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Abstract

We present a computational framework for efficient optimization-based “inverse design” of
large-area “metasurfaces” (subwavelength-patterned surfaces) for applications such as multi-
wavelength/multi-angle optimizations, and demultiplexers. To optimize surfaces that can be
thousands of wavelengths in diameter, with thousands (or millions) of parameters, the key is a
fast approximate solver for the scattered field. We employ a “locally periodic” approximation in
which the scattering problem is approximated by a composition of periodic scattering problems
from each unit cell of the surface, and validate it against brute-force Maxwell solutions. This is
an extension of ideas in previous metasurface designs, but with greatly increased flexibility, e.g.
to automatically balance tradeoffs between multiple frequencies or to optimize a photonic device
given only partial information about the desired field. Our approach even extends beyond the
metasurface regime to non-subwavelength structures where additional diffracted orders must be
included (but the period is not large enough to apply scalar diffraction theory).

1 Introduction and motivation

In this paper, we present and validate a fast method for optimization-based “inverse design” of
large (hundreds of wavelengths λ) aperiodic metasurfaces for wavefront shaping [37, 65, 34, 64, 27],
incorporating both scattered amplitude and phase for multiple incident λ and angles. Previous
methods either optimized the full Maxwell equations [38, 49, 50, 51, 66] (which is infeasible for
large surfaces), were restricted to weakly coupled scatterers [41], or started with a desired scattered
phase and tried to design a corresponding metasurface unit cell [2, 4, 32, 3, 31, 33, 5, 56, 22, 39]
(but if attainable unit cells fail to exactly match the desired λ-dependent phase there was no
systematic way to choose the best compromise). In contrast, our approach starts with a family
of manufacturable unit cells and directly optimizes an aperiodic composition for the desired field
pattern by a fast approximate model, automatically finding the best compromise for the given
constraints. Whereas phase-design methods typically assume that the desired scattered field is
known everywhere [2, 4, 32, 3, 31, 33, 5, 39, 56, 22], our approach allows one to specify the field
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objective only in regions of interest. As outlined in Fig. 1, given exact scattering calculations for
small metasurface unit cells (Sec. 2.1 and Fig. 2), we build an approximate convolutional model
of an arbitrary metasurface (Sec. 2.2) that can then be optimized (Sec. 3) rapidly (seconds to find
the optimum for a 200-λ 2d aperiodic surface with hundreds of parameters) using two different
objective functions. We validate the optimized design with a brute-force Maxwell solver (Sec. 3.1)
and we find excellent quantitative agreement (Fig. 4) even for rapidly varying aperiodic surfaces that
challenge the assumptions of our model. We present example designs (Sec. 4) for a multi-wavelength
optimization (Fig. 5), a wavelength demultiplexer (Fig. 6), and an multi-angle optimization (Fig. 7).
Our approach is not limited to true “metasurfaces” whose features are small enough to mimic
effective-impedance [1, 19, 20, 24, 25, 36, 48, 59, 60] surfaces: we show that it even works well for
large-period microstructures that scatter multiple diffracted beams. Indeed, our method is easily
extensible to incorporate multiple diffraction coefficients, multi-layer/multi-parameter unit cells,
multiple polarizations, and other complications (Sec. 5 and Fig. 8).

Figure 1: Schematic of our design method: exact Maxwell scattering solutions for a set of periodic
unit cells (top) are composed into an approximate solution for an arbitrary aperiodic composition
(right), and this approximation is then used for large-scale optimization to determine the metasur-
face parameters to maximize a given objective (e.g. the focal intensity, bottom). The performance
of the final design can then be fed back into adjusting the design of the unit cell (left).

