asset sizes for serving such a
micro-grid's load profile, with 99% reliability, is a 200 W solar panel
and a 150 Ah lead-acid battery. Again, this is the result from the
least-cost combination of generation assets that meet the reliability
threshold — but note that for this use-case, 14 combinations of solar
panels and battery capacities meet a 99% reliability threshold; these
various combinations are shown (with combined costs) in Table 6.
These results are on the order of generation asset sizes typically
seen in such micro-grids, e.g. batteries in a 150 Ah-200 Ah range
and solar panels in a 200 W—300 W range [16].

With the addition of a 12 W fan per household and extending
the state-space beyond the largest solar panel (300 W) and battery
(200 Ah) to be multiples of 200 W panels and 100 Ah batteries, the
model outputs 1,200W worth of solar panels (6 x 200 W) and
500 Ah of lead-acid battery capacity (5 x 100Ah) — to achieve
reliability to be above 99%. The combined costs of these generation
assets is $1621. However, if we separate the cell phone charger and
the fan to be non-critical loads, and allow for a 90% reliability
threshold to meet the total load profile (keeping the 99% critical
reliability threshold constant), the selection of the generation as-
sets is 1,000W of solar panels (5 x 200 W) and 300 Ah of battery
capacity (3 x 100 Ah) — a reduction of one 1 x 200 W solar panel
and 2 x 100 Ah lead-acid batteries. In terms of capital costs, this
combination of generation assets costs $1,194, a difference of $427
(or a reduction of 26% in generation asset costs). Conducting such
simulations with a conventional micro-grid not only helps validate
the outputs of the model, but further illustrates the potential for
demand-side management to more optimally size generation as-
sets, thus reducing the costs for micro-grids.

Again, both the optimally sized system with demand-side
management and the over-sized system yield > 99% reliability for

Table 6
Available solar/battery combinations meet > 99% reliability for typical micro-grid.

Battery Size (Ah) Solar Panel (W) Combined Cost ($)

150 200 348.77
165 200 364.34
100 300 368.85
180 200 379.33
150 250 387.12
120 300 392.11
200 200 398.46
165 250 402.69
180 250 402.69
150 300 425.01
200 250 436.81
165 300 440.58
180 300 455.57
200 300 474.70
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the high-priority critical loads (e.g. evening lighting). But by
incorporating demand-side management, a lower reliability
threshold of 90% serving the total loads (including fans and cell
phone chargers) allows for a reduction in capital costs for the mi-
cro-grid.

11. Conclusion & future work

As discussed, there have been numerous previous efforts
focused on techno-economic analyses of micro-grids of various
configurations. This differentiated approach shared herein provides
a realistic and contextually relevant understanding of the perfor-
mance and costs of solar and battery-based micro-grids with
demand-side management capabilities. This paper walks through a
series of sequential, computational steps, encompassing battery
model simulations to model such micro-grids — with the over-
arching objective to find the least cost solar and battery combina-
tion that meets reliability thresholds for an aggregated demand
profile.

In any model, the results are a direct function of the quality of
the inputs. The model construction framework and the simulation
results shared herein have aimed to be contextually relevant,
incorporating available generation assets and cost inputs as seen in
Jamshedpur, in the Indian state of Jharkhand. Furthermore, the aim
of the model is that it can be used in other contexts with changes of
the inputs, such as the number of users, expected wiring distance or
gauge, etc. — but is built solely on the basis of integrating solar and
lead-acid batteries within a low-voltage, DC network. After yearly
simulations of each combination of solar and battery capacities
with dispatch decisions made at each hourly timestep, the key
decision of the model — in the selection of optimized solar and
battery assets — is based on the least cost combination that meet
minimum thresholds of reliability. In this work, reliability has been
considered as the ratio between the cumulative electricity served
(incorporating line and efficiency losses in the network) versus the
expected electricity demand — a reasonable approximation for the
purposes of simulation.

Future modeling work in this realm should focus explicitly
taking into account the potential for reducing operational costs
when compared to conventional micro-grids. This could further
supplement the cost-benefit argument for micro-grids with
demand-side management; operational costs could be reduced by
restricting types of loads being connected, monitoring electricity
theft, maintaining network stability across households and het-
erogeneous appliances, incorporating forecasts into real-time
dispatch decisions to effectively manage battery state-of-charge,
and requiring mobile payments for continued service instead of
relying on door-to-door collections.

In practice, understanding and quantifying the value of reli-
ability is a significant and important challenge. Micro-grid equip-
ment or service provider's rationale for over-sizing systems is to
minimize the probability of the event that a load (and thus, a
household activity) is not served in its entirety. Similar to demand
response efforts in the developed world, the goal of this effort is to
separate an acceptable level of service for critical loads from the
remaining loads. Yet understanding these thresholds for what is
acceptable from consumers' perspectives need to be thoroughly
understood in advance of any implementation.

Thus, it is critical to recognize the on-the-ground reality and
associated challenges of implementing micro-grids with demand-
side management in rural areas such as in Jharkhand, India. Spe-
cifically, implementation will require a more nuanced under-
standing of households' load preferences and priority, along with
the implications that the curtailment of specific loads has on users’
perception of quality of service and willingness-to-pay [28].

Additional work should investigate whether such nano-grids can
alleviate high customer acquisition costs that are common with
centralized micro-grids, how individuals can also be incentivized to
invest in their own electricity infrastructure by monetizing trans-
actions amongst neighbors, and over time, whether such micro-
grids can be connected together to effectively utilize excess solar
generation and manage demand.

In conclusion, the methodology presented considers the tech-
nical design, operation, economic value, and cost competitiveness
of low-cost solar micro-grids with demand-side management. This
analysis includes the incremental costs of the required power
management devices to enable such micro-grids, and evaluates the
capital and operational costs for a five-household installation based
on distributor availability of solar panels and lead-acid batteries in
Jharkhand, India. The key result shared is that in comparison to
conventional micro-grids for electricity access, demand-side man-
agement capabilities can reduce the number of requisite solar
panels and batteries due to the integration of real-time manage-
ment and control — an encouraging result for the next generation of
electricity access technologies and implementation approaches.
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