2 Locally periodic approximation

The key to “metasurface” design is to be able to quickly calculate the transmitted/reflected field
for a large-area structure, possibly thousands of wavelengths in diameter—too large to solve the full
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Maxwell equations without some simplifying assumption. Similar to [2, 4, 32, 3, 31, 33, 5, 56, 22],
the central approximation of our approach is to assume that the metasurface is locally periodic: the
scattering in any small region is almost the same as the scattering from a periodic surface. The use of
periodic calculations to compute the specular reflection phase only, typically discarding amplitudes
and additional diffracted orders, has sometimes been called a “local phase approximation” [61, 14].
(Contrast this with the regime of scalar diffraction theory [6, 44], valid for period Λ� wavelength λ,
in which the surface is treated as locally uniform, separately computing the transmission coefficient
at each point on the surface.) In a separate paper [46], we develop the rigorous foundations
and convergence rates of a related approximation, along with higher-order corrections, but here
(similar to previous authors [2, 4, 32, 3, 31, 33, 5, 56]) we will simply perform brute-force Maxwell
simulations at the end (Sec. 3) to validate our designs. (In fact, we will find in Fig. 4 that the
locally periodic approximation gives excellent agreement with full simulations even for surfaces
where the unit cell is rapidly varying in some regions.) Unlike previous authors who calculated
only the scattered phase and not the total scattered field [2, 4, 32, 3, 31, 33, 5, 56], we employ
both amplitude and phase information to formulate a complete approximate solver (scattered field
for any given incident field) that can be used to optimize the metasurface for arbitrary “objective”
functions of the field. Not only does this approximate solver enable very general optimization, it
also allows us to evaluate the optimized metasurface for different (non-optimized) incident fields
(e.g. the wavelength sensitivity computed in Sec. 4 for the multi-wavelength lens). As discussed
in Sec. 5, our approach is also easily extensible to a ”non-metasurface” regime in which there are
multiple diffracted beams from a large-period surface, as well as to computing near fields (via the
scattering coefficients of the evanescent waves). In this section, we explain in detail how the locally
periodic approximation allows us to compute the total scattered/reflected field (at any point in
space) for any incident wave.

To make it easier to understand our approach, it is helpful to consider a specific example of
a two-dimensional “metasurface” unit cell, based on [33]: TiO2 pillars on top of a silicon dioxide
substrate, as shown in Fig. 2. The height of the pillar is fixed to 600 nm, the period a is fixed to
235 nm, and the pillar width varies: p ∈ [50, a−50] nm (imposing a minimum feature size of 50 nm
for practical fabrication). One could easily add more parameters and/or constraints, as discussed
in Sec. 6. Given this unit cell, an aperiodic metasurface is formed by taking a group of such unit
cells with independent parameters and juxtaposing them next to each other.

Our goal is to compute the scattered (transmitted or reflected) field for such an aperiodic surface,
for any given incident wave (e.g. a planewave or gaussian beam), given only the exact Maxwell
solutions for scattering of planewaves by periodic surfaces of the different pillar widths. In this
paper, we consider only incident propagating (not evanescent) waves, but in another paper [46] we
show that a similar approach can be extended to evanescent fields as well. The key “locally periodic”
assumption is that the pillar width (the unit cell) changes sufficiently slowly from one pillar to the
next. (This assumption is rigorously quantified in [46], is validated numerically in Sec. 4, and it
turns out that we even obtain good accuracy when there are sudden changes in pillar width at
a few locations.) As mentioned above, this assumption is similar in spirit to other metasurface
work [2, 4, 32, 3, 31, 33, 5, 56], where it was found to work well for a wide variety of metasurface
designs; the main contribution of this paper is to couple the locally periodic approximation to
general optimization tools and near-to-far-field transformations. Of course, this approximation can
break down for devices requiring extremely rapid surface variations such as diffraction to nearly
glancing angles [35, 46], although it can be generalized by including a next-order correction [46],
but this is not a problem for the moderate-NA lens-like applications considered in this paper.
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2.1 Periodic sub-problems
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Figure 2: Left: an arbitrary aperiodic metasurface (top) is approximated by solving a set of periodic
scattering problems (bottom), one for each unit cell, to obtain the scattered field just above the
surface (horizontal line segments). Right: 0th diffracted-order amplitude (top) and phase (bottom)
of periodic subproblems as a function of the pillar width. This is precomputed for several widths
(markers) and interpolated as needed.

In Fig. 2(left) is shown the fundamental assumption of our approach. For each unit cell of
the aperiodic structure, we approximate the field in a plane/line just above the unit cell by the
solution for the equivalent periodic structure. Three examples are highlighted corresponding to
three different parameters of the unit cell. When the period of the unit cell is subwavelength, the
zeroth diffractive order is the only propagating wave [28]. Therefore, if we are interested only in
the far field, we can make an additional approximation: we replace the scattered field by its zeroth
Fourier component which is simply the average of the field on the plane just above the pillar.
Given this approximate field just above the surface, in Sec. 2.2 we construct an approximate field
everywhere above the surface. In Sec. 5, we go beyond the zeroth-order (specular) approximation
by including additional diffractive orders.

We will consider periodic structures with hundreds of different pillar widths (with a fixed pe-

4



riod), but we would like to avoid having to do hundreds of unit-cell calculations. We can take
advantage of the fact that the scattered fields are smooth functions of the pillar width [16, 17] by
solving the scattering function for a few widths and then interpolating to any other widths.

Given a smooth function f(p) of some parameter p1 ≤ p ≤ p2, Chebyshev methods evaluate
f(p) at a few special points p and construct a polynomial approximation f̃(p) that can be used
to rapidly evaluate the f(p) with exponentially good accuracy. This can be extended to multiple
parameters using products of Chebyshev polynomials [7] or by more sophisticated methods such as
sparse grids [21]. In this way, we only need to solve the unit-cell Maxwell problem a few times to
obtain our polynomial approximant f̃(p), which is then evaluated, along with its derivative, many
times during optimization. In particular Fig. 2(right) shows the real part, the imaginary part,
and the phase of the zeroth Fourier coefficient of the transmitted field versus the pillar width. We
evaluate this coefficient for 21 different widths (at Chebyshev points [7]), and can then interpolate
to high accuracy using Chebyshev polynomials [7]. Multiple parameters per unit cell could be
interpolated using a product of Chebyshev polynomials [7] or, for more than 3–4 parameters, sparse-
grid interpolation [21]. Here, we use the finite-difference frequency-domain (FDFD) method [12, 52]
with perfectly matched layer (PML) absorbing boundaries [53, 42], but any other computational
method for periodic Maxwell problems would work as well.

2.2 Green’s functions and the equivalence principle

Once the fields are known in a plane above the metasurface, we can obtain the fields everywhere
above the metasurface using the principle of equivalence [23, 45], also known as a near-to-far-field
transformation [58]): the fields in the y = y0 plane can be treated as equivalent current sources
that generate the fields everywhere else. These equivalent electric (J) and magnetic (K) current
densities are defined by [45]: [

J
K

]
= δ(y − y0)

[
n̂×H
−n̂×E

]
(1)

where n̂ = ŷ is the surface unit-normal vector and the delta function implies that these are surface
currents on the plane y = y0.

A further simplification is possible if we only care to compute the fields above the surface.
The currents (1) produce the desired scattered fields above the plane and zero fields below the
plane [23, 45], and this means that the same fields above are produced if we add or subtract the
mirror-image currents (which produce fields below and zero above). Subtracting the mirror-image
sources, however, cancels the J term and leaves only the K current (a pseudovector under mirror
flips [26]). This allows us to use only n̂ × E sources arising from the electric field computed by
the locally periodic approximation in section 2.1. As explained in section 2.1, we can further
approximate the E field by its average in each unit-cell calculation for subwavelength periods, since
this gives the far-field diffracted order.

Given these equivalent currents, or their approximation by far-field locally periodic calculations,
the electric (or magnetic) fields at any point x above the surface can be computed by integrating
along with the Maxwell Green’s function (the field at x from a source at x′) [23]. For our two-
dimensional model problem (xy plane) with the Ez polarization, where we only have a current
Kx(x′) = −Ez(x′)δ(y − y0) and we let G(x,x′) denote the relevant component of the Green’s
tensor [Ez(x) from Kx(x′)], this integral takes the form

Ez(x) = −
∫
surface

G(x,x′)Ez(x
′) dx′ (2)
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where G is a Hankel function [62] G(x,x′) = − ik
4 H

(1)
1 (kr)n̂ · rr , where k = 2π

λ , r = x − x′, and
r = |r|. For a finite metasurface with an infinite silica substrate, we use a standard “windowing”
method to truncate this integral accurately to a finite region [10, 9, 11].

This equivalent-currents formulation is exact if the true aperiodic Ez field is used for the Kx

source term, and in section 3 we find that it has excellent accuracy with the locally periodic ap-
proximation for typical metasurface designs. (A related approximation is made in scalar diffraction
theory, where the locally uniform approximate scattered fields can be thought of as sources pro-
ducing fields everywhere else [6, 44], further approximated in the far field by e.g. the Fraunhofer
diffraction theory [6].)

3 Metasurface inverse design methods

The previous section gives us a fast way to solve the forward problem for the scattered field above
a given metasurface. In this section, we see how we use it to solve the inverse problem, i.e. find the
parameters of a metasurface to produce a desired scattered field. We solve it as an optimization
problem: we minimize or maximize an objective function of the unit cell parameters subject to
some constraints. Given an efficient way to compute any objective function and its gradient, there
are a wide-variety of well-known optimization methods that can be applied; we use the “CCSA-
MMA” algorithm [57] via a free-software implementation [29]. To avoid getting trapped in poor
local optima, we use a technique called successive refinement [43, 13, 15]: We successively double
the number of degrees of freedom, using the optimized coarser structures as starting points for
optimization of the finer structures. (The result was not very sensitive to the starting parameter
guess; we simply started each parameter in the middle of its allowed range.) What objective
function should we optimize? In Sec. 3.1 we consider an objective function similar to previous
work [3, 39], which matches the field just above the metasurface with the desired field. In Sec. 3.2
we optimize more general functions of the scattered field, e.g. the intensity at a single focal point,
which is more flexible when only partial information is known about the desired field. In both
cases, in this section we will design a simple lens structure that we will validate using brute force
simulations. In Sec. 4, we will consider more difficult design problems. In Sec. 3.3 we generalize
our approach to multiple frequencies and angles of incidence via a maxmin formulation.

3.1 Optimizing the wavefront

When the exact desired field is known everywhere above the metasurface, as in lens design [2, 4, 32,
3, 31, 33, 5, 22, 56, 39] and other wavefront shaping problems, by the equivalence principle [23] it is
sufficient to produce this field on a plane just above the surface. Since the approximate scattered
fields s(p) just above the surface (the Ez produced for a given metasurface parameter p) are given
by the locally periodic approximation in Sec. 2.1, we can directly minimize the difference between
this s and the desired field a(x)eiφ(x):

min
s0,φ0,p

∫
|s(p(x))− s0a(x)eiφ(x)+iφ0 |2dx, (3)

where s0 and φ0 are an unknown overall amplitude/phase and p(x) describes the metasurface
parameters along the surface. This approach eliminates the need for any Green’s function integral
(Sec. 2.2) to obtain the field elsewhere.

For a lens application, typically a(x) = 1 and all of the information is in the desired phase
φ(x) [3]. A closely related approach was used for metalens design in several previous works [2, 4, 32,
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Figure 3: Bottom: geometry of a metasurface designed for a 5-degree incident plane wave of
wavelength 532 nm and focal length 14.7 µm (numerical aperture of 0.3) using the wavefront
method. This design produces a field with the needed phase (middle). Top: |Ez|2 intensity plot
shows focusing to the target focal spot.
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Approx.
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y

Figure 4: Left: |Ez|2 intensity plot of the scattered field of a metalens using our locally periodic
approximate solver showing good agreement with a brute force calculation (middle). Right: the
field sections computed by the two solvers show perfect agreement close to the focal lines (top).
This agreement starts to deteriorate the closer the section is to the metasurface (bottom).
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3, 31, 33, 5, 56, 39]. There, since both a(x) and the locally periodic far-field |Ez| were approximately
constant, the amplitude was ignored and they simply attempted to match the desired phase. If this
phase can be matched exactly in a given unit cell by tuning its parameter p(x) (e.g. pillar width),
then no explicit optimization formulation is needed [2], but an optimization-based approach is more
flexible at balancing tradeoffs in cases where the desired aeiφ cannot be exactly obtained, especially
in multi-frequency problems (Sec. 4.1). A phase-based optimization approach was directly employed
in [39] for topology optimization of a small area (no locally periodic approximation).

For example, in Fig. 3 we minimize equation (3) for a single-frequency λ = 532 nm lens design
problem: we focus an incident planewave at a 5-degree angle on a focal point 14.7µm from the
surface, using the target phase φ(x) from [3]. We optimize over piecewise-constant parameters,
effectively one parameter per unit cell, with a standard optimization algorithm [57] utilizing ana-
lytically computed gradients of the objective function with respect to the parameters. Starting the
optimization from a constant-p initial guess was sufficient to obtain a local minimum with excellent
performance shown in Fig. 3. (This 40 unit-cell optimization required < 100 ms on a laptop.) At
the top is the |Ez|2 intensity plot computed with by our approximate solver (Sec. 2.2). Below this
is shown the 96% match between the desired and obtained fields (from the locally periodic approx-
imation) just above the metasurface. At the bottom is shown the optimized metasurface geometry,
which is mostly slowly varying but has sudden jumps in the pillar widths when the desired phase
passes through 2π.

In Fig. 4, the locally periodic approximate solver (left) is compared to a brute-force surface-
integral equation (SIE) Maxwell solver [10, 9, 11] for this optimized solution, showing good quan-
titative agreement. More precisely, at right we compare the computed intensities |Ez(x, y)|2 for
several separations y from the surface. On the focal line, the mean squared difference between
the solutions divided by the mean squared intensity is only 0.3%, validating our locally periodic
approximation. The errors increase as one approaches the surface because of effects that decay with
distance—scattered waves (intensity ∼ 1/y) from sudden jumps in the pillar width (which violate
the locally periodic approximation) along with evanescent fields that we neglected in our far-field
approximation—combined with the fact that small errors are more apparent in low-intensity regions
far from the focal point.

3.2 Optimizing arbitrary functions of the field

Alternatively, since Sec. 2.2 allows us to compute the approximate field anywhere above a metasur-
face, we can optimize any function of this field. This is especially useful if the desired field is only
partially known: perhaps one cares about the field in some regions but not others, or is interested
in amplitude but not phase. In particular, here we approach the lens-design problem by directly
maximizing the intensity |Ez(x)|2 at a single focal point |x|, which can be rapidly computed by
a single integral (2) of the locally periodic surface fields. As in the previous sections, we used
standard optimization techniques [57] with an analytically computed gradient (essentially via an
adjoint method [55]), and the optimized structure for 40 unit cells was found in < 1 s on a laptop
(whereas our brute-force solver was about 105 times slower). A comparison of the two methods
when the period is not sub-wavelength appears in Sec. 5.

3.3 Max–min multi-objective optimization

Many design problems involve a combination of multiple objectives: maximizing performance at
different wavelengths, angles, and/or focal spots, for example. One common way to do this is a
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max–min formulation: we optimize the worst objective:

max
parameters

[
min

λ∈wavelengths
objective(parameters, λ)

]
.

(For example, in Sec. 4.1, the “objective” function for an RGB lens is the intensity at the focal spot,
and max–min optimization means that we try to maximize the lowest intensity across the three
design wavelengths.) Although the expression [· · · ] being maximized is no longer differentiable,
which would make the most efficient high-dimensional optimization methods inapplicable, it can
be transformed into an equivalent differentiable problem [8]

max
t,parameters

t

subject to t ≤ objective(parameters, λ) for λ ∈ wavelengths.

where t ∈ R is a new “dummy” optimization parameter. Assuming that the original objective
function is differentiable, we can now use a standard nonlinear constrained-optimization algo-
rithm [57]. In particular, the CCSA-MMA algorithm [57] only requires us to supply the functions
t and t − objective(parameters, λ) and their gradients (with respect to t and the parameters) in
order to solve the local-optimization problem. Efficient gradient formulas for our cost functions
from Sec. 3.1 and Sec. 3.2 are given in the Appendix.

We will show examples of such optimization problems in Sec. 4, where we will use max–min to
optimize for multiple frequencies (Fig. 5 and Fig. 6) or angles (Fig. 7).

4 Applications: RGB lens, demultiplexer, and angle-insensitive
lens

In this section, we show some larger and more interesting design problems that can be solved by
our methods from the previous section. We still use the same TiO2 pillar unit cells as in Sec. 2, but
now we consider metasurfaces consisting of 1000 unit cells, combining multiple frequencies and/or
angles, and we could solve the resulting optimization problems in a few minutes on a laptop. In
particular, we consider three applications: a lens which has the same focal spot for RGB (red,
green, blue) wavelengths, a demultiplexer that focuses RGB wavelengths at three different focal
spots, and a lens that focuses four incident angles at the same wavelength to the same focal spot.
We will also show that our methods are suitable for sensitivity analyses with respect to wavelengths
or angles, by evaluating designs at non-optimized inputs using our fast (locally periodic) solver.

4.1 Max–min RGB (red, green, blue) focusing

Here, we use the max–min method of Sec. 3.3 to focus normally incident plane waves of three
different wavelengths—480 nm (blue), 530 nm (green), and 650 nm (red)—on a single focal spot,
by maximizing the minimum (worst) intensity at that spot for all three wavelengths. The diameter
of the lens is 235 microns (1000 unit cells), and the focal length is 350.6 microns, which corresponds
to a numerical aperture of 0.3.

At the bottom of Fig. 5 is shown the intensity on the focal line for all three wavelengths,
demonstrating nearly diffraction-limited focusing (RGB half-maximum widths of 975, 997, and
850 nm, respectively). In Fig. 5(middle), we evaluate our optimized design along the focal axis (a
fixed x = 0) versus distance y from the surface and versus wavelength across the visible spectrum,
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in order to show the wavelength sensitivity of our RGB design. This plot reveals that the optimized
design is actually producing three different focal spots (local intensity maxima) on the focal axis for
every wavelength, and at each of the RGB wavelengths a different spot is brought to the 350.6 µm
target. At this target focal spot, the intensity |Ez|2 is plotted versus wavelength in Fig. 5(top),
showing the narrowband nature of the RGB focus. The ability of our approximate solver to rapidly
evaluate the performance of the design with many different (non-optimized) inputs (< 100 ms each)
is a powerful tool for characterizing and understanding the metasurface.
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Figure 5: Bottom: the focal line of the scattered field for the three target wavelengths (blue, green,
and red) show a clear focusing on the target focal axis. Middle: sensitivity plot for the focal length
with respect to the wavelength show chromatic aberration, and each wavelength objective creates a
“spurious focus” (local maximum along along the focal axis) on the focal axis at other wavelengths.
The red spots represent the foci for each wavelength, and we clearly see chromatic aberration. Top:
intensity at the target spot vs. wavelength.

4.2 Demultiplexer

Here, we design a demultiplexer that focuses normally incident plane waves of three different wave-
lengths (RGB again) at three different points, which are sixty microns laterally (x) apart from each
other on the same focal plane (again 350.6 µm from the surface, a numerical aperture of 0.3). As
above, we use the max–min formulation from Sec. 3.3 to maximize the worst case intensity at the
focal spots.

In Fig. 6(top), we show the field intensities in the vicinity of the three focal spots for the
RGB wavelengths, and in Fig. 6(bottom) we plot the corresponding intensities along the focal line
y = 350.6µm. The focal spots for the two side focal points are tilted outward from the focal axis,
which makes sense because they required off-axis focusing relative to the center of the metasurface.
As in Sec. 4.1, we attain nearly diffraction-limited RGB foci half widths of 825, 785, and 795 nm,
respectively.

10



- 62 - 60 - 58 - 56 - 54
345.0

347.5

350.0

352.5

355.0

x (µm)

y 
(µ

m
)

- 5.0 - 2.5 0.0 2.5 5.0

Focal spots

x (µm)
54 56 58 60 62

x (µm)

- 100 - 50 0 50 100

10
20
30
40
50
60 Focal line

Position x (µm)

In
te

ns
ity

 (a
. u

.)

λ=470 nm λ=530 nm λ=650 nm

Figure 6: Bottom: focal lines for the three target wavelengths (blue, green and red) focus on
points sixty microns apart. Top: the field produced by our design focuses on the desired foci, the
high-intensity regions for blue (left) and red (right) are tilted because their foci are off-axis.

4.3 Max–min multi-angle focus

Our last application is a metasurface focusing incident plane waves coming at four different angles
of incidence (normal 0◦, 3◦, 6◦, and 9◦) at the same focal point for the wavelength 532 nm, inspired
by earlier topology-optimization work [39]. As in the previous sections, we target a focal length of
350.6 µm (numerical aperture 0.3), and use the max–min formulation of Sec. 3.3 to maximize the
worst-case focal-point intensity.

Fig. 7(right) shows the field intensities in the vicinity of the target focal spot for the four angles,
exhibiting an unsurprising “tilt” proportional to the angle of incidence. As in the previous sections,
the spots are nearly diffraction limited (half widths of 787, 787, 807, and 724 nm). Fig. 7(left) shows
the corresponding intensities on the focal plane y = 350.6µm versus x. This plot shows that, in
addition to a peak at the target point x = 0, the metasurface produces three auxiliary side peaks.
(Preliminary work indicates that, similar to [39], these auxiliary peaks can be mostly eliminated
by redesigning the unit cell via additional parameters; we will address this in a future manuscript.)
That is, much like in Fig. 5, the metasurface is creating four focal spots, such that at each angle
of incidence a different focal spot is brought to the x = 0 target point. The complex surface
design and resulting transmitted field here would be very difficult to reproduce without large-scale
optimization.

5 Beyond subwavelength periods

The term “metasurface” should strictly apply only to deeply subwavelength structures that can be
accurately described by an effective surface impedance/admittance or similar [1, 19, 20, 24, 25, 36,
48, 59, 60], and most previous work operated in a subwavelength regime [2, 4, 32, 3, 31, 33, 5, 56].
Conversely, when the period is larger than the wavelength, additional diffracted waves appear in
the far field [28] that cannot be described by a uniform effective medium or by a single Fourier
coefficient. Nevertheless, if the unit cells are mostly slowly varying it should still be valid to describe
the surface by a locally periodic approximation (analogous to the adiabatic theorem for propagation
through nearly periodic media [30]) to approximate the field just above the surface and hence the
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Figure 7: Left: the focal lines for 0-degrees, 3-degrees, 6-degrees, and 9-degrees angles of incidence
show four foci with the maximum intensity at the target focal spot (at x = 0), the other three
peaks correspond to the other three target angles. Right: corresponding produced field around the
foci, the focal spot becomes more tilted as the angle of incidence increases.

field everywhere as in Sec. 2. When we solve the local periodic problems in non-subwavelength
structures we can no longer retain only the 0th order Fourier coefficient, but instead we must
retain either the full Ez field on the surface or, for far-field calculations, the Fourier coefficients
corresponding to all of the non-evanescent diffracted orders [28].

In Fig. 8 we show a single-wavelength (λ = 532 nm) lens design for a period of 800 nm > λ,
so that even a periodic surface produces two additional diffracted orders ±1 in addition to the
0th-order “specular” transmission. (Other than the period, the structure is the same TiO2 pillar
geometry considered in the previous sections, we use normal incidence, and design for a focal length
of 48.6 µm with 40 unit cells similar to Sec. 2.) We considered both the wavefront and the intensity
optimization approaches, and validated against a brute-force Maxwell solution as in Sec. 3. Since
the additional diffracted orders propagate at oblique angles, they have little influence on the focal
intensity if the lens is designed to focus the 0th-order (specular) transmitted wave sufficiently far
from the surface, so we carry out the inverse design using only the 0th-order term in the approximate
model.

The results in Fig. 8 show that the intensity method still produces an excellent (near diffraction-
limited) focal spot with high intensity that agrees well with the brute-force validation, whereas
the wavefront optimization produces a much weaker focus that agrees poorly with the validation.
In both cases, the brute-force calculation and the approximate solver (which includes also the
diffractive orders ±1) clearly show the additional diffracted orders scattering to oblique angles
that have low amplitude at the focal spot. One major problem with the wavefront approach in
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this geometry is that varying the pillar width in this case changes the amplitude from 1 to 0.2,
very different from the constant amplitude ≈ 1 in the subwavelength case. The best phase match
corresponds to a weak efficiency, whereas the intensity method can compensate by utilizing both
amplitude and phase variations. The resulting lens designs shown in Fig. 8(left) correspondingly
have an average amplitude twice bigger for the intensity approach than for the wavefront approach
(0.8 vs 0.4). Another challenge of non-subwavelength structures, which would become more acute
for larger-aperture lenses, is that large-period gratings with only a small number of parameters per
unit cell cannot easily implement the rapid variations in phase that are called for by large lenses.
There are too few parameters to fit the complex intra-cell phase variation.

Figure 8: Bottom: the geometry (left) from intensity optimization shows big variations in the width
of the pillar, and produce good focusing when simulated with a brute force simulation (right), or our
locally periodic solver (middle) which includes the diffractive orders ±1. Top: the geometry (left)
from wavefront optimization shows poor focusing both using our locally periodic solver (middle) or
a brute force calculation (right). All the intensity plots have the same color scale.
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6 Concluding remarks

We believe that our locally periodic inverse-design approach represents a powerful extension to the
ideas in previous work, allowing one to balance competing tradeoffs in wavefront design, optimize
arbitrary functions of the scattered field (e.g. intensity in selected regions), evaluate parameter sen-
sitivity, design for robustness to uncertainties, and to go beyond the regime of subwavelength struc-
tures and far-field designs. A similar max–min formulation can be used to implement a standard
robust optimization method to account for manufacturing uncertainty [43, 54]. Our approximate
solver remains orders of magnitude faster than optimization methods based on full Maxwell solvers,
allowing it to scale to aperiodic structures hundreds or thousands of wavelengths in diameter while
retaining acceptable accuracy for typical designs. We find that complex behaviors can be designed
even from very simple unit cells without plasmonic resonances, and without operating in deeply
subwavelength regimes.

This paper presented a proof of concept and validation of the approach, and opens up many
future possibilities. We are currently working on extension to the design of 3d surfaces and vector
fields, and believe such problems to be tractable with a few hours of computation (rather than the
few minutes required here for 2d inverse problems). We can easily extend our inverse design from
a single parameter per unit cell to multiple parameters per cell. With a few (. 10) parameters,
one can use a similar library-based approach via multidimensional interpolation, for which the
main limitation is the number N of unit-cell calculations that need to be solved beforehand in
order to build the interpolation library. The simplest method is a tensor product of Chebyshev
polynomials [7], which is practical for at most 2–3 parameters because N grows exponentially with
the number of parameters. Polynomial scaling of N can be achieved by sparse-grid methods [21] or
neural networks [40, 47]. To handle hundreds or thousands of parameters per unit cell for topology
optimization [63, 39, 38, 49, 50, 51, 66], the library approach must be abandoned in favor of directly
solving Maxwell’s equations in every metasurface unit cell for each optimization iteration (still via
the locally periodic approximation). In this case, the cost is essentially independent of the number
of parameters and scales linearly with the number of unit cells, which can be solved in parallel; we
have successfully optimized metasurfaces with > 1000 parameters per unit cell in this way and are
currently preparing a manuscript on those results. Multiple parameters per unit cell could describe
more complicated surface patterns (e.g. the V-shaped antennas of [64]), but also includes the
possibility of multi-layer patterns (e.g. stacked gratings). Additional degrees of freedom could prove
crucial for obtaining truly wide-bandwidth devices, coupling multiple polarizations, minimizing
unwanted reflections, and so on.

The ability to design non-subwavelength surface patterns (but still far from the � λ regime of
scalar diffraction theory [6, 44]) could prove useful for a variety of applications, starting with designs
for short wavelengths (e.g. near UV) where subwavelength fabrication is difficult. The additional
diffracted orders of large-period structures may also become useful for near-field focusing and related
design problems or for focusing a single incident beam at multiple spots.

Another interesting direction to explore would be further development of the theory of nearly
periodic structures and locally periodic approximations. In a companion work [46], we develop a
rigorous theory of slowly varying (nearly uniform) structures, and show that the analogous “locally
uniform” approximation appears as the 0th-order term in a convergent series of integral corrections.
A corresponding rigorous theory of higher-order corrections to the locally periodic approximation,
analogous to coupled-mode expansions for propagation through nearly periodic media [30], along
with efficient numerical methods to obtain corrections, is an important goal for the theory of
metasurfaces. A closely related problem is coupling radiation to and from guided modes by nearly-
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periodic surfaces, a version of which is solved in [46]. In another paper [46], we have recently shown
that similar local approximations can indeed be used to compute both near fields and coupling to
guided waves.

Appendix

To use standard high-dimensional optimization algorithms, one needs to provide an efficient com-
putation of both the objective (cost) function and its gradient. There is a well-known technique
called an adjoint method [55] that can be used to efficiently compute the gradient for any number
of parameters with a cost comparable to evaluating the objective function at most twice, which is
commonly used in topology optimization [63, 39, 38, 49, 50, 51, 66]. In the case of the two objectives
presented in Sec. 3.1 and Sec. 3.2, the gradient is especially simple to evaluate as described in this
Appendix.

In Sec. 3.1, f(p, s0, φ0) =
∫
|s(p(x))− s0a(x)eiφ(x)+iφ0 |2dx, so the gradient is:

∂f

∂p
= 2<

(∫ (
s(p(x))− s0a(x)eiφ(x)+iφ0

)∗
s′(p(x))dx

)
∂f

∂s0
= −2<

(∫ (
s(p(x))− s0a(x)eiφ(x)+iφ0

)∗
a(x)eiφ(x)+iφ0dx

)
∂f

∂φ0
= −2<

(∫ (
s(p(x))− s0a(x)eiφ(x)+iφ0

)∗
is0a(x)eiφ(x)+iφ0dx

)
,

where ∂f/∂p denotes the functional derivative [18] with respect to the parameter function p(x)
and ∗ denotes complex conjugation. Notice that the computation of the gradient requires only the
evaluation of a few simple integrals, comparable to the cost of evaluating f . Similarly, in Sec. 3.2,
g(p,x) = |Ez(x)|2 = |

∫
y=y0

G(x, (x′, 0))s(p(x′)) dx′|2, and so its gradient is:

∂f

∂p
= 2<

((∫
y=y0

G(x, (x′, 0))s(p(x′)) dx′
)∗ ∫

y=y0

G(x, (x′, 0))s′(p(x′))dx′
)
.
